JPH0136981B2 - - Google Patents

Info

Publication number
JPH0136981B2
JPH0136981B2 JP58251853A JP25185383A JPH0136981B2 JP H0136981 B2 JPH0136981 B2 JP H0136981B2 JP 58251853 A JP58251853 A JP 58251853A JP 25185383 A JP25185383 A JP 25185383A JP H0136981 B2 JPH0136981 B2 JP H0136981B2
Authority
JP
Japan
Prior art keywords
silicon carbide
molded body
gas
diffusion furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58251853A
Other languages
English (en)
Other versions
JPS60138913A (ja
Inventor
Takashi Tanaka
Tateo Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP58251853A priority Critical patent/JPS60138913A/ja
Priority to DE19843446891 priority patent/DE3446891A1/de
Priority to US06/685,844 priority patent/US4753763A/en
Publication of JPS60138913A publication Critical patent/JPS60138913A/ja
Publication of JPH0136981B2 publication Critical patent/JPH0136981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/10Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】
この発明は、半導体素子製造用の拡散炉管の製
造方法に関する。 半導体拡散炉管の材質として以前は専ら高純度
石英ガラスが用いられていたが、最近では石英ガ
ラスとともに炭化珪素が広く用いられている。炭
化珪素は半導体素子の不純物拡散のため高温加
熱、冷却のサイクルにおいても充分な耐熱衝撃性
をもち、また機械的強度もあつて優れた材料であ
る。ところが従来の炭化珪素質の半導体拡散炉管
は必ずしも純度の点で充分満足のいくものではな
かつた。炭化珪素質の半導体拡散炉管の製造に当
つては原料の炭化珪素粉の酸洗、成形、純化処
理、高純度Siの含浸、最終の酸処理といつた工程
を経て製造されるのが一般的であるが、このよう
な清浄化処理によつても成形体中になお微量の不
純物の残留は避けられず、これが得られる半導体
素子の性能劣化に大きな影響を与えていた。特に
原料の炭化珪素粒子の内部に封じ込められている
不純物はその後の清浄化処理でもこれを除去する
ことは著るしく困難で、かかる不純物は拡散炉管
の使用時に高温加熱で内部から拡散して放出さ
れ、これが半導体素子を汚染するものと考えられ
ていた。 発明者らは従来の炭化珪素半導体拡散炉管にお
ける上記した問題を解決するため程々の研究をし
たものであるが、その結果、炭化珪素を1600℃以
上の温度で不活性ガスをキヤリヤーガスとしてハ
ロゲン又はハロゲン化水素の雰囲気中で処理する
ことによつてこれが解決出来ることを見出したも
のである。発明者の行つた実験結果から考察して
みると、SiC粒に1600℃以上の温度でHCl又はCl2
ガスを接触させて反応させると、SiC+2HCl→
SiCl2+H2+Cに従つて炭素が析出される。即ち
SiC粒子は、中心部がSiCで、これの表面に析出
した炭素が被覆したものとなる。このときSiC粒
子の中の不純物は揮散して除去される。かかる処
理をしたSiCに高純度のSiを含浸させるとSiCの
外周を被覆している炭素は、C+Si→SiCに従つ
て炭化珪素となる。この場合、析出した炭素はハ
ロゲンガスで純化されており、一方含浸するシリ
コンは高純度であるから生成するSiCは極めて高
純度となる。結局、極めて高純度SiC成形体を得
ることができるというものである。 発明者は上記の実験および論理にもとづいて、
出発原料である炭化珪素粉末を1600℃以上の温度
で不活性ガスをキヤリヤーガスとしてハロゲン又
はハロゲン化水素雰囲気中で処理した外、通常の
純化処理をした炭化珪素粉末を発原料として成形
した炭化珪素質成形体に対しても処理温度を1600
〜2000℃の範囲に特定して同様の処理を施してみ
たところ、同じように極めて高純度炭化珪素質成
形体の半導体拡散炉管の得られることを見出し最
終的にこの発明を完成したものである。 即ち、本願の第1の発明は半導体拡散炉管の製
造において、炭化珪素質成形体を1600〜2000℃の
温度で不活性ガスをキヤリヤーガスとしたハロゲ
ンまたはハロゲン化水素ガスの雰囲気中で純化処
理をし、ついでこれに高純度SiCを含浸して高純
度炭化珪素質成形体とすることを特徴とし、また
本願の第2の説明は、拡散炉管を構成する主原料
の炭化珪素粉末を1600℃以上の温度下で不活性ガ
スをキヤリヤガスとしたハロゲンまたはハロゲン
化水素ガスの雰囲気中において純化処理をし、該
処理粉末で成形体を成形し、これを再び1600〜
2000℃の温度下で不活性ガスをキヤリヤガスとし
たハロゲンまたはハロゲン化水素ガスの雰囲気中
において純化処理をし、ついでこれに高純度Siを
含浸して高純度炭化珪素質成形体とすることを特
徴とするものである。以下にこの発明をさらに説
明する。 本発明になる半導体拡散炉管の製造に当つて
は、まず公知な方法によつて炭化珪素質成形体を
造る。即ち、主原料としては、例えば粒径40〜
200μの高純度炭化珪素粉末を用意する。炭化珪
素粉末は通常インゴツトといわれる多結晶体、大
粒径となつた炭化珪素体を、粉砕機で粉砕しこれ
を、篩分けして一定の粒度範囲に調整して造られ
る。しかしながら、これらの紛砕、篩分の工程か
らは不可避的にFe、Crその他の不純物が粉末状
で大量に混入して来る。また、炭化珪素の成形時
に未反応として残存する炭素の中には大量のVが
不純物として含まれている。これらの不純物はく
り返し行なわれる酸洗浄によつて充分に除去され
る。ここにおける酸洗浄処理は1200〜1300℃前後
で塩酸ガスを吹きつける処理が一般に知られてい
る。しかしながら、現実問題としてはこうした処
理をしても不純物を完全に除去することは経済性
を無視する程の長時間処理をしたい限り困難であ
る。そこで通常は経済性を考慮して洗浄時間が約
5hr、或いは不純物含有率Fe<5ppm、Ni<
2ppm、Cr<1↓ppm、V<2ppm、Cu<1↓
ppmとなつたところで洗浄処理を一たん中止す
る。酸洗浄処理のされた炭化珪素粉末で、次に拡
散炉管形状の成形体を成形する。即ち、純化した
炭化珪素粉末に必要なときはランプブラツクを加
え更にフエノールレジンを加えて混練して造粒物
をつくり、その後これを乾燥する。次に、この造
粒物を用いて公知な方法でプレス成形或いは流し
込み成形して成形体を得る。成形体はその後130
℃前後に加熱してフエノールレジンを硬化する。
これによつて多気孔の炭化珪素質成形体が得られ
る。この多気孔の炭化珪素質成形体は、次に純化
処理が施されるが、本発明においてはこの純化処
理に特徴を有する。即ち、1600〜2000℃の高温度
で不活性ガスをキヤリヤーガスとしたハロゲンま
たはハロゲン化水素の雰囲気中において純化処理
を行なう。従来の純化処理は1300℃程度の温度で
塩化水素ガスを吹きつけるものであつたので、そ
れと対比すると著るしく高温である。このような
高温下でハロゲン化水素と接触した炭化珪素は、
SiC+2HCl→SiCl2+H2+Cに従つて分解し炭素
を析出する。即ち、多孔質成形体中のSiC粒子の
個々は、その中心部がSiCのままでその外周に炭
素が被覆されたものに変化し、同時に析出した炭
素はハロゲンガスで純化される。この結果、SiC
の粒子はその内部まで純化されることになる。従
来の純化処理では純化に際し炭素の析出はなく、
従つてSiC粒子の内部までも純化されることはな
かつたので、本発明によると従来にない高純度製
品とすることができる。 なお、本発明における純化処理の温度を1600℃
以上としたのは、これよつてSiCが分解し炭素が
析出するようにするためである。また、上限を
2000℃としたのは、これを超えるとSiCの分解が
大巾に進行して中心部にSiCが残存し外周に炭素
が被覆した状態とならず、成形体自体の形状が変
形するおそれが生ずるためである。さらに、本発
明においてキヤリヤガスを使用するのは、成形体
の中にハロゲン化ガスを充分に供給するためであ
る。 上記の如くして充分に純化処理した多孔質炭化
珪素質成形体は、次にこれに高純度Siを含浸して
炭素を珪化するとともにガス不透過性とする。シ
リコンを純化処理した炭化珪素質成形体中に含浸
させるには1450℃〜1600℃の温度でシリコンを溶
融させ、成形体の端部をこの溶融シリコンの中に
浸漬することによつて毛細管現象で成形体の全域
にシリコンを含浸させる。高純度ガス不透過性炭
化珪素質成形体が得られると、次に最終の純化処
理を施して製品とする。ここでの純化処理は、公
知なHClガス雰囲気中での高温加熱である。 本願の第2の発明は、上述した第1の発明につ
いての説明でのべた不活性ガスをキヤリヤガスと
したハロゲンまたはハロゲン化水素ガスによる処
理を、拡散炉管を形成するための出発原料である
炭化珪素粉末についてまず行なうものである。但
し、この場合の処理温度は1600℃以上であればよ
く、上限は特に限定されないが、好ましくは2000
℃である。即ち、この処理は炭化珪素粉末を対称
するもので成形体のおそれはないからである。第
2の発明では主原料の炭化珪素粉末を上記の如く
純化処理したのち、第1の発明と同様にして管成
形体を成形し、この多孔質成形体に対し再び第1
の発明において施した処理、即ち1600〜2000℃の
温度下で不活性ガスをキヤリヤガスとしたハロゲ
ンまたはハロゲン化水素ガスの雰囲気中で純化処
理をするものである。このような再度の高温下の
純化処理をすることによつて不純物の量は最小と
なつて極めて高純度製品とすることができる。高
純度多孔質成形体が得られたのち、これに高純度
Siを含浸させることは第1の発明と同様である。 即ち、シリコンの含浸によつてこのシリコンは
成形体中の炭素とC+Si→SiCによつて反応す
る。即ち、多孔質成形体の中の炭素の分布は、組
織中で極めて均一であるので、上記反応によつて
SiCの結合が発達し、高強度のSiC材料となる。
次にこれを研摩して最終の酸処理をなす。これに
よつて本発明になる半導体拡散炉管を得ることが
出来るが、これによれば成形体中に含まれている
不純物は後記実施例が示すように最小であつて、
従来にない高純度拡散炉管とすることができる。
以下に実施例を示してこの発明をさらに説明す
る。 実施例 1 純度99.8%で粒度200〜40μの高純度炭化珪素粉
とランプブラツクを重量比で100:7で混ぜ、こ
れにフエノールレジンを外割で12%(重量比)加
えて充分に混練した。次にこれを粒径500μに造
粒してから乾燥した。この造粒物をアイソスタテ
イツクプレスで成形して外径150mm、内径140mm、
長さ2300mmの拡散炉用管を得た。ついでこれを
200℃に加熱してフエノールレジンを硬化した。
次に、この管を高周波加熱炉に入れて1800℃に加
熱して炉内にHClガスを窒素ガスをキヤリヤガス
として供給して1時間の純化処理をした。このも
のの不純物を調べたところ第1表の如くであつ
た。
【表】 上記の純化処理のされた多孔質炭化珪素質成形
体は、次にこれを1600℃で溶融した不純物濃度
1ppb以下のシリコンを含浸してその気孔率を3
%以下とした。このガス不透過性となつた炭化珪
素質管は純化した炉内に入れ、HClガス雰囲気中
で50時間の酸処理をして本発明になる半導体拡散
炉管を得た。このものの不純物を測定したとこ
ろ、第2表の通りであつた。
【表】 実施例 2 出発原料として不純物含有量が第3表に示す如
きSiC原料粉を用意した。
【表】 上記SiC原料を黒鉛ルツボの中に入れ、高周波
炉にて1750℃に加熱し、窒素ガスをキヤリヤーガ
スとしてHClガスをこの中に通し、1時間の処理
を行つた。その結果、SiC原料粉はその表面部分
で分解し、炭素を析出して化学分析の結果が次の
如くとなつた。
【表】 この原料を用いてプロセスチユーブを作成し
た。即ち、上記原料にランプブラツクを重量比で
100:0〜10で混ぜ、これにフエノールレジンを
外割で12%(重量比)で加えて充分に混練した。
次にこれを粒径500μに造粒してから乾燥した。
この造粒物をアイソスタテイツクプレスで成形し
て外径150mm、内径140mm、長さ2300mmの拡散炉用
管を得た。ついでこれを200℃に加熱してフエノ
ールレジンを硬化した。次にこの管を高周波加熱
炉に入れて1800℃に加熱して炉内に窒素ガスをキ
ヤリヤガスとしてHClガスを供給して1時間の純
化処理を施した。この純化処理した多孔質炭化珪
素質成形体は、次にこれを1600℃で溶融した不純
物濃度1ppb以下のシリコンを含浸してその気孔
率を3%以下とした。このガス不透過性となつた
炭化珪素質管は純化した炉内に入れ、HClガス雰
囲気中で50時間の酸処理をして本発明になる半導
体拡散炉管を得た。このものの不純物を測定した
ところ第5表の通りであつた。
【表】 また、この機械的強度は3〜400Mpaと高強度
であつた。得られた炉心管を用いてシリコンウエ
ハを処理し、処理したウエハについてその不純物
を調べたところ、極めて高純度で、石英ガラスの
プロセスチユーブを用いて得られたものと同様の
純度であることが判つた。

Claims (1)

  1. 【特許請求の範囲】 1 半導体拡散炉管の製造において、炭化珪素質
    成形体を1600〜2000℃の温度で不活性ガスをキヤ
    リヤガスとしたハロゲンまたはハロゲン化水素ガ
    スの雰囲気中において純化処理し、ついでこれに
    高純度Siを含浸して高純度炭化珪素質成形体とす
    ることを特徴とする半導体拡散炉管の製造方法。 2 半導体拡散炉管の製造において、拡散炉管を
    構成する主原料の炭化珪素粉末を1600℃以上の温
    度下で不活性ガスをキヤリヤガスとしたハロゲン
    またはハロゲン化水素ガスの雰囲気中において純
    化処理し、該処理粉末で成形体を成形し、これを
    1600〜2000℃の温度下で不活性ガスをキヤリヤガ
    スとしたハロゲンまたはハロゲン化水素ガスの雰
    囲気中において該成形体を純化処理し、ついでこ
    れに高純度Siを含浸して高純度炭化珪素質成形体
    とすることを特徴とする半導体拡散炉管の製造方
    法。
JP58251853A 1983-12-26 1983-12-26 半導体拡散炉管の製造方法 Granted JPS60138913A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58251853A JPS60138913A (ja) 1983-12-26 1983-12-26 半導体拡散炉管の製造方法
DE19843446891 DE3446891A1 (de) 1983-12-26 1984-12-21 Verfahren zur herstellung von heizofenteilen
US06/685,844 US4753763A (en) 1983-12-26 1984-12-24 Method of manufacturing heating furnace parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251853A JPS60138913A (ja) 1983-12-26 1983-12-26 半導体拡散炉管の製造方法

Publications (2)

Publication Number Publication Date
JPS60138913A JPS60138913A (ja) 1985-07-23
JPH0136981B2 true JPH0136981B2 (ja) 1989-08-03

Family

ID=17228890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251853A Granted JPS60138913A (ja) 1983-12-26 1983-12-26 半導体拡散炉管の製造方法

Country Status (3)

Country Link
US (1) US4753763A (ja)
JP (1) JPS60138913A (ja)
DE (1) DE3446891A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214075A (ja) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd MoSi2を主成分とする発熱体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771021A (en) * 1985-07-01 1988-09-13 Teruyasu Tamamizu Semi-conductor diffusion furnace components
JPS6212667A (ja) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 半導体用部材の製造方法
JPS6212666A (ja) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 半導体用炉芯管の製造方法
JPH01252581A (ja) * 1988-03-31 1989-10-09 Taiyo Yuden Co Ltd 窒化物セラミツクスの製造方法
EP0372708A1 (en) * 1988-11-10 1990-06-13 United Kingdom Atomic Energy Authority A method of producing a silicon carbide-based body
DE69131247T2 (de) * 1990-11-20 1999-09-23 Asahi Glass Co Ltd Wärmebehandlungsapparate für Halbleiter und hochreine Siliciumcarbidteile für die Apparate und Verfahren zu ihrer Herstellung
DE69601973T2 (de) * 1995-05-22 1999-11-11 Nippon Carbon Co Ltd Verfahren zur Herstellung von Siliciumcarbidfasern
JP3642446B2 (ja) * 1996-08-01 2005-04-27 東芝セラミックス株式会社 半導体ウエハ処理具
EP0826646B1 (en) * 1996-08-27 2003-06-18 Asahi Glass Company Ltd. Highly corrosion-resistant silicon carbide product
US5702997A (en) * 1996-10-04 1997-12-30 Saint-Gobain/Norton Industrial Ceramics Corp. Process for making crack-free silicon carbide diffusion components
WO1999005338A2 (en) 1997-07-24 1999-02-04 Toyo Tanso Usa, Inc. Surface converted graphite components and methods of making same
US6419757B2 (en) 1998-12-08 2002-07-16 Bridgestone, Corporation Method for cleaning sintered silicon carbide in wet condition
KR20220033050A (ko) * 2020-09-07 2022-03-15 엔지케이 인슐레이터 엘티디 내화재

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951587A (en) * 1974-12-06 1976-04-20 Norton Company Silicon carbide diffusion furnace components
US4238434A (en) * 1978-02-16 1980-12-09 Ibigawa Electric Industry Co., Ltd. Method of producing a silicon carbide sintered body
JPS55158662A (en) * 1979-05-30 1980-12-10 Fujitsu Ltd Semiconductor memory storage
GB2130192B (en) * 1982-10-28 1987-01-07 Toshiba Ceramics Co Silicon carbide-based molded member for use in semiconductor manufacture
JPS60138914A (ja) * 1983-12-26 1985-07-23 Toshiba Ceramics Co Ltd 半導体拡散炉管の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214075A (ja) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd MoSi2を主成分とする発熱体

Also Published As

Publication number Publication date
US4753763A (en) 1988-06-28
DE3446891A1 (de) 1985-07-04
JPS60138913A (ja) 1985-07-23
DE3446891C2 (ja) 1987-12-03

Similar Documents

Publication Publication Date Title
JPH0136981B2 (ja)
US4040849A (en) Polycrystalline silicon articles by sintering
US6013236A (en) Wafer
JPS6356700B2 (ja)
EP0283933B1 (en) Process for producing unsintered cristobalite silica
JPH02500972A (ja) ガラス質シリカにおけるおよびに関する改良
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
JPS62292643A (ja) ガラスまたはセラミック体の製造方法
JPH0123403B2 (ja)
JPS6111886B2 (ja)
JP2721678B2 (ja) β−炭化珪素成形体及びその製造法
US3645686A (en) Production of ultrapure semiconductor materials
JPH06127923A (ja) 多結晶シリコン製造用流動層反応器
US3163523A (en) Method of purifying germanium
JPS6013968B2 (ja) 三塩化ホウ素の製造法
JP3469688B2 (ja) 半導体熱処理用部材の製造方法
JPH08337493A (ja) 単結晶引上げ用高純度黒鉛部材およびその製造方法
RU2060935C1 (ru) Способ очистки карбида кремния
JPS6168310A (ja) シリコン切粉を原料とする高純度窒化けい素の製造方法
JPS5950086B2 (ja) 半導体用治具
JPH05148025A (ja) 炭化珪素質部材の製造方法
JPH0450132A (ja) 天然石英粉末の精製方法
JPS60260419A (ja) シランの製造方法
KR970001524B1 (ko) 탄화규소(SiC) 분말의 제조방법
JPH0764580B2 (ja) 窒素含有合成石英ガラス部材の製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees