JP7471956B2 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
JP7471956B2
JP7471956B2 JP2020140418A JP2020140418A JP7471956B2 JP 7471956 B2 JP7471956 B2 JP 7471956B2 JP 2020140418 A JP2020140418 A JP 2020140418A JP 2020140418 A JP2020140418 A JP 2020140418A JP 7471956 B2 JP7471956 B2 JP 7471956B2
Authority
JP
Japan
Prior art keywords
laminate
glass substrate
layer
group
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020140418A
Other languages
English (en)
Other versions
JP2022035841A (ja
Inventor
智美 福島
夏奈江 遠藤
寛哉 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Holdings Co Ltd filed Critical Taiyo Holdings Co Ltd
Priority to JP2020140418A priority Critical patent/JP7471956B2/ja
Publication of JP2022035841A publication Critical patent/JP2022035841A/ja
Application granted granted Critical
Publication of JP7471956B2 publication Critical patent/JP7471956B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、積層体に関し、より詳細には、フレキシブル表示素子のカバーガラスとして好適なガラス基板/樹脂層の積層構造を有する積層体に関する。
液晶ディスプレイ(LCD)や有機ELディスプレイ(OLED)等の表示素子や電子ペーパー等の電子デバイスの分野では、従来のフラットパネルに加えて屈曲性を有するフレキシブルパネルが採用され始めている。特に近年では、折り曲げ可能なディスプレイを備えた電子デバイスの開発が進められている。
上記したようなフレキシブルデバイスのカバーガラスには、従来のガラス基板に代えて、ポリイミド等の有機高分子材料を使用することが提案され、一部では実用化されている。しかしながら、これら高分子材料はガラスと比較すると剛性や硬度が劣るため、フレキシブルパネルに使用した場合に屈曲が繰り返されるとシワやヨレが生じたり、表面に傷が付きやすいといった問題がある。
また、従来のガラス基板を数十ミクロン程度の極薄ガラスにすることで、表示パネルに屈曲性を持たせることも提案されている。極薄ガラスはある程度の屈曲半径を有するものの、ガラス特有の性質である圧縮強度や耐衝撃性が低いといった問題がある。そこで、近年では、化学強化した極薄ガラスを使用することが試みられている。
しかしながら、化学強化極薄ガラスは、圧縮強度、曲げ強度、耐衝撃性等には比較的強いものの、耐穿刺性(先の尖ったようなもので押圧した際の耐破損性)に劣ることから、実際は、柔軟性のある接着性を介してポリエステルフィルム等の保護フィルムで化学強化極薄ガラスを挟持した構造のものが提案されている。
ところで、ディスプレイ用基板の技術分野においても、水蒸気バリア特性と可撓性とを両立する材料として、ガラス基板にポリイミド樹脂層を積層した複合基板を使用することが提案されている(例えば、特許文献1~3)。
特表2002-534305号公報 特表2015-533685号公報 特開2019-214159号公報
フレキシブルデバイスに使用されるディスプレイのカバーガラス等の用途において、湾曲可能な極薄ガラスに樹脂フィルムを積層した積層体が提案されているものの、上記したように、ガラスの破損を考慮して樹脂フィルムないしは接着剤には柔らかい衝撃吸収性の高い材料が使用されている。そのため、カバーガラスとして使用した場合に表面硬度が不足し、十分な耐穿刺性が得られずに極薄ガラスが破損したり、屈曲や圧縮による変形痕が復元せずに残存し、ディスプレイに求められる平坦性や高級感といった質感が損なわれるといった問題もある。
本発明は、このような課題のもとになされたものであり、その目的は、耐屈曲性や耐衝撃性に優れるともに、表面硬度および質感にも優れる極薄ガラス/樹脂層の積層体を提供することである。
上記課題に対して、本発明者らは、樹脂層にイミド構造を有するポリマーを使用し、当該ポリマーの物性値が特定の範囲にあり、かつ当該物性値がガラス基板と特定の関係を有する範囲であれば、上記課題が解決できる、との知見を得た。本発明は、かかる知見に基づいて完成されたものである。即ち、本発明の要旨は以下のとおりである。
[1] ガラス基板と、前記ガラス基板の主面の一方に面に接するように設けられてなる樹脂層とを備えた積層体であって、
前記樹脂層は、イミド構造を有するポリマーを含んでなり、
前記樹脂層は、単層膜とした場合の引張弾性率が、前記ガラス基板単体の曲げ弾性率に対して1~15%であり、
前記ガラス基板の厚さが25~100μmであり、
前記樹脂層は、前記ガラス基板の厚さに対して6~100%の厚さを有し、
前記ガラス基板と前記樹脂層との密着性が、ASTM D 3559-Bに準拠したクロスカット剥離試験評価において2B以上である、ことを特徴とする、積層体。
[2] 前記ガラス基板単体の曲げ弾性率が50~150GPaである、[1]に記載の積層体。
[3] 積層体全体の引張弾性率が5GPa以上、または曲げ弾性率が10GPa以上である、[1]または[2]に記載の積層体。
[4] 前記ガラス基板と前記樹脂層との厚さの総和が30~135μmである、[1]~[3]のいずれかに記載の積層体。
[5] 前記ガラス基板が化学強化ガラスである、[1]~[4]のいずれかに記載の積層体。
[6] フレキシブル表示素子のカバーガラスとして使用される、[1]~[5]のいずれかに記載の積層体。
本発明による積層体は、物性値が特定の範囲にあり、かつ当該物性値がガラス基板と特定の関係を有する範囲にあるイミド構造を有するポリマーを樹脂層として使用し、所定厚の極薄ガラス基板と積層した構造とすることにより、耐屈曲性や耐衝撃性に優れるともに、表面硬度および質感にも優れる極薄ガラス/樹脂層の積層体とすることができる。
本発明による積層体の一実施形態を模式的に示した概略断面図。 本発明による積層体の他の実施形態を模式的に示した概略断面図。 本発明による積層体の他の実施形態を模式的に示した概略断面図。
発明を実施するための態様
本発明による積層体を、図面を参照しながら説明する。図1~3は、本発明の積層体の一実施形態を模式的に示した概略断面図である。本発明による積層体1は、図1に示すように、ガラス基板10と、ガラス基板10の主面の一方に面10Aに接するように設けられてなる樹脂層20とを備えている。本発明の積層体の一実施形態によれば、積層体は、図2に示すように、樹脂層の最表面20Aに機能層30を備えていてもよい。また、本発明の積層体の一実施形態によれば、積層体は、図3に示すように、ガラス基板の他方の主面10B側に支持体40を備えていてもよい。なお、図示はしないが、図3に示す実施形態において、ガラス基板10と支持体40とは、接着剤を介して積層されていてもよい。以下、本発明の積層体を構成する各層について詳述する。
<ガラス基板>
本発明の積層体を構成するガラス基板は、厚さが25~100μmである。25~100μmの厚さを有するガラス基板であれば、耐屈曲性や耐衝撃性を有する積層体とすることができる。ガラス基板の厚さは、製造コストと耐屈曲性や耐衝撃性とを両立できる観点から30~70μmであることが好ましい。
ガラス基板は、上記厚さを有するものであれば特に制限なく使用することができるが、ケイ酸塩ガラスやシリカガラスが好ましく、より好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラスであり、特に好ましくは無アルカリガラスである。なお、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスをいう。アルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。
本発明において、ガラス基板は化学強化ガラスであることが好ましい。化学強化ガラスは、上記したガラス材料を化学強化処理したものである。化学強化処理は、従来公知の方法によって行うことができる。例えば、大きなイオン半径の金属イオンを含む金属塩(例えば、硝酸カリウム)の融液に、ガラス基板を浸漬することにより、ガラス基板中の小さなイオン半径の金属イオン(典型的には、NaイオンまたはLiイオン)が大きなイオン半径の金属イオンと置換され、その結果、ガラス基板表面に残留圧縮応力を発生させることができる。化学強化ガラスは、非化学強化ガラスと比べて圧縮強度、曲げ強度、耐衝撃性が優れる。
ガラス基板の曲げ弾性率は、50~150GPaであることが好ましく、より好ましくは70~100GPaである。なお、本明細書において曲げ弾性率とは、JIS R 1602:1995に準拠して、25℃にて測定した値を意味するものとする。
上記したようなガラス基板は市販のものを使用してもよく、例えば、Dragontrail(登録商標)(AGC株式会社製:材質=アルミノシリケート、シリコン含有、厚さ=70μm)、SCHOTT AS 87 eco(SCHOTT社製:材質=アルミノシリケート、厚さ=25μm、50μm、70μm)、SCHOTT Xensation(登録商標)Up(SCHOTT社製:材質=アルミノシリケート、厚さ=30μm、50μm、70μm)、D263(登録商標)Teco(SCHOTT社製:材質=ホウ珪酸、厚さ=30μm、70μm)、G-Leaf(登録商標)日本電気硝子株式会社製:材質=無アルカリガラス、厚さ=50μm、100μm)等が挙げられる。
<樹脂層>
ガラス基板の主面の一方に面に接するように設けられる樹脂層は、イミド構造を有するポリマーを含む。イミド構造を有するポリマーとしては、後記する物性を有するものであれば特に限定されないが、ポリイミドが好ましい。
樹脂層は、単層膜とした場合に、該単層膜の引張弾性率がガラス基板単体の曲げ弾性率に対して1~15%である。理論に拘束されるわけではないが、ガラス基板は一般的に樹脂と比較して曲げ弾性率が高く柔軟性に乏しい材料ではあるが、ガラス基板の曲げ弾性率に対する引張弾性率が1~15%の範囲にある樹脂膜を、ガラス基板と接するように積層することにより、耐屈曲性や耐衝撃性を維持しながら、表面硬度および質感に優れた積層体とすることができるものと考えられる。単層膜とした場合における樹脂層の引張弾性率は、ガラス基板の曲げ弾性率に対して2~10%の範囲であることが好ましい。なお、本明細書において引張弾性率とは、JIS K 7161に準拠して、25℃にて測定した値を意味するものとする。
また、樹脂層は、ガラス基板の厚さに対して6~100%の厚さを有している必要がある。上記範囲よりも樹脂層が薄すぎると、積層体とした場合の耐屈曲性や耐衝撃性が不十分となる。一方、上記範囲よりも樹脂層が厚すぎると、耐屈曲性や耐衝撃性を維持しながら表面硬度および質感を向上させるのが困難になる。樹脂層の好ましい厚さは、ガラス基板の厚さに対して14~67%の範囲である。
樹脂層の厚さは、ガラス基板と上記関係を有していれば特に制限はないが、ガラス基板との密着性と、積層体とした場合の表面硬度とを両立できる観点からは、5~25μmであることが好ましく、10~20μmであることが好ましい。また、ガラス基板と樹脂層との厚さの総和は、30~135μmであることが好ましく、40~70μmであることがより好ましい。
耐屈曲性や耐衝撃性に優れるともに、表面硬度および質感に優れた積層体とする観点からは、ガラス基板と樹脂層との密着性は、ASTM D 3559-Bに準拠したクロスカット剥離試験評価において2B以上である必要がある。特に耐屈曲性と表面硬度とを両立でききる観点からは、3B~5Bであることが好ましい。
また、樹脂層は、厚さ50μmの単層膜とした場合に、該単層膜の全光線透過率が88%以上であることが好ましい。全光線透過率が88%以上であることにより、積層体をフレキシブルデバイス用ディスプレイのカバーガラスとして好適に使用することができる。全光線透過率は90%以上であることがより好ましい。なお、本明細書において、全光線透過率は、JIS K 7375:2008に準拠して公知の濁度計により測定した値を意味するものとする。
また、樹脂層は、厚さ50μmの単層膜とした場合に、該単層膜のYI値が2.0以下であることが好ましい。上記のように全光線透過率が高く、且つYI値が小さい樹脂層とすることにより、積層体をフレキシブルデバイス用ディスプレイのカバーガラスとして、より好適に使用することができる。YI値は1.5以下であることがより好ましい。なお、本明細書において、YI値(黄色度)は、JIS K 7373:2006に準拠して、紫外可視近赤外分光光度計を用いて300~800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求め、YI=100×(1.2769X-1.0592Z)/Yの式に基づいて算出した値を意味するものとする。
また、樹脂層は、厚さ50μmの単層膜とした場合に、該単層膜のヘイズが2.0以下であることが好ましい。全光線透過率やYI値に加え、ヘイズの小さい樹脂層とすことにより、積層体をフレキシブルデバイス用ディスプレイのカバーガラスとして、より一層好適に使用することができる。ヘイズは1.0以下であることがより好ましい。なお、本明細書において、ヘイズはJIS K 7136:2000に準拠して、公知の濁度計により測定した値を意味するものとする。
上記したような物性を有する樹脂層は、イミド構造を有するポリマーとして下記式(1)で表されるポリイミドを使用することによって実現することができる。式(1)で表される構成単位は、テトラカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。
Figure 0007471956000001
上記式(1)中、Xは、互いに独立して2価の有機基を表し、好ましくは炭素数4~40の2価の有機基、より好ましくは環状構造を有する炭素数4~40の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。
有機基は、有機基中の水素原子が炭化水素基またはフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基およびフッ素置換された炭化水素基の炭素数は好ましくは1~8である。
本発明の実施態様においては、ポリイミドは、複数種のXを含んでよく、複数種のXは、互いに同一でよく、異なっていてもよい。
Xとしては、下記式で表される基を例示でき、各々の基において水素原子がメチル基、フルオロ基、クロロ基またはトリフルオロメチル基で置換された基、炭素数6以下の鎖式炭化水素基を例示できる。
Figure 0007471956000002
上記式中、*は結合手を表し、A、A、Aは、互いに独立して、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-CO-またはN(Q)-を表す。ここで、Qはハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表す。
一例として、AおよびAが単結合、-O-または-S-であり、かつ、Aが-CH-、-C(CH-、-C(CF-またはSO-である。AとAとの各環に対する結合位置、および、AとAとの各環に対する結合位置は、互いに独立して、好ましくは各環に対してメタ位またはパラ位であり、より好ましくはパラ位である。
上記の基のなかでも、積層体の表面硬度や耐屈曲性の観点から、下記式:
Figure 0007471956000003
で表される基がより好ましい。
また、A、AおよびAは、積層体の表面硬度および柔軟性を高めやすい観点から、互いに独立して、単結合、-O-またはS-であることが好ましく、単結合またはO-であることがより好ましい。
本発明の好ましい実施態様においては、上記式(1)の複数のXの少なくとも一部は、式(2)で表される構成単位である。
Figure 0007471956000004
式(2)中、*は結合手を表し、R~Rは、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、互いに独立して、ハロゲン原子で置換されていてもよい。
~Rは、互いに独立して、好ましくは水素原子または炭素数1~6のアルキル基を表し、より好ましくは水素原子または炭素数1~3のアルキル基を表し、ここで、R~Rに含まれる水素原子は、互いに独立して、ハロゲン原子で置換されていてもよい。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。R~Rは、互いに独立して、積層体の表面硬度、透明性および耐屈曲性の観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基またはトリフルオロメチル基であり、とりわけ好ましくはR、R、R、R、R、Rが水素原子、RおよびRが水素原子、メチル基、フルオロ基、クロロ基またはトリフルオロメチル基であり、特に好ましくはRおよびRがメチル基またはトリフルオロメチル基である。
本発明の好ましい実施態様においては、上記式(2)で表される構成単位は式(3)で表される構成単位である。すなわち、複数のXの少なくとも一部は、式(3)で表される構成単位である。この場合、フッ素元素を含有する骨格によりポリイミドの溶媒への溶解性を高め、ポリイミドを含有するワニスの保管安定性を向上しやすいと共に、ワニスの粘度を低減しやすく、積層体を製造する際の塗布性を向上しやすい。また、フッ素元素を含有する骨格により、積層体の光学特性(全光線透過率、YI値、ヘイズ等)が向上する。
Figure 0007471956000005
本発明の一実施態様において、上記ポリイミド中のXは30モル%以上であることが好ましく、より好ましくは50モル%以上、さらに好ましくは70モル%以上が式(2)、特に式(3)で表される。ポリイミドにおける上記範囲内のXが式(2)、特に式(3)で表されると、フッ素元素を含有する骨格により溶媒への溶解性が向上されやすく、当該ポリイミドを含有するワニスの保管安定性を向上しやすいと共に、ワニスの粘度を低減しやすく塗布性が向上する。また、フッ素元素を含有する骨格により、全光線透過率、YI値、ヘイズ等の光学特性も向上する。なお、ポリイミド中のXの式(2)または(3)で表される構成単位の割合は、例えばH-NMRを用いて測定することができるが、むろん原料の仕込み比からも算出することもできる。
上記式(1)において、Yは4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。有機基は、有機基中の水素原子が炭化水素基またはフッ素置換された炭化水素基で置換されていてもよい有機基であり、その場合、炭化水素基およびフッ素置換された炭化水素基の炭素数は好ましくは1~8である。
本発明の一実施態様において、ポリイミドは、複数種のYを含んでもよく、複数種のYは、互いに同一であっても異なっていてもよい。Yとしては、下記式で表される基が好ましい。これらの例示した基においては、水素原子がメチル基、フルオロ基、クロロ基またはトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が例示される。
Figure 0007471956000006
上記式中、*は結合手を表し、Bは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-またはAr-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
上記基のなかでも、積層体の表面硬度および耐屈曲性の観点から、下記式で表される基が好ましい。積層体の表面硬度および耐屈曲性を高めやすく、黄色度を低減しやすい観点から、互いに独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-またはC(CF-であることが好ましく、単結合、-O-、-CH-、-CH(CH)-、-C(CH-またはC(CF-であることがより好ましく、単結合、-C(CH-またはC(CF-であることがさらに好ましい。
Figure 0007471956000007
本発明の一実施形態において、式(1)中の複数のYの少なくとも一部は、下記式(4)で表される構成単位である。式(1)中の複数のYの少なくとも一部が式(4)で表される基であると、ポリイミドの溶媒への溶解性を高め、ポリイミドを含有するワニスの粘度を低減しやすく、塗布性が向上する。また、積層体の光学特性が向上する。
Figure 0007471956000008
式(5)中、*は結合手を表し、R~R16は、互いに独立して、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数6~12のアリール基を表し、R~R16に含まれる水素原子は、互いに独立してハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
積層体の表面硬度、耐屈曲性および光学特性を向上しやすい観点から、R~R16は、互いに独立して、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基またはトリフルオロメチル基であり、特に好ましくはR、R10、R11、R14、R15およびR16が水素原子、R12およびR13が水素原子、メチル基、フルオロ基、クロロ基またはトリフルオロメチル基であり、とりわけ好ましくはR12およびR13がメチル基またはトリフルオロメチル基である。
本発明の一実施態様においては、上記した式(4)で表される構成単位は、下記式(5)で表される基であることが好ましい。フッ素元素を含有する骨格によりポリイミドの溶媒への溶解性を高め、ポリイミドを含有するワニスの保管安定性を向上しやすいと共に、ワニスの粘度を低減しやすく、塗布性が向上する。また、フッ素元素を含有する骨格により、積層体の光学特性が向上する。
Figure 0007471956000009
本発明の一実施形態において、ポリイミド中のYの、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上が、式(4)、特に式(5)で表される。ポリイミドにおける上記範囲内のYが式(4)、特に式(5)で表されると、フッ素元素を含有する骨格によりポリイミドの溶媒への溶解性を高め、樹脂を含有するワニスの粘度を低減しやすく、樹脂層の加工性を向上しやすい。また、フッ素元素を含有する骨格により、積層体の光学特性を向上させやすい。なお、好ましくは、上記ポリイミド中のYの100モル%以下が式(4)、特に式(5)で表される。ポリイミド中のYは式(4)、特に式(5)であってもよい。ポリイミド中のYの式(4)で表される構成単位の割合は、例えばH-NMRを用いて測定することができるが、むろん原料の仕込み比からも算出することもできる。
上記したポリイミドは、式(1)で表される構成単位の他に、式(30)で表される構成単位および/または式(31)で表される構成単位を含むことができる。
Figure 0007471956000010
式(30)において、Y1は4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基またはフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記したYの好ましい基を例示できる。本発明の一実施形態において、ポリイミドは、複数種のYを含んでもよく、複数種のYは、互いに同一であっても異なっていてもよい。
式(31)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基またはフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記したYの好ましい基の結合手のいずれか1つが水素原子に置き換わった基、および3価の炭素数6以下の鎖式炭化水素基が例示される。本発明の一実施形態において、ポリイミドは、複数種のYを含んでもよく、複数種のYは、互いに同一あっても異なっていてもよい。
式(30)および式(31)において、XおよびXは、互いに独立に、2価の有機基であり、好ましくは有機基中の水素原子が炭化水素基またはフッ素置換された炭化水素基で置換されていてもよい有機基である。XおよびXとしては、上記したXの好ましい基を例示できる。
本発明の一実施態様において、ポリイミドは、式(1)で表される構成単位、および場合により式(30)および/または式(31)で表される構成単位からなる。また、積層体の光学特性、表面硬度および耐屈曲性の観点から、上記ポリイミドにおいて、式(1)で表される構成単位は、式(1)、および場合により式(30)および式(31)で表される全構成単位に基づいて、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。なお、ポリイミドにおいて、式(1)で表される構成単位は、式(1)、および場合により式(30)および/または式(31)で表される全構成単位に基づいて、通常100%以下である。なお、上記割合は、例えば、H-NMRを用いて測定することができ、または原料の仕込み比から算出することもできる。
また、本発明の一実施態様において、樹脂層とガラス基板との密着性および積層体の質感の観点から、ポリイミドは、式(1)で表される構成単位、および場合により式(30)および/または式(31)で表される構成単位に加え、下記式(40)で表される構造単位を含んでいてもよい。
Figure 0007471956000011
上記式(40)中、*は結合手を表し、R17およびR18は、それぞれ独立して単一結合、炭素数1~5のアルキレン基、または炭素数6以上の2価芳香族基であり、R19およびR20は、それぞれ独立して炭素数1~5のアルキル基であり、R21およびR22は、それぞれ独立して炭素数4~10のアリール基であり、R23およびR24のうち少なくとも一つは、炭素数2~10のアルケニル基であり、m1、m2およびm3は、それぞれ独立して1以上の整数である。
上記式(40)の構造を有する繰り返し単位は、アルキル基に置換された繰り返し単位、アリール基に置換されたシロキサン繰り返し単位、およびアルケニル基に置換されたシロキサン繰り返し単位を共に含むことで、樹脂層の引張弾性率が向上するとともに、樹脂層とガラス基板との密着性が向上し、積層体とした場合の質感も向上する。
なお、アルキル基に置換された繰り返し単位、アリール基に置換されたシロキサン繰り返し単位、およびアルケニル基に置換されたシロキサン繰り返し単位の順序は、任意に変更可能であり、交互に位置してもよい。
本発明の一実施態様において、上記式(40)で表される構造単位中、R17およびR18は、それぞれ独立して単一結合、炭素数1~5のアルキレン基、または炭素数6以上の2価芳香族基であり、好ましくは、炭素数3以上のアルキレン基である。また、R3およびR4は、それぞれ独立して炭素数1~5のアルキル基であり、好ましくは、メチルまたはエチル基である。
また、R19およびR20は、それぞれ独立して炭素数4~10のアリール基であり、好ましくは、フェニル基である。
また、R21およびR22のうち少なくとも一つは、炭素数2~10のアルケニル基であり、好ましくは、エテニルまたはプロペニル基である。なお、アルケニル基でないもう一つは、炭素数1~5のアルキル基である。
また、本発明の一実施態様において、上記式(40)で表される構造単位中、m1、m2およびm3は、それぞれ独立して1~10の整数であり、具体的には、m1は3~9、m2は2~9、m3は1~5の整数である。
本発明の一実施態様において、上記式(40)で表される構造単位は、耐熱性と密着性とのバランスの観点から、全体の単位に対して5mol%以上または50mol%以下、好ましくは、5~40mol%である。
ポリイミドは、例えば上記の含フッ素置換基等によって導入することができる、フッ素原子等のハロゲン原子を含んでよい。ポリイミドがハロゲン原子を含む場合、樹脂層の引張弾性率を向上させ、かつYI値を低減させやすい。また、ハロゲン原子の置換の程度によって、単層膜とした場合の樹脂層の引張弾性率をガラス基板単体の曲げ弾性率に対して1~15%の範囲に調整してもよい。ハロゲン原子は、好ましくはフッ素原子である。ポリイミドにフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基およびトリフルオロメチル基が挙げられる。
ポリイミドにおけるハロゲン原子の含有量は、ポリイミドの質量を基準として、好ましくは1~40質量%、より好ましくは5~40質量%、さらに好ましくは5~30質量%である。ハロゲン原子の含有量が上記の下限以上であると、樹脂層の弾性率をより向上させ、黄色度をより低減し、透明性および視認性をより向上させやすい。ハロゲン原子の含有量が上記の上限以下であると、樹脂の合成がしやすくなる。
ポリイミドのイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは96%以上である。積層体の光学的均質性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。また、イミド化率の上限は100%以下である。イミド化率は、ポリイミド中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリイミドのイミド結合のモル量の割合を示す。なお、ポリイミドがトリカルボン酸化合物を含む場合には、ポリイミド中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。
ポリイミドは、例えば、テトラカルボン酸化合物およびジアミン化合物を主な原料として製造できる。なお、ジアミン化合物に代えて、ジイソシアネート化合物を用いてもよい。
ポリイミドの製造に使用されるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミンおよびこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基またはその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環およびフルオレン環等が例示されるが、これらに限定されるわけではない。これらのなかでも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。
脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミンおよび4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独でまたは2種以上を組合せて用いることができる。
芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMBと記載することがある)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独または2種以上を組合せて使用できる。
芳香族ジアミンは、好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニルであり、より好ましくは4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)、4,4’-ビス(4-アミノフェノキシ)ビフェニルである。これらは単独または2種以上を組合せて使用できる。
上記ジアミン化合物のなかでも、積層体の表面硬度、透明性、柔軟性、屈曲耐性および着色度合い(YI値)の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニルおよび4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMB)を用いることがよりさらに好ましい。
ポリイミドの製造に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物、および脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。
芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物および縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと略すことがある。)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。
上記した中でも、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物および4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられ、より好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4-ジカルボキシフェニル)メタン二無水物および4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独または2種以上を組合せて使用できる。
脂肪族テトラカルボン酸二無水物としては、環式または非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル3,3’-4,4’-テトラカルボン酸二無水物およびこれらの位置異性体が挙げられる。これらは単独でまたは2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、および1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独でまたは2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物および非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。
上記テトラカルボン酸二無水物のなかでも、光学フィルムの高表面硬度、高透明性、高柔軟性、高屈曲耐性、および低着色性の観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物がより好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)がさらに好ましい。
ポリイミドの製造に用いられるジカルボン酸化合物としては、好ましくはテレフタル酸、4,4’-オキシビス安息香酸またはそれらの酸クロリド化合物が用いられる。テレフタル酸や4,4’-オキシビス安息香酸またはそれらの酸クロリド化合物に加えて、他のジカルボン酸化合物が用いられてもよい。他のジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸およびそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。
具体例としては、イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物および2つの安息香酸が単結合、-CH-、-C(CH-、-C(CF-、-SO-もしくはフェニレン基で連結された化合物、並びに、それらの酸クロリド化合物が挙げられる。具体例としては、4,4’-オキシビス(ベンゾイルクロリド)、テレフタロイルクロリドが好ましく、4,4’-オキシビス(ベンゾイルクロリド)とテレフタロイルクロリドとを組合せて用いることがさらに好ましい。
上記ポリイミドは、積層体の各種物性を損なわない範囲で、上記テトラカルボン酸化合物に加えて、テトラカルボン酸およびトリカルボン酸並びにそれらの無水物および誘導体をさらに反応させたものであってもよい。テトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。また、トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸およびそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-もしくはフェニレン基で連結された化合物が挙げられる。
ポリイミドの製造において、ジアミン化合物、テトラカルボン酸化合物および/またはジカルボン酸化合物の使用量は、所望とするポリイミドの各構成単位の比率に応じて適宜選択できる。
ポリイミドの製造において、ジアミン化合物、テトラカルボン酸化合物およびジカルボン酸化合物の反応温度は、特に限定されないが、例えば5~350℃、好ましくは20~200℃、より好ましくは25~100℃である。反応時間も特に限定されないが、例えば30分~10時間程度である。必要に応じて、不活性雰囲気または減圧の条件下において反応を行ってよい。好ましい態様では、反応は、常圧および/または不活性ガス雰囲気下、撹拌しながら行う。また、反応は、反応に不活性な溶媒中で行うことが好ましい。
溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフランおよびジメトキシエタン等のエーテル系溶媒;クロロホルムおよびクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;およびそれらの組合せ(混合溶媒)などが挙げられる。これらのなかでも、溶解性の観点から、アミド系溶媒を好適に使用できる。
ポリイミドの製造におけるイミド化工程では、イミド化触媒の存在下で、イミド化することができる。イミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、およびN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、およびアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、およびイソキノリン等の芳香族アミンが挙げられる。
また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。
ポリイミドは、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により単離(分離精製)してもよく、好ましい態様では、透明ポリアミドイミド樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。
上記したようなポリイミドは、市販のものを使用してもよく、例えば、Aurum PL450C(三井化学株式会社)、KPI-MX400F(河村産業株式会社)、SPIXREA(登録商標)GR003(ソマール社)、SPIXREA(登録商標)GR004(ソマール社)、KOLONポリイミド(KOLON社)、SMP-7015-3S(信越化学工業株式会社)等が挙げられる。
ガラス基板の主面の一方に面に接するように樹脂層を形成する方法としては、例えば、ガラス基板の表面にポリイミド前駆体であるポリアミド酸を含むワニスを塗布して塗布膜を形成した後、塗布膜を加熱してポリイミド前駆体をイミド化してもよいし、ポリイミドを溶媒に溶解させたポリイミドワニスを調製し、ガラス基板の表面にポリイミドワニスを塗布して塗布膜を形成した後、塗布膜を乾燥して溶媒を除去することにより樹脂層を形成してもよい。
<機能層>
上記した樹脂層上に所望により設けられる機能層について説明する。機能層が有する機能は特に限定されず、ハードコート機能、帯電防止機能、防眩機能、低反射機能、反射防止機能、防汚機能、ガスバリア機能、プライマー機能、電磁波遮蔽機能、下塗り機能、紫外線吸収機能、粘着機能、色相調整機能等、フレキシブル表示素子のカバーガラスに採用される一般的な機能であってよい。機能層は1種類の機能を有する層であってもよいし、2種以上の機能を兼ね備えた層であってもよい。カバーガラスとして使用しやすい観点から、該機能層の少なくとも1つは、ハードコート機能、帯電防止機能、防眩機能、低反射機能、反射防止機能および防汚機能からなる群から選択される少なくとも1つの機能を有する層であることが好ましい。機能層は、1層で複数の機能を有していてもよいし、各機能を有する層を2層以上積層してもよい。2層以上積層する場合、積層する順番はその機能に応じて適宜設定される。
機能層の厚さは、目的とする機能に応じて適宜設定してよいが、積層体の軽量化および光学的均質性を高めやすい観点からは、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下である。
(ハードコート機能)
ハードコート機能は、光学フィルムの表面に耐傷性、耐薬品性などを付与して光学フィルムを保護する機能である。本発明の光学積層体において、機能層はハードコート機能を有する層(ハードコート層)であってよい。ハードコート層としては、公知のものを適宜採用してよく、例えばアクリル系、エポキシ系、ウレタン系、ベンジルクロライド系、ビニル系等の公知のハードコート層が挙げられる。これらのなかでも光学積層体の広角方向の視認性の低下を抑制し、かつ耐屈曲性を向上させる観点から、アクリル系、ウレタン系、およびそれらの組合せのハードコート層が好ましい。例えば、ハードコート層は、活性エネルギー線硬化性化合物を含有する組成物の硬化物であってよい。活性エネルギー線硬化性化合物は、電子線、紫外線などの活性エネルギー線を照射することにより硬化する性質を有する化合物である。このような活性エネルギー線硬化性化合物としては、例えば、電子線を照射することにより硬化する電子線硬化性化合物や、紫外線を照射することにより硬化する紫外線硬化性化合物などが挙げられる。これらの化合物は、通常のハードコート層の形成に用いられるハードコート剤の主成分と同様の化合物であり、例えば(メタ)アクリル系樹脂が挙げられる。特に、(メタ)アクリル系樹脂のうち、多官能(メタ)アクリレート系化合物を主成分とするものが好ましい。なお、本明細書において、(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味し、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。
多官能(メタ)アクリレート系化合物とは、分子中に少なくとも2個のアクリロイルオキシ基および/またはメタクリロイルオキシ基を有する化合物であり、具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌレート、ホスファゼン化合物のホスファゼン環に(メタ)アクリロイルオキシ基が導入されたホスファゼン系アクリレート化合物またはホスファゼン系メタクリレート化合物、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有するポリオール化合物との反応により得られるウレタン(メタ)アクリレート化合物、分子中に少なくとも2個のカルボン酸ハロゲン化物と少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有するポリオール化合物との反応により得られるポリエステル(メタ)アクリレート化合物、並びに上記各化合物の2量体、3量体などのようなオリゴマーなどが挙げられる。
これらの化合物は、それぞれ単独または2種以上を混合して用いてよい。なお、上記の多官能(メタ)アクリレート系化合物の他に、少なくとも1種の単官能(メタ)アクリレートを使用してもよい。単官能(メタ)アクリレートとしては、例えばヒドロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。これらの化合物は単独または2種類以上を混合して用いられる。単官能(メタ)アクリレート系化合物の含有量は、機能層形成用組成物(ハードコート層用塗料)に含まれる化合物の固形分に対して、好ましくは10質量%以下の量である。なお、本明細書において、固形分とは、硬化性組成物に含まれる溶媒を除く、全ての成分を意味する。
機能層には、例えば硬度を調整する目的で、重合性オリゴマーを添加してもよい。このようなオリゴマーとしては、末端(メタ)アクリレートポリメチルメタクリレート、末端スチリルポリ(メタ)アクリレート、末端(メタ)アクリレートポリスチレン、末端(メタ)アクリレートポリエチレングリコール、末端(メタ)アクリレートアクリロニトリル-スチレン共重合体、末端(メタ)アクリレートスチレン-メチル(メタ)アクリレート共重合体などのマクロモノマーが挙げられる。重合性オリゴマーを添加する場合、その含有量は、機能層形成用組成物の固形分に対して、好ましくは5~50質量%である。
活性エネルギー線硬化性化合物は、溶剤と混合された溶液の状態で用いてもよい。活性エネルギー線硬化性化合物やその溶液は、ハードコート剤として市販されているものであってもよい。市販のハードコート剤としては、具体的には、NKハードM101(ウレタンアクリレート化合物、新中村化学株式会社)、NKエステルA-TMM-3L(テトラメチロールメタントリアクリレート、新中村化学株式会社)、NKエステルA-9530(ジペンタエリスリトールヘキサアクリレート、新中村化学株式会社)、KAYARAD(登録商標)DPCAシリーズ(ジペンタエリスリトールヘキサアクリレート化合物の誘導体、日本化薬株式会社)、アロニックス(登録商標)M-8560(ポリエステルアクリレート化合物、東亜合成株式会社)、ニューフロンティア(登録商標)TEICA(トリス(アクリロイルオキシエチル)イソシアヌレート、第一工業製薬株式会社)、PPZ(ホスファゼン系メタクリレート化合物、共栄社化学株式会社)等が例示される。
活性エネルギー線として紫外線や可視光線を用いる場合には、通常、重合開始剤として光重合開始剤が用いられる。光重合開始剤としては、例えばアセトフェノン、アセトフエノンベンジルケタール、アントラキノン、1-(4-イソプロピルフェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、カルバゾール、キサントン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノン、1,1-ジメトキシデオキシベンゾイン、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサントン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフオリノプロパン-1-オン、トリフェニルアミン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾイソプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3-メチルアセトフェノン、3,3’,4,4’-テトラtert-ブチルパーオキシカルボニルベンゾフエノン(BTTB)、2-(ジメチルアミノ)-1-〔4-(モルフォリニル)フェニル〕-2-フェニルメチル)-1-ブタノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、ベンジルなどが挙げられる。
また、光重合開始剤は色素増感剤と組合せて用いられてもよい。色素増感剤としては、例えばキサンテン、チオキサンテン、クマリン、ケトクマリンなどが挙げられる。光重合開始剤と色素増感剤との組合せとしては、例えばBTTBとキサンテンとの組合せ、BTTBとチオキサンテンとの組合せ、BTTBとクマリンとの組合せ、BTTBとケトクマリンとの組合せなどが挙げられる。
光重合開始剤を用いる場合、その使用量は、活性エネルギー線硬化性化合物100質量部に対して、好ましくは0.1質量部以上である。使用量が上記範囲にあると十分な硬化速度を得やすい傾向にある。なお、光重合開始剤の使用量は、活性エネルギー線硬化性化合物100質量部あたり、好ましくは10質量部以下である。
ハードコート層の厚さは、適宜設定することができるが、積層体の耐屈曲性、表面硬度および光学的均質性の観点から、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下である。
ハードコート層を樹脂層の表面に形成する方法としては、例えば活性エネルギー線硬化性化合物(活性エネルギー線硬化性樹脂)を含有するハードコート層形成用組成物を樹脂層の表面に塗布し、活性エネルギー線を照射すればよい。このような組成物は、活性エネルギー線硬化性化合物を必要に応じて添加剤等と混合することにより得ることができる。ハードコート層形成用組成物の硬化物がハードコート層を構成する。
ハードコート層形成用組成物は、溶剤を含むことが好ましく、ハードコート層形成用組成物において、活性エネルギー線硬化性化合物が溶剤で希釈されていることが好ましい。この場合、該組成物は、活性エネルギー線硬化性化合物と表面平滑性等を付与するための各種添加剤(例えばシリコーンオイル等)とを混合後に、得られた混合物を溶剤で希釈して製造してもよいし、活性エネルギー線硬化性化合物を溶剤で希釈後、添加剤を混合して製造してもよいし、活性エネルギー線硬化性化合物と予め溶剤で希釈された添加剤とを混合して製造してもよいし、予め溶剤で希釈された活性エネルギー線硬化性化合物と予め溶剤で希釈された添加剤とを混合して製造してもよい。混合後の組成物はさらに攪拌されてもよい。
塗布を容易にする観点からも、ハードコート層形成用組成物が、適当な溶剤を含有することが好ましい。溶剤としては、ヘキサン、オクタンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、エタノール、1-プロパノール、イソプロパノール、1-ブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、セロソルブ類などから適宜選択して用いることができる。これらの有機溶剤は、必要に応じて数種類を混合して用いてもよい。ハードコート層形成用組成物を塗工後に加熱して、有機溶剤を蒸発させやすい観点から、溶剤の沸点は好ましくは70℃~200℃の範囲である。溶剤の種類や使用量は、用いる活性エネルギー線硬化性化合物の種類や量、樹脂層の材質、形状、塗布方法、目的とするハードコート層の厚さみなどに応じて適宜選択される。
(帯電防止機能)
帯電防止機能は、積層体の表面の帯電を防止する機能である。本発明の積層体において、機能層は帯電防止機能を有する層(帯電防止層)であってよい。帯電防止層を形成する方法としては、上記ハードコート層形成用組成物に帯電防止剤を添加してハードコート層に帯電防止機能を付与する方法以外に、帯電防止剤を溶剤等で希釈して得た帯電防止層形成用組成物を、樹脂層表面に形成されたハードコート層上に塗布し、必要に応じて乾燥して、単独の膜として形成させる方法が挙げられる。帯電防止剤は、機能層を構成する樹脂(例えば前述した活性エネルギー線硬化性化合物の硬化物)の一部に、帯電防止機能を有する構成単位として含まれていてもよいし、機能層を形成する樹脂中に、添加剤として添加されていてもよい。帯電防止剤を添加剤として添加する場合には、その添加量は、機能層形成用組成物の固形分に対して、好ましくは0.01~20質量%、より好ましくは0.05~10質量%、さらに好ましくは0.1~10質量%である。
(防眩機能)
防眩機能は、光を散乱して反射させることで、外光の映り込みを防止する機能である。本発明の積層体において、機能層は防眩機能を有する層(防眩層)であってよい。防眩層としては、公知の物を適宜採用することができる。例えば、透光性樹脂中に1種類以上の透光性微粒子を含む樹脂組成物を用いて、表面に微細な凹凸形状を有する層を形成させることにより、防眩機能を付与してよい。より具体的には、このような防眩層は、例えば、フィラーとしての透光性微粒子を分散させた透光性樹脂溶液を樹脂層表面に塗布し、透光性微粒子が防眩層の表面における凸形状部分となるように塗布の厚さを調整することで形成できる。なお、本明細書において、「透光性」とは、物質内部での散乱の有無を問わず、光がほぼ透過できることを意味する。
(反射防止機能および低反射機能)
反射防止機能および低反射機能は、外光の反射を防止または低減する機能である。本発明の積層体において、機能層は外光の反射を防止する機能を有する層(反射防止層)であってよいし、外光の反射を低減する機能を有する層(低反射層)であってもよい。反射防止層および低反射層は、単層であっても多層であってもよい。
反射防止層は、低屈折率層を備えていてよい。また、反射防止層は、低屈折率層と、低屈折率層と樹脂層との間に積層された高屈折率層および/または中屈折率層をさらに備える多層構造を有する層であってもよい。反射防止層と樹脂層との間に、上述のハードコート層を設けてもよい。
反射防止層の厚さは、好ましくは0.01~1μm、より好ましくは0.02~0.5μmである。反射防止層としては、反射防止層を設ける樹脂層または他の機能層の屈折率よりも小さい屈折率(例えば1.3~1.45の屈折率)を有する低屈折率層や、無機化合物からなる薄膜の低屈折率層と無機化合物からなる薄膜の高屈折率層とを交互に複数積層した層などが挙げられる。ここで、高屈折率層の屈折率は、低屈折率層の屈折率よりも大きければよいが、1.60以上であることが好ましい。
低屈折率層を形成する材料は、屈折率の低い材料であれば特に制限されない。例えば、活性エネルギー線硬化性樹脂(例えば紫外線硬化型アクリル樹脂)等の樹脂材料、樹脂中にコロイダルシリカ等の無機微粒子を分散させたハイブリッド材料、テトラエトキシシラン等の金属アルコキシドを用いたゾル-ゲル材料等が挙げられる。これらの低屈折率層を形成する材料は、重合済みのポリマーであってもよいし、前駆体となるモノマーやオリゴマーであってもよい。また、反射防止層を構成する材料は、反射防止層に防汚機能を付与することができるため、フッ素を含有する化合物を含むことが好ましい。
高屈折率層は、上述の活性エネルギー線硬化性樹脂の硬化物や金属アルコキシド系ポリマー等の透光性樹脂と無機微粒子および/または有機微粒子とを含有する塗工液を塗布した後、塗布膜を必要に応じて硬化させることによって形成することができる。無機微粒子としては、たとえば、酸化亜鉛、酸化チタン、酸化セリウム、酸化アルミニウム、酸化シラン、酸化タンタル、酸化イットリウム、酸化イッテルビウム、酸化ジルコニウム、酸化アンチモン、酸化インジウム錫(ITO)などが挙げられる。これらの無機微粒子を含む高屈折率層は、帯電防止機能も兼ね備え得る。
低反射層は、樹脂層または所望により設けられる他の機能層よりも屈折率の低い低屈折率材料で形成された層である。低屈折率層は、上述の活性エネルギー線硬化性樹脂の硬化物や金属アルコキシド系ポリマー等の透光性樹脂および無機微粒子を含有する塗工液を塗布した後、塗布膜を必要に応じて硬化させることよって形成することができる。そのような低屈折率材料として、具体的には、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、氷晶石(3NaF・AlFまたはNaAlF)等の無機材料微粒子を、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低反射材料;フッ素系またはシリコーン系の有機化合物、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等の有機系低反射材料が挙げられる。
<タッチセンサ機能>
樹脂層の表面に透明電極層を形成することにより積層体にタッチセンサ機能を付与することができる。樹脂層または所望により設けられる他の機能層の表面上に、例えば透明電極層をスパッタリング装置で成膜することにより得ることができる。これにより、本発明の積層体をカバーガラスに使用した場合に透明電極のようなタッチパネルとすることができる。
<支持体>
支持体を設けることにより、積層体の機械的強度を向上させることができる。光透過性と機械的強度、屈曲性を有する材料であれば特に制限なく使用でき、例えばポリイミド、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフッ化ビニル、ポリアクリレート、ポリプロピレン、ポリエチレン、非晶質ポリオレフィン、フッ素系樹脂等の透明樹脂シートを好適に使用することができる。
支持体の厚さは、積層体の用途によって適宜決定してよく、例えば、フレキシブル表示素子のカバーガラスとして積層体を使用する場合には、40~200μmであることが好ましく、より好ましくは50~100μmである。
<積層体の用途>
本発明の積層体を用いてフレキシブル表示素子を製造することができる。フレキシブル表示素子としては、有機ELディスプレイ、例えば、ボトムエミッション型フレキシブル有機ELディスプレイ、トップエミッション型フレキシブル有機ELディスプレイなど;またはフレキシブル液晶ディスプレイが挙げられる。本実施形態の積層体をフレキシブル表示素子のカバーガラスとして用いる場合、フレキシブル表示素子は光源を備え、この光源の光が本実施形態の積層体を通過してフレキシブル表示素子の外部に出力されるように構成されることが好ましい。本実施形態の積層体をフレキシブル表示素子のカバーガラスとして用いる場合、ガラス基板が樹脂層よりも光源側に配置されるように積層体を配置する。
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
<ガラス基板の準備>
ガラス基板として、下記の3種のガラス基板1~3を準備した。
・ガラス基板1:SHOTT AS87 eco(SHOTT社製、厚み50μm、80μm、曲げ弾性率73GPa)
・ガラス基板2:Dragontrail(登録商標)(AGC株式会社製、厚み80μm、曲げ弾性率82GPa)
・ガラス基板3:G-Leaf(登録商標)OA-10G(日本電気硝子株式会社製、厚み50μm、曲げ弾性率73GPa)
なお、曲げ弾性率は、ガラスカッターを用いて試験片(幅10mm、長さ60mm)を切り出し、試験片について、3点曲げ治具(BT-5000N、株式会社イマダ製、圧子R=3mm、サポートR=3mm、サポート間距離=25mm)を備えた万能試験機(電動計測スタンドMX2-5000N、株式会社イマダ製)を用いて、クロスヘッドスピード0.5mm/分、25℃の条件にて測定を行った。
<樹脂層形成材料の準備>
樹脂層として、下記の5種の樹脂1~5を準備した。
・樹脂1:Aurum(登録商標)PL450C(ポリイミド、三井化学株式会社、厚み5μm、15μm、25μm、引張弾性率2GPa)
・樹脂2:SPIXREA(登録商標)GR003(ポリイミド、ソマール社、厚み25μm、引張弾性率5GPa)
・樹脂3:KOLON(ポリアミドイミド、KOLON社、厚み25μm、引張弾性率6GPa)
・樹脂4:Opteria(登録商標)(ポリアクリレート、リンテック株式会社、厚み20μm、引張弾性率0.01GPa)
・樹脂5:ユピゼータ(登録商標)(ポリカーボネート、三菱瓦斯化学株式会社、厚み20μm、引張弾性率5GPa)
[実施例1~6、比較例1~3]
支持体(厚さ2mm、幅150mm、長さ200mmのソーダガラス板)上に、各ガラス基板を載置し、四隅をKapton(登録商標)テープで固定した。下記表1に示す乾燥後の樹脂層の厚さになるよう、各樹脂層形成材料をジメチルアセトアミドに溶解したワニスを、ガラス基板の表面に、卓上コーター(AFA-Standard、コーテック株式会社製)を用いて塗布速度1cm/分にて塗布した。
次いで、ソーダガラス板ごと80℃の送風式乾燥機(DKM300、ヤマト科学株式会社製)に入れ、30分間乾燥した。その後、昇温して150℃で1時間乾燥させた。
乾燥後、送風式乾燥機からソーダガラス板を取り出し、Kapton(登録商標)テープを除去してソーダガラス板から剥離することにより積層体を得た。
ガラス基板と樹脂層形成材料の組合せは下記表1のとおりとした。
<引張弾性率の測定>
積層体から、カッターナイフを用いて樹脂層単膜の試験片(幅10mm、長さ60mm)を切り出した。試験片を、卓上引張試験機(EZ-SX、島津株式会社製)を用いて、把持具の距離20mm、引張速度10%ひずみ/秒、25℃の条件にて伸長させた。試験片の引張弾性率はひずみが0.2%から0.5%の応力の変位から求めた。試験片(樹脂層単層膜)の引張弾性率は、下記表1に示すとおりであった。
<クロスカット剥離試験評価>
得られた積層体について、ASTM D 3559-Bに準拠したクロスカット剥離試験評価を行った。評価結果は下記表1に示されるとおりであった。
<耐屈曲性評価>
積層体からダイヤモンドカッターを用いて試験片(幅30mm、長さ100mm)を切り出し、試験片について、MIT耐折疲労試験機を用いて、折り曲げ角度180°、加重0.25kgf、折り曲げクランプのR=40mm、25℃の条件にて折り曲げ試験を10回実施した。
試験片に破損がない場合は、折り曲げクランプをR20mmに変更し、折り曲げ試験を10回実施した。
試験片に破損がない場合は、折り曲げクランプをR15mmに変更し、折り曲げ試験を10回実施した。
下記の評価基準により耐屈曲性の評価を行った。評価結果は下記表1に示されるとおりであった。
◎:R15mm超
○:R20mm以下、R15mm超
△:R40mm以下、R20mm超
×:R40mm超
<表面硬度評価>
積層体から上記と同様にして試験片を切り出し、試験片について、超微小硬さ試験機を用い、ビッカース圧子を使用して、0.5mN/5秒の加圧速度にて荷重を印加した後、0.5mNの荷重を維持したまま5秒間保持し、マルテンス硬度を測定した。下記の評価基準により表面硬度の評価を行った。評価結果は下記表1に示されるとおりであった。なお、ガラス基板1単体についても同様にしてマルテンス硬度を測定したところ、2900N/mmであった。
◎◎:500N/mm以上
◎:300N/mm以上、500N/mm未満
○:100N/mm以上、300N/mm未満
△:50N/mm以上、100N/mm未満
×:50N/mm未満
<平坦性評価>
上記した耐屈曲性試験において、R40mmの条件で10回折り曲げした試験片を、折り畳んだ内側の面が上面となるように折り畳まない状態で静置し、屈曲部に変形(凹み)が生じているかを目視にて観察し、下記の評価基準にて評価した。評価結果は下記表1に示されるとおりであった。
○:凹みなし
×:凹みあり
××:割れあり
Figure 0007471956000012
1 :積層体
10:ガラス基板
20:樹脂層
30:機能層
40:支持体

Claims (6)

  1. ガラス基板と、前記ガラス基板の主面の一方に面に接するように設けられてなる樹脂層とを備えた積層体であって、
    前記樹脂層は、イミド構造を有するポリマーを含んでなり、
    前記樹脂層は、単層膜とした場合の引張弾性率が、前記ガラス基板単体の曲げ弾性率に対して1~15%であり、
    前記ガラス基板の厚さが25~100μmであり、
    前記樹脂層は、前記ガラス基板の厚さに対して6~100%の厚さを有し、
    前記ガラス基板と前記樹脂層との密着性が、ASTM D 3559-Bに準拠したクロスカット剥離試験評価において2B以上である、ことを特徴とする、積層体。
  2. 前記ガラス基板単体の曲げ弾性率が50~150GPaである、請求項1に記載の積層体。
  3. 積層体全体の引張弾性率が5GPa以上、または曲げ弾性率が10GPa以上である、請求項1または2に記載の積層体。
  4. 前記ガラス基板と前記樹脂層との厚さの総和が30~135μmである、請求項1~3のいずれか一項に記載の積層体。
  5. 前記ガラス基板が化学強化ガラスである、請求項1~4のいずれか一項に記載の積層体。
  6. フレキシブル表示素子のカバーガラスとして使用される、請求項1~5のいずれか一項に記載の積層体。
JP2020140418A 2020-08-21 2020-08-21 積層体 Active JP7471956B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020140418A JP7471956B2 (ja) 2020-08-21 2020-08-21 積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020140418A JP7471956B2 (ja) 2020-08-21 2020-08-21 積層体

Publications (2)

Publication Number Publication Date
JP2022035841A JP2022035841A (ja) 2022-03-04
JP7471956B2 true JP7471956B2 (ja) 2024-04-22

Family

ID=80443873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020140418A Active JP7471956B2 (ja) 2020-08-21 2020-08-21 積層体

Country Status (1)

Country Link
JP (1) JP7471956B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037048A (ja) 2014-08-06 2016-03-22 三菱化学株式会社 ガラスフィルム積層体
JP2016508954A (ja) 2013-03-15 2016-03-24 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 可撓性の超薄板化学強化ガラス
JP2016134374A (ja) 2015-01-22 2016-07-25 Jxエネルギー株式会社 透明電極積層用基板及びそれを用いた有機エレクトロルミネッセンス素子
WO2018055998A1 (ja) 2016-09-23 2018-03-29 日本板硝子株式会社 カバーガラス及びそれを用いたディスプレイ
JP2019025901A (ja) 2017-07-28 2019-02-21 株式会社ダイセル 積層体、及び前記積層体を備えたフレキシブルデバイス
WO2019131884A1 (ja) 2017-12-28 2019-07-04 宇部興産株式会社 フレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508954A (ja) 2013-03-15 2016-03-24 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 可撓性の超薄板化学強化ガラス
JP2016037048A (ja) 2014-08-06 2016-03-22 三菱化学株式会社 ガラスフィルム積層体
JP2016134374A (ja) 2015-01-22 2016-07-25 Jxエネルギー株式会社 透明電極積層用基板及びそれを用いた有機エレクトロルミネッセンス素子
WO2018055998A1 (ja) 2016-09-23 2018-03-29 日本板硝子株式会社 カバーガラス及びそれを用いたディスプレイ
JP2019025901A (ja) 2017-07-28 2019-02-21 株式会社ダイセル 積層体、及び前記積層体を備えたフレキシブルデバイス
WO2019131884A1 (ja) 2017-12-28 2019-07-04 宇部興産株式会社 フレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物

Also Published As

Publication number Publication date
JP2022035841A (ja) 2022-03-04

Similar Documents

Publication Publication Date Title
KR102475756B1 (ko) 폴리이미드계 필름 및 적층체
CN112041707B (zh) 光学膜、光学层叠体及柔性图像显示装置
CN110967786B (zh) 光学膜
CN112041708A (zh) 光学膜、光学层叠体及柔性图像显示装置
JP2020056989A (ja) 光学フィルム
JP2021024283A (ja) 積層体
WO2022092249A1 (ja) 積層体および表示装置
JP6556317B1 (ja) 光学積層体、フレキシブル表示装置及び光学積層体の製造方法
JP7139715B2 (ja) ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7471956B2 (ja) 積層体
TWI786185B (zh) 硬化性組成物
JP2022053257A (ja) ドライフィルムおよび積層体
WO2021085404A1 (ja) 光学積層体及びフレキシブル表示装置
KR20220086685A (ko) 광학 적층체 및 플렉시블 표시 장치
JP7355891B1 (ja) 積層体、前面板、フレキシブル表示装置、樹脂組成物、およびフッ素原子含有ポリイミド系樹脂
WO2022220177A1 (ja) 偏光板、積層体、及び表示装置
JP2023183788A (ja) 積層体、樹脂組成物、及び表示装置
CN117467348A (zh) 聚酰亚胺系树脂清漆及光学膜
KR20210097048A (ko) 필름 롤
CN117467347A (zh) 聚酰亚胺系树脂清漆及光学膜
KR20210097047A (ko) 필름 롤
JP2023133097A (ja) ポリイミド系樹脂を含むフィルム、積層体およびフレキシブル表示装置
JP2023132813A (ja) ポリイミド系フィルムの製造方法
JP2021155633A (ja) ポリイミド樹脂、ポリイミドワニス、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2024004123A (ja) 光学積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240410

R150 Certificate of patent or registration of utility model

Ref document number: 7471956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150