WO2022092249A1 - 積層体および表示装置 - Google Patents

積層体および表示装置 Download PDF

Info

Publication number
WO2022092249A1
WO2022092249A1 PCT/JP2021/039948 JP2021039948W WO2022092249A1 WO 2022092249 A1 WO2022092249 A1 WO 2022092249A1 JP 2021039948 W JP2021039948 W JP 2021039948W WO 2022092249 A1 WO2022092249 A1 WO 2022092249A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thickness
base material
elastic modulus
hard coat
Prior art date
Application number
PCT/JP2021/039948
Other languages
English (en)
French (fr)
Inventor
淳司 鷲尾
和希 籔本
陽介 和田
敬輔 脇田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020237017048A priority Critical patent/KR20230098223A/ko
Priority to CN202180073729.XA priority patent/CN116507595A/zh
Priority to US18/250,924 priority patent/US20240329280A1/en
Publication of WO2022092249A1 publication Critical patent/WO2022092249A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present disclosure relates to a laminate having a glass base material and a display device using the same.
  • Patent Document 1 proposes a laminated body having a structure in which a glass plate having a thickness of 150 ⁇ m or less and a resin film are laminated via an adhesive layer and having a bending durability of 10 or more according to the following test. ing. Bending durability test: From the stretched state of the laminated body, bend 180 ° so that the bending radius is 3 mm in the direction in which the surface of the glass plate becomes concave, and stretch it again as one set, and the speed is 43 sets per minute. The number of sets until cracks occur in the laminated body when the above operation is performed is used as an index of bending durability.
  • Patent Document 2 has a structure in which a glass plate having a thickness of 150 ⁇ m or less and a resin film are laminated via an adhesive layer, and the adhesive layer is measured by using a dynamic viscoelasticity measuring device.
  • a laminated body having a storage elastic modulus of 10 MPa or more at 20 ° C. and a bending durability of 10 or more according to the following test has been proposed. Bending durability test: From the stretched state of the laminated body, bend 180 ° so that the bending radius is 3 mm in the direction in which the surface of the glass plate becomes concave, and stretch it again as one set, and the speed is 43 sets per minute. The number of sets until cracks occur in the laminated body when the above operation is performed is used as an index of bending durability.
  • Patent Document 3 describes a chemically strengthened ultrathin glass article having a thickness of 0.4 mm or less, which is a value obtained by multiplying the thickness (t) (t (mm)) of the glass article by 50.
  • a glass article has been proposed that has a fracture bending radius (indicated by mm) less than the value divided by and further comprises a bonded polymer layer.
  • Glass can be bent by making it thinner, which improves bending resistance, but making it thinner makes it easier to break, and impact resistance deteriorates dramatically. If the glass breaks due to an external impact, not only will the function of the display device deteriorate when glass is used as the cover member of the display device, but also the generated debris and sharp end faces will cause the user's fingertips, etc. to be damaged. There is a risk of damaging it.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to provide a laminated body having good bending resistance and impact resistance and improved safety.
  • One embodiment of the present disclosure includes a glass base material, a bonding layer, and a hard coat film in this order, and the hard coat film has a base material layer and a hard coat layer from the bonding layer side.
  • the bonding layer is a layer for bonding the glass base material and the base material layer, the thickness of the glass base material is 10 ⁇ m or more and 100 ⁇ m or less, and the thickness of the hard coat layer is A.
  • a laminate in which the ratio of (A + B) to C is 3.0 or more and 500 or less, where B is the thickness of the base material layer and C is the thickness of the bonding layer.
  • the composite elastic modulus of the bonding layer is 1 MPa or more and 6000 MPa or less.
  • the glass transition temperature of the bonding layer is ⁇ 40 ° C. or higher and 150 ° C. or lower.
  • the composite elastic modulus of the base material layer is 5.7 GPa or more.
  • the glass base material is chemically tempered glass.
  • the bonding layer is a pressure-sensitive adhesive layer, a heat-sensitive adhesive layer, or contains a cured product of a curable adhesive composition.
  • the bonding layer contains at least one selected from the group consisting of polyester resin, polyolefin resin, and urethane resin.
  • the laminate in the present disclosure can have an antireflection layer on the surface side of the hardcoat layer opposite to the base material layer.
  • the surface of the laminated body on the glass substrate side is on the outside
  • the surface of the laminated body on the hard coat layer side is on the inner side
  • the opposite sides of the laminated body are opposed to each other. It is preferable that cracking, breaking, or peeling does not occur when the operation of bending the laminated body by 180 ° so as to have an interval of 10 mm is repeated 200,000 times.
  • Another embodiment of the present disclosure is a laminate having a hard coat layer, a base material layer, a bonding layer, a glass substrate, and a second bonding layer in this order, and the bonding layer is a laminate.
  • the layer for joining the glass base material and the base material layer, the second joining layer is a layer for joining the laminate and other members, and the thickness of the glass base material is 10 ⁇ m or more.
  • a laminated body having a thickness of 100 ⁇ m or less and satisfying the following formula (1).
  • E 1 is the composite elastic modulus (GPa) of the hard coat layer
  • D 1 is the thickness (mm) of the hard coat layer
  • E 2 is the composite elastic modulus (GPa) of the base material layer.
  • D 2 is the thickness of the base material layer (mm)
  • E 3 is the composite elastic modulus of the joint layer (GPa)
  • D 3 is the thickness of the joint layer (mm)
  • E 4 is the glass base material.
  • Composite elastic modulus (GPa) is the thickness of the glass substrate (mm)
  • E 5 is the storage elastic modulus (GPa) of the second bonding layer
  • D 5 is the thickness of the second bonding layer.
  • another embodiment of the present disclosure is a laminate having a base material layer, a bonding layer, a glass base material, and a second bonding layer in this order, and the bonding layer is the glass base.
  • the layer for joining the material and the base material layer, the second joining layer is a layer for joining the laminate and other members, and the thickness of the glass base material is 10 ⁇ m or more and 100 ⁇ m or less.
  • E 2 is the composite elastic modulus (GPa) of the base material layer
  • D 2 is the thickness (mm) of the base material layer
  • E 3 is the composite elastic modulus (GPa) of the joint layer.
  • D 3 is the thickness of the bonding layer (mm)
  • E 4 is the composite elastic modulus of the glass substrate (GPa)
  • D 4 is the thickness of the glass substrate (mm)
  • E 5 is the second The storage elastic modulus (GPa) of the bonded layer, D5, indicates the thickness ( mm) of the second bonded layer.
  • the glass transition temperature of the second bonding layer is ⁇ 50 ° C. or higher and 30 ° C. or lower.
  • the laminate of the present disclosure may have a protective film on the surface side of the hard coat layer opposite to the base material layer.
  • Another embodiment of the present disclosure comprises a display panel and the above-mentioned laminate arranged on the observer side of the above-mentioned display panel, and the above-mentioned laminate has a surface on the glass substrate side of the above-mentioned display panel.
  • a display device arranged adjacent to.
  • the display device in the present disclosure is preferably a foldable display.
  • the member in expressing the aspect of arranging another member on one member, when the term “above” or “below” is simply used, the member should be in contact with the member unless otherwise specified. Including the case where another member is arranged directly above or directly below, and the case where another member is arranged above or below one member via another member. Further, in the present specification, when expressing the mode of arranging another member on the surface of a certain member, when simply expressing “on the surface side" or “on the surface”, unless otherwise specified, the certain member is used. It includes both the case where another member is arranged directly above or directly below the member so as to be in contact with the member, and the case where another member is arranged above or below one member via another member.
  • Laminates The laminates in the present disclosure have three embodiments. Hereinafter, each embodiment will be described separately.
  • the inventors of the present disclosure have diligently studied a laminate having a glass substrate, arranged a resin layer on the surface of a thin glass substrate, and further increased the thickness of the resin layer. It has been found that the cracking of the glass substrate can be suppressed and the impact resistance can be improved.
  • the resin composition is applied to the surface of the glass substrate to form a relatively thick resin layer, the influence of the shrinkage difference between the glass substrate and the resin layer during heating or curing after the application of the resin composition has an effect. It turned out that it became large and curled in some cases.
  • the inventors of the present disclosure further studied, and by forming the resin layer into a film in advance and adhering the resin film to the surface of the thin glass substrate via the bonding layer, curling is suppressed and further resistance is achieved. It was found that the impact resistance can be increased. However, it has been found that in such a laminated body, the surface hardness of the surface of the laminated body on the resin film side is lowered, and the scratch resistance may be lowered.
  • the present embodiment has been made in view of the above circumstances, and an object thereof is to provide a laminated body having good bending resistance, impact resistance and scratch resistance, and also having improved safety.
  • the first embodiment of the laminate in the present disclosure includes a glass base material, a bonding layer, and a hard coat film in this order, and the hard coat film has a base material layer and a hard coat from the bonding layer side. It has a coat layer, and the thickness of the glass substrate is 10 ⁇ m or more and 100 ⁇ m or less, the thickness of the hard coat layer is A, the thickness of the substrate layer is B, and the thickness of the bonding layer is C. When, the thickness ratio (A + B) / C is 3.0 or more and 500 or less.
  • the laminate of the present embodiment has a glass base material, a bonding layer, and a hard coat film in this order, and the hard coat film has a base material layer and a hard coat layer from the bonding layer side.
  • the bonding layer is a layer for bonding the glass base material and the base material layer, and the thickness of the glass base material is 10 ⁇ m or more and 100 ⁇ m or less, and the thickness of the hard coat layer is adjusted.
  • the ratio of (A + B) to C is 3.0 or more and 500 or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated body in this embodiment.
  • the laminate 1 has a glass base material 2 having a predetermined thickness, a bonding layer 3, and a hard coat film 4 in this order, and the hard coat film 4 is on the bonding layer 3 side. Therefore, it has a base material layer 5 and a hard coat layer 6. Further, when the thickness of the hard coat layer 6 is A, the thickness of the base material layer 5 is B, and the thickness of the bonding layer 3 is C, the thickness ratio (A + B) / C is within a predetermined range. ..
  • the glass base material has a thickness of a predetermined value or less and is thin, so that bending resistance can be improved.
  • the glass base material has a thickness of a predetermined value or less and is thin, there is a concern that it is easily broken and has low impact resistance.
  • the present embodiment by arranging the hard coat film on one surface of the glass base material via the bonding layer, the impact resistance is improved while maintaining good bending resistance. be able to.
  • the thickness ratio (A + B) / C is.
  • the surface hardness of the surface of the laminated body on the hard coat film side can be increased, and the scratch resistance can be improved. The reason for this is inferred as follows.
  • the thickness ratio (A + B) / C is 3.0 or more, and the thickness of the bonding layer is relatively thin as compared with the total thickness of the hard coat layer and the base material layer.
  • the bonding layer is usually lower in hardness than the glass substrate and the hardcourt layer, but the relatively thin thickness of the bonding layer can reduce the influence of the hardness of the bonding layer, and the hardness of the laminated body can be reduced.
  • the surface hardness of the surface on the coat film side can be increased. As a result, it is possible to improve the scratch resistance.
  • the thickness of the bonding layer is relatively thin, that is, the above-mentioned thickness ratio (A + B) / C is set to a predetermined value or more. It was found that it is important to do so.
  • the laminate in this embodiment can be bent and can be used for a wide variety of applications.
  • the laminate in this embodiment can be used, for example, in a wide variety of display devices, and specifically, can be used as a member for a foldable display.
  • the thickness ratio (A + B) / C is It is 3.0 or more, preferably 4.0 or more, and more preferably 5 or more.
  • the thickness ratio (A + B) / C is 500 or less, preferably 150 or less, more preferably 100 or less, still more preferably 70 or less, and particularly preferably 40 or less.
  • the thickness ratio (A + B) / C is 3.0 or more and 500 or less, preferably 4.0 or more and 150 or less, more preferably 5 or more and 100 or less, still more preferably 5 or more and 70 or less, and particularly preferably 5 or more. It is 40 or less.
  • the thickness of the hard coat layer is not particularly limited as long as it satisfies the above-mentioned thickness ratio, but is appropriately selected depending on the function of the hard coat layer and the use of the laminate.
  • the thickness of the hard coat layer is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more.
  • the thickness of the hard coat layer is within the above range, the surface hardness of the surface of the laminated body on the hard coat film side can be increased and the scratch resistance can be improved.
  • the thickness of the hard coat layer is, for example, 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less.
  • the thickness of the hardcoat layer is, for example, 1 ⁇ m or more and 50 ⁇ m or less, preferably 3 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 25 ⁇ m or less, and further preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the base material layer is not particularly limited as long as it satisfies the above-mentioned thickness ratio, but is, for example, 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more. When the thickness of the base material layer is within the above range, the impact resistance can be enhanced. On the other hand, the thickness of the base material layer is, for example, 150 ⁇ m or less, preferably 125 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 80 ⁇ m or less. When the thickness of the base material layer is within the above range, good bending resistance can be obtained.
  • the thickness of the base material layer is, for example, 10 ⁇ m or more and 150 ⁇ m or less, preferably 15 ⁇ m or more and 125 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less, and further preferably 25 ⁇ m or more and 85 ⁇ m or less.
  • the thickness of the bonding layer is not particularly limited as long as it satisfies the above-mentioned thickness ratio, but is, for example, 25 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the thickness of the bonding layer is within the above range, the surface hardness of the surface of the laminated body on the hard coat film side can be increased, and the scratch resistance can be improved. Further, since the thickness of the bonding layer is relatively thin as in the above range, the texture and tactile sensation of the glass due to the glass substrate can be maintained.
  • the thickness of the bonding layer is, for example, 0.2 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more. .. If the thickness of the joint layer is too thin, the adhesiveness may be weakened, which may reduce the bending resistance, particularly the dynamic bending resistance, or the impact resistance.
  • the thickness of the bonding layer is, for example, 0.2 ⁇ m or more and 25 ⁇ m or less, preferably 0.5 ⁇ m or more and 20 ⁇ m or less, more preferably 1.0 ⁇ m or more and 15 ⁇ m or less, still more preferably 1.5 ⁇ m or more and 10 ⁇ m or less, and particularly preferably. It is 2.0 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of each layer may be an arithmetic mean value of the thickness of any 10 points obtained by measuring from the cross section in the thickness direction of the laminated body observed by a scanning electron microscope (SEM). can.
  • SEM scanning electron microscope
  • a specific method for taking a cross-sectional photograph is shown below. First, the laminate is cut into a size of 2 cm ⁇ 2 cm, a block in which the laminate is embedded with an embedding resin is produced, and a cross section is produced using a polishing machine. As the polishing machine, TegraPol-35 manufactured by Struers can be used. Then, a cross-sectional photograph of the measurement sample is taken using a scanning electron microscope. As the scanning electron microscope, S-4800 manufactured by Hitachi High-Technologies Corporation can be used.
  • the bonding layer in this embodiment is arranged between the glass base material and the hard coat film, and is a layer for bonding the glass base material and the hard coat film.
  • the material used for the bonding layer is not particularly limited as long as it is a material capable of bonding a glass base material and a hard coat film, and for example, a feeling of an optical transparent adhesive (OCA; Optical Clear Adhesive) or the like.
  • OCA optical transparent adhesive
  • Examples thereof include pressure-sensitive adhesives, heat-sensitive adhesives such as heat sealants, and curable adhesives. These may be used alone or in combination of two or more.
  • Examples of the pressure-sensitive adhesive such as an optical transparent adhesive (OCA) include acrylic adhesive, urethane adhesive, silicone adhesive, epoxy adhesive, vinyl acetate adhesive, polyvinyl butyral (PVB) and the like. Examples thereof include polyvinyl acetal-based adhesives.
  • OCA optical transparent adhesive
  • PVB polyvinyl butyral
  • thermoplastic resin is not particularly limited, and for example, acrylic resin, vinyl chloride-vinyl acetate copolymer, polyamide resin, polyester resin, polyester urethane resin, chlorinated polypropylene, chlorinated rubber, urethane resin, and epoxy.
  • examples thereof include resins, styrene resins, polyolefin resins, silicone resins, polyvinyl acetal resins such as polyvinyl butyral (PVB), and polyether urethane resins.
  • PVB polyvinyl butyral
  • thermoplastic resins may be used alone or in combination of two or more.
  • the heat-sensitive adhesive composition can further contain a curing agent. This makes it possible to improve heat resistance and adhesiveness. Further, by adding a curing agent, the composite elastic modulus of the joint layer described later can be adjusted. In order to obtain a bonded layer having a desired composite elastic modulus, for example, it is preferable to appropriately add a curing agent according to the characteristics of the thermoplastic resin. Examples of the curing agent include isocyanate-based curing agents, epoxy-based curing agents, melamine-based curing agents, and the like. The curing agent may be used alone or in combination of two or more. When the heat-sensitive adhesive composition contains a curing agent, the bonding layer will contain the cured product of the heat-sensitive adhesive composition.
  • the heat-sensitive adhesive composition may contain an additive if necessary.
  • Additives include, for example, light stabilizers, UV absorbers, infrared absorbers, antioxidants, plasticizers, coupling agents, defoamers, fillers, inorganic or organic particles for adjusting refraction, and charged. Examples thereof include preventive agents, colorants such as blue pigments and purple pigments, leveling agents, surfactants, lubricants, various sensitizers, flame retardant agents, adhesion-imparting agents, polymerization inhibitors, surface modifiers and the like. These additives can be appropriately selected from the commonly used ones and used. The content of the additive can be appropriately set.
  • the heat-sensitive adhesive composition preferably contains a silane coupling agent in order to enhance the adhesion to the glass substrate.
  • curable adhesive examples include a thermosetting adhesive, an ultraviolet curable adhesive, and the like.
  • Thermosetting adhesive is an adhesive that cures by heating.
  • examples of the thermosetting adhesive include epoxy adhesives, acrylic adhesives, urethane adhesives, polyester adhesives, silicone adhesives and the like.
  • the ultraviolet curable adhesive is an adhesive that cures when irradiated with ultraviolet rays.
  • Examples of the ultraviolet curable adhesive include epoxy-based adhesives, acrylic-based adhesives, urethane acrylate-based adhesives, and the like.
  • the curable adhesive composition may contain an additive if necessary.
  • Additives include, for example, light stabilizers, UV absorbers, infrared absorbers, antioxidants, plasticizers, coupling agents, defoamers, fillers, inorganic or organic particles for adjusting refraction, and charged. Examples thereof include preventive agents, colorants such as blue pigments and purple pigments, leveling agents, surfactants, lubricants, various sensitizers, flame retardant agents, adhesion-imparting agents, polymerization inhibitors, surface modifiers and the like. These additives can be appropriately selected from the commonly used ones and used. The content of the additive can be appropriately set.
  • the material used for the bonding layer is preferably a heat-sensitive adhesive or a curable adhesive, and more preferably a heat sealant, an ultraviolet curable adhesive or a thermosetting adhesive. That is, the bonding layer is preferably a heat-sensitive adhesive layer or contains a cured product of a curable adhesive composition, is a heat seal layer, or is a cured product or a thermosetting type of an ultraviolet curable adhesive composition. It is more preferable to contain a cured product of the adhesive composition.
  • a heat sealant an ultraviolet curable adhesive or a thermosetting adhesive, a bonded layer satisfying the composite elastic modulus described later can be obtained, and the glass transition temperature of the bonded layer described later is set to 0 ° C. or higher.
  • OCA optical transparent adhesive
  • an OCA film is used, but some OCA films have irregularities on the surface, and when such an OCA film is used, the screen fluctuates due to the irregularities. May occur, and the texture and tactile sensation of the glass due to the glass substrate may be impaired.
  • a heat-sensitive adhesive or a curable adhesive it is possible to suppress the occurrence of such a problem.
  • the bonding layer preferably contains at least one selected from the group consisting of polyester resin, polyolefin resin, and urethane resin. Above all, it is more preferable that the bonding layer contains a polyester resin.
  • the urethane resin also includes a polyester urethane resin and a polyether urethane resin. The bonding layer containing such a material can easily adjust the composite elastic modulus described later to a preferable range.
  • the composite elastic modulus of the bonded layer is, for example, preferably 1 MPa or more, more preferably 10 MPa or more, and even more preferably 20 MPa or more.
  • the composite elastic modulus of the bonded layer is within the above range and has a certain degree of hardness, the surface hardness of the surface of the laminated body on the hard coat film side can be increased, the scratch resistance can be improved, and the impact resistance can be improved. Can be improved.
  • the composite elastic modulus of the bonded layer is, for example, preferably 6000 MPa or less, more preferably 5500 MPa or less, and further preferably 4500 MPa or less.
  • the composite elastic modulus of the joint layer is, for example, preferably 1 MPa or more and 6000 MPa or less, more preferably 10 MPa or more and 5500 MPa or less, further preferably 20 MPa or more and 4500 MPa or less, and more preferably 25 MPa or more and 4000 MPa or less. Especially preferable.
  • the composite elastic modulus of the joint layer shall be calculated using the contact projection area Ap obtained when measuring the indentation hardness ( HIT ) of the joint layer.
  • the "indentation hardness” is a value obtained from the load-displacement curve from the load to the unloading of the indenter obtained by the hardness measurement by the nanoindentation method.
  • the composite elastic modulus of the joint layer is the elastic modulus including the elastic deformation of the joint layer and the elastic deformation of the indenter.
  • the measurement of indentation hardness shall be performed using "TI950 TriboIndenter" manufactured by BRUKER Co., Ltd. for the measurement sample. Specifically, first, a block in which a laminate cut out to 1 mm ⁇ 10 mm is embedded with an embedding resin is prepared, and a uniform thickness of 50 nm or more and 100 nm without holes or the like is produced from this block by a general section preparation method. Cut out the following sections. "Ultra Microtome EM UC7" (manufactured by Leica Microsystems, Inc.) or the like can be used for preparing the sections. Then, the remaining block from which a uniform section having no holes or the like is cut out is used as a measurement sample.
  • a Berkovich indenter (triangular pyramid, TI-0039 manufactured by BRUKER) was bonded as the indenter under the following measurement conditions. Push vertically to the center of the cross section for 10 seconds up to a maximum pushing load of 25 ⁇ N.
  • the Berkovich indenter is 500 nm away from the interface between the glass substrate and the junction layer to the center side of the junction layer in order to avoid the influence of the glass substrate and the hard coat film and to avoid the influence of the side edges of the junction layer.
  • the contact projection area is a contact projection area in which the curvature of the indenter tip is corrected by the Oliver-Charr method using fused silica (5-00098 manufactured by BRUKER Co., Ltd.) as a standard sample.
  • the indentation hardness ( HIT ) shall be the arithmetic mean value of the values obtained by measuring at 10 points. If any of the measured values deviates by ⁇ 20% or more from the arithmetic mean value, the measured value shall be excluded and remeasurement shall be performed. Whether or not any of the measured values deviates by ⁇ 20% or more from the arithmetic mean value is determined by (AB) / B ⁇ 100 when the measured value is A and the arithmetic mean value is B. Judgment shall be made based on whether the required value (%) is ⁇ 20% or more.
  • the measurement shall be performed by changing to the following measurement condition 2. ..
  • the maximum load is 25 ⁇ N under the measurement condition 1 and 5 ⁇ N under the measurement condition 2.
  • the composite elastic modulus Er of the bonded layer is obtained by the following mathematical formula (3) using the contact projection area Ap obtained when measuring the indentation hardness.
  • the indentation hardness is measured at 10 points, the composite elastic modulus is obtained each time, and the obtained composite elastic modulus is used as the arithmetic mean value of the obtained 10 points.
  • the composite elastic modulus of the joint layer can be adjusted, for example, by the type and composition of the material contained in the joint layer.
  • the glass transition temperature of the bonding layer is, for example, preferably ⁇ 40 ° C. or higher, more preferably ⁇ 30 ° C. or higher, further preferably ⁇ 10 ° C. or higher, and more preferably 0 ° C. or higher. Is more preferable, and it is particularly preferable that the temperature is 20 ° C. or higher.
  • the glass transition temperature of the bonded layer is within the above range, it becomes easy to obtain a bonded layer satisfying the above-mentioned composite elastic modulus. Further, when the glass transition temperature of the bonding layer is 0 ° C. or higher, scratch resistance and impact resistance can be further improved.
  • the glass transition temperature of the bonding layer is, for example, preferably 150 ° C.
  • the glass transition temperature of the bonded layer is, for example, preferably ⁇ 40 ° C. or higher and 150 ° C. or lower, more preferably ⁇ 30 ° C. or higher and 150 ° C. or lower, and further preferably ⁇ 10 ° C. or higher and 140 ° C. or lower. , 0 ° C. or higher and 130 ° C. or lower is particularly preferable, and 0 ° C. or higher and 120 ° C. or lower is most preferable.
  • the glass transition temperature of the bonding layer is, for example, ⁇ 40 ° C. or higher and 25 ° C. or lower and 50 ° C. or higher and 150 ° C. or lower. It is possible to obtain a laminate that can withstand use in a high temperature and high humidity and low temperature environment.
  • the glass transition temperature of the bonded layer means a value measured by a method (DMA method) based on the peak top value of the loss tangent (tan ⁇ ).
  • DMA method dynamic viscoelasticity measuring device
  • the joint layer is punched out to 15 mm ⁇ 200 mm.
  • a test piece of the bonding layer is prepared by dissolving the material of the bonding layer or melting the material of the bonding layer, applying the solution on the substrate, drying, and then peeling the film from the substrate.
  • the solvent can be appropriately selected depending on the material of the bonding layer, and examples thereof include ethyl acetate.
  • the material of the bonding layer is appropriately heated and dissolved.
  • a Naflon (registered trademark) sheet 300 mm ⁇ 300 mm ⁇ 1 mm thickness
  • the bonding layer is formed into a columnar shape having a diameter of about 5 mm and a height of about 5 mm.
  • the columnar shape can be formed by winding the joint layer.
  • the above columnar measurement sample is attached between the compression jigs (parallel plate ⁇ 8 mm) of the dynamic viscoelasticity measuring device.
  • Measurement conditions for glass transition temperature ⁇ Measurement sample: ⁇ 5 mm ⁇ height 5 mm columnar ⁇ Measurement jig: compression (parallel plate) -Measurement mode: Temperature dependence (Temperature range: -50 ° C to 200 ° C, temperature rise rate: 5 ° C / min) ⁇ Frequency: 1Hz
  • the bonding layer has transparency.
  • the total light transmittance of the bonding layer is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
  • the total light transmittance of the bonding layer can be measured according to JIS K7361-1, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the same can be applied to the method for measuring the total light transmittance of other layers.
  • the haze of the bonding layer is preferably, for example, 2% or less, more preferably 1.5% or less, and further preferably 1% or less.
  • the haze of the bonding layer can be measured in accordance with JIS K-7136, for example, by a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the same can be applied to the method for measuring the haze of other layers.
  • the method of joining the glass substrate and the hard coat film via the joining layer is appropriately selected according to the material used for the joining layer and the like.
  • a pressure-sensitive adhesive such as an optical transparent adhesive (OCA)
  • OCA optical transparent adhesive
  • a film-shaped pressure-sensitive adhesive layer can be used, and a hardcourt film and a glass substrate can be bonded via the film-shaped pressure-sensitive adhesive layer.
  • a heat-sensitive adhesive such as a heat sealant
  • the heat-sensitive adhesive composition is applied to the surface of the hard coat film on the substrate layer side or one surface of the glass substrate, dried, and the heat-sensitive adhesive layer is applied.
  • the hard coat film and the glass substrate are laminated via the heat-sensitive adhesive layer, heated, and heat-welded by the heat-sensitive adhesive layer to bond them.
  • the heating temperature is preferably equal to or higher than the glass transition temperature of the heat-sensitive adhesive layer.
  • the thermosetting adhesive composition is applied to the surface of the hard coat film on the substrate layer side or one surface of the glass substrate, dried, and then thermosetting adhesive is applied.
  • the agent layer the hard coat film and the glass substrate are laminated via the thermosetting adhesive layer and heated to cure the thermosetting adhesive layer, whereby the adhesive can be adhered.
  • the ultraviolet curable adhesive composition is applied to the surface of the hard coat film on the substrate layer side or one surface of the glass substrate, dried, and then ultraviolet curable adhesive is applied.
  • the agent layer the hard coat film and the glass substrate are laminated via the ultraviolet curable adhesive layer, and the ultraviolet curable adhesive layer is cured by irradiating with ultraviolet rays to adhere the adhesive layer.
  • a solid resin such as a pellet or a sheet may be used as the resin.
  • the resin and the solvent may be heated in advance to dissolve the resin in the solvent, a resin solution may be prepared, and then the resin solution may be used for preparing the adhesive composition.
  • the hardcoat film in this embodiment has a base material layer and a hardcoat layer from the bonding layer side.
  • Hardcoat layer The hardcoat layer in this embodiment is a layer for increasing the surface hardness. By arranging the hard coat layer, scratch resistance can be improved.
  • the "hard coat layer” is a member for increasing the surface hardness, and specifically, in the configuration in which the laminate in the present embodiment has the hard coat layer, JIS When the pencil hardness test specified in K 5600-5-4 (1999) is performed, it means a hardness of "H" or higher.
  • the pencil hardness of the surface of the laminated body on the hard coat layer side in this embodiment is preferably H or more, more preferably 2H or more, further preferably 3H or more, and 4H or more. It is particularly preferable, and 5H or more is most preferable.
  • the pencil hardness is measured by the pencil hardness test specified in JIS K5600-5-4 (1999). Specifically, using a test pencil specified by JIS-S-6006, a pencil hardness test specified by JIS K5600-5-4 (1999) was performed on the surface of the laminate on the hard coat layer side, and scratches were found. It can be done by evaluating the highest pencil hardness that does not stick.
  • the measurement conditions can be an angle of 45 °, a load of 1 kg, a speed of 0.5 mm / sec or more and 1 mm / sec or less, and a temperature of 23 ⁇ 2 ° C.
  • the pencil hardness tester for example, a pencil scratch coating film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
  • the hard coat layer may be a single layer or may have a multi-layer structure of two or more layers.
  • the hard coat layer in order to improve the surface hardness and to have a good balance between bending resistance and elastic modulus, the hard coat layer is dynamically combined with a layer for satisfying the pencil hardness. It may have a layer for satisfying the bending test (a layer for satisfying scratch resistance).
  • (C) Material of hard coat layer examples include a cured resin product.
  • the hard coat layer preferably contains a cured product of a resin composition containing a polymerizable compound.
  • the cured product of the resin composition containing the polymerizable compound can be obtained by subjecting the polymerizable compound to a polymerization reaction by a known method using a polymerization initiator, if necessary.
  • a polymerizable compound has at least one polymerizable functional group in the molecule.
  • the polymerizable compound for example, at least one of a radically polymerizable compound and a cationically polymerizable compound can be used.
  • the radically polymerizable compound is a compound having a radically polymerizable group.
  • the radically polymerizable group contained in the radically polymerizable compound may be any functional group capable of causing a radical polymerization reaction, and is not particularly limited, and examples thereof include a group containing a carbon-carbon unsaturated double bond. Examples thereof include a vinyl group and a (meth) acryloyl group.
  • these radically polymerizable groups may be the same or different from each other.
  • the number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having a (meth) acryloyl group is preferable from the viewpoint of high reactivity, and for example, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and melamine (Polyfunctional (meth) acrylate monomer having several (meth) acryloyl groups in a molecule called meth) acrylate, polyfluoroalkyl (meth) acrylate, silicone (meth) acrylate, etc. and having a molecular weight of hundreds to thousands.
  • oligomers can be preferably used, and polyfunctional (meth) acrylate polymers having two or more (meth) acryloyl groups in the side chains of the acrylate polymer can also be preferably used.
  • a polyfunctional (meth) acrylate monomer having two or more (meth) acryloyl groups in one molecule can be preferably used.
  • the hardness of the hard coat layer can be improved, and the adhesion can be further improved.
  • a polyfunctional (meth) acrylate oligomer or polymer having two or more (meth) acryloyl groups in one molecule can also be preferably used.
  • the hardness and bending resistance of the hard coat layer can be improved, and the adhesion can be further improved.
  • (meth) acryloyl represents each of acryloyl and methacryloyl
  • (meth) acrylate represents each of acrylate and methacrylate
  • polyfunctional (meth) acrylate monomer examples include those described in JP-A-2019-132930. Among them, those having 3 or more and 6 or less (meth) acryloyl groups in one molecule are preferable from the viewpoint of high reactivity, improvement of the hardness of the hard coat layer, and adhesion, for example, pentaerythritol.
  • Triacrylate PETA
  • Dipentaerythritol Hexaacrylate DPHA
  • Pentaerythritol Tetraacrylate PETTA
  • Dipentaerythritol Pentaacrylate DPPA
  • Trimethylol Propantri meth) Acrylate
  • Trypentaerythritol Octa Metal Acrylate
  • Tetrapentaerythritol deca (meth) acrylates and the like can be preferably used, and in particular, pentaerythritol tri (meth) acrylates, dipentaerythritol penta (meth) acrylates, and dipentaerythritol hexaacrylates, which are PO, EO, or At least one selected from those modified with caprolactone is preferable.
  • the resin composition may contain a monofunctional (meth) acrylate monomer as a radically polymerizable compound in order to adjust hardness, viscosity, improve adhesion, and the like.
  • a monofunctional (meth) acrylate monomer as a radically polymerizable compound in order to adjust hardness, viscosity, improve adhesion, and the like.
  • Specific examples of the monofunctional (meth) acrylate monomer include those described in JP-A-2019-132930.
  • the cationically polymerizable compound is a compound having a cationically polymerizable group.
  • the cationically polymerizable group contained in the cationically polymerizable compound may be any functional group capable of causing a cationic polymerization reaction, and is not particularly limited, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationically polymerizable groups may be the same or different from each other.
  • the number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • the cationically polymerizable compound is preferably a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group, and a compound having at least one of an epoxy group and an oxetanyl group in one molecule is preferable. More preferred.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable because the shrinkage associated with the polymerization reaction is small. Further, among the cyclic ether groups, compounds having an epoxy group are easily available, compounds having various structures are easily available, the durability of the obtained hard coat layer is not adversely affected, and compatibility with radically polymerizable compounds is easily controlled. There is an advantage.
  • the oxetanyl group has a higher degree of polymerization than the epoxy group and has low toxicity, and when the obtained hard coat layer is combined with a compound having an epoxy group, it is contained in the coating film.
  • Examples of the cationically polymerizable compound having an epoxy group include polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, or a cyclohexene ring or cyclopentene ring-containing compound with an appropriate oxidizing agent such as hydrogen peroxide or peracid.
  • Alicyclic epoxy resin obtained by epoxidation polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long chain polybasic acid, homopolymer of glycidyl (meth) acrylate, An aliphatic epoxy resin such as a copolymer; a glycidyl ether produced by reacting bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives such as alkylene oxide adducts and caprolactone adducts thereof with epichlorohydrin. And novolak epoxy resin and the like, and examples thereof include glycidyl ether type epoxy resin derived from bisphenols.
  • alicyclic epoxy resin the glycidyl ether type epoxy resin, and the cationically polymerizable compound having an oxetanyl group
  • alicyclic epoxy resin the glycidyl ether type epoxy resin
  • cationically polymerizable compound having an oxetanyl group can be mentioned, for example, those described in JP-A-2018-104682.
  • the cured product of the resin composition containing the polymerizable compound contained in the hard coat layer includes a Fourier transform infrared spectrophotometer (FTIR), a thermal decomposition gas chromatograph device (GC-MS), and a decomposition product of the polymer.
  • FTIR Fourier transform infrared spectrophotometer
  • GC-MS thermal decomposition gas chromatograph device
  • decomposition product of the polymer includes a Fourier transform infrared spectrophotometer (FTIR), a thermal decomposition gas chromatograph device (GC-MS), and a decomposition product of the polymer.
  • FTIR Fourier transform infrared spectrophotometer
  • GC-MS thermal decomposition gas chromatograph device
  • the resin composition may contain a polymerization initiator, if necessary.
  • a radical polymerization initiator, a cationic polymerization initiator, a radical, a cationic polymerization initiator and the like can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to promote radical polymerization and cation polymerization. In some cases, the polymerization initiator is completely decomposed and does not remain in the hard coat layer.
  • radical polymerization initiator and the cationic polymerization initiator include those described in JP-A-2018-104682.
  • the hard coat layer preferably contains inorganic or organic particles, and more preferably contains inorganic fine particles.
  • the hardness can be improved by containing the particles in the hard coat layer.
  • the inorganic particles include metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide.
  • metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide.
  • metal fluoride particles such as magnesium fluoride and sodium fluoride
  • metal particles, metal sulfide particles, and metal nitride particles are preferable, at least one selected from silica particles and aluminum oxide particles is more preferable, and silica particles are even more preferable. This is because excellent hardness can be obtained.
  • the inorganic particles have at least a reactive functional group having a photoreactivity capable of forming a covalent bond by cross-linking the inorganic particles with each other or with at least one of the polymerizable compounds on the surface of the inorganic particles. It is preferable that it is a reactive inorganic particle contained in a part of the above.
  • the hardness of the hard coat layer can be further improved by performing a cross-linking reaction between the reactive inorganic particles or between the reactive inorganic particles and at least one of the radically polymerizable compound and the cationically polymerizable compound.
  • Reactive inorganic particles are coated with an organic component at least a part of the surface thereof, and have a reactive functional group introduced by the organic component on the surface.
  • a reactive functional group for example, a polymerizable unsaturated group is preferably used, and more preferably a photocurable unsaturated group.
  • the reactive functional group include an ethylenically unsaturated bond such as a (meth) acryloyl group, a vinyl group and an allyl group, and an epoxy group.
  • the reactive silica particles are not particularly limited, and conventionally known ones can be used, and examples thereof include the reactive silica particles described in JP-A-2008-165040.
  • Examples of commercially available products of the reactive silica particles include those manufactured by Nissan Chemical Industries, Ltd .; MIBK-SD, MIBK-SDMS, MIBK-SDL, MIBK-SDZL, and JGC Catalysts and Chemicals Co., Ltd .; V8802, V8803 and the like.
  • the silica particles may be spherical silica particles, but are preferably atypical silica particles. Spherical silica particles and atypical silica particles may be mixed.
  • the atypical silica particles mean silica particles having a potato-like random unevenness on the surface. Since the surface area of the atypical silica particles is larger than that of the spherical silica particles, the inclusion of such atypical silica particles increases the contact area with the resin component and the like, and makes the hardness of the hard coat layer more excellent. Can be.
  • the particles are atypical silica particles can be confirmed by observing the cross section of the hardcourt layer with an electron microscope.
  • the average particle size of the inorganic particles is preferably 5 nm or more, more preferably 10 nm or more, from the viewpoint of improving hardness. If the average particle size of the inorganic particles is too small, it is difficult to produce the particles, and the particles may easily aggregate with each other. Further, the average particle size of the inorganic particles is preferably 200 nm or less, more preferably 100 nm or less, and further preferably 50 nm or less from the viewpoint of transparency. If the average particle size of the inorganic particles is too large, large irregularities may be formed on the hard coat layer and haze may increase.
  • the average particle size of the inorganic particles can be measured by observing the cross section of the hard coat layer with an electron microscope, and the average particle size of 10 arbitrarily selected particles is taken as the average particle size.
  • the average particle size of the atypical silica particles is the average value of the maximum value (major axis) and the minimum value (minor axis) of the distance between two points on the outer periphery of the atypical silica particles that appeared by observing the cross section of the hard coat layer with a microscope. be.
  • the hardness of the hardcoat layer can be controlled by adjusting the size and content of the inorganic particles.
  • the content of the silica particles is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 50 parts by mass or more with respect to 100 parts by mass of the polymerizable compound. preferable.
  • the hardness of the hard coat layer can be increased.
  • the content of the silica particles is preferably 150 parts by mass or less, more preferably 120 parts by mass or less, and further preferably 100 parts by mass or less with respect to 100 parts by mass of the polymerizable compound. preferable.
  • good bending resistance can be obtained.
  • the content of the silica particles is, for example, preferably 25 parts by mass or more and 150 parts by mass or less, more preferably 30 parts by mass or more and 120 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the polymerizable compound. It is more preferably part by mass or more and 100 parts by mass or less.
  • the hard coat layer may contain an ultraviolet absorber. Deterioration of the base material layer due to ultraviolet rays can be suppressed. Above all, when the base material layer contains polyimide, it is possible to suppress the color change of the base material layer containing polyimide with time. Further, in a display device including a laminated body, deterioration of members arranged on the display panel side of the laminated body, such as a polarizing element, due to ultraviolet rays can be suppressed.
  • the ultraviolet absorber contained in the hard coat layer preferably has a peak absorption wavelength of 300 nm or more and 390 nm or less, more preferably 320 nm or more and 370 nm or less, and more preferably 330 nm or more and 370 nm or less. More preferred.
  • Such an ultraviolet absorber can efficiently absorb ultraviolet rays in the UVA region, while inhibiting the curing of the hard coat layer by shifting the absorption wavelength of the initiator for curing the hard coat layer to 250 nm and the peak wavelength. This is because a hard coat layer having an ultraviolet absorbing ability can be formed without causing the above.
  • the peak of the absorption wavelength is 380 nm or less because coloring by the ultraviolet absorber can be suppressed.
  • the absorbance of the ultraviolet absorber can be measured using, for example, an ultraviolet-visible near-infrared spectrophotometer (for example, JASCO Corporation V-7100).
  • an ultraviolet-visible near-infrared spectrophotometer for example, JASCO Corporation V-7100.
  • the ultraviolet absorber examples include triazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers such as hydroxybenzophenone-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers.
  • one or more ultraviolet absorbers selected from the group consisting of hydroxybenzophenone-based ultraviolet absorbers and benzotriazole-based ultraviolet absorbers are preferable from the viewpoint of suppressing deterioration of the substrate layer due to ultraviolet rays, and hydroxybenzophenone-based ultraviolet rays are preferable. More preferably, one or more UV absorbers selected from the group consisting of absorbers.
  • hydroxybenzophenone-based ultraviolet absorber examples include those described in JP-A-2019-132930.
  • hydroxybenzophenone-based ultraviolet absorber a 2-hydroxybenzophenone-based ultraviolet absorber is preferable, and one or more selected from the group consisting of benzophenone-based ultraviolet absorbers having the following general formula (A) is more preferable. preferable. It is possible to suppress deterioration of the base material layer due to ultraviolet rays and improve durability.
  • X 1 and X 2 independently represent a hydroxyl group, ⁇ OR a , or a hydrocarbon group having 1 to 15 carbon atoms, and Ra is a hydrocarbon having 1 to 15 carbon atoms. Represents a group.
  • the hydrocarbon groups having 1 to 15 carbon atoms in X 1 , X 2 and Ra are methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl. Examples thereof include a group, a dodecyl group, an allyl group, a benzyl group and the like.
  • Each of the aliphatic hydrocarbon groups having 3 or more carbon atoms may be linear or branched.
  • the hydrocarbon group preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, and more preferably a methyl group or an allyl group, from the viewpoint of easily improving transparency.
  • X 1 and X 2 are independently hydroxyl groups or ⁇ OR a .
  • benzophenone-based ultraviolet absorbers having the general formula (A) 2,2', 4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4, It is preferably at least one selected from the group consisting of 4'-dimethoxybenzophenone and 2,2'-dihydroxy-4,4'-diallyloxybenzophenone, preferably 2,2', 4,4'-tetrahydroxy. More preferably, it is at least one selected from the group consisting of benzophenone and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone.
  • benzotriazole-based ultraviolet absorber examples include those described in JP-A-2019-132930.
  • benzotriazole-based ultraviolet absorber 2- (2-hydroxyphenyl) benzotriazoles are preferable, and one or more selected from the group consisting of benzotriazole-based ultraviolet absorbers having the following general formula (B). It is more preferable to have. It is possible to suppress deterioration of the base material layer due to ultraviolet rays and improve durability.
  • Y 1 , Y 2 and Y 3 independently represent a hydrogen atom, a hydroxyl group, ⁇ OR b , or a hydrocarbon group having 1 to 15 carbon atoms, and R b is a carbon atom.
  • R b is a carbon atom.
  • the hydrocarbon groups having 1 to 15 carbon atoms in Y 1 , Y 2 , Y 3 and R b are methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group. , Heptyl group, octyl group, dodecyl group and the like.
  • Each of the aliphatic hydrocarbon groups having 3 or more carbon atoms may be linear or branched.
  • the hydrocarbon group preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, preferably a linear or branched alkyl group, and above all, a methyl group, a t-butyl group, or t-, from the viewpoint of easily improving transparency. It is preferably a pentyl group, an n-octyl group, or a t-octyl group.
  • examples of the halogen atom in Y4 include a chlorine atom, a fluorine atom, a bromine atom and the like, and a chlorine atom is preferable.
  • Y 1 and Y 3 are hydrogen atoms and Y 2 is a hydroxyl group or ⁇ OR b , and 2- (2-hydroxy-4-octyloxyphenyl) -2H. More preferably, it is one or more selected from the group consisting of -benzotriazole and 2- (2,4-dihydroxyphenyl) -2H-benzotriazole. It is possible to suppress deterioration of the base material layer due to ultraviolet rays and improve durability.
  • the content of the ultraviolet absorber in the hard coat layer is preferably, for example, 10% by mass or less, more preferably 7% by mass or less, from the viewpoint of suppressing haze due to mixing with the ultraviolet absorber. .. Further, from the viewpoint of suppressing deterioration of the base material layer due to ultraviolet rays and improving durability, the content of the ultraviolet absorber in the hard coat layer is preferably 1% by mass or more and 6% by mass or less, preferably 2% by mass. It is more preferably 5% by mass or less.
  • the hardcoat layer may contain an antifouling agent. Antifouling property can be imparted to the laminated body.
  • the antifouling agent is not particularly limited, and examples thereof include a silicone-based antifouling agent, a fluorine-based antifouling agent, and a silicone-based and fluorine-based antifouling agent. Further, the antifouling agent may be an acrylic antifouling agent. As the antifouling agent, one type may be used alone, or two or more types may be mixed and used.
  • the hard coat layer containing silicone-based antifouling agent and fluorine-based antifouling agent is hard to get fingerprints (not noticeable) and has good wiping property. Further, when a silicone-based antifouling agent or a fluorine-based antifouling agent is contained, the surface tension at the time of applying the curable resin composition for the hard coat layer can be lowered, so that the leveling property is good and the obtained hard coat layer can be obtained. The appearance of is good.
  • the hard coat layer containing a silicone-based antifouling agent has good slipperiness and scratch resistance.
  • the slipperiness when contacted with a finger, a pen, or the like is improved, so that the tactile sensation is improved.
  • the antifouling agent preferably has a reactive functional group in order to enhance the durability of the antifouling performance.
  • the antifouling agent does not have a reactive functional group, the hardcourt layer side of the laminated body when the laminated body is laminated, regardless of whether the laminated body is in the form of a roll or a sheet.
  • the antifouling agent is transferred to the surface opposite to the surface of the laminated body, and when the other layer is attached or applied to the surface opposite to the surface of the hard coat layer side of the laminate, the other layer is peeled off.
  • the antifouling agent has a reactive functional group, the performance sustainability of the antifouling performance becomes good.
  • the number of reactive functional groups contained in the antifouling agent may be 1 or more, preferably 2 or more.
  • the antifouling agent preferably has a weight average molecular weight of 5000 or less.
  • the weight average molecular weight of the antifouling agent can be measured by gel permeation chromatography (GPC).
  • the antifouling agent may be uniformly dispersed in the hardcoat layer, but from the viewpoint of obtaining sufficient antifouling property with a small amount of addition and suppressing a decrease in the strength of the hardcoat layer, the antifouling agent is placed on the surface side of the hardcoat layer. It is preferable that they are unevenly distributed.
  • the coating film of the curable resin composition for the hard coat layer is dried and before being cured.
  • the antifouling agent is unevenly distributed on the surface side of the hard coat layer, or an antifouling agent with low surface tension is used. Examples thereof include a method in which the antifouling agent is floated on the surface of the coating film without applying heat when the coating film is dried, and then the coating film is cured so that the antifouling agent is unevenly distributed on the surface side of the hard coat layer.
  • the content of the antifouling agent is preferably 0.01 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the resin component. If the content of the antifouling agent is too small, it may not be possible to impart sufficient antifouling property to the hardcoat layer, and if the content of the antifouling agent is too large, the hardness of the hardcoat layer may decrease. be.
  • the hardcourt layer may further contain additives, if desired.
  • the additive is appropriately selected depending on the function to be imparted to the hard coat layer, and is not particularly limited.
  • Antistatic agents, colorants such as blue pigments and purple pigments, leveling agents, surfactants, lubricants, various sensitizers, flame retardant agents, adhesive enhancers, polymerization inhibitors, antioxidants, light stabilizers examples include surface modifiers.
  • (D) Method for Forming Hard Court Layer As a method for forming the hard coat layer, for example, a method of applying a curable resin composition for a hard coat layer containing the above-mentioned polymerizable compound or the like on a base material layer and curing the hard coat layer or the like. Can be mentioned.
  • the curable resin composition for the hard coat layer contains a polymerizable compound, and may further contain a polymerization initiator, particles, an ultraviolet absorber, a solvent, an additive and the like, if necessary.
  • the method for applying the curable resin composition for a hard coat layer on the base material layer is not particularly limited as long as it can be applied to a desired thickness, for example, a gravure coat method, a gravure reverse coat method, or a gravure.
  • General coating methods such as an offset coating method, a spin coating method, a roll coating method, a reverse roll coating method, a blade coating method, a dip coating method, a spray coating method, a die coating method, and a screen printing method can be mentioned.
  • a transfer method can also be used as a method for forming a coating film of the resin composition for a hard coat layer.
  • the coating film of the curable resin composition for the hard coat layer is dried as necessary to remove the solvent.
  • the drying method include vacuum drying, heat drying, and a method of combining these drying methods. For example, it can be dried by heating at a temperature of 30 ° C. or higher and 120 ° C. or lower for 10 seconds or longer and 180 seconds or lower.
  • the coating film of the curable resin composition for the hard coat layer it is appropriately selected depending on the polymerizable group of the polymerizable compound, and for example, at least one of light irradiation and heating can be used.
  • UV rays emitted from light rays such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be used.
  • the irradiation amount of the energy radiation source can be, for example, about 50 mJ / cm 2 or more and 5000 mJ / cm 2 or less as the integrated exposure amount at the ultraviolet wavelength of 365 nm.
  • heating for example, it can be treated at a temperature of 40 ° C. or higher and 120 ° C. or lower. Further, the reaction may be carried out by leaving it at room temperature (25 ° C.) for 24 hours or more.
  • Base material layer The base material layer in this embodiment is a member that supports the hard coat layer.
  • the composite elastic modulus of the base material layer is, for example, preferably 5.7 GPa or more, more preferably 6.5 GPa or more, and 7.5 GPa or more. It is more preferable to have.
  • the composite elastic modulus of the base material layer is within the above range, the surface hardness of the surface of the laminated body on the hard coat film side can be increased, and the scratch resistance can be improved.
  • the composite elastic modulus of the substrate layer is preferably, for example, 40 GPa or less, preferably 30 GPa or less. Is more preferable, and 20 GPa or less is further preferable.
  • the composite elastic modulus of the base material layer is, for example, preferably 5.7 GPa or more and 40 GPa or less, more preferably 6.5 GPa or more and 30 GPa or less, and further preferably 7.5 GPa or more and 20 GPa or less.
  • the method for measuring the composite elastic modulus of the base material layer can be the same as the method for measuring the composite elastic modulus of the joint layer described above.
  • the composite elastic modulus of the base material layer can be adjusted, for example, by the type and composition of the material contained in the base material layer.
  • the base material layer preferably has transparency.
  • the total light transmittance of the base material layer is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
  • the haze of the base material layer is preferably, for example, 2% or less, more preferably 1.5% or less, and further preferably 1% or less.
  • (B) Material of base material layer As the base material layer, for example, a resin base material can be used.
  • the resin constituting the resin base material preferably satisfies the above-mentioned composite elastic modulus and has transparency.
  • resins include polyimide resins, polyamide resins, polyester resins, cellulose resins, acrylic resins, polycarbonate resins, polyethylene naphthalate resins and the like.
  • polyimide-based resin include polyimide, polyamide-imide, polyetherimide, polyesterimide and the like.
  • the polyester resin include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PEN) and the like.
  • the cellulosic resin examples include triacetyl cellulose (TAC) and the like.
  • the acrylic resin examples include methyl poly (meth) acrylate and ethyl poly (meth) acrylate.
  • the resin base material may be a single layer or a multilayer such as a coextruded film. Among them, a polyimide resin is preferable because it has bending resistance, excellent hardness and transparency.
  • the polyimide-based resin is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus and has transparency, but among the above, polyimide and polyamide-imide are preferably used.
  • Polyimide is obtained by reacting a tetracarboxylic acid component with a diamine component.
  • the polyimide is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus and has transparency, but for example, from the viewpoint of having excellent transparency and excellent rigidity, the following general formula (1) It is preferable to have at least one structure selected from the group consisting of the structures represented by the following general formula (3).
  • R 5 is a tetravalent group which is a tetracarboxylic acid residue
  • R 6 is a trans-cyclohexanediamine residue, trans-1,4-bismethylenecyclohexanediamine residue, 4,4.
  • .. n represents the number of repeating units and is 1 or more.
  • R 7 and R 8 independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group, respectively.
  • R 9 is a cyclohexanetetracarboxylic acid residue, a cyclopentanetetracarboxylic acid residue, a dicyclohexane-3,4,3', 4'-tetracarboxylic acid residue, and 4,4'.
  • -At least one tetravalent group selected from the group consisting of (hexafluoroisopropyridene) diphthalic acid residues R10 represents a divalent group which is a diamine residue.
  • n' represents the number of repeating units and is 1 or more.
  • tetracarboxylic acid residue refers to a residue obtained by removing four carboxyl groups from the tetracarboxylic acid, and has the same structure as the residue obtained by removing the acid dianhydride structure from the tetracarboxylic acid dianhydride. show.
  • diamine residue means a residue obtained by removing two amino groups from a diamine.
  • R5 is a tetracarboxylic acid residue, and can be a residue obtained by removing the acid dianhydride structure from the tetracarboxylic acid dianhydride.
  • examples of the tetracarboxylic acid dianhydride include those described in International Publication No. 2018/070523.
  • the R5 in the above general formula (1) includes 4,4'-(hexafluoroisopropyridene) diphthalic acid residues, 3,3', 4 from the viewpoint of improving transparency and rigidity.
  • R5 it is preferable to contain 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more of these suitable residues in total.
  • R5 is composed of a group consisting of 3,3', 4,4' - biphenyltetracarboxylic acid residues, 3,3', 4,4'-benzophenone tetracarboxylic acid residues, and pyromellitic acid residues.
  • the content ratio of the tetracarboxylic acid residue group (group A) suitable for improving the rigidity and the tetracarboxylic acid residue group (group B) suitable for improving the transparency is , 1 mol of tetracarboxylic acid residue group (group B) suitable for improving transparency, 0.05 mol of tetracarboxylic acid residue group (group A) suitable for improving rigidity. It is preferably 9 mol or more, more preferably 0.1 mol or more and 5 mol or less, and further preferably 0.3 mol or more and 4 mol or less.
  • the R6 in the above general formula ( 1 ) includes 4,4'-diaminodiphenyl sulfone residues, 3,4'-diaminodiphenyl sulfone residues, among others, from the viewpoint of improving transparency and rigidity. And at least one divalent group selected from the group consisting of the divalent group represented by the above general formula (2) is preferable, and further, 4,4'-diaminodiphenyl sulfone residue, 3, At least one divalent group selected from the group consisting of a 4'-diaminodiphenyl sulfone residue and a divalent group represented by the above general formula (2) in which R7 and R8 are perfluoroalkyl groups. It is preferably a group.
  • the R9 in the above general formula (3) includes 4,4'-(hexafluoroisopropyridene) diphthalic acid residues, 3,3', 4 from the viewpoint of improving transparency and rigidity. , 4'-Diphenylsulfone tetracarboxylic acid residues, and oxydiphthalic acid residues are preferred.
  • these suitable residues are preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more.
  • R 10 in the above general formula (3) is a diamine residue, and can be a residue obtained by removing two amino groups from a diamine.
  • the diamine include those described in International Publication No. 2018/070523.
  • R10s in the above general formula (3) 2,2'-bis (trifluoromethyl) benzidine residue and bis [4- (4- (4- (4- (4- (4- (4-) Aminophenoxy) phenyl] sulfone residue, 4,4'-diaminodiphenyl sulfone residue, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane residue, bis [4- (3-amino) Phenoxy) phenyl] sulfone residue, 4,4'-diamino-2,2'-bis (trifluoromethyl) diphenyl ether residue, 1,4-bis [4-amino-2- (trifluoromethyl) phenoxy] benzene Resi
  • It preferably contains a divalent group of species, in addition a 2,2'-bis (trifluoromethyl) benzidine residue, a bis [4- (4-aminophenoxy) phenyl] sulfone residue, and a 4,4'. -Preferably contains at least one divalent group selected from the group consisting of diaminodiphenyl sulfone residues.
  • R 10 it is preferable that these suitable residues are contained in a total amount of 50 mol% or more, further preferably 70 mol% or more, and further preferably 90 mol% or more.
  • R 10 a bis [4- (4-aminophenoxy) phenyl] sulfone residue, a 4,4'-diaminobenzanilide residue, an N, N'-bis (4-aminophenyl) terephthalamide residue,
  • a group of diamine residues suitable for improving rigidity such as at least one selected from the group consisting of paraphenylenediamine residues, metaphenylenediamine residues, and 4,4'-diaminodiphenylmethane residues.
  • the content ratio of the diamine residue group (group C) suitable for improving the rigidity and the diamine residue group (group D) suitable for improving the transparency determines the transparency.
  • the diamine residue group (group C) suitable for improving rigidity should be 0.05 mol or more and 9 mol or less with respect to 1 mol of the diamine residue group (group D) suitable for improvement. It is preferable, more preferably 0.1 mol or more and 5 mol or less, and more preferably 0.3 mol or more and 4 mol or less.
  • n and n'independently represent the number of repeating units and are 1 or more.
  • the number of repeating units n in the polyimide may be appropriately selected depending on the structure, and is not particularly limited.
  • the average number of repeating units can be, for example, 10 or more and 2000 or less, and preferably 15 or more and 1000 or less.
  • the polyimide may contain a polyamide structure as a part thereof.
  • the polyamide structure examples include a polyamide-imide structure containing a tricarboxylic acid residue such as trimellitic acid anhydride and a polyamide structure containing a dicarboxylic acid residue such as terephthalic acid.
  • the tetravalent group which is a tetracarboxylic acid residue of R 5 and R 9 and the divalent group which is a diamine residue of R 6 and R 10 At least one of the groups contains an aromatic ring, and (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic ring may be substituted with a sulfonyl group or fluorine. It is preferable to include at least one selected from the group consisting of the structures concatenated with.
  • the polyimide contains at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring
  • the molecular skeleton becomes rigid, the orientation is enhanced, and the surface hardness is improved, but the polyimide is rigid.
  • the aromatic ring skeleton tends to have an absorption wavelength extending to a long wavelength, and the transmittance in the visible light region tends to decrease.
  • the polyimide contains (i) a fluorine atom, the transparency is improved in that the electronic state in the polyimide skeleton can be made difficult to transfer charge.
  • the polyimide contains (ii) an aliphatic ring
  • transparency is improved in that the transfer of charges in the skeleton can be inhibited by breaking the conjugation of ⁇ electrons in the polyimide skeleton.
  • the polyimide contains a structure in which (iii) aromatic rings are linked to each other with a sulfonyl group or an alkylene group which may be substituted with fluorine, the ⁇ electron in the polyimide skeleton is cut off from the conjugation of the charge in the skeleton. Transparency is improved in that it can inhibit movement.
  • a tetravalent group which is a tetracarboxylic acid residue of R 5 and R 9 and a diamine residue of R 6 and R 10 are 2 from the viewpoint of improving transparency and surface hardness. It is preferable that at least one of the valent groups contains an aromatic ring and a fluorine atom, and the divalent group which is a diamine residue of R 6 and R 10 contains an aromatic ring and a fluorine atom. preferable.
  • polyimide examples include those having a specific structure described in International Publication No. 2018/070523.
  • Polyimide can be synthesized by a known method. Further, as the polyimide, a commercially available one may be used. Examples of commercially available polyimide products include Neoprim (registered trademark) manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the weight average molecular weight of the polyimide is, for example, preferably 3,000 or more and 500,000 or less, more preferably 5,000 or more and 300,000 or less, and further preferably 10,000 or more and 200,000 or less. If the weight average molecular weight is too small, sufficient strength may not be obtained, and if the weight average molecular weight is too large, the viscosity increases and the solubility decreases, resulting in a substrate layer having a smooth surface and a uniform thickness. It may not be obtained.
  • the weight average molecular weight of polyimide can be measured by gel permeation chromatography (GPC). Specifically, polyimide is used as an N-methylpyrrolidone (NMP) solution having a concentration of 0.1% by mass, and a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used as a developing solvent. 8120, column used: GPC LF-804 manufactured by SHODEX), measurement is performed under the conditions of a sample injection amount of 50 ⁇ L, a solvent flow rate of 0.4 mL / min, and 37 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
  • the polyamide-imide is not particularly limited as long as it satisfies the above-mentioned composite elastic coefficient and has transparency, and includes, for example, a structural unit derived from dianhydride and a structural unit derived from diamine. Examples thereof include those having a first block and a second block containing a structural unit derived from an aromatic dicarbonyl compound and a structural unit derived from an aromatic diamine.
  • the dianhydride can include, for example, biphenyltetracarboxylic acid dianhydride (BPDA) and 2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA).
  • the diamine can contain bistrifluoromethylbenzidine (TFDB). That is, the above-mentioned polyamide-imide includes a first block in which a monomer containing dianhydride and a diamine is copolymerized, and a second block in which a monomer containing an aromatic dicarbonyl compound and an aromatic diamine is copolymerized. It has a structure in which the polyamide-imide precursor to have is imidized. Since the polyamide-imide has a first block containing an imide bond and a second block containing an amide bond, the polyamide-imide is excellent not only in optical properties but also in thermal and mechanical properties.
  • TFDB bistrifluoromethylbenzidine
  • TFDB bistrifluoromethylbenzidine
  • BPDA biphenyltetracarboxylic acid dianhydride
  • the dianhydrides forming the first block contain two types of dianhydrides, namely 6FDA and BPDA.
  • the first block may contain a polymer to which TFDB and 6FDA are bound and a polymer to which TFDB and BPDA are bound, respectively, separately based on different repeating units, and may be contained within the same repeating unit. It may be regularly arranged in, or it may be completely randomly arranged and included.
  • BPDA and 6FDA are contained as dianhydrides in a molar ratio of 1: 3 to 3: 1. This is because not only the optical characteristics can be ensured, but also the mechanical characteristics and the deterioration of heat resistance can be suppressed, and excellent birefringence can be obtained.
  • the molar ratio of the first block and the second block is preferably 5: 1 to 1: 1. If the content of the second block is extremely low, the effect of the second block on improving thermal stability and mechanical properties may not be sufficiently obtained. Further, when the content of the second block is higher than the content of the first block, the thermal stability and the mechanical properties can be improved, but the optical properties such as the decrease in yellowness and the transmittance are deteriorated. , The birefringence characteristic may also be enhanced.
  • the first block and the second block may be random copolymers or block copolymers. The repeating unit of the block is not particularly limited.
  • aromatic dicarbonyl compound forming the second block examples include terephthaloyl chloride (TPC), terephthalic acid, isophthaloyl dichloride and 4,4.
  • TPC terephthaloyl chloride
  • terephthalic acid terephthalic acid
  • isophthaloyl dichloride 4,4.
  • One or more species selected from the group consisting of'-benzoyl dichloride (4,4'-benzoyl chloride) can be mentioned.
  • it may be one or more selected from terephthaloyl chloride (TPC) and isophthaloyl dichloride (Iso-phthaloyl chloride).
  • diamine forming the second block examples include 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane (HFBAPP) and bis (4- (4-aminophenoxy) phenyl) sulfone (BAPS).
  • HFBAPP 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane
  • BAPS bis (4- (4-aminophenoxy) phenyl) sulfone
  • BASPM Bis (4- (3-aminophenoxy) phenyl) sulfone
  • 4DDS 4,4'-diaminodiphenyl sulfone
  • 3DDS 3,3'-diaminodiphenyl sulfone
  • BAPP 4,4'-diaminodiphenylpropane
  • 6HDA 4,4'-diaminodiphenylpropane
  • 1,3-bis (4-aminophenoxy) benzene 134APB
  • 1,3-bis (3-amino) Phenoxy) Benzene 133APB
  • BABP 1,4-bis (4-aminophenoxy) biphenyl
  • 6FAPBP 4,4'-bis (4-amino-2-trifluoromethylphenoxy) biphenyl
  • DABS 3,3- Diamino-4,4-dihydroxydiphenylsulfone
  • DABS 3,3- Diamino-4,4-dihydroxydipheny
  • the diamines are bis (4- (3-aminophenoxy) phenyl) sulfone (BASPM), 4,4'-diaminodiphenyl sulfone (4DDS) and 2,2-bis (4- (4-aminophenoxy).
  • Phenyl) Hexafluoropropane is more preferably one or more diamines selected.
  • the polyamideimide precursor containing the copolymerized first block and the second block in which the aromatic dicarbonyl compound and the aromatic diamine are copolymerized in the molecular structure has a weight average molecular weight of, for example, 200 as measured by GPC. It is preferably 000 or more and 215,000 or less, and the viscosity is preferably, for example, 2400 poise or more and 2600 poise or less.
  • Polyamideimide can be obtained by imidizing a polyamide-imide precursor. Further, a polyamide-imide film can be obtained by using polyamide-imide. For a method for imidizing a polyamide-imide precursor and a method for producing a polyamide-imide film, for example, Japanese Patent Laid-Open No. 2018-506611 can be referred to.
  • the thickness of the glass substrate in this embodiment is 100 ⁇ m or less, preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 70 ⁇ m or less.
  • the thickness of the glass base material is as thin as the above range, good bending resistance can be obtained and sufficient hardness can be obtained. In addition, curling of the laminated body can be suppressed. Further, it is preferable in terms of weight reduction of the laminated body.
  • the thickness of the glass substrate is, for example, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more. When the thickness of the glass base material is within the above range, good impact resistance can be obtained.
  • the thickness of the glass substrate is 10 ⁇ m or more and 100 ⁇ m or less, preferably 15 ⁇ m or more and 90 ⁇ m or less, more preferably 20 ⁇ m or more and 80 ⁇ m or less, and further preferably 25 ⁇ m or more and 75 ⁇ m or less.
  • the ratio of the thickness of the glass base material to the total thickness of the laminate is preferably, for example, 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • the thickness of the glass base material can be made relatively thick, and the texture and tactile sensation of the glass due to the glass base material can be maintained.
  • the ratio of the thickness of the glass base material to the total thickness of the laminate is preferably, for example, 90% or less, more preferably 80% or less, still more preferably 70% or less.
  • the thickness of the hard coat film can be made relatively thick, and the impact resistance can be improved.
  • the ratio of the thickness of the glass substrate to the total thickness of the laminate is preferably, for example, 30% or more and 90% or less, more preferably 40% or more and 80% or less, and further preferably 50% or more and 70% or less. Is.
  • the glass constituting the glass base material is not particularly limited, but it is particularly preferable that it is chemically tempered glass.
  • Chemically tempered glass has excellent mechanical strength and is preferable in that it can be made thinner accordingly.
  • Chemically tempered glass is typically glass whose mechanical properties have been strengthened by a chemical method by partially exchanging ionic species such as replacing sodium with potassium near the surface of the glass. It has a compressive stress layer.
  • the glass constituting the chemically strengthened glass base material examples include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkaline barium glass, and aluminohousilicate glass.
  • the chemically strengthened glass substrate may be made of crystallized glass.
  • Examples of commercially available chemically strengthened glass base materials include Gorilla Glass from Corning, Dragontrail from AGC, and chemically strengthened glass from Shot.
  • Functional layer The laminate in this embodiment is formed on the opposite side of the hard coat layer from the base material layer, between the hard coat layer and the base material layer, between the base material layer and the bonding layer, and bonded to the glass base material. Further functional layers can be provided between the layers or on the side opposite to the bonding layer of the glass substrate.
  • the functional layer may be a single layer or may have a plurality of layers. Further, the functional layer may be a layer having a single function, or may have a plurality of layers having different functions from each other.
  • Examples of the functional layer arranged on the surface side opposite to the base material layer of the hard coat layer include an antireflection layer, an antiglare layer, a protective layer and the like. Further, examples of the functional layer arranged between the hard coat layer and the base material layer include a primer layer, a shatterproof layer, and a shock absorbing layer. Examples of the functional layer arranged between the base material layer and the bonding layer include a decorative layer, a primer layer, a toning layer, a shatterproof layer, and a shock absorbing layer. Further, examples of the functional layer arranged between the glass base material and the bonding layer include electrodes such as ITO, antenna wiring, and the like. Further, examples of the functional layer arranged on the surface side opposite to the bonding layer of the glass substrate include an adhesive layer, a decorative layer, a shock absorbing layer, and the like.
  • the laminate in this embodiment may have the antireflection layer 7 on the surface side of the hardcoat layer 6 opposite to the base material layer 5.
  • the antireflection layer 7 may be a layer constituting the hard coat film 4, for example, as shown in FIG.
  • the antireflection layer may be composed of a single layer or may be composed of multiple layers.
  • a general antireflection layer can be applied, for example, a single-layer film containing a material having a lower refractive index than the hard coat layer, or a high refractive index layer and a low refractive index layer from the hard coat layer side.
  • the material contained in the single-layer film may be any material having a refractive index lower than that of the hardcoat layer, and examples thereof include magnesium fluoride.
  • the refractive index of the low refractive index layer is, for example, preferably 1.45 or less, and more preferably 1.40 or less. By setting the refractive index of the low refractive index layer within the above range, the antireflection property becomes good. Further, the lower limit of the refractive index of the low refractive index layer is practically 1.10 or more.
  • Examples of the low refractive index layer include those containing a hydrolyzed polycondensate of metal alkoxide, those containing a low refractive index resin, those containing low refractive index particles, those containing a binder resin and low refractive index particles. And so on.
  • the hydrolyzed polycondensate of the metal alkoxide can be obtained, for example, by the sol-gel method.
  • Examples of the resin having a low refractive index include fluororesin.
  • the low refractive index particles are not particularly limited, and for example, either inorganic or organic particles such as silica and magnesium fluoride can be used. Above all, particles having voids are preferable from the viewpoint of reducing the reflectance of the antireflection layer.
  • the particles having voids have fine voids inside and contain air in the voids, so that the refractive index is low. Examples of the particles having voids include porous particles and hollow particles. Of these, hollow particles are preferable.
  • Hollow particles refer to particles that have an outer shell layer, the inside of the particles surrounded by the outer shell layer is hollow, and the inside of the particles contains air.
  • the outer shell layer of the hollow particles may be an inorganic substance or an organic substance, and examples thereof include those made of metal, metal oxide, resin, silica and the like. Of these, hollow silica particles in which the outer shell layer is silica are preferable. When the outer shell layer is silica, the silica may be in a crystalline, sol-like, or gel-like state.
  • the shape of the hollow particles may be a substantially spherical shape such as a true sphere, a spheroid shape, or a polyhedral shape that can be approximated to a sphere, a chain shape, a needle shape, a plate shape, a piece shape, a rod shape, a fibrous shape, or the like. Among them, it is preferably a true sphere and a substantially spherical shape, and more preferably a spheroid or a true sphere.
  • the low refractive index particles are preferably surface-treated.
  • the surface treatment of the low refractive index particles is preferably a surface treatment using a silane coupling agent. Of these, surface treatment using a silane coupling agent having a (meth) acryloyl group is preferable.
  • silane coupling agent preferably used in the surface treatment of low refractive index particles examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-.
  • the average particle size of the low refractive index particles is, for example, preferably 5 nm or more and 200 nm or less, and more preferably 10 nm or more and 150 nm or less.
  • the average particle diameter is, for example, preferably 5 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, and further preferably 50 nm or more and 110 nm or less. ..
  • the average particle size is in the above range, the thickness of the low refractive index layer can be easily made uniform.
  • the average particle diameter is set to 5 nm or more, it is possible to easily suppress the aggregation of particles, and in the case of hollow particles, it is possible to sufficiently reduce the refractive index of the low refractive index layer. Further, by setting the average particle diameter to 200 nm or less, it is possible to easily suppress the deterioration of visibility due to whitening due to the diffusion of particles.
  • the average particle diameter of the low refractive index particles and the high refractive index particles described later can be calculated by the following operations (1) to (3).
  • the cross section of the antireflection layer is imaged by TEM or STEM.
  • the acceleration voltage of TEM or STEM is preferably, for example, 10 kv or more and 30 kV or less, and the magnification is preferably, for example, 50,000 times or more and 300,000 times or less.
  • Arbitrary 10 particles are extracted from the observation image, and the particle diameter of each particle is calculated. The particle diameter is measured as the distance between straight lines in a combination of two straight lines such that the distance between the two straight lines is maximized when the cross section of the particle is sandwiched between two arbitrary parallel straight lines.
  • (3) The same operation is performed 5 times on the observation image on another screen of the same sample, and the value obtained from the number average of a total of 50 particles is taken as the average particle diameter of the particles.
  • the content of the low refractive index particles shall be 20 parts by mass or more and 250 parts by mass or less with respect to 100 parts by mass of the binder resin of the low refractive index layer. Is more preferable, and it is more preferably 30 parts by mass or more and 230 parts by mass or less, and further preferably 40 parts by mass or more and 200 parts by mass or less.
  • the content of the low refractive index particles is within the above range, the balance between the antireflection property and the scratch resistance can be improved.
  • the ratio of the hollow particles to the total amount of the low refractive index particles contained in the low refractive index layer is preferably 40% by mass or more, more preferably 50% by mass or more.
  • binder resin contained in the low refractive index layer examples include a cured product of a curable resin composition.
  • the curable resin composition the same one as exemplified for the hard coat layer can be used, and a photocurable resin composition is suitable.
  • the curable resin composition forming the binder resin preferably contains a fluorine-containing oligomer having a photocurable functional group and / or a fluorine-containing compound such as a monomer.
  • a fluorine-containing oligomer having a photocurable functional group and / or a fluorine-containing compound such as a monomer By containing the fluorine compound, the refractive index of the low refractive index layer can be easily lowered, and the low refractive index layer can be imparted with antifouling property and slipperiness.
  • the thickness of the low refractive index layer is preferably about 1/4 of the wavelength range of visible light (around 100 nm), for example, it is preferably 80 nm or more and 120 nm or less, and 85 nm or more and 110 nm or less. More preferably, it is more preferably 90 nm or more and 105 nm.
  • Examples of the method for forming the low refractive index layer include a wet method and a dry method.
  • a wet method a method of forming by a sol-gel method using a metal alkoxide or the like, a method of applying a resin having a low refractive index to form the method, and a composition for a low refractive index layer containing a binder resin and low refractive index particles are applied.
  • Examples of the dry method include a method of forming by a physical vapor deposition method or a chemical vapor deposition method using low refractive index particles. The wet method is excellent in terms of production efficiency, and among them, a method of applying a composition for a low refractive index layer containing a binder resin and low refractive index particles is preferable.
  • the refractive index of the high refractive index layer is, for example, preferably 1.55 or more and 1.85 or less, and more preferably 1.56 or more and 1.70 or less.
  • the refractive index of the high refractive index layer is practically 1.85 or less.
  • Examples of the high refractive index layer include those containing a binder resin and high refractive index particles.
  • high refractive index particles examples include antimony pentoxide, zinc oxide, titanium oxide, cerium oxide, tin-doped indium oxide, antimonated tin oxide, yttrium oxide and zirconium oxide.
  • the average particle size of the high-refractive index particles is, for example, preferably 5 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less, and further preferably 10 nm or more and 80 nm or less.
  • the average particle size is, for example, preferably 5 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less, and further preferably 10 nm or more and 80 nm or less.
  • the content of the high refractive index particles is preferably 50 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the binder resin from the viewpoint of increasing the refractive index of the coating film and balancing the strength of the coating film. It is more preferably 2 parts by mass or more and 450 parts by mass or less, and further preferably 200 parts by mass or more and 430 parts by mass or less.
  • binder resin contained in the high refractive index layer examples include a cured product of a curable resin composition.
  • the curable resin composition the same one as exemplified for the hard coat layer can be used, and a photocurable resin composition is suitable.
  • the thickness of the high refractive index layer is preferably, for example, 200 nm or less, more preferably 50 nm or more and 180 nm or less, and further preferably 90 nm or more and 160 nm or less.
  • Examples of the method for forming the high refractive index layer include a method of applying a composition for a high refractive index layer containing a binder resin and high refractive index particles.
  • the thickness of the antireflection layer can be the same as the thickness of a general antireflection layer, and is appropriately selected according to the layer structure of the antireflection layer.
  • Examples of the method for forming the antireflection layer include a coating method and a vapor deposition method, which are appropriately selected depending on the material of the antireflection layer and the like.
  • the second bonding layer 10 may be arranged on the surface side of the glass substrate 2 opposite to the bonding layer 3. ..
  • the second joining layer is a layer for joining the laminated body and other members. Examples of other members include display panels in display devices described later.
  • the second bonding layer is usually arranged on the outermost surface of the laminated body.
  • the bonding layer arranged between the glass substrate and the substrate layer is simply referred to as a "bonding layer", and the surface opposite to the bonding layer of the glass substrate.
  • the bonding layer arranged in is referred to as a "second bonding layer”.
  • one of the impact fractures of the glass substrate is bending fracture.
  • Bending fracture is a phenomenon in which the glass base material bends due to the impact received by the glass base material, and the glass base material breaks when the amount of bending reaches the limit.
  • the glass substrate When an impact is applied to the surface of the glass substrate instantaneously and locally, the glass substrate is deformed instantaneously and locally, and tensile stress is generated instantaneously and locally on the back surface of the glass substrate, resulting in the glass substrate.
  • the back surface of the material cannot withstand the above tensile stress and cracks or breaks occur.
  • the inventors of the present disclosure have a laminated body having a glass base material, a bonding layer, and a hard coat film in this order, in which the laminated body has a second bonding layer on the surface side opposite to the bonding layer of the glass substrate. Furthermore, the impact resistance and bending resistance when having it were investigated diligently. Since the second bonding layer is usually softer than the glass substrate, the substrate layer and the hard coat layer, it is easily deformed by an impact. Therefore, if the degree of deformation of the second bonding layer is large when an impact is applied to the laminated body, it is considered that momentary and local deformation is likely to occur in the glass substrate. In this case, bending fracture is likely to occur in the glass substrate, and there is a concern that the impact resistance may be lowered.
  • the impact resistance greatly changes depending on the hardness, thickness, and the like of the second bonding layer. It has been found. Further, even when the laminate further has the second bonding layer on the surface side opposite to the bonding layer of the glass substrate, the second bonding layer has a thickness ( ⁇ m).
  • the ratio of the storage elastic modulus (MPa) of the bonded layer at 20 ° C. is within a predetermined range, bending fracture of the glass substrate is suppressed and good bending resistance is obtained without impairing impact resistance. I found that I could do it.
  • the ratio of the storage elastic modulus (MPa) of the second bonding layer at 20 ° C. to the thickness ( ⁇ m) of the second bonding layer is preferably 0.001 or more and 0.4 or less, for example. It is more preferably 0.002 or more and 0.35 or less, further preferably 0.003 or more and 0.3 or less, and particularly preferably 0.004 or more and 0.2 or less.
  • MPa storage elastic modulus
  • the second bonding layer is usually softer than the glass substrate and the substrate layer and the hard coat layer of the hard coat film, it is easily deformed by an impact, and the thickness of the second bonding layer is increased. The thicker it is, the greater the degree of deformation due to impact tends to be.
  • the ratio of the storage elastic modulus to the thickness of the second joint layer is too small, the thickness of the second joint layer becomes relatively thick, and the impact resistance may decrease. Further, when the ratio of the storage elastic modulus to the thickness of the second joint layer becomes large, the effect of improving the impact resistance is saturated. Further, if the ratio of the storage elastic modulus to the thickness of the second joint layer is too large, the thickness of the second joint layer is relatively thin and the storage elastic modulus of the second joint layer is relatively thin. It may become large and the bending resistance may decrease.
  • the glass transition temperature and the composite elastic coefficient of the bonded layer can be easily adjusted within a preferable range, and the impact resistance can be improved. Therefore, in such a case, when the second joint layer is further arranged, the ratio of the storage elastic modulus to the thickness of the second joint layer is in the above range so that the impact resistance is not impaired. It is preferably inside.
  • the thickness of the second bonding layer is not particularly limited as long as it satisfies the ratio of the storage elastic modulus to the thickness of the second bonding layer, but is preferably 5 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more. It is more preferably 50 ⁇ m or less, and further preferably 15 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the second bonding layer is equal to or greater than a predetermined value, the adhesiveness is good. Above all, when the thickness of the second bonding layer is 15 ⁇ m or more, the adhesiveness is good, so that the bending resistance, particularly the dynamic bending property can be improved.
  • the second bonding layer is usually softer than the glass substrate and the substrate layer and the hard coat layer of the hard coat film, it is easily deformed by impact and the thickness of the second bonding layer is high. The thicker it is, the greater the degree of deformation due to impact tends to be. Therefore, when the thickness of the second bonding layer is not more than a predetermined value, it is possible to suppress the decrease in impact resistance due to the second bonding layer. Above all, when the thickness of the second bonding layer is 50 ⁇ m or less, good impact resistance can be obtained.
  • the storage elastic modulus of the second bonding layer at 20 ° C. is not particularly limited as long as it satisfies the ratio of the storage elastic modulus to the thickness of the second bonding layer, but is, for example, 0.10 MPa or more and 10 MPa or less. It is more preferable, it is more preferably 0.10 MPa or more and 5 MPa or less, and further preferably 0.10 MPa or more and 3 MPa or less.
  • the storage elastic modulus of the second joint layer is at least a predetermined value and has a certain degree of hardness, good impact resistance can be maintained. Further, when the storage elastic modulus of the second joint layer is not more than a predetermined value, the bending resistance, particularly the dynamic bending property can be improved.
  • the storage elastic modulus E'at 20 ° C. of the second joint layer is a value measured by a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • the solution is prepared by melting, the solution is applied onto the substrate, dried, and then the film is peeled off from the substrate to obtain a test piece of the second bonding layer.
  • the solvent is appropriately selected depending on the material of the second bonding layer, and examples thereof include ethyl acetate.
  • a Naflon (registered trademark) sheet 300 mm ⁇ 300 mm ⁇ 1 mm thickness
  • Nichias Corporation a Naflon (registered trademark) sheet (300 mm ⁇ 300 mm ⁇ 1 mm thickness) manufactured by Nichias Corporation can be used.
  • a columnar shape having a diameter of 5 mm and a height of about 5 mm is formed.
  • the above-mentioned columnar measurement sample is attached between the compression jigs (parallel plate ⁇ 8 mm) of the dynamic viscoelasticity measuring device.
  • a compressive load is applied, a longitudinal vibration with a frequency of 1 Hz is applied, a dynamic viscoelastic modulus is measured in the range of -50 ° C or higher and 200 ° C or lower, and the storage elastic modulus E of the second bonding layer at each temperature is E. 'Measure.
  • the dynamic viscoelasticity measuring device for example, RSAIII manufactured by TA Instruments can be used. The specific measurement conditions in the above method are shown below.
  • Measurement conditions for storage elastic modulus E' ⁇ Measurement sample: ⁇ 5 mm ⁇ height 5 mm columnar ⁇ Measurement jig: compression (parallel plate) -Measurement mode: Temperature dependence (Temperature range: -50 ° C to 200 ° C, temperature rise rate: 5 ° C / min) ⁇ Frequency: 1Hz
  • the storage elastic modulus of the second joint layer can be adjusted, for example, by the type and composition of the material contained in the second joint layer.
  • an optically transparent pressure-sensitive adhesive is used for the second bonding layer
  • a known method for adjusting the elastic modulus can be used as a method for adjusting the storage elastic modulus of the pressure-sensitive adhesive, for example, the cross-linking density.
  • the elastic modulus can be adjusted by the type of the functional group-containing monomer and the like. For example, as the crosslink density increases, the storage elastic modulus tends to increase.
  • the glass transition temperature of the second bonding layer is, for example, preferably ⁇ 50 ° C. or higher and 30 ° C. or lower, more preferably ⁇ 50 ° C. or higher and 25 ° C. or lower, and ⁇ 50 ° C. or higher and 0 ° C. or lower. More preferably, it is more preferably ⁇ 45 ° C. or higher and ⁇ 5 ° C. or lower, and more preferably ⁇ 40 ° C. or higher and ⁇ 5 ° C. or lower.
  • the glass transition temperature of the second bonding layer is in the above range, it becomes easy to obtain a second bonding layer satisfying the above-mentioned storage elastic modulus. Further, when the glass transition temperature of the second bonding layer is ⁇ 40 ° C. or higher, the low temperature flexibility can be improved. Further, when the glass transition temperature of the second bonding layer is 25 ° C. or lower, the room temperature flexibility can be improved.
  • the method for measuring the glass transition temperature of the second bonding layer can be the same as the method for measuring the glass transition temperature of the bonding layer.
  • the thickness ( ⁇ m) of the second bonding layer is T 1
  • the storage elastic modulus (MPa) of the second bonding layer at 20 ° C. is E'1
  • the thickness of the glass substrate ( ⁇ m) is T 2 .
  • the left side of the above formula (4) is preferably 0.1 or more and 30 or less.
  • the second bonding layer has transparency.
  • the total light transmittance of the second bonding layer is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
  • the haze of the second bonding layer is preferably, for example, 2% or less, more preferably 1.5% or less, and further preferably 1% or less.
  • the material used for the second bonding layer is preferably a material that satisfies the ratio of the storage elastic modulus to the thickness of the second bonding layer described above, and for example, an optical transparent pressure-sensitive adhesive (OCA) is used. Can be mentioned.
  • OCA optical transparent pressure-sensitive adhesive
  • optical transparent adhesive examples include acrylic adhesives, urethane adhesives, silicone adhesives, epoxy adhesives, vinyl acetate adhesives and the like. Among them, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of bending resistance, adhesion, and transparency. Further, as the optical transparent adhesive, a commercially available product can also be used.
  • a method of arranging the second bonding layer for example, a method of applying an adhesive on a glass substrate or a film-shaped second bonding layer is used, and the second bonding layer is bonded onto the glass substrate.
  • the method can be mentioned.
  • the glass base material 2 side is on the side opposite to the joint layer 3 of the glass base material 2. Therefore, the third bonding layer 8 and the second base material layer 9 may be arranged.
  • the bonding layer arranged between the glass substrate and the substrate layer is simply referred to as a "bonding layer”, and the glass substrate and the second substrate layer are referred to.
  • the bonding layer arranged between them is referred to as a "third bonding layer”. Further, the third bonding layer is not included in the second bonding layer.
  • the inventors of the present disclosure have diligently studied the cracking and breaking of the glass substrate due to the impact, and when the surface of the glass substrate is momentarily and locally impacted, the glass substrate is momentarily and locally subjected to the impact. It was newly found that the back surface of the glass substrate was deformed to cause momentary and local tensile stress, and the back surface of the glass substrate could not withstand the above tensile stress and cracked or broken.
  • the second base material layer is arranged on the surface (back surface) opposite to the bonding layer of the glass substrate via the third bonding layer, the surface of the laminate on the hardcourt film side. It is possible to suppress the momentary and local deformation of the glass base material due to the impact from the glass base material, and it is possible to suppress the momentary and local generation of tensile stress on the back surface of the glass base material. Therefore, it is possible to improve the impact resistance.
  • the second base material layer in the present embodiment is arranged on the surface side opposite to the joint layer of the glass base material via the third joint layer, and is a glass base material due to impact. It is a layer for suppressing the momentary and local deformation of.
  • the laminate in the present embodiment is arranged, for example, on the observer side of the display panel of the display device, the laminate is arranged so that the surface on the second base material layer side faces the display panel.
  • the laminate in the present embodiment is arranged on the surface of the resin molded product, for example, the laminate is arranged so that the surface on the second base material layer side faces the resin molded product.
  • the composite elastic modulus of the second base material layer is, for example, preferably 7.0 GPa or more, more preferably 7.3 GPa or more, and further preferably 7.5 GPa or more. ..
  • the composite elastic modulus of the second base material layer is within the above range, it is possible to suppress momentary and local deformation of the glass base material due to impact, and to suppress cracking of the glass base material due to impact. Impact resistance can be improved.
  • the composite elastic modulus of the second base material layer may be, for example, 100 GPa or less, 90 GPa or less, or 80 GPa or less.
  • the composite elastic modulus of the second base material layer is, for example, preferably 7.0 GPa or more and 100 GPa or less, more preferably 7.3 GPa or more and 90 GPa or less, and further preferably 7.5 GPa or more and 80 GPa or less. preferable.
  • the method for measuring the composite elastic modulus of the second base material layer can be the same as the method for measuring the composite elastic modulus of the bonded layer described above.
  • the composite elastic modulus of the second base material layer can be adjusted, for example, depending on the type and composition of the material contained in the second base material layer.
  • the second base material layer has transparency.
  • the total light transmittance of the second base material layer is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
  • the haze of the second base material layer is preferably, for example, 2% or less, more preferably 1.5% or less, and further preferably 1% or less.
  • the thickness of the second base material layer is not particularly limited as long as it can suppress momentary and local deformation of the glass base material due to impact, and is, for example, 25 ⁇ m or more. Is more preferable, and it is more preferably 27 ⁇ m or more, and further preferably 29 ⁇ m or more. The thicker the second base material layer, the better the impact resistance. On the other hand, the thickness of the second base material layer is preferably not more than or equal to the thickness of the glass base material, for example, preferably 100 ⁇ m or less, more preferably 90 ⁇ m or less, and 80 ⁇ m or less. Is even more preferable. If the thickness of the second base material layer is too thick, the bending resistance may decrease.
  • the thickness of the second base material layer is, for example, preferably 25 ⁇ m or more and 100 ⁇ m or less, more preferably 27 ⁇ m or more and 90 ⁇ m or less, and further preferably 29 ⁇ m or more and 80 ⁇ m or less.
  • the second base material layer is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus, and examples thereof include a glass layer and a resin layer containing a polyimide resin or an aramid resin. Above all, the second base material layer is preferably a glass layer. Since the glass layer usually has a higher composite elastic modulus than the resin layer, the impact resistance can be improved.
  • the glass constituting the glass layer can be the same as the glass constituting the above-mentioned glass base material.
  • the resin contained in the resin layer examples include a polyimide resin and an aramid resin.
  • the polyimide-based resin is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus, and examples thereof include polyimide and polyamide-imide.
  • examples thereof include polyimide and polyamide-imide.
  • the polyimide and the polyamide-imide when the above-mentioned base material layer is a resin base material, the same can be applied to the polyimide and the polyamide-imide contained in the resin base material.
  • the aramid resin is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus.
  • the resin layer can further contain additives, if necessary.
  • Additives include, for example, UV absorbers, light stabilizers, antioxidants, inorganic particles, silica fillers for smooth winding, surfactants to improve film formation and defoaming properties, and adhesion improvement. Agents and the like can be mentioned.
  • a method of arranging the second base material layer for example, a method of laminating the second base material layer on the surface side opposite to the joint layer of the glass base material via the third joint layer can be mentioned.
  • the third bonding layer in the present embodiment is arranged between the glass base material and the second base material layer, and joins the glass base material and the second base material layer. It is a layer for.
  • the thickness of the third bonding layer is preferably thinner than the thickness of the glass substrate, for example, preferably less than 100 ⁇ m, more preferably 50 ⁇ m or less, and further preferably 25 ⁇ m or less. If the thickness of the third joint layer is too thick, the bending resistance may be impaired. Further, since the third bonding layer is usually softer than the glass substrate and the second substrate layer, it is easily deformed by impact, and the thicker the thickness of the third bonding layer, the more the degree of deformation due to impact. Tends to increase. Therefore, if the thickness of the third bonding layer is too thick, the degree of deformation of the third bonding layer becomes large when an impact is applied to the laminated body, so that the glass substrate is instantaneously and locally formed.
  • the thickness of the third bonding layer is, for example, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more. If the thickness of the third bonding layer is too thin, the adhesiveness may be weakened and the third bonding layer may be peeled off.
  • the thickness of the third bonding layer is, for example, preferably 0.5 ⁇ m or more and less than 100 ⁇ m, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and further preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the composite elastic modulus of the third bonding layer is, for example, preferably 1.0 MPa or more, more preferably 2.0 MPa or more, and even more preferably 3.0 MPa or more.
  • the composite elastic modulus of the third joint layer is in the above range, and the impact resistance can be enhanced by having a certain degree of hardness. Further, as described above, since the third bonding layer is usually softer than the glass substrate and the second substrate layer, it is easily deformed by an impact, and the smaller the composite elastic modulus of the third bonding layer is, the more easily it is deformed. , The degree of deformation due to impact tends to increase.
  • the composite elastic modulus of the third joint layer is, for example, preferably 1.9 GPa or less, more preferably 1.8 GPa or less, and further preferably 1.5 GPa or less.
  • the composite elastic modulus of the third bonding layer is within the above range, it is softer than the glass substrate and the second substrate layer, so that it can absorb impact and enhance impact resistance.
  • the composite elastic modulus of the third joint layer is, for example, preferably 1.0 MPa or more and 1.9 GPa or less, more preferably 2.0 MPa or more and 1.8 GPa or less, and 3.0 MPa or more and 1.5 GPa or less. Is more preferable.
  • the method for measuring the composite elastic modulus of the third joint layer can be the same as the method for measuring the composite elastic modulus of the joint layer described above.
  • the composite elastic modulus of the third joint layer can be adjusted, for example, by the type of material contained in the joint layer.
  • an optically transparent pressure-sensitive adhesive is used for the third bonding layer
  • a known method for adjusting the elastic modulus can be used as a method for adjusting the composite elastic modulus of the pressure-sensitive adhesive, for example, the crosslink density.
  • the elastic modulus can be adjusted by the type of the functional group-containing monomer and the like. For example, as the crosslink density increases, the composite elastic modulus tends to increase.
  • the third bonding layer has transparency.
  • the total light transmittance of the third bonding layer is preferably 80% or more, more preferably 85% or more, and further preferably 88% or more.
  • the haze of the third bonding layer is preferably, for example, 2% or less, more preferably 1.5% or less, and further preferably 1% or less.
  • the material used for the third bonding layer is not particularly limited as long as it can bond the glass substrate and the second substrate layer, but is a material satisfying the above-mentioned composite elastic modulus and transparency. It is preferable, for example, an optical transparent adhesive (OCA; Optical Clear Adaptive), a curable adhesive and the like can be mentioned.
  • OCA optical transparent adhesive
  • curable adhesive a curable adhesive and the like
  • optical transparent adhesive examples include acrylic adhesives, urethane adhesives, silicone adhesives, epoxy adhesives, vinyl acetate adhesives and the like.
  • acrylic pressure-sensitive adhesive is preferable from the viewpoint of bending resistance, adhesion, and transparency.
  • the optical transparent pressure-sensitive adhesive preferably satisfies the above-mentioned composite elastic modulus.
  • an optical transparent adhesive a commercially available product can be used. Specific examples thereof include “8146-2” manufactured by 3M Corporation, “MO-3018C”, “F619” and “N632” manufactured by Lintec Corporation.
  • the curable adhesive can be the same as the curable adhesive used for the above-mentioned bonding layer.
  • the protective film may be arranged on the surface side opposite to the bonding layer of the hard coat film.
  • the protective film can protect the laminated body and enhance the impact resistance.
  • the ratio (A + B) / C of the thickness A of the hard coat layer, the thickness B of the base material layer, and the thickness C of the bonding layer is set to a predetermined value or more.
  • the surface hardness of the surface of the laminated body on the hard coat film side can be increased, and the scratch resistance can be improved.
  • scratches or dents may occur on the protective film itself, but the hard coat film has high surface hardness, so that it has good scratch resistance.
  • the hard coat film may be scratched or dented even when the protective film is arranged. ..
  • the laminated body in the present embodiment preferably has transparency when used in a display device.
  • the total light transmittance of the laminated body in this embodiment is preferably, for example, 80% or more, more preferably 85% or more, and further preferably 88% or more. Due to the high total light transmittance as described above, a laminated body having good transparency can be obtained.
  • the total light transmittance of the laminated body can be measured according to JIS K7361-1, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the haze of the laminated body in this embodiment is, for example, preferably 2% or less, more preferably 1.5% or less, still more preferably 1% or less. Due to the low haze as described above, a laminated body having good transparency can be obtained.
  • the haze of the laminated body can be measured according to JIS K-7136, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the laminate in this embodiment preferably has bending resistance. Specifically, in the laminated body of the present embodiment, it is preferable that the laminated body does not crack, break, or peel off when the dynamic bending test described below is performed on the laminated body.
  • the laminate may be folded so that the glass substrate is on the outside, or the laminate may be folded so that the glass substrate is on the inside. In either case, the laminate may be folded. It is preferable that the body does not crack, break or peel off.
  • the dynamic bending test is performed as follows. As shown in FIG. 5A, in the dynamic bending test, first, the short side portion 1C of the laminated body 1 having a size of 20 mm ⁇ 100 mm and the short side portion 1D facing the short side portion 1C are parallel to each other. Each is fixed by the fixing portion 21 arranged in. Further, as shown in FIG. 5A, the fixed portion 21 is slidable in the horizontal direction. Next, as shown in FIG. 5 (b), the fixing portions 21 are moved so as to be close to each other to deform the laminated body 1 so as to be folded, and further, as shown in FIG. 5 (c), the laminated body 1 is deformed.
  • the fixed portion 21 After moving the fixed portion 21 to a position where the distance d between the two opposing short side portions 1C and 1D fixed by the fixed portion 21 of the body 1 becomes a predetermined value, the fixed portion 21 is moved in the opposite direction. The deformation of the laminated body 1 is eliminated.
  • the laminated body 1 By moving the fixing portion 21 as shown in FIGS. 5A to 5C, the laminated body 1 can be folded by 180 °. Further, by performing a dynamic bending test so that the bent portion 1E of the laminated body 1 does not protrude from the lower end of the fixed portion 21, and controlling the interval d when the fixed portions 21 are closest to each other, the laminated body 1
  • the distance d between the two short side portions 1C and 1D facing each other can be set to a predetermined value. For example, when the distance d between the two short side portions 1C and 1D facing each other is 10 mm, the outer diameter of the bent portion 1E is regarded as 10 mm.
  • cracking, breaking, or peeling does not occur when the test of folding 180 ° so that the distance d between the opposing short side portions 1C and 1D of the laminated body 1 is 10 mm is repeated 200,000 times. Is preferable, and above all, cracking, breaking, or peeling does not occur when the test of folding 180 ° so that the distance d between the opposing short side portions 1C and 1D of the laminated body 1 is 8 mm is repeated 200,000 times. Is more preferable.
  • cracks means a phenomenon in which cracks occur in the laminated body.
  • breaking means a phenomenon in which the laminated body is completely split in two.
  • peeling refers to a phenomenon in which any of the layers constituting the laminated body is peeled off or floats.
  • the opening angle ⁇ after the static bending test of the laminated body is 100 ° or more. It is preferably 130 ° or more, and more preferably 130 ° or more.
  • the static bending test is performed as follows. First, as shown in FIG. 6A, the short side portion 1C of the laminated body 1 having a size of 20 mm ⁇ 100 mm and the short side portion 1D facing the short side portion 1C are formed into short sides. Each is fixed by a fixing portion 22 arranged in parallel so that the distance d between the portion 1C and the short side portion 1D is 10 mm. Then, a static bending test is performed in which the laminated body 1 is allowed to stand at 23 ° C. for 240 hours in a folded state. Then, as shown in FIG. 6B, by removing the fixed portion 22 from the short side portion 1D after the static bending test, the folded state is released, and the laminated body 1 naturally opens after 30 minutes at room temperature. The opening angle ⁇ , which is an angle, is measured. The larger the opening angle ⁇ , the better the stability, and the maximum is 180 °.
  • the laminate may be folded so that the glass substrate is on the inside, or the laminate may be folded so that the glass substrate is on the outside.
  • the angle ⁇ is preferably 100 ° or more, and more preferably 130 ° or more.
  • the piercing breaking force is preferably 16 N or more, more preferably 19 N or more, for example. It is more preferably 25 N or more.
  • the impact resistance is good.
  • the piercing test is performed as follows. First, a PET having a thickness of 100 ⁇ m is interposed on the surface of the laminate on the glass substrate side via an optical transparent adhesive film (OCA) having a thickness of 50 ⁇ m (“8146-2” manufactured by 3M, composite elastic modulus of 9.6 MPa). A film (“A4160 (current product number)” (“A4100 (old product number)” manufactured by Toyobo Co., Ltd.), composite elastic modulus 6.9 GPa) is bonded to prepare a test laminate.
  • OCA optical transparent adhesive film
  • a Tensilon universal material tester (RTC-1310A) manufactured by A & D was used to obtain the test laminate under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 50 mm / min.
  • a piercing test is performed from the surface on the hard coat film side toward the surface on the PET film side.
  • the stroke and load on the surface of the test laminate are set to zero for measurement.
  • the maximum stress at the time when the glass substrate is broken is pierced and used as the breaking force.
  • the use of the laminated body in this embodiment is not particularly limited, and can be used, for example, as a member arranged on the observer side of the display panel in a display device.
  • the laminate in this embodiment can be used for display devices such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays.
  • the laminated body in this embodiment has good bending resistance and impact resistance, it can be suitably used as a member that can handle curved surfaces.
  • the laminate in the present disclosure can be preferably used for flexible displays such as foldable displays, rollable displays, bendable displays, and slidable displays, and can be preferably used for foldable displays.
  • the laminated body in the present embodiment can be used, for example, as a surface material of a resin molded product having a curved surface, and can give design and aesthetics.
  • the laminate in this embodiment is arranged on the surface of a display device, a resin molded product, or the like, the laminate is arranged so that the surface on the glass substrate side is on the inside and the surface on the hard coat film side is on the outside.
  • the method of arranging the laminate in the present embodiment on the surface of a display device, a resin molded product, or the like is not particularly limited, and examples thereof include a method via an adhesive layer.
  • the adhesive layer a known adhesive layer used for adhering the laminated body can be used.
  • Second Embodiment The inventors of the present disclosure have diligently studied a laminate having a glass substrate, arranged a resin layer on the surface of a thin glass substrate, and further increased the thickness of the resin layer. It has been found that the cracking of the glass substrate can be suppressed and the impact resistance can be improved. However, when the resin composition is applied to the surface of the glass substrate to form a relatively thick resin layer, the influence of the shrinkage difference between the glass substrate and the resin layer during heating or curing after the application of the resin composition has an effect. It turned out that it became large and curled in some cases.
  • the inventors of the present disclosure further studied, and by forming the resin layer into a film in advance and adhering the resin film to the surface of the thin glass substrate via the bonding layer, curling is suppressed and further resistance is achieved. It was found that the impact resistance can be increased.
  • the second bonding layer can be arranged on the surface side opposite to the bonding layer of the glass base material in the laminated body.
  • the inventors of the present disclosure further examined a laminate having a second bonding layer, a glass substrate, a bonding layer, and a resin film in this order. Then, it has been found that in such a laminated body, the impact resistance may be lowered depending on the type of the second bonding layer.
  • the present embodiment has been made in view of the above circumstances, and an object thereof is to provide a laminated body capable of achieving both bending resistance and impact resistance.
  • the second embodiment of the laminate in the present disclosure is a laminate having a hard coat layer, a base material layer, a bonding layer, a glass substrate, and a second bonding layer in this order, and the bonding is described above.
  • the layer is a layer for joining the glass base material and the base material layer
  • the second joining layer is a layer for joining the laminated body and other members, and the thickness of the glass base material. Is 10 ⁇ m or more and 100 ⁇ m or less, and satisfies the following formula (1).
  • E 1 is the composite elastic modulus (GPa) of the hard coat layer
  • D 1 is the thickness (mm) of the hard coat layer
  • E 2 is the composite elastic modulus (GPa) of the base material layer.
  • D 2 is the thickness of the base material layer (mm)
  • E 3 is the composite elastic modulus of the joint layer (GPa)
  • D 3 is the thickness of the joint layer (mm)
  • E 4 is the glass base material.
  • Composite elastic modulus (GPa) is the thickness of the glass substrate (mm)
  • E 5 is the storage elastic modulus (GPa) of the second bonding layer
  • D 5 is the thickness of the second bonding layer.
  • FIG. 7 is a schematic cross-sectional view showing an example of the laminated body in this embodiment.
  • the laminated body 1 has a hard coat layer 6, a base material layer 5, a bonding layer 3, a glass base material 2, and a second bonding layer 10 in this order.
  • the glass substrate 2 has a predetermined thickness.
  • the composite elastic modulus E 1 and the thickness D 1 of the hard coat layer 6, the composite elastic modulus E 2 and the thickness D 2 of the base material layer 5, and the composite elastic modulus E 3 and the thickness D 3 of the bonding layer 3 The composite elastic modulus E 4 and the thickness D 4 of the glass substrate 2 and the storage elastic modulus E 5 and the thickness D 5 of the second bonding layer 10 satisfy the above formula (1).
  • the glass base material has a thickness of a predetermined value or less and is thin, so that bending resistance can be improved.
  • the glass base material has a thickness of a predetermined value or less and is thin, there is a concern that it is easily broken and has low impact resistance.
  • the hard coat layer, the base material layer, the bonding layer, the glass substrate, and the second bonding layer are arranged in this order, and the elastic modulus and thickness of each layer are arranged in this order.
  • the impact resistance can be improved while maintaining good bending resistance. The reason for this is inferred as follows.
  • Hertz fracture is also called concentrated stress fracture. Bending fracture occurs on the surface opposite the impact surface of the glass. Hertz fracture, on the other hand, occurs on the impact surface of the glass.
  • the inventors of the present disclosure describe the impact resistance and bending resistance of a laminate having a hard coat layer, a base material layer, a bonding layer, a glass base material, and a second bonding layer in this order. Diligently examined. Since the second bonding layer is usually softer than the glass substrate, the substrate layer and the hard coat layer, it is easily deformed by an impact. Therefore, if the degree of deformation of the second bonding layer is large when an impact is applied to the laminated body, it is considered that momentary and local deformation is likely to occur in the glass substrate. In this case, there is a concern that bending fracture is likely to occur in the glass substrate.
  • the thickness of the second bonding layer is relatively thin, it is considered that bending fracture of the glass substrate can be suppressed. Further, it is considered that bending fracture of the glass substrate can be suppressed even when the hardness of the second bonding layer is relatively hard. However, even if the bending fracture of the glass substrate can be suppressed by making the thickness of the second joint layer relatively thin or making the hardness of the second joint layer relatively hard, Hertz fracture of the glass substrate cannot be suppressed. In order to suppress Hertz fracture of the glass substrate, the thickness of the hard coat layer, the substrate layer, and the bonding layer should be relatively thick, or the hardness of the hard coat layer, the substrate layer, and the bonding layer should be increased. It is preferable to make it relatively hard.
  • the impact fracture of the glass substrate is most affected by the thickness of the glass substrate among the thicknesses of each layer.
  • the glass Even if the Hertz fracture of the base material can be suppressed, the bending resistance may decrease. Further, even if the impact fracture of the glass substrate can be suppressed by increasing the thickness of the glass substrate, the bending resistance may decrease. Based on the influence of the thickness and hardness of each layer on such impact resistance and bending resistance, and the experimental results as described in Examples and Comparative Examples described later, the thickness and elastic modulus of each layer are determined.
  • the above equation (1) which shows the correlation with impact resistance and bending resistance, was derived.
  • the thickness of the second joint layer becomes relatively thick, or the storage elastic modulus of the second joint layer becomes relatively low. Therefore, bending fracture is likely to occur in the glass base material, and the impact resistance may be lowered. Further, if the value of the middle side of the above formula (1) is too large, the thickness of the glass base material, the hard coat layer, the base material layer, and the bonding layer becomes relatively thick, or the hard coat layer and the base material layer become relatively thick. , And the composite elastic modulus of the bonding layer becomes relatively high. Therefore, the bending resistance may decrease. Therefore, in the present embodiment, by satisfying the elastic modulus and the thickness of each layer in the above formula (1), it is possible to improve the impact resistance while maintaining good bending resistance.
  • the laminate in this embodiment can be bent and can be used for a wide variety of applications.
  • the laminate in this embodiment can be used, for example, in a wide variety of display devices, and specifically, can be used as a member for a foldable display.
  • the laminated body in this embodiment satisfies the following formula (1). 0.001 ⁇ ⁇ (E 1 x D 1 2 + E 2 x D 2 2 + E 3 x D 3 2 ) x E 4 x D 4 2 x E 5 x 1000 ⁇ / D 5 ⁇ 3.0 (1)
  • E 1 is the composite elastic modulus (GPa) of the hard coat layer
  • D 1 is the thickness (mm) of the hard coat layer
  • E 2 is the composite elastic modulus (GPa) of the base material layer.
  • D 2 is the thickness of the base material layer (mm)
  • E 3 is the composite elastic modulus of the joint layer (GPa)
  • D 3 is the thickness of the joint layer (mm)
  • E 4 is the glass base material.
  • Composite elastic modulus (GPa) D 4 is the thickness of the glass substrate (mm)
  • E 5 is the storage elastic modulus (GPa) of the second bonding layer
  • D 5 is the thickness of the second bonding layer.
  • the value of the middle side of the above formula (1) is 0.001 or more and 3 or less, preferably 0.0015 or more and 1.5 or less, more preferably 0.003 or more and 1 or less, and 0. It is more preferably 005 or more and 0.7 or less, and particularly preferably 0.01 or more and 0.4 or less. As described above, if the value of the middle side of the above formula (1) is too small, the thickness of the second joint layer becomes relatively thick, or the storage elastic modulus of the second joint layer becomes relatively thick. It gets lower. Therefore, bending fracture is likely to occur in the glass base material, and the impact resistance may be lowered.
  • the thickness of the glass base material, the hard coat layer, the base material layer, and the bonding layer becomes relatively thick, or the hard coat layer and the base material layer become relatively thick.
  • the composite elastic modulus of the bonding layer becomes relatively high. Therefore, the bending resistance may decrease.
  • the thickness of the second bonding layer relatively thin and the hardness of the second bonding layer relatively hard by making the thickness of the second bonding layer relatively thin and the hardness of the second bonding layer relatively hard, bending fracture of the glass substrate is suppressed. Even if it can be done, the Hertz fracture of the glass substrate cannot be suppressed. Therefore, when the value on the middle side of the above formula (1) becomes a predetermined value or more, the effect of suppressing bending fracture of the glass substrate is saturated. Therefore, the value on the middle side of the above formula (1) is preferably 0.4 or less.
  • the thickness of the hard coat layer, the thickness of the base material layer, the thickness of the joint layer, the thickness of the glass base material, and the thickness of the second joint layer are the same as the thickness of each layer in the laminate of the first embodiment. The same is true.
  • the composite elastic modulus of the hard coat layer is, for example, preferably 4 GPa or more and 10 GPa or less, more preferably 5 GPa or more and 9 GPa or less, and further preferably 6 GPa or more and 8 GPa or less. If the composite modulus of the hardcourt layer is too small, sufficient scratch resistance may not be obtained. Further, if the composite elastic modulus of the hard coat layer is too large, the hardness becomes too high and it becomes difficult to bend, which may reduce the bending resistance, particularly the dynamic bending property.
  • the method for measuring the composite elastic modulus of the hard coat layer is the same as the method for measuring the composite elastic modulus of the bonded layer in the first embodiment.
  • the composite elastic modulus of the hard coat layer can be adjusted, for example, by the type and composition of the material contained in the hard coat layer.
  • the composite elastic modulus of the base material layer is the same as the composite elastic modulus of the base material layer in the first embodiment.
  • the composite elastic modulus of the joint layer is the same as the composite elastic modulus of the joint layer in the first embodiment.
  • the composite elastic modulus of the glass substrate is, for example, preferably 40 GPa or more and 100 GPa or less, more preferably 50 GPa or more and 90 GPa or less, and further preferably 60 GPa or more and 80 GPa or less.
  • the storage elastic modulus of the second joint layer is the storage elastic modulus at 20 ° C.
  • the storage elastic modulus of the second bonding layer is the same as the storage elastic modulus of the second bonding layer in the first embodiment.
  • the hard coat layer, the base material layer, the bonding layer, the glass substrate, and the second bonding layer in the present embodiment are the same as the respective layers in the first embodiment.
  • the laminate of the present embodiment has a surface side opposite to the base material layer of the hard coat layer, between the hard coat layer and the base material layer, between the base material layer and the bonding layer, and between the glass base material and the bonding layer.
  • Further functional layers can be provided between the spaces or between the glass substrate and the second bonding layer.
  • the functional layer is the same as the functional layer in the first embodiment.
  • the protective film may be arranged on the surface side of the hard coat layer opposite to the base material layer.
  • the protective film is the same as the protective film in the first embodiment.
  • the characteristics and uses of the laminate of this embodiment are the same as the characteristics and uses of the laminate of the first embodiment.
  • a third embodiment of the laminate in the present disclosure is a laminate having a base material layer, a bonding layer, a glass substrate, and a second bonding layer in this order, and the bonding layer is the glass.
  • the layer for joining the base material and the base material layer, the second joining layer is a layer for joining the laminate and other members, and the thickness of the glass base material is 10 ⁇ m or more and 100 ⁇ m or less. And satisfies the following equation (2).
  • E 2 is the composite elastic modulus (GPa) of the base material layer
  • D 2 is the thickness (mm) of the base material layer
  • E 3 is the composite elastic modulus (GPa) of the joint layer.
  • D 3 is the thickness of the bonding layer (mm)
  • E 4 is the composite elastic modulus of the glass substrate (GPa)
  • D 4 is the thickness of the glass substrate (mm)
  • E 5 is the second The storage elastic modulus (GPa) of the bonded layer, D5, indicates the thickness ( mm) of the second bonded layer.
  • FIG. 8 is a schematic cross-sectional view showing an example of the laminated body in this embodiment.
  • the laminated body 1 has a base material layer 5, a bonding layer 3, a glass base material 2, and a second bonding layer 10 in this order.
  • the glass substrate 2 has a predetermined thickness.
  • the storage elastic modulus E 5 and the thickness D 5 of the second bonding layer 10 satisfy the above formula (2).
  • the glass base material has a thickness of a predetermined value or less and is thin, so that bending resistance can be improved.
  • the glass base material has a thickness of a predetermined value or less and is thin, there is a concern that it is easily broken and has low impact resistance.
  • the base material layer, the bonding layer, the glass base material, and the second bonding layer are arranged in this order, and the elastic modulus and thickness of each layer are determined by the above formula (2). ), It is possible to improve the impact resistance while maintaining good bending resistance. The reason for this is inferred as follows.
  • the inventors of the present disclosure have diligently studied the impact resistance and bending resistance of a laminate having a base material layer, a bonding layer, a glass substrate, and a second bonding layer in this order. .. Since the second bonding layer is usually softer than the glass substrate and the substrate layer, it is easily deformed by impact. Therefore, if the degree of deformation of the second bonding layer is large when an impact is applied to the laminated body, it is considered that momentary and local deformation is likely to occur in the glass substrate. In this case, there is a concern that bending fracture is likely to occur in the glass substrate. On the other hand, when the thickness of the second bonding layer is relatively thin, it is considered that bending fracture of the glass substrate can be suppressed.
  • bending fracture of the glass substrate can be suppressed even when the hardness of the second bonding layer is relatively hard.
  • the bending fracture of the glass substrate can be suppressed by making the thickness of the second joint layer relatively thin or making the hardness of the second joint layer relatively hard, Hertz fracture of the glass substrate cannot be suppressed.
  • the impact fracture of the glass substrate is most affected by the thickness of the glass substrate among the thicknesses of each layer.
  • the Hertz fracture of the glass substrate could be suppressed by making the thickness of the base material layer and the bonding layer relatively thick and the hardness of the base material layer and the bonding layer relatively hard.
  • the bending resistance may decrease.
  • the thickness and elastic modulus of each layer are determined. The above equation (2), which shows the correlation with impact resistance and bending resistance, was derived.
  • the thickness of the second joint layer becomes relatively thick, or the storage elastic modulus of the second joint layer becomes relatively low. Therefore, bending fracture is likely to occur in the glass base material, and the impact resistance may be lowered. Further, if the value on the middle side of the above formula (2) is too large, the thickness of the glass base material, the base material layer, and the bonding layer becomes relatively thick, or the composite elastic modulus of the base material layer and the bonding layer becomes relatively large. It can be relatively high. Therefore, the bending resistance may decrease. Therefore, in the present embodiment, by satisfying the elastic modulus and the thickness of each layer in the above formula (2), it is possible to improve the impact resistance while maintaining good bending resistance.
  • the laminate in this embodiment can be bent and can be used for a wide variety of applications.
  • the laminate in this embodiment can be used, for example, in a wide variety of display devices, and specifically, can be used as a member for a foldable display.
  • the laminated body in this embodiment satisfies the following formula (2). 0.001 ⁇ ⁇ (E 2 x D 2 2 + E 3 x D 3 2 ) x E 4 x D 4 2 x E 5 x 1000 ⁇ / D 5 ⁇ 3.0 (2)
  • E 2 is the composite elastic modulus (GPa) of the base material layer
  • D 2 is the thickness (mm) of the base material layer
  • E 3 is the composite elastic modulus (GPa) of the joint layer.
  • D 3 is the thickness of the bonding layer (mm)
  • E 4 is the composite elastic modulus of the glass substrate (GPa)
  • D 4 is the thickness of the glass substrate (mm)
  • E 5 is the second The storage elastic modulus (GPa) of the bonded layer, D5, indicates the thickness ( mm) of the second bonded layer.)
  • the value of the middle side of the above formula (2) is 0.001 or more and 3 or less, preferably 0.0015 or more and 1.5 or less, more preferably 0.003 or more and 1 or less, and 0. It is more preferably 005 or more and 0.7 or less, and particularly preferably 0.01 or more and 0.4 or less. As described above, if the value of the middle side of the above formula (2) is too small, the thickness of the second joint layer becomes relatively thick, or the storage elastic modulus of the second joint layer becomes relatively large. It gets lower. Therefore, bending fracture is likely to occur in the glass base material, and the impact resistance may be lowered.
  • the thickness of the glass base material, the base material layer, and the bonding layer becomes relatively thick, or the composite elastic modulus of the base material layer and the bonding layer is increased. Is relatively high. Therefore, the bending resistance may decrease.
  • the thickness of the second bonding layer relatively thin and the hardness of the second bonding layer relatively hard by making the thickness of the second bonding layer relatively thin and the hardness of the second bonding layer relatively hard, bending fracture of the glass substrate is suppressed. Even if it can be done, the Hertz fracture of the glass substrate cannot be suppressed. Therefore, when the value on the middle side of the above formula (2) becomes a predetermined value or more, the effect of suppressing bending fracture of the glass substrate is saturated. Therefore, the value on the middle side of the above equation (2) is preferably 0.4 or less.
  • the thickness of the base material layer, the thickness of the joint layer, the thickness of the glass base material, and the thickness of the second joint layer are the same as the thickness of each layer in the laminate of the first embodiment.
  • the composite elastic modulus of the base material layer is the same as the composite elastic modulus of the base material layer in the first embodiment.
  • the composite elastic modulus of the joint layer is the same as the composite elastic modulus of the joint layer in the first embodiment.
  • the composite elastic modulus of the glass base material is the same as the composite elastic modulus of the glass base material in the second embodiment.
  • the storage elastic modulus of the second joint layer is the storage elastic modulus at 20 ° C.
  • the storage elastic modulus of the second bonding layer is the same as the storage elastic modulus of the second bonding layer in the first embodiment.
  • the base material layer, the bonding layer, the glass substrate, and the second bonding layer in this embodiment are the same as the respective layers in the first embodiment.
  • the laminate of the present embodiment is the surface side of the base material layer opposite to the joint layer, between the base material layer and the joint layer, between the glass base material and the joint layer, or between the glass base material and the second joint. Further functional layers can be provided between the layers.
  • the functional layer is the same as the functional layer in the first embodiment.
  • the protective film may be arranged on the surface side opposite to the bonding layer of the base material layer.
  • the protective film is the same as the protective film in the first embodiment.
  • the characteristics and uses of the laminate of this embodiment are the same as the characteristics and uses of the laminate of the first embodiment.
  • the display device in the present disclosure includes a display panel and the above-mentioned laminated body arranged on the observer side of the above-mentioned display panel.
  • the surface on the glass substrate side is the above-mentioned display panel. It is arranged so as to face the. That is, the display device in the present disclosure includes a display panel and the above-mentioned laminated body arranged on the observer side of the above-mentioned display panel, and in the above-mentioned laminated body, the surface on the glass substrate side is the above-mentioned display panel. It is arranged so as to be adjacent to.
  • FIG. 9 is a schematic cross-sectional view showing an example of the display device in the present disclosure.
  • the display device 30 includes a display panel 31 and a laminated body 1 arranged on the observer side of the display panel 31.
  • the laminated body 1 is arranged so that the surface on the glass base material 2 side is adjacent to the display panel 31.
  • the laminated body 1 is used as a member arranged on the surface of the display device 30, and an adhesive layer 32 is arranged between the laminated body 1 and the display panel 31.
  • the laminated body in the present disclosure can be the same as the above-mentioned laminated body.
  • Examples of the display panel in the present disclosure include display panels used in display devices such as liquid crystal displays, organic EL display devices, and LED display devices.
  • the display device in the present disclosure can have a touch panel member between the display panel and the laminated body.
  • the display device in the present disclosure is preferably a flexible display.
  • the display device in the present disclosure is preferably foldable. That is, the display device in the present disclosure is more preferably a foldable display. Since the display device in the present disclosure has the above-mentioned laminated body, it is excellent in impact resistance and bending resistance, and is suitable as a flexible display and further as a foldable display.
  • Example 1 (1) Preparation of Hard Coat Film (1-1) Preparation of Base Material Layer With reference to Synthesis Example 1 of International Publication No. 2014/046180, a tetracarboxylic acid dianhydride represented by the following chemical formula was synthesized.
  • TMPBPTME tetracarboxylic acid dianhydride
  • TPC terephthalic acid dichloride
  • 6.66 g (84.2 mmol) of pyridine and 8.60 g (84.2 mmol) of acetic anhydride were added as catalysts, and the mixture was stirred at 25 ° C. for 30 minutes to confirm that the solution was uniform.
  • the mixture was heated to ° C. and stirred for 1 hour.
  • 174.26 g of 2-propyl alcohol (IPA) was gradually added to the solution cooled to room temperature to obtain a solution in which slight turbidity was observed.
  • IPA435.64 g was added to the turbid solution at once to obtain a white slurry.
  • the above slurry was filtered and washed with IPA 5 times, and then dried in an oven heated to 100 ° C. under reduced pressure for 6 hours to obtain a polyamide-imide powder (37.1 g).
  • the weight average molecular weight of polyamide-imide measured by GPC was 62000.
  • DMAc was added to the polyamide-imide so that the solid content concentration of the polyamide-imide was 19% by mass to prepare a polyamide-imide varnish having a polyamide-imide of 19% by mass in the varnish.
  • the viscosity of the polyamide-imide varnish (solid content concentration 19% by mass) at 25 ° C. was 4000 mPa ⁇ s.
  • Polyamide-imide varnish (solid content concentration 19% by mass) was applied onto a glass plate so that the film film thickness after drying in a circulation oven described later was the film thickness shown in Table 1. Then, after drying in a circulation oven at 120 ° C. for 10 minutes, the mixture was cooled to 25 ° C. and the polyimide resin coating film was peeled off.
  • the peeled polyimide resin coating film was cut out to a size of 150 mm ⁇ 200 mm.
  • Two metal frames (outer dimensions 150 mm ⁇ 200 mm, inner dimensions 130 mm ⁇ 180 mm) were used to sandwich the cut out polyimide-based resin coating film, and the metal frame and the polyimide-based resin coating film were fixed with a fixing jig.
  • the fixed polyimide resin coating film is heated to 300 ° C. at a heating rate of 10 ° C./min in a circulation oven under a nitrogen stream (oxygen concentration 100 ppm or less), held at 300 ° C. for 1 hour, and then to 25 ° C. It was cooled to prepare a single-layer polyimide resin film.
  • the composition for the hard coat layer was applied onto the base material layer so that the film thickness after curing was 10 ⁇ m, dried at 70 ° C. for 1 minute, and then irradiated at an irradiation rate of 200 mJ / cm 2 . It was cured by irradiating with ultraviolet rays to form a hard coat layer. As a result, a hard-coated film was obtained.
  • Laminate A bonding layer (acrylic adhesive sheet, OCA) with a thickness of 25 ⁇ m (“8146-1” manufactured by 3M) is applied to the surface of the hard coat film on the substrate layer side using a hand roller. By laminating, a hard coat film with a bonding layer was obtained. Next, the surface of the hard coat film with a bonding layer on the bonding layer side was bonded to a chemically strengthened glass substrate having a thickness of 70 ⁇ m using a hand roller to obtain a laminated body.
  • OCA acrylic adhesive sheet
  • Example 2 to 9 and Comparative Examples 2 to 4 If the thickness of the base material layer of the hard coat film is changed as shown in Table 1 below, and if the thickness of the bonding layer is 15 ⁇ m, 10 ⁇ m or 5 ⁇ m, Panac is used as the bonding layer (acrylic adhesive sheet, OCA). A laminated body was obtained in the same manner as in Example 1 except that "Panaclean PD-S1" manufactured by the same company was used.
  • Example 10 (1) Preparation of hard-coated film A hard-coated film was produced in the same manner as in Example 7.
  • a heat-sealable resin composition was prepared by blending each component so as to have the composition shown below.
  • the heat-sealable resin composition was applied to the surface of the hard coat film on the substrate layer side so that the film thickness after drying was 5 ⁇ m, dried at 70 ° C. for 1 minute, and heat-sensitively adhered. A layer was formed to obtain a hard coat film with a heat-sensitive adhesive layer.
  • the hard coat film with the heat-sensitive adhesive layer is arranged so that the surface on the heat-sensitive adhesive layer side is in contact with the chemically reinforced glass base material having a thickness of 70 ⁇ m, and the heat-sensitive adhesive layer of the glass base material is placed.
  • Hard coat with hard coat A glass support substrate with a thickness of 2 mm is placed on the opposite side of the film, and a roll laminator (manufactured by Aco Brands Japan, trade name: desktop roll laminator B35A3) is used to hard with a heat-sensitive adhesive layer.
  • the coat film and the glass substrate were bonded to each other while heating to obtain a laminated body. At this time, the roll temperature was 140 ° C. to 149 ° C., and the feed rate was 0.3 m / min. Then, the laminate was aged at 70 ° C. for 2 days.
  • Example 11 to 14 and Comparative Example 5 A laminated body was obtained in the same manner as in Example 10 except that the thickness of the bonded layer was changed as shown in Table 1 below.
  • Example 15 A laminate was obtained in the same manner as in Example 10 except that the pressure-sensitive adhesive layer was formed instead of the heat-sensitive adhesive layer and the roll temperature was set to 20 ° C to 30 ° C in the preparation of the laminate.
  • a pressure-sensitive adhesive composition was prepared by blending each component so as to have the composition shown below.
  • the pressure-sensitive adhesive composition is applied to the surface of the hard coat film on the substrate layer side so that the film thickness after drying is 5 ⁇ m, and dried at 70 ° C. for 1 minute to form a pressure-sensitive adhesive layer. bottom.
  • Example 16 A laminated body was obtained in the same manner as in Example 7 except that an optical transparent adhesive film (OCA) (“D692” manufactured by Lintec Corporation) having a thickness of 5 ⁇ m was used as the bonding layer.
  • OCA optical transparent adhesive film
  • Example 17 A laminate was obtained in the same manner as in Example 10 except that the heat-sealing resin composition shown below was used.
  • Example 18 A laminate was obtained in the same manner as in Example 10 except that the heat-sealing resin composition shown below was used.
  • Example 19 A laminate was obtained in the same manner as in Example 10 except that the heat-sealing resin composition shown below was used.
  • Example 20 A laminate was obtained in the same manner as in Example 10 except that the heat-sealing resin composition shown below was used.
  • Example 21 A laminate was obtained in the same manner as in Example 10 except that the heat-sealing resin composition shown below was used.
  • Example 22 (1) Preparation of hard-coated film A hard-coated film was produced in the same manner as in Example 7.
  • UV curable resin composition > -Urethane acrylate (product name "UV-3310B", manufactured by Mitsubishi Chemical Co., Ltd.): 35 parts by mass-Pentaerythritol tetraacrylate ethoxylated (product name "ATM-35E”, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 10 parts by mass -Phenoxyethyl acrylate (product name "Viscort # 192", manufactured by Osaka Organic Chemical Industry Co., Ltd.): 5 parts by mass-Mixed mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (product name "KAYARAD PET-30", Nippon Kayaku Co., Ltd.) (Manufactured by the company): 50 parts by mass ⁇ Photopolymerization initiator (1-hydroxycyclohexylphenylketone, product name “Omnirad184”, manufactured by IGM Resins VV)
  • the ultraviolet curable resin composition was applied to the surface of the hard coat film on the substrate layer side so that the cured film had a thickness of 5 ⁇ m, and dried at 70 ° C. for 1 minute to form an adhesive. A layer was formed to obtain a hardcourt film with an adhesive layer.
  • Example 23 (1) Preparation of hard-coated film A hard-coated film was produced in the same manner as in Example 7.
  • thermosetting resin composition was prepared by blending each component so as to have the composition shown below.
  • thermosetting resin composition > ⁇ Special novolak type epoxy resin (jER157S65 manufactured by Mitsubishi Chemical) 25 parts by mass ⁇ Bis A / bis F mixed type epoxy resin (jER4250 manufactured by Mitsubishi Chemical) 75 parts by mass ⁇ 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry) 6 .5 parts by mass, silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts by mass, fluorine-based leveling agent (F568, manufactured by DIC) 0.2 parts by mass (solid conversion) ⁇ Solvent (MEK) 600 parts by mass
  • thermosetting resin composition was applied to the surface of the hard coat film on the substrate layer side so that the cured film had a thickness of 5 ⁇ m, and dried at 70 ° C. for 1 minute to form an adhesive. A layer was formed to obtain a hard coat film with an adhesive layer.
  • Example 24 A laminate was obtained in the same manner as in Example 23, except that the thermosetting resin composition shown below was used.
  • thermosetting resin composition > ⁇ Special novolak type epoxy resin (jER157S65 manufactured by Mitsubishi Chemical) 50 parts by mass ⁇ Bis A type epoxy resin (jER1256 manufactured by Mitsubishi Chemical) 50 parts by mass ⁇ 2-ethyl-4-methylimidazole (manufactured by Tokyo Chemical Industry) 6.5 parts by mass ⁇ Silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts by mass ⁇ Fluorine leveling agent (F568, manufactured by DIC) 0.2 parts by mass (solid conversion) ⁇ Solvent (MEK) 600 parts by mass
  • Example 25 (1) Preparation of hard coat film A TAC film with a thickness of 60 ⁇ m (“TG60UL” manufactured by FUJIFILM Corporation) was used as the base material layer, except that the thickness of the hard coat layer was changed as shown in Table 1 below. , A hard coat film was produced in the same manner as in Example 10.
  • Example 26 (1) Preparation of hard coat film A PET film with a thickness of 50 ⁇ m (“A4360 (current product number)” (“A4300 (old product number)”) manufactured by Toyobo Co., Ltd.) is used as the base material layer to determine the thickness of the hard coat layer. A hard-coated film was produced in the same manner as in Example 10 except that the changes were made as shown in Table 1 below.
  • Example 27 A laminate was produced in the same manner as in Example 26, except that a PEN film (manufactured by Teijin Limited) having a thickness of 50 ⁇ m was used as the base material layer.
  • a PEN film manufactured by Teijin Limited
  • Example 28 to 30 and Comparative Example 6 A laminated body was obtained in the same manner as in Example 10 except that the thickness of the glass substrate was changed as shown in Table 3 below.
  • the pencil hardness on the surface of the test laminate on the glass substrate side was measured.
  • the pencil hardness was measured according to JIS K5600-5-4 (1999).
  • a pencil hardness tester product name "pencil scratch coating hardness tester (electric type)", manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the measurement conditions were an angle of 45 °, a load of 1 kg, and a speed of 0.5 mm /.
  • the temperature was 23 ⁇ 2 ° C. and 1 mm / sec or less.
  • the pencil hardness was evaluated according to the following criteria.
  • 2A Pencil hardness is 5H or more.
  • the pencil hardness was evaluated according to the following criteria.
  • 2A Pencil hardness is 5H or more.
  • the test laminate was placed on the metal plate so that the surface of the test laminate on the PET film side was in contact with the metal plate having a thickness of 30 mm.
  • the pen was dropped onto the test laminate with the tip of the pen facing down from the test height with respect to the central portion of the test laminate.
  • Bren 0.5BAS88-BK weight 12 g, pen tip 0.5 mm ⁇ manufactured by Zebra was used. Tables 1 to 3 show the maximum test height at which the glass substrate was not cracked. The larger the value, the higher the impact resistance.
  • Glass transition temperature (Tg) For the laminates of Examples 1 to 30 and Comparative Examples 2 to 6, the glass transition temperature of the bonded layer was measured by the above-mentioned method for measuring the glass transition temperature.
  • Example 31 A second bonding layer (optical transparent adhesive film (OCA), storage elastic modulus 0.10 MPa) having a thickness of 100 ⁇ m was bonded to the surface of the laminate of Example 10 on the glass substrate side using a hand roller. A laminate was obtained.
  • OCA optical transparent adhesive film
  • storage elastic modulus 0.10 MPa storage elastic modulus 0.10 MPa
  • Example 32 Laminated in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (“8146-4” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 100 ⁇ m was used as the second bonding layer. The body was made.
  • OCA optical transparent adhesive film
  • Example 33 Laminated in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) having a thickness of 50 ⁇ m (“8146-2” manufactured by 3M, storage elastic modulus 0.23 MPa) was used as the second bonding layer. The body was made.
  • OCA optical transparent adhesive film
  • Example 34 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.10 MPa) having a thickness of 50 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 35 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.12 MPa) having a thickness of 55 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 36 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.12 MPa) having a thickness of 30 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 37 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.32 MPa) having a thickness of 25 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 38 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.15 MPa) having a thickness of 25 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 39 The laminate was prepared in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) having a thickness of 25 ⁇ m (“F619” manufactured by Lintec Corporation, storage elastic modulus of 0.19 MPa) was used as the second bonding layer. Made.
  • OCA optical transparent adhesive film
  • Example 40 As the second bonding layer, the laminated body was prepared in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) having a thickness of 25 ⁇ m (“N632” manufactured by Lintec Corporation, storage elastic modulus 0.20 MPa) was used. Made.
  • OCA optical transparent adhesive film
  • Example 41 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.57 MPa) having a thickness of 25 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 42 A laminated body was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 1.17 MPa) having a thickness of 25 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 43 A laminate was prepared in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) having a thickness of 25 ⁇ m (“D692, storage elastic modulus 2.33 MPa) manufactured by Lintec Corporation was used as the second bonding layer). bottom.
  • OCA optical transparent adhesive film
  • Example 44 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 2.22 MPa) having a thickness of 25 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 45 A laminate was prepared in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) having a thickness of 15 ⁇ m (“D692, storage elastic modulus 2.14 MPa) manufactured by Lintec Corporation was used as the second bonding layer. bottom.
  • OCA optical transparent adhesive film
  • Example 46 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.12 MPa) having a thickness of 15 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 47 A laminate was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.91 MPa) having a thickness of 5 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 48 A laminated body was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 2.22 MPa) having a thickness of 10 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 49 A laminated body was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 1.95 MPa) having a thickness of 5 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 7 A laminated body was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 2.22 MPa) having a thickness of 5 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 8 A laminated body was produced in the same manner as in Example 31 except that an optical transparent adhesive film (OCA) (storage elastic modulus 12.74 MPa) having a thickness of 15 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 50 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 18 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 51 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 19 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 52 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 20 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 53 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 21 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 54 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 22 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 55 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 23 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 56 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 28 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 57 A laminated body was produced in the same manner as in Example 26 except that the thickness of the hard coat layer was 10 ⁇ m.
  • OCA optically transparent adhesive film
  • Example 58 An optical transparent adhesive film (OCA) (“8146-2” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 50 ⁇ m was attached to the surface of the laminate of Example 26 on the glass substrate side using a hand roller. Then, a laminated body was obtained.
  • OCA optical transparent adhesive film
  • Example 59 A laminate was produced in the same manner as in Example 57, except that the thickness of the glass substrate was 50 ⁇ m.
  • Example 60 A laminate was produced in the same manner as in Example 33, except that an optical transparent adhesive film (OCA) (composite elastic modulus 0.0096 GPa) having a thickness of 25 ⁇ m was used as the bonding layer.
  • OCA optical transparent adhesive film
  • Example 61 A laminate was produced in the same manner as in Example 59, except that an optical transparent adhesive film (OCA) (composite elastic modulus 0.0096 GPa) having a thickness of 50 ⁇ m was used as the bonding layer.
  • OCA optical transparent adhesive film
  • Example 62 The thickness of the glass substrate was 50 ⁇ m, and as the second bonding layer, an optical transparent adhesive film (OCA) with a thickness of 100 ⁇ m (“8146-4” manufactured by 3M, storage elastic modulus 0.23 MPa) was used. A laminated body was produced in the same manner as in Example 33 except that it was used.
  • OCA optical transparent adhesive film
  • Example 63 A laminate was produced in the same manner as in Example 62, except that a PEN film (manufactured by Teijin Limited) having a thickness of 50 ⁇ m was used as the base material layer.
  • a PEN film manufactured by Teijin Limited
  • Example 64 A laminate was produced in the same manner as in Example 62, except that a PET film having a thickness of 50 ⁇ m (“A4360” manufactured by Toyobo Co., Ltd.) was used as the base material layer.
  • Example 65 The thickness of the glass substrate was 30 ⁇ m, and as the second bonding layer, an optical transparent adhesive film (OCA) with a thickness of 100 ⁇ m (“8146-4” manufactured by 3M, storage elastic modulus 0.23 MPa) was used. A laminated body was produced in the same manner as in Example 33 except that it was used.
  • OCA optical transparent adhesive film
  • Example 66 A laminate was produced in the same manner as in Example 65, except that a PEN film (manufactured by Teijin Limited) having a thickness of 50 ⁇ m was used as the base material layer.
  • a PEN film manufactured by Teijin Limited
  • Example 67 A laminate was produced in the same manner as in Example 65, except that a PET film having a thickness of 50 ⁇ m (“A4360” manufactured by Toyobo Co., Ltd.) was used as the base material layer.
  • Example 68 An optically transparent adhesive film (OCA) (composite elastic modulus 0.0096 GPa) having a thickness of 25 ⁇ m was used as the bonding layer, and an optically transparent adhesive film (OCA) (composite) having a thickness of 25 ⁇ m was used as the second bonding layer.
  • OCA optically transparent adhesive film
  • OCA composite elastic modulus 0.0096 GPa
  • OCA optically transparent adhesive film
  • Example 69 A laminate was produced in the same manner as in Example 33, except that the thickness of the base material layer was 80 ⁇ m and the thickness of the glass base material was 50 ⁇ m.
  • Example 70 The laminate was prepared in the same manner as in Example 59, except that a PET film having a thickness of 23 ⁇ m (“U403” manufactured by Toray Industries, Inc.) was used as the base material layer and the thickness of the glass base material was set to 30 ⁇ m. Made.
  • a PET film having a thickness of 23 ⁇ m (“U403” manufactured by Toray Industries, Inc.) was used as the base material layer and the thickness of the glass base material was set to 30 ⁇ m. Made.
  • Example 9 Laminated in the same manner as in Example 68, except that an optical transparent adhesive film (OCA) (“8146-4” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 100 ⁇ m was used as the second bonding layer. The body was made.
  • OCA optical transparent adhesive film
  • Comparative Example 11 A laminated body was produced in the same manner as in Comparative Example 10 except that the thickness of the glass substrate was 50 ⁇ m.
  • Comparative Example 12 A laminated body was produced in the same manner as in Comparative Example 10 except that the thickness of the glass substrate was 30 ⁇ m.
  • Example 71 In the same manner as in Example 1, a base material layer made of a polyimide resin film having a thickness of 80 ⁇ m was prepared. A heat-sensitive adhesive layer was formed on one surface of the base material layer in the same manner as in Example 10 to obtain a base material layer with a heat-sensitive adhesive layer. The base material layer with the heat-sensitive adhesive layer is arranged so that the surface on the heat-sensitive adhesive layer side is in contact with the chemically strengthened glass base material having a thickness of 70 ⁇ m, and the side opposite to the base material layer with the heat-sensitive adhesive layer of the glass base material.
  • a glass support substrate with a thickness of 2 mm is placed on the surface of the glass, and a roll laminator (manufactured by Aco Brands Japan, trade name: desktop roll laminator B35A3) is used to separate the base material layer with a heat-sensitive adhesive layer and the glass base material.
  • the laminate was obtained by laminating while heating. At this time, the roll temperature was 140 ° C. to 149 ° C., and the feed rate was 0.3 m / min. Then, the laminate was aged at 70 ° C. for 2 days.
  • OCA optically transparent adhesive film
  • Example 72 A laminated body was produced in the same manner as in Example 71, except that the thickness of the base material layer was 50 ⁇ m.
  • Example 73 A laminate was produced in the same manner as in Example 71, except that the thickness of the base material layer was 50 ⁇ m and the thickness of the glass base material was 50 ⁇ m.
  • Example 74 A laminate was produced in the same manner as in Example 71, except that the thickness of the base material layer was 50 ⁇ m and the thickness of the glass base material was 30 ⁇ m.
  • Example 75 A laminated body was produced in the same manner as in Example 71, except that the thickness of the base material layer was 30 ⁇ m.
  • Example 76 A laminate was produced in the same manner as in Example 71, except that a PET film having a thickness of 75 ⁇ m (“A4360” manufactured by Toyobo Co., Ltd.) was used as the base material layer.
  • Example 77 A laminate was produced in the same manner as in Example 71, except that a PET film having a thickness of 50 ⁇ m (“A4360” manufactured by Toyobo Co., Ltd.) was used as the base material layer.
  • A4360 manufactured by Toyobo Co., Ltd.
  • Example 78 A laminate was produced in the same manner as in Example 77, except that the thickness of the glass substrate was 50 ⁇ m.
  • Example 79 A laminate was produced in the same manner as in Example 77, except that the thickness of the glass substrate was 30 ⁇ m.
  • Example 80 A laminate was produced in the same manner as in Example 71, except that a PET film having a thickness of 23 ⁇ m (“U403” manufactured by Toray Industries, Inc.) was used as the base material layer.
  • a PET film having a thickness of 23 ⁇ m (“U403” manufactured by Toray Industries, Inc.) was used as the base material layer.
  • Example 81 A laminate was produced in the same manner as in Example 71, except that a TAC film having a thickness of 60 ⁇ m (“TG60UL” manufactured by FUJIFILM Corporation) was used as the base material layer.
  • TG60UL a TAC film having a thickness of 60 ⁇ m
  • Example 82 A laminate was produced in the same manner as in Example 71, except that a PEN film (manufactured by Teijin Limited) having a thickness of 50 ⁇ m was used as the base material layer.
  • a PEN film manufactured by Teijin Limited
  • Example 83 The thickness of the glass substrate was 50 ⁇ m, and as the second bonding layer, an optical transparent adhesive film (OCA) with a thickness of 100 ⁇ m (“8146-4” manufactured by 3M, storage elastic modulus 0.23 MPa) was used. A laminated body was produced in the same manner as in Example 71 except that it was used.
  • OCA optical transparent adhesive film
  • Example 84 A laminate was produced in the same manner as in Example 83, except that a PEN film (manufactured by Teijin Limited) having a thickness of 50 ⁇ m was used as the base material layer.
  • a PEN film manufactured by Teijin Limited
  • Example 85 A laminate was produced in the same manner as in Example 83, except that a PET film having a thickness of 50 ⁇ m (“A4360” manufactured by Toyobo Co., Ltd.) was used as the base material layer.
  • Example 86 The thickness of the glass substrate was 30 ⁇ m, and as the second bonding layer, an optical transparent adhesive film (OCA) with a thickness of 100 ⁇ m (“8146-4” manufactured by 3M, storage elastic modulus 0.23 MPa) was used. A laminated body was produced in the same manner as in Example 71 except that it was used.
  • OCA optical transparent adhesive film
  • Example 87 A laminate was produced in the same manner as in Example 86, except that a PEN film (manufactured by Teijin Limited) having a thickness of 50 ⁇ m was used as the base material layer.
  • a PEN film manufactured by Teijin Limited
  • Example 88 A laminate was produced in the same manner as in Example 86, except that a PET film having a thickness of 50 ⁇ m (“A4360” manufactured by Toyobo Co., Ltd.) was used as the base material layer.
  • Example 89 An optically transparent adhesive film (OCA) (composite elastic modulus 0.0096 GPa) having a thickness of 25 ⁇ m was used as the bonding layer, and an optically transparent adhesive film (OCA) (3M) having a thickness of 100 ⁇ m was used as the second bonding layer.
  • OCA optically transparent adhesive film
  • 3M optically transparent adhesive film
  • a laminate was obtained in the same manner as in Example 88, except that “8146-4” manufactured by the same company and a storage elastic modulus of 0.23 MPa) were used.
  • Example 90 A laminate was obtained in the same manner as in Example 72, except that an optical transparent adhesive film (OCA) (storage elastic modulus 2.14 MPa) having a thickness of 15 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 91 A laminate was obtained in the same manner as in Example 72, except that an optical transparent adhesive film (OCA) (storage elastic modulus 0.91 MPa) having a thickness of 5 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 92 A laminated body was obtained in the same manner as in Example 72, except that an optical transparent adhesive film (OCA) (storage elastic modulus 2.22 MPa) having a thickness of 10 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 93 A laminate was obtained in the same manner as in Example 72, except that an optical transparent adhesive film (OCA) (storage elastic modulus 1.95 MPa) having a thickness of 5 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 94 The laminate was prepared in the same manner as in Example 71, except that a PET film having a thickness of 23 ⁇ m (“U403” manufactured by Toray Industries, Inc.) was used as the base material layer and the thickness of the glass base material was set to 30 ⁇ m. Made.
  • a PET film having a thickness of 23 ⁇ m (“U403” manufactured by Toray Industries, Inc.) was used as the base material layer and the thickness of the glass base material was set to 30 ⁇ m. Made.
  • Example 13 A laminated body was obtained in the same manner as in Example 72, except that an optical transparent adhesive film (OCA) (storage elastic modulus 2.22 MPa) having a thickness of 5 ⁇ m was used as the second bonding layer.
  • OCA optical transparent adhesive film
  • Example 14 Laminated in the same manner as in Example 94, except that an optical transparent adhesive film (OCA) (“8146-4” manufactured by 3M Co., Ltd., storage elastic modulus 0.23 MPa) having a thickness of 100 ⁇ m was used as the second bonding layer. I got a body.
  • OCA optical transparent adhesive film
  • Bren 0.5BAS88-BK weight 12 g, pen tip 0.5 mm ⁇
  • Tables 4 to 6 show the maximum test height at which the glass substrate did not crack. The larger the value, the higher the impact resistance.
  • FIG. 10 shows a graph showing the relationship between the value on the middle side of the above equation (1) and the test height of the pen drop test. Further, FIG. 11 shows a graph showing the relationship between the value on the middle side of the above equation (2) and the test height of the pen drop test.
  • Glass transition temperature (Tg) of the bonding layer and the second bonding layer The glass transition temperature of the bonding layer and the second bonding layer was measured by the above-mentioned method for measuring the glass transition temperature.
  • Example 95 A PET film having a thickness of 50 ⁇ m (“A4160” manufactured by Toyobo Co., Ltd.) was prepared, and the curable resin composition for the hard coat layer used in Example 1 was applied onto the PET film with a bar coater to complete the coating film. I let you. Then, the coating film was dried at 100 ° C. for 3 minutes and then cured by irradiation with ultraviolet rays of 200 mJ to form a hard coat layer having a thickness of 10 ⁇ m. Next, a pressure-sensitive adhesive layer was formed on the surface of the PET film opposite to the hard coat layer in the same manner as in Example 15. From this, a laminated film was obtained. Next, the surface of the laminated film on the bonding layer side was bonded to a chemically strengthened glass substrate having a thickness of 30 ⁇ m to obtain a laminated body.
  • A4160 manufactured by Toyobo Co., Ltd.
  • Example 96 A laminated body was produced in the same manner as in Example 95, except that an optical transparent adhesive film (OCA) having a thickness of 5 ⁇ m (“D692” manufactured by Lintec Corporation, composite elastic modulus of 19 MPa) was used as the bonding layer.
  • OCA optical transparent adhesive film
  • Example 95 Example 95 and Example 95 except that an optical transparent adhesive film (acrylic adhesive sheet, OCA) having a thickness of 5 ⁇ m (“Panaclean PD-S1” manufactured by Panac Co., Ltd., composite elastic modulus of 13.7 MPa) was used as the bonding layer.
  • OCA optical transparent adhesive film
  • a laminate was produced in the same manner.
  • Example 98 A hard coat layer was formed on the PET film in the same manner as in Example 95.
  • Example 17 the heat-sealing resin composition used in Example 17 was applied to the surface of the PET film opposite to the hard coat layer so that the film thickness after drying was 5 ⁇ m, and the temperature was 70 ° C. for 1 minute. It was dried to form a heat-sensitive adhesive layer, and a laminated film was obtained.
  • the laminated film is arranged so that the surface on the heat-sensitive adhesive layer side is in contact with the chemically strengthened glass base material having a thickness of 30 ⁇ m, and the surface on the side opposite to the laminated film of the glass base material has a thickness of 2 mm.
  • a glass support substrate was placed, and the laminated film and the glass substrate were bonded together while heating using a roll laminator (manufactured by Aco Brands Japan, trade name: desktop roll laminator B35A3) to obtain a laminated body. ..
  • the roll temperature was 140 ° C. to 149 ° C.
  • the feed rate was 0.3 m / min.
  • the laminate was aged at 70 ° C. for 2 days.
  • Example 99 A laminate was produced in the same manner as in Example 98, except that the heat-sealing resin composition used in Example 10 was used.
  • Example 100 A laminate was produced in the same manner as in Example 98, except that the heat-sealing resin composition used in Example 18 was used.
  • Example 101 A laminate was produced in the same manner as in Example 98, except that the heat-sealing resin composition used in Example 19 was used.
  • Example 102 A laminate was produced in the same manner as in Example 98, except that the heat-sealing resin composition used in Example 21 was used.
  • Example 103 A laminate was produced in the same manner as in Example 98, except that the heat-sealing resin composition used in Example 20 was used.
  • Example 104 A hard coat layer was formed on the PET film in the same manner as in Example 95.
  • the ultraviolet curable resin composition used in Example 22 was applied to the surface of the PET film opposite to the hard coat layer so that the film thickness after curing was 5 ⁇ m, and the film thickness was 70 ° C. for 1 minute. It was dried to form an adhesive layer to obtain a laminated film.
  • the surface of the laminated film on the adhesive layer side was bonded to a chemically reinforced glass substrate having a thickness of 30 ⁇ m using a hand roller.
  • the adhesive layer was cured by irradiating ultraviolet rays with an irradiation amount of 400 mJ / cm 2 from the hard coat layer side to obtain a laminated body.
  • Example 105 A laminate was produced in the same manner as in Example 98, except that the following heat-sealable resin composition was used.
  • Example 106 A hard coat layer was formed on the PET film in the same manner as in Example 95.
  • thermosetting resin composition used in Example 23 was applied to the surface of the PET film opposite to the hard coat layer so that the cured film thickness was 5 ⁇ m, and the temperature was 70 ° C. for 1 minute. After drying, an adhesive layer was formed, and a hard coat film with an adhesive layer was obtained.
  • the surface of the hard coat film with an adhesive layer on the adhesive layer side was bonded to a chemically reinforced glass substrate having a thickness of 30 ⁇ m using a hand roller.
  • the adhesive layer was cured by heating at 130 ° C. for 60 minutes to obtain a laminate.
  • Pencil hardness In the same manner as in Evaluation 1 above, the pencil hardness on the surface of the laminated body on the hard coat layer side was measured. Pencil hardness was evaluated according to the following criteria. 2A: Pencil hardness is 2H or more. A: The pencil hardness is H. B: The pencil hardness is F. C: Pencil hardness is HB or less.
  • Dynamic bending test A dynamic bending test was performed in the same manner as in the above evaluation 1, and the bending resistance was evaluated. At this time, a dynamic bending test was performed under three conditions of (a) temperature 23 ° C., (b) temperature 60 ° C. and humidity 90% RH, and (c) temperature ⁇ 20 ° C.
  • the preferable range of the glass transition temperature of the bonded layer is -40 ° C or higher and 150 ° C or lower, but the glass transition temperature of the bonded layer is -40 ° C from the viewpoint of dynamic flexibility in a high temperature and high humidity or low temperature environment. It was suggested that it is more preferable that the temperature is 25 ° C. or lower and 50 ° C. or higher and 150 ° C. or lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本開示は、ガラス基材と、接合層と、ハードコートフィルムと、をこの順に有し、上記ハードコートフィルムが、上記接合層側から、基材層と、ハードコート層とを有し、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、上記ハードコート層の厚さをA、上記基材層の厚さをB、上記接合層の厚さをCとしたとき、Cに対する(A+B)の比が3.0以上500以下である、積層体を提供する。

Description

積層体および表示装置
 本開示は、ガラス基材を有する積層体およびそれを用いた表示装置に関する。
 薄い板ガラスは、硬度、耐熱性等に優れている反面、曲げにくく、落とすと割れやすいという問題がある。このため、近年、ガラスを薄くすることで折り曲げることができるようにした超薄板ガラス(Ultra-Thin GlassG;UTG)の開発が進められている。ガラスの中でも、特に耐屈曲性が高いのは、化学強化ガラスといわれる。ガラス表面に膨張する応力を内在させることにより、ガラス表面に生じた微小な傷が屈曲時に大きくならないようにすることで、ガラスを割れにくくしている。
 例えば、ディスプレイ分野では、フレキシブル化が要求されている。近年では、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブルディスプレイの開発が盛んに行われている。中でも、フォルダブルディスプレイ、すなわち折り曲げられる表示装置の開発が進められている。このようなフレキシブルディスプレイに超薄板ガラスを用いることが検討されている(例えば特許文献1~5)。
 例えば特許文献1には、厚みが150μm以下であるガラス板と、樹脂フィルムとが接着層を介して積層された構成を有し、下記試験による屈曲耐久性が10以上である積層体が提案されている。
屈曲耐久性試験:積層体を伸ばした状態から、ガラス板の面が凹となる方向に屈曲半径が3mmとなるように180°折り曲げ、再び伸ばす動作を1セットとし、1分間に43セットの速さで上記動作を行った際における、積層体にクラックが生じるまでのセット数を屈曲耐久性の指標とする。
 また、例えば特許文献2には、厚みが150μm以下であるガラス板と、樹脂フィルムとが接着層を介して積層された構成を有し、動的粘弾性測定装置を用いて測定した、接着層の20℃における貯蔵弾性率が10MPa以上であり、下記試験による屈曲耐久性が10以上である積層体が提案されている。
屈曲耐久性試験:積層体を伸ばした状態から、ガラス板の面が凹となる方向に屈曲半径が3mmとなるように180°折り曲げ、再び伸ばす動作を1セットとし、1分間に43セットの速さで上記動作を行った際における、積層体にクラックが生じるまでのセット数を屈曲耐久性の指標とする。
 また、例えば特許文献3には、0.4mm以下の厚さを有する化学強化された超薄ガラス物品であって、ガラス物品の厚さ(t)(t(mm))に50を乗算した値を上回る破壊高さ(mmで示される)を有し、さらに、物品の厚さ(t(mm))に100000を乗算して、第1の表面で測定された表面圧縮応力の数値(MPa)で除算した値未満の破壊曲げ半径(mmで示される)を有し、貼り合わせられたポリマー層をさらに含む、ガラス物品が提案されている。
特開2019-25899号公報 特開2019-25900号公報 特表2020-521699号公報 特表2019-504812号公報 特許第6544134号公報
 ガラスは、薄くすることで折り曲げることができるようになり、耐屈曲性が良くなるものの、薄くなることでより割れやすくなってしまい、耐衝撃性が劇的に悪化する。外部からの衝撃によってガラスが割れてしまうと、表示装置のカバー部材としてガラスを用いる場合には表示装置をする機能が低下するだけでなく、発生した破片や鋭利な端面により使用者の指先等を傷付けてしまうおそれがある。
 本開示は、上記実情に鑑みてなされたものであり、耐屈曲性および耐衝撃性が良好であり、安全性も向上した積層体を提供することを主目的とする。
 本開示の一実施形態は、ガラス基材と、接合層と、ハードコートフィルムと、をこの順に有し、上記ハードコートフィルムが、上記接合層側から、基材層と、ハードコート層とを有し、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、上記ハードコート層の厚さをA、上記基材層の厚さをB、上記接合層の厚さをCとしたとき、Cに対する(A+B)の比が3.0以上500以下である、積層体を提供する。
 また、本開示においては、上記接合層の複合弾性率が1MPa以上6000MPa以下であることが好ましい。
 また、本開示においては、上記接合層のガラス転移温度が-40℃以上150℃以下であることが好ましい。
 また、本開示においては、上記基材層の複合弾性率が5.7GPa以上であることが好ましい。
 また、本開示においては、上記ガラス基材が化学強化ガラスであることが好ましい。
 また、本開示においては、上記接合層が、感圧接着層である、または感熱接着層である、または硬化型接着剤組成物の硬化物を含有することが好ましい。
 また、本開示においては、上記接合層が、ポリエステル樹脂、ポリオレフィン樹脂、およびウレタン樹脂からなる群から選択される少なくとも1種を含有することが好ましい。
 また、本開示における積層体は、上記ハードコート層の上記基材層とは反対の面側に反射防止層を有することができる。
 また、本開示の積層体においては、上記積層体の上記ガラス基材側の面が外側、上記積層体の上記ハードコート層側の面が内側となり、かつ、上記積層体の対向する辺部の間隔が10mmとなるように上記積層体を180°折り曲げる動作を20万回繰り返し行った場合に、割れ、破断、または剥がれが生じないことが好ましい。
 本開示の他の実施形態は、ハードコート層と、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体であって、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記第2の接合層は、上記積層体と他の部材とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、下記式(1)を満たす、積層体を提供する。
 0.001≦{(E×D +E×D +E×D )×E×D ×E×1000}/D≦3.0     (1)
(上記式(1)中、Eは上記ハードコート層の複合弾性率(GPa)、Dは上記ハードコート層の厚さ(mm)、Eは上記基材層の複合弾性率(GPa)、Dは上記基材層の厚さ(mm)、Eは上記接合層の複合弾性率(GPa)、Dは上記接合層の厚さ(mm)、Eは上記ガラス基材の複合弾性率(GPa)、Dは上記ガラス基材の厚さ(mm)、Eは上記第2の接合層の貯蔵弾性率(GPa)、Dは上記第2の接合層の厚さ(mm)を示す。)
 また、本開示の他の実施形態は、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体であって、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記第2の接合層は、上記積層体と他の部材とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、下記式(2)を満たす、積層体。
 0.001≦{(E×D +E×D )×E×D ×E×1000}/D≦3.0     (2)
(上記式(2)中、Eは上記基材層の複合弾性率(GPa)、Dは上記基材層の厚さ(mm)、Eは上記接合層の複合弾性率(GPa)、Dは上記接合層の厚さ(mm)、Eは上記ガラス基材の複合弾性率(GPa)、Dは上記ガラス基材の厚さ(mm)、Eは上記第2の接合層の貯蔵弾性率(GPa)、Dは上記第2の接合層の厚さ(mm)を示す。)
 また、本開示の積層体においては、上記第2の接合層のガラス転移温度が-50℃以上30℃以下であることが好ましい。
 また、本開示の積層体は、上記ハードコート層の上記基材層とは反対の面側に保護フィルムを有していてもよい。
 本開示の他の実施形態は、表示パネルと、上記表示パネルの観察者側に配置された、上述の積層体と、を備え、上記積層体は、上記ガラス基材側の面が上記表示パネルに隣接するように配置されている、表示装置を提供する。
 本開示における表示装置は、フォルダブルディスプレイであることが好ましい。
 本開示においては、耐屈曲性および耐衝撃性が良好であり、安全性も向上した積層体を提供することができるという効果を奏する。
本開示における積層体を例示する概略断面図である。 本開示における積層体を例示する概略断面図である。 本開示における積層体を例示する概略断面図である。 本開示における積層体を例示する概略断面図である。 動的屈曲試験を説明するための模式図である。 静的屈曲試験を説明するための模式図である。 本開示における積層体を例示する概略断面図である。 本開示における積層体を例示する概略断面図である。 本開示における表示装置を例示する概略断面図である。 式(1)の中辺の値と、ペンドロップ試験の試験高さとの関係を示すグラフである。 式(2)の中辺の値と、ペンドロップ試験の試験高さとの関係を示すグラフである。
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。
 以下、本開示における積層体および表示装置について詳細に説明する。
A.積層体
 本開示における積層体は、3つの実施態様を有する。以下、各実施態様に分けて説明する。
I.第1実施態様
 本開示の発明者らは、ガラス基材を有する積層体について鋭意検討を行い、薄いガラス基材の表面に樹脂層を配置し、さらに樹脂層の厚さを厚くすることにより、ガラス基材の割れを抑制し、耐衝撃性を高めることができることを見出した。しかし、ガラス基材の表面に樹脂組成物を塗布して比較的厚い樹脂層を形成する場合、樹脂組成物の塗布後の加熱または硬化時に、ガラス基材と樹脂層との収縮差の影響が大きくなり、カールが生じてしまう場合があることが判明した。そして、本開示の本発明者らはさらに検討を重ね、予め樹脂層をフィルム化し、薄いガラス基材の表面に接合層を介して樹脂フィルムを貼り合わせることにより、カールを抑制しつつ、さらに耐衝撃性を高めることができることを見出した。しかし、このような積層体においては、積層体の樹脂フィルム側の面の表面硬度が低くなり、耐傷性が低下する場合があることを知見した。
 本実施態様は、上記実情に鑑みてなされたものであり、耐屈曲性、耐衝撃性および耐傷性が良好であり、安全性も向上した積層体を提供することを目的とする。
 本開示における積層体の第1実施態様は、ガラス基材と、接合層と、ハードコートフィルムと、をこの順に有し、上記ハードコートフィルムが、上記接合層側から、基材層と、ハードコート層とを有し、上記ガラス基材の厚さが10μm以上100μm以下であり、上記ハードコート層の厚さをA、上記基材層の厚さをB、上記接合層の厚さをCとしたとき、厚さの比率(A+B)/Cが3.0以上500以下である。すなわち、本実施態様の積層体は、ガラス基材と、接合層と、ハードコートフィルムと、をこの順に有し、上記ハードコートフィルムが、上記接合層側から、基材層と、ハードコート層とを有し、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、上記ハードコート層の厚さをA、上記基材層の厚さをB、上記接合層の厚さをCとしたとき、Cに対する(A+B)の比が3.0以上500以下である。
 図1は、本実施態様における積層体の一例を示す概略断面図である。図1に示すように、積層体1は、所定の厚さを有するガラス基材2と、接合層3と、ハードコートフィルム4とをこの順に有し、ハードコートフィルム4は、接合層3側から、基材層5と、ハードコート層6とを有する。また、ハードコート層6の厚さをA、基材層5の厚さをB、接合層3の厚さをCとしたとき、厚さの比率(A+B)/Cが所定の範囲内である。
 本実施態様における積層体においては、ガラス基材は、厚さが所定の値以下であり薄いため、耐屈曲性を高めることができる。一方、ガラス基材は、厚さが所定の値以下であり薄いため、割れやすく耐衝撃性が低いことが懸念される。これに対し、本実施態様においては、ガラス基材の一方の面に接合層を介してハードコートフィルムが配置されていることにより、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることができる。
 また、本実施態様における積層体においては、ハードコート層の厚さをA、基材層の厚さをB、接合層の厚さをCとしたとき、厚さの比率(A+B)/Cが所定の範囲内であることにより、積層体のハードコートフィルム側の面の表面硬度を高めることができ、耐傷性を向上させることができる。この理由は以下のように推察される。
 本実施態様においては、厚さの比率(A+B)/Cが3.0以上であり、接合層の厚さが、ハードコート層および基材層の合計厚さと比較して相対的に薄い。接合層は、通常、ガラス基材およびハードコート層よりも硬度が低いが、接合層の厚さが相対的に薄いことにより、接合層の硬度の影響を小さくすることができ、積層体のハードコートフィルム側の面の表面硬度を高めることができる。その結果、耐傷性を向上させることが可能である。
 なお、本開示の発明者らが鋭意検討を行ったところ、後述の実施例および比較例に記載するように、接合層の厚さが比較的薄い場合であっても、積層体のハードコートフィルム側の面の表面硬度が低いことがあることが判明した。そして、積層体のハードコートフィルム側の面の表面硬度を高めるためには、接合層の厚さを相対的に薄くすること、すなわち上記の厚さの比率(A+B)/Cを所定の値以上とすることが重要であることを知見した。
 このように、本実施態様においては、良好な耐屈曲性を維持しつつ、耐衝撃性および耐傷性を両立することが可能である。また、積層体におけるガラス基材が破損したとしても、人体を傷付けるリスクを低減することができ、安全性の高い積層体とすることができる。よって、本実施態様における積層体は、折り曲げることが可能であり、多種多様な用途に使用することができる。本実施態様における積層体は、例えば、多種多様な表示装置に用いることができ、具体的にはフォルダブルディスプレイ用部材として使用することができる。
 以下、本実施態様における積層体の各構成について説明する。
1.厚さの比率
 本実施態様においては、ハードコート層の厚さをA、基材層の厚さをB、接合層の厚さをCとしたとき、厚さの比率(A+B)/Cは、3.0以上であり、好ましくは4.0以上であり、より好ましくは5以上である。上記の厚さの比率が上記範囲であることにより、積層体のハードコートフィルム側の面の表面硬度を高くし、耐傷性を向上させることができる。一方、厚さの比率(A+B)/Cは、500以下であり、好ましくは150以下、より好ましくは100以下、さらに好ましくは70以下、特に好ましくは40以下である。上記の厚さの比率が大きすぎると、接合層の厚さが相対的に極めて薄くなるため、接着性が弱くなり耐屈曲性、特に動的屈曲性が低下するおそれや、耐衝撃性が低下するおそれがある。厚さの比率(A+B)/Cは、3.0以上500以下であり、好ましくは4.0以上150以下、より好ましくは5以上100以下、さらに好ましくは5以上70以下、特に好ましくは5以上40以下である。
 ハードコート層の厚さは、上記の厚さの比率を満たしていれば特に限定されないが、ハードコート層が有する機能及び積層体の用途により適宜選択される。ハードコート層の厚さは、例えば、1μm以上であり、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。ハードコート層の厚さが上記範囲であることにより、積層体のハードコートフィルム側の面の表面硬度を高くし、耐傷性を向上させることができる。一方、ハードコート層の厚さは、例えば、50μm以下であり、好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下である。ハードコート層の厚さが上記範囲であることにより、良好な耐屈曲性を得ることができる。ハードコート層の厚さは、例えば、1μm以上50μm以下であり、好ましくは3μm以上30μm以下、より好ましくは5μm以上25μm以下、さらに好ましくは10μm以上20μm以下である。
 基材層の厚さは、上記の厚さの比率を満たしていれば特に限定されないが、例えば、10μm以上であり、好ましくは15μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上である。基材層の厚さが上記範囲であることにより、耐衝撃性を高めることができる。一方、基材層の厚さは、例えば、150μm以下であり、好ましくは125μm以下、より好ましくは100μm以下、さらに好ましくは80μm以下である。基材層の厚さが上記範囲であることにより、良好な耐屈曲性を得ることができる。基材層の厚さは、例えば、10μm以上150μm以下であり、好ましくは15μm以上125μm以下、より好ましくは20μm以上100μm以下、さらに好ましくは25μm以上85μm以下である。
 接合層の厚さは、上記の厚さの比率を満たしていれば特に限定されないが、例えば、25μm以下であり、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下である。接合層の厚さが上記範囲であることにより、積層体のハードコートフィルム側の面の表面硬度を高くし、耐傷性を向上させることができる。また、接合層の厚さが上記範囲のように比較的薄いことにより、ガラス基材によるガラスの質感や触感を維持することができる。一方、接合層の厚さは、例えば、0.2μm以上であり、好ましくは0.5μm以上、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上、特に好ましくは2.0μm以上である。接合層の厚さが薄すぎると、接着性が弱くなり耐屈曲性、特に動的屈曲性が低下するおそれや、耐衝撃性が低下するおそれがある。接合層の厚さは、例えば、0.2μm以上25μm以下であり、好ましくは0.5μm以上20μm以下、より好ましくは1.0μm以上15μm以下、さらに好ましくは1.5μm以上10μm以下、特に好ましくは2.0μm以上10μm以下である。
 ここで、各層の厚さは、走査型電子顕微鏡(SEM)により観察される積層体の厚さ方向の断面から測定して得られた任意の10箇所の厚さの算術平均値とすることができる。具体的な断面写真の撮影方法を以下に示す。まず、積層体を2cm×2cmの大きさに切り出し、積層体を包埋樹脂によって包埋したブロックを作製し、研磨機を用いて断面を作製する。研磨機としては、Struers社製のTegraPol-35を用いることができる。その後、走査型電子顕微鏡を用いて、測定サンプルの断面写真を撮影する。走査型電子顕微鏡としては、日立ハイテクノロジーズ社製のS-4800を用いることができる。走査型電子顕微鏡(日立ハイテクノロジーズ社製のS-4800)を用いて断面写真を撮影する際には、検出器を「Lower」、加速電圧を「3kV」、エミッション電流を「10μA」に設定して断面観察を行う。倍率については、フォーカスを調節し、コントラストおよび明るさを各層が見分けられるか観察しながら、100倍以上10万倍以下の範囲内、好ましくは1000倍以上5万倍以下の範囲内、さらに好ましくは5000倍以上1万倍以下の範囲内で、適宜調節する。なお、走査型電子顕微鏡(日立ハイテクノロジーズ社製のS-4800)を用いて断面写真を撮影する際には、さらに、ビームモニタ絞りを「1」に設定し、対物レンズ絞りを「3」に設定し、またW.D.を「8mm」に設定してもよい。また、界面のコントラストは、高倍率であると分かりにくい場合がある。その場合には、低倍率も同時に観察する。例えば、2000倍と1万倍や、5000倍と2万倍など、高低の2つの倍率で観察する。そして、両倍率の断面写真において、上記算術平均値を求め、さらにその平均値を各層の厚さとする。なお、特に断りの無い限りは、積層体が有する他の層の厚さの測定方法についても同様とすることができる。
2.接合層
 本実施態様における接合層は、ガラス基材とハードコートフィルムとの間に配置され、ガラス基材とハードコートフィルムとを接合するための層である。
 接合層に用いられる材料としては、ガラス基材およびハードコートフィルムを接合することができる材料であれば特に限定されるものではなく、例えば、光学透明粘着剤(OCA;Optical Clear Adhesive)等の感圧接着剤、ヒートシール剤等の感熱接着剤、硬化型接着剤等を挙げることができる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 光学透明粘着剤(OCA)等の感圧接着剤としては、例えば、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、酢酸ビニル系粘着剤、ポリビニルブチラール(PVB)等のポリビニルアセタール系粘着剤等が挙げられる。
 ヒートシール剤等の感熱接着剤としては、例えば、熱溶着可能な熱可塑性樹脂を用いることができる。このような熱可塑性樹脂としては、特に限定されず、例えば、アクリル樹脂、塩化ビニル-酢酸ビニル共重合体、ポリアミド樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、塩素化ポリプロピレン、塩素化ゴム、ウレタン樹脂、エポキシ樹脂、スチレン樹脂、ポリオレフィン樹脂、シリコーン樹脂、ポリビニルブチラール(PVB)等のポリビニルアセタール樹脂、ポリエーテルウレタン樹脂等が挙げられる。これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を組み合わせてもよい。
 また、感熱接着剤組成物は、硬化剤をさらに含有することができる。これにより、耐熱性や接着性を向上させることができる。また、硬化剤の添加により、後述する接合層の複合弾性率を調整することができる。所望の複合弾性率を有する接合層とするためには、例えば、上記熱可塑性樹脂の特性に応じて、硬化剤を適宜添加することが好ましい。硬化剤としては、例えば、イソシアネート系硬化剤、エポキシ系硬化剤、メラミン系硬化剤等が挙げられる。硬化剤は、単独で使用してもよく、2種以上を組み合わせてもよい。感熱接着剤組成物が硬化剤を含有する場合、接合層は、感熱接着剤組成物の硬化物を含有することになる。
 また、感熱接着剤組成物は、必要に応じて添加剤を含有していてもよい。添加剤としては、例えば、光安定剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、可塑剤、カップリング剤、消泡剤、充填剤、屈折率を調整するための無機または有機粒子、帯電防止剤、青色色素や紫色色素等の着色剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、表面改質剤等が挙げられる。これらの添加剤は、常用のものから適宜選択して用いることができる。添加剤の含有量は、適宜設定することができる。中でも、感熱接着剤組成物は、ガラス基材との密着性を高めるために、シランカップリング剤を含有することが好ましい。
 硬化型接着剤としては、例えば、熱硬化型接着剤、紫外線硬化型接着剤等が挙げられる。
 熱硬化型接着剤は、加熱により硬化する接着剤である。熱硬化型接着剤としては、例えば、エポキシ系接着剤、アクリル系接着剤、ウレタン系接着剤、ポリエステル系接着剤、シリコーン系接着剤等が挙げられる。
 紫外線硬化型接着剤は、紫外線の照射により硬化する接着剤である。紫外線硬化型接着剤としては、例えば、エポキシ系接着剤、アクリル系接着剤、ウレタンアクリレート系接着剤等が挙げられる。
 また、硬化型接着剤組成物は、必要に応じて添加剤を含有していてもよい。添加剤としては、例えば、光安定剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、可塑剤、カップリング剤、消泡剤、充填剤、屈折率を調整するための無機または有機粒子、帯電防止剤、青色色素や紫色色素等の着色剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、表面改質剤等が挙げられる。これらの添加剤は、常用のものから適宜選択して用いることができる。添加剤の含有量は、適宜設定することができる。
 中でも、接合層に用いられる材料は、感熱接着剤または硬化型接着剤であることが好ましく、ヒートシール剤、紫外線硬化型接着剤または熱硬化型接着剤であることがより好ましい。すなわち、接合層は、感熱接着層である、または硬化型接着剤組成物の硬化物を含有することが好ましく、ヒートシール層である、あるいは紫外線硬化型接着剤組成物の硬化物または熱硬化型接着剤組成物の硬化物を含有することがより好ましい。ヒートシール剤、紫外線硬化型接着剤または熱硬化型接着剤を用いることにより、後述する複合弾性率を満たす接合層を得ることができ、また後述する接合層のガラス転移温度を0℃以上とすることができる。また、光学透明粘着剤(OCA)の場合にはOCAフィルムが用いられるが、OCAフィルムには表面に凹凸を有するものがあり、そのようなOCAフィルムを用いた場合には、凹凸によって画面の揺らぎが起こり、ガラス基材によるガラスの質感や触感が損なわれる可能性がある。これに対し、感熱接着剤または硬化型接着剤を用いることにより、そのような不具合が生じるのを抑制することができる。
 また、接合層は、ポリエステル樹脂、ポリオレフィン樹脂、およびウレタン樹脂からなる群から選択される少なくとも1種を含有することが好ましい。中でも、接合層は、ポリエステル樹脂を含有することがより好ましい。なお、ウレタン樹脂には、ポリエステルウレタン樹脂およびポリエーテルウレタン樹脂も含まれる。このような材料を含有する接合層は、後述の複合弾性率を好ましい範囲に調整しやすくすることができる。
 接合層の複合弾性率は、例えば、1MPa以上であることが好ましく、10MPa以上であることがより好ましく、20MPa以上であることがさらに好ましい。接合層の複合弾性率が上記範囲であり、ある程度の硬さを有することにより、積層体のハードコートフィルム側の面の表面硬度を高め、耐傷性を向上させることができるとともに、耐衝撃性を向上させることができる。一方、接合層の複合弾性率は、例えば、6000MPa以下であることが好ましく、5500MPa以下であることがより好ましく、4500MPa以下であることがさらに好ましい。接合層の複合弾性率が大きすぎると、接着性が弱くなり、または硬さが高くなりすぎて屈曲しにくくなり、耐屈曲性、特に動的屈曲性が低下するおそれがある。接合層の複合弾性率は、例えば、1MPa以上6000MPa以下であることが好ましく、10MPa以上5500MPa以下であることがより好ましく、20MPa以上4500MPa以下であることがさらに好ましく、25MPa以上4000MPa以下であることが特に好ましい。
 ここで、接合層の複合弾性率は、接合層のインデンテーション硬さ(HIT)を測定する際に求められる接触投影面積Aを用いて算出するものとする。「インデンテーション硬さ」とは、ナノインデンテーション法による硬度測定によって得られる圧子の負荷から除荷までの荷重-変位曲線から求められる値である。接合層の複合弾性率は、接合層の弾性変形および圧子の弾性変形が含まれた弾性率である。
 インデンテーション硬さ(HIT)の測定は、測定サンプルについてBRUKER社製の「TI950 TriboIndenter」を用いて行うものとする。具体的には、まず、1mm×10mmに切り出した積層体を包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ50nm以上100nm以下の切片を切り出す。切片の作製には、「ウルトラミクロトーム EM UC7」(ライカ マイクロシステムズ社製)等を用いることができる。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとする。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、以下の測定条件で、上記圧子としてバーコビッチ(Berkovich)圧子(三角錐、BRUKER社製のTI-0039)を接合層の断面中央に10秒かけて最大押し込み荷重25μNまで垂直に押し込む。ここで、バーコビッチ圧子は、ガラス基材およびハードコートフィルムの影響を避けるためおよび接合層の側縁の影響を避けるために、ガラス基材と接合層との界面から接合層の中央側に500nm離れ、ハードコートフィルムの基材層と接合層との界面から接合層の中央側に500nm離れ、接合層の両側端からそれぞれ接合層の中央側に500nm離れた接合層の部分内に押し込むものとする。その後、一定保持して残留応力の緩和を行った後、10秒かけて除荷させて、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と接触投影面積A(nm)とを用い、Pmax/Aにより、インデンテーション硬さ(HIT)を算出する。上記接触投影面積は、標準試料の溶融石英(BRUKER社製の5-0098)を用いてOliver-Pharr法で圧子先端曲率を補正した接触投影面積である。インデンテーション硬さ(HIT)は、10箇所測定して得られた値の算術平均値とする。なお、測定値の中に算術平均値から±20%以上外れるものが含まれている場合は、その測定値を除外し再測定を行うものとする。測定値の中に算術平均値から±20%以上外れているものが存在するか否かは、測定値をAとし、算術平均値をBとしたとき、(A-B)/B×100によって求められる値(%)が±20%以上であるかによって判断するものとする。
(測定条件1)
・荷重速度:2.5μN/秒
・保持時間:5秒
・荷重除荷速度:2.5μN/秒
・測定温度:25℃
 なお、上記測定条件1でインデンテーション硬さの測定を行った場合に、最大荷重での押し込み深さが500nm以上となる場合には、以下の測定条件2に変更して測定を行うものとする。上述したように、インデンテーション硬さの測定においては、接合層に10秒かけて押し込みを行うため、測定条件1では最大荷重が25μN、測定条件2では最大荷重が5μNとなる。
(測定条件2)
・荷重速度:0.5μN/秒
・保持時間:5秒
・荷重除荷速度:0.5μN/秒
・測定温度:25℃
 接合層の複合弾性率Eは、下記数式(3)によって、インデンテーション硬さの測定の際に求められた接触投影面積Aを用いて求める。複合弾性率は、インデンテーション硬さを10箇所測定し、その都度複合弾性率を求め、得られた10箇所の複合弾性率の算術平均値とする。
Figure JPOXMLDOC01-appb-M000001
(上記数式(3)中、Aは接触投影面積であり、Eは接合層の複合弾性率であり、Sは接触剛性である。)
 接合層の複合弾性率は、例えば、接合層に含まれる材料の種類や組成等によって調整することができる。
 また、接合層のガラス転移温度は、例えば、-40℃以上であることが好ましく、-30℃以上であることがより好ましく、-10℃以上であることがさらに好ましく、0℃以上であることがさらに好ましく、20℃以上であることが特に好ましい。接合層のガラス転移温度が上記範囲であれば、上述の複合弾性率を満たす接合層が得やすくなる。また、接合層のガラス転移温度が0℃以上である場合には、耐傷性および耐衝撃性をさらに良好にすることができる。一方、接合層のガラス転移温度は、例えば、150℃以下であることが好ましく、140℃以下であることがより好ましく、130℃以下であることがより好ましく、120℃以下であることがさらに好ましい。接合層のガラス転移温度が高すぎると、接着性が担保できないおそれがある。接合層のガラス転移温度は、例えば、-40℃以上150℃以下であることが好ましく、-30℃以上150度以下であることがより好ましく、-10℃以上140℃以下であることがさらに好ましく、0℃以上130℃以下であることが特に好ましく、0℃以上120℃以下であることが最も好ましい。また、接合層のガラス転移温度は、例えば、-40℃以上25℃以下および50℃以上150℃以下であることも好ましい。高温高湿および低温の環境下での使用に耐える積層体を得ることができる。
 ここで、接合層のガラス転移温度は、損失正接(tanδ)のピークトップの値に基づく方法(DMA法)により測定された値を意味する。動的粘弾性測定装置(DMA)によって、接合層の貯蔵弾性率E’、損失弾性率E”および損失正接tanδを測定する際には、まず、接合層を15mm×200mmに打ち抜く。この際、接合層の材料を溶解する、または接合層の材料を溶融することによって溶液を調製し、基板上に溶液を塗布し、乾燥させた後、基板から膜を剥離することで、接合層の試験片を得ることもできる。溶剤は、接合層の材料に応じて適宜選択され、例えば、酢酸エチル等が挙げられる。また、上記溶液を調製する際には、接合層の材料を適宜加熱溶解させてもよい。基板は、例えば、ニチアス社製のナフロン(登録商標)シート(300mm×300mm×1mm厚)を用いることができる。そして、接合層を、φ5mm×高さ5mm程度の円柱状になるようにサンプリングする。この際、接合層を巻くことによって円柱状にすることができる。動的粘弾性測定装置の圧縮冶具(パラレルプレートφ8mm)の間に、上記の円柱状の測定サンプルを取り付ける。その後、圧縮荷重をかけ、周波数1Hzの縦振動を与えて、-50℃以上200℃以下の範囲での動的粘弾性測定を行い、それぞれの温度での接合層の貯蔵弾性率E’、損失弾性率E”および損失正接tanδを測定する。接合層のガラス転移温度は、-50℃以上200℃以下の範囲での損失正接tanδがピークとなる温度とする。動的粘弾性測定装置としては、例えば、TAインスツルメンツ社製のRSAIIIを用いることができる。なお、上記方法における具体的な測定条件を下記に示す。
(ガラス転移温度の測定条件)
・測定サンプル:φ5mm×高さ5mmの円柱状
・測定治具:圧縮(パラレルプレート)
・測定モード:温度依存性(温度範囲:-50℃~200℃、昇温速度:5℃/min)
・周波数:1Hz
 本実施態様における積層体を例えば表示装置に用いる場合、接合層は、透明性を有することが好ましい。具体的には、接合層の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。
 ここで、接合層の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。以下、他の層の全光線透過率の測定方法についても同様とすることができる。
 また、接合層のヘイズは、例えば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
 ここで、接合層のヘイズは、JIS K-7136に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。以下、他の層のヘイズの測定方法についても同様とすることができる。
 接合層を介してガラス基材およびハードコートフィルムを接合する方法は、接合層に用いられる材料等に応じて適宜選択される。例えば光学透明粘着剤(OCA)等の感圧接着剤の場合、フィルム状の感圧接着層を用い、フィルム状の感圧接着層を介してハードコートフィルムおよびガラス基材を貼り合わせることができる。また、例えばヒートシール剤等の感熱接着剤の場合、ハードコートフィルムの基材層側の面またはガラス基材の一方の面に、感熱接着剤組成物を塗布し、乾燥させて、感熱接着層を形成した後、感熱接着層を介してハードコートフィルムおよびガラス基材を重ね合わせ、加熱して感熱接着層により熱溶着することで接着することができる。この際、加熱温度は、感熱接着層のガラス転移温度以上とすることが好ましい。また、例えば熱硬化型接着剤の場合、ハードコートフィルムの基材層側の面またはガラス基材の一方の面に、熱硬化型接着剤組成物を塗布し、乾燥させて、熱硬化型接着剤層を形成した後、熱硬化型接着剤層を介してハードコートフィルムおよびガラス基材を重ね合わせ、加熱して熱硬化型接着剤層を硬化することにより接着することができる。また、例えば紫外線硬化型接着剤の場合、ハードコートフィルムの基材層側の面またはガラス基材の一方の面に、紫外線硬化型接着剤組成物を塗布し、乾燥させて、紫外線硬化型接着剤層を形成した後、紫外線硬化型接着剤層を介してハードコートフィルムおよびガラス基材を重ね合わせ、紫外線を照射して紫外線硬化型接着剤層を硬化することにより接着することができる。
 接着剤組成物を調製する際、樹脂として、例えばペレット状やシート状等の固形状の樹脂を用いる場合がある。この場合には、予め、樹脂と溶剤とを加温して、樹脂を溶剤に溶解させ、樹脂の溶液を準備した後、この樹脂の溶液を接着剤組成物の調製に用いてもよい。
3.ハードコートフィルム
 本実施態様におけるハードコートフィルムは、上記接合層側から、基材層と、ハードコート層とを有する。
 以下、ハードコートフィルムの各構成について説明する。
(1)ハードコート層
 本実施態様におけるハードコート層は、表面硬度を高めるための層である。ハードコート層が配置されていることにより、耐傷性を向上させることができる。
(a)ハードコート層の特性
 ここで、「ハードコート層」とは、表面硬度を高めるための部材であり、具体的には、本実施態様における積層体がハードコート層を有する構成において、JIS K 5600-5-4(1999)で規定される鉛筆硬度試験を行った場合に、「H」以上の硬度を示すものをいう。
 本実施態様における積層体のハードコート層側の表面の鉛筆硬度は、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましく、4H以上であることが特に好ましく、5H以上であることが最も好ましい。
 ここで、鉛筆硬度は、JIS K5600-5-4(1999)で規定される鉛筆硬度試験で測定される。具体的には、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験を積層体のハードコート層側の表面に行い、傷が付かない最も高い鉛筆硬度を評価することにより行うことができる。測定条件としては、角度45°、荷重1kg、速度0.5mm/秒以上1mm/秒以下、温度23±2℃とすることができる。鉛筆硬度試験機としては、例えば、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
(b)ハードコート層の構成
 ハードコート層は、単層であってもよく、2層以上の多層構造を有していてもよい。ハードコート層が多層構造を有する場合、表面硬度を向上し、かつ、耐屈曲性および弾性率のバランスを良好にするために、ハードコート層は、鉛筆硬度を充足させるための層と、動的屈曲試験を充足させるための層(耐擦傷性を充足させるための層)とを有していてもよい。
(c)ハードコート層の材料
 ハードコート層の材料としては、例えば、樹脂硬化物が挙げられる。具体的には、ハードコート層は、重合性化合物を含む樹脂組成物の硬化物を含むことが好ましい。重合性化合物を含む樹脂組成物の硬化物は、重合性化合物を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。
(i)重合性化合物
 重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性化合物としては、例えば、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種を用いることができる。
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
 ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。
 ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等と称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千の多官能(メタ)アクリレートモノマー及びオリゴマーを好ましく使用でき、またアクリレートポリマーの側鎖に(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレートポリマーも好ましく使用できる。中でも、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーを好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートモノマーの硬化物を含むことにより、ハードコート層の硬度を向上させ、さらに密着性を向上させることができる。また、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートオリゴマー又はポリマーも好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートオリゴマー又はポリマーの硬化物を含むことにより、ハードコート層の硬度及び耐屈曲性を向上させ、さらに、密着性を向上させることができる。
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
 多官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。中でも、反応性が高く、ハードコート層の硬度が向上する点、及び密着性の点から、1分子中に3個以上6個以下の(メタ)アクリロイル基を有するものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等を好ましく用いることができ、特に、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサアクリレート、並びにこれらをPO、EO、又はカプロラクトン変性したものから選ばれる少なくとも1種が好ましい。
 樹脂組成物は、ラジカル重合性化合物として、硬度や粘度調整、密着性の向上等のために、単官能(メタ)アクリレートモノマーを含んでいてもよい。単官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
 カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。
 また、カチオン重合性化合物は、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2個以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層を、エポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
 脂環族エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、および、オキセタニル基を有するカチオン重合性化合物の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。
 なお、ハードコート層に含まれる重合性化合物を含む樹脂組成物の硬化物は、フーリエ変換赤外分光光度計(FTIR)、熱分解ガスクロマトグラフ装置(GC-MS)や、重合物の分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等の組み合わせを用いて分析することができる。
(ii)重合開始剤
 樹脂組成物は、必要に応じて重合開始剤を含有していてもよい。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。なお、ハードコート層中には、重合開始剤が全て分解されて残留していない場合もある。
 ラジカル重合開始剤およびカチオン重合開始剤の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。
(iii)粒子
 ハードコート層は、無機又は有機粒子を含有することが好ましく、無機微粒子を含有することがより好ましい。ハードコート層が粒子を含有することにより、硬度を向上させることができる。
 無機粒子としては、例えば、シリカ(SiO)、酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子、金属粒子、金属硫化物粒子、金属窒化物粒子等が挙げられる。中でも、金属酸化物粒子が好ましく、シリカ粒子及び酸化アルミニウム粒子から選ばれる少なくとも一種がより好ましく、シリカ粒子がさらに好ましい。優れた硬度が得られるからである。
 また、無機粒子は、当該無機粒子表面に当該無機粒子同士又は重合性化合物の少なくとも1種との間で架橋反応し、共有結合が形成可能な光反応性を有する反応性官能基を少なくとも粒子表面の一部に有する反応性無機粒子であることが好ましい。反応性無機粒子同士又は反応性無機粒子とラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種との間で架橋反応することにより、ハードコート層の硬度をさらに向上させることができる。
 反応性無機粒子は、少なくとも表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有する。反応性官能基としては、例えば、重合性不飽和基が好適に用いられ、より好ましくは光硬化性不飽和基である。反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合、及びエポキシ基等が挙げられる。
 反応性シリカ粒子としては特に限定されず、従来公知のものを用いることができ、例えば、特開2008-165040号公報記載の反応性シリカ粒子等が挙げられる。また、反応性シリカ粒子の市販品としては、例えば、日産化学工業社製;MIBK-SD、MIBK-SDMS、MIBK-SDL、MIBK-SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。
 また、シリカ粒子は、球状シリカ粒子であってもよいが、異型シリカ粒子であることが好ましい。球状シリカ粒子と異型シリカ粒子とを混合させてもよい。なお、本明細書において、異型シリカ粒子とは、ジャガイモ状のランダムな凹凸を表面に有する形状のシリカ粒子を意味する。異型シリカ粒子は、その表面積が球状シリカ粒子と比較して大きいため、このような異型シリカ粒子を含有することで、上記樹脂成分等との接触面積が大きくなり、ハードコート層の硬度をより優れたものとすることができる。
 なお、異型シリカ粒子か否かは、ハードコート層の電子顕微鏡による断面観察により確認することができる。
 無機粒子の平均粒径は、硬度向上の点から、5nm以上であることが好ましく、10nm以上であることがより好ましい。無機粒子の平均粒径が小さすぎると、粒子の製造が困難であり、また粒子同士が凝集しやすくなるおそれがある。また、無機粒子の平均粒径は、透明性の点から、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。無機粒子の平均粒径が大きすぎると、ハードコート層に大きな凹凸が形成されるおそれや、ヘイズが高くなるおそれがある。
 ここで、無機粒子の平均粒径は、ハードコート層の電子顕微鏡による断面観察により測定することができ、任意に選択した10個の粒子の粒径の平均を平均粒径とする。なお、異型シリカ粒子の平均粒径は、ハードコート層の断面顕微鏡観察にて現れた異型シリカ粒子の外周の2点間距離の最大値(長径)と最小値(短径)との平均値である。
 無機粒子の大きさ及び含有量を調整することで、ハードコート層の硬度を制御できる。例えば、シリカ粒子の含有量は、上記重合性化合物100質量部に対して、25質量部以上であることが好ましく、30質量部以上であることがより好ましく、50質量部以上であることがさらに好ましい。シリカ粒子の含有量が上記範囲であれば、ハードコート層の硬度を高くすることができる。また、シリカ粒子の含有量は、上記重合性化合物100質量部に対して、150質量部以下であることが好ましく、120質量部以下であることがより好ましく、100質量部以下であることがさらに好ましい。シリカ粒子の含有量が上記範囲であれば、良好な耐屈曲性を得ることができる。シリカ粒子の含有量は、例えば、上記重合性化合物100質量部に対して、25質量部以上150質量部以下であることが好ましく、30質量部以上120質量部以下であることがより好ましく、50質量部以上100質量部以下であることがさらに好ましい。
(iv)紫外線吸収剤
 ハードコート層は、紫外線吸収剤を含有していてもよい。基材層の紫外線による劣化を抑制することができる。中でも、基材層がポリイミドを含有する場合には、ポリイミドを含有する基材層の経時的な色変化を抑制することができる。また、積層体を備える表示装置において、積層体よりも表示パネル側に配置されている部材、例えば偏光子等の紫外線による劣化を抑制することができる。
 ハードコート層に含まれる紫外線吸収剤は、中でも、吸光度測定における吸収波長のピークが300nm以上390nm以下にあることが好ましく、320nm以上370nm以下にあることがより好ましく、330nm以上370nm以下にあることがさらに好ましい。このような紫外線吸収剤は、UVA領域の紫外線を効率良く吸収することができ、一方でハードコート層を硬化するための開始剤の吸収波長250nmとピーク波長をずらすことによってハードコート層の硬化阻害を生じさせることなく、紫外線吸収能を有するハードコート層を形成することができるからである。
 紫外線吸収剤は、中でも、吸収波長のピークが380nm以下であることが、紫外線吸収剤によって着色することを抑制できる点から好ましい。
 なお、紫外線吸収剤の吸光度は、例えば紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用いて測定することができる。
 紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ヒドロキシベンゾフェノン系紫外線吸収剤等のベンゾフェノン系紫外線吸収剤、及び、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。
 中でも、基材層の紫外線による劣化を抑制する観点から、ヒドロキシベンゾフェノン系紫外線吸収剤、及びベンゾトリアゾール系紫外線吸収剤からなる群から選択される1種以上の紫外線吸収剤が好ましく、ヒドロキシベンゾフェノン系紫外線吸収剤からなる群から選択される1種以上の紫外線吸収剤がより好ましい。
 ヒドロキシベンゾフェノン系紫外線吸収剤の具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 ヒドロキシベンゾフェノン系紫外線吸収剤としては、中でも、2-ヒドロキシベンゾフェノン系紫外線吸収剤が好ましく、下記一般式(A)を有するベンゾフェノン系紫外線吸収剤からなる群から選択される1種以上であることがより好ましい。基材層の紫外線による劣化を抑制し、耐久性を向上させることができる。
Figure JPOXMLDOC01-appb-C000002
(一般式(A)において、X及びXはそれぞれ独立に、水酸基、-OR、又は炭素原子数1~15の炭化水素基を表し、Rは炭素原子数1~15の炭化水素基を表す。)
 一般式(A)において、X、X及びRにおける炭素原子数1~15の炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ドデシル基、アリル基、ベンジル基等が挙げられる。炭素原子数3以上の脂肪族炭化水素基は各々、直鎖又は分岐状であってよい。炭化水素基は炭素原子数1~12であることが好ましく、1~8であることがより好ましい。透明性が向上しやすい点から、炭化水素基は、脂肪族炭化水素基であることが好ましく、中でもメチル基及びアリル基であることが好ましい。
 耐久性が向上しやすい点から、X及びXはそれぞれ独立に、水酸基、又は-ORであることが好ましい。
 一般式(A)を有するベンゾフェノン系紫外線吸収剤からなる群から選択される1種以上としては、中でも、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、及び2,2’-ジヒドロキシ-4,4’-ジアリルオキシベンゾフェノンからなる群から選択される1種以上であることが好ましく、2,2’,4,4’-テトラヒドロキシベンゾフェノン、及び2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンからなる群から選択される1種以上であることがより好ましい。
 ベンゾトリアゾール系紫外線吸収剤の具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 ベンゾトリアゾール系紫外線吸収剤としては、中でも、2-(2-ヒドロキシフェニル)ベンゾトリアゾール類が好ましく、下記一般式(B)を有するベンゾトリアゾール系紫外線吸収剤からなる群から選択される1種以上であることがより好ましい。基材層の紫外線による劣化を抑制し、耐久性を向上させることができる。
Figure JPOXMLDOC01-appb-C000003
(一般式(B)において、Y、Y、及びYはそれぞれ独立に、水素原子、水酸基、-OR、又は炭素原子数1~15の炭化水素基を表し、Rは炭素原子数1~15の炭化水素基を表し、Y、Y、及びYの少なくとも1つは、水酸基、-OR、又は炭素原子数1~15の炭化水素基を表す。Yは、水素原子又はハロゲン原子を表す。)
 一般式(B)において、Y、Y、及びY、並びにRにおける炭素原子数1~15の炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ドデシル基等が挙げられる。炭素原子数3以上の脂肪族炭化水素基は各々、直鎖又は分岐状であってよい。炭化水素基は炭素原子数1~12であることが好ましく、1~8であることがより好ましい。透明性が向上しやすい点から、炭化水素基は、脂肪族炭化水素基であることが好ましく、直鎖又は分岐のアルキル基であることが好ましく、中でも、メチル基、t-ブチル基、t-ペンチル基、n-オクチル基、又はt-オクチル基であることが好ましい。
 一般式(B)において、Yにおけるハロゲン原子としては、塩素原子、フッ素原子、臭素原子等が挙げられ、中でも塩素原子が好ましい。
 一般式(B)において、中でも、Y、及びYが水素原子で、Yが水酸基、又は-ORを表すことが好ましく、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-2H-ベンゾトリアゾール、及び2-(2,4-ジヒドロキシフェニル)-2H-ベンゾトリアゾールなる群から選択される1種以上であることがより好ましい。基材層の紫外線による劣化を抑制し、耐久性を向上させることができる。
 ハードコート層中の紫外線吸収剤の含有量は、紫外線吸収剤を混合することによるヘイズを抑制する点から、例えば、10質量%以下であることが好ましく、7質量%以下であることがより好ましい。また、基材層の紫外線による劣化の抑制および耐久性の向上の観点から、ハードコート層中の紫外線吸収剤の含有量は、1質量%以上6質量%以下であることが好ましく、2質量%以上5質量%以下であることがより好ましい。
(v)防汚剤
 ハードコート層は、防汚剤を含有していてもよい。積層体に防汚性を付与することができる。
 防汚剤としては特に限定されず、例えば、シリコーン系防汚剤、フッ素系防汚剤、シリコーン系かつフッ素系防汚剤が挙げられる。また、防汚剤は、アクリル系防汚剤であってもよい。防汚剤は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 シリコーン系防汚剤やフッ素系防汚剤を含むハードコート層は、指紋が付きにくく(目立ちにくく)、拭き取り性が良好である。また、シリコーン系防汚剤やフッ素系防汚剤が含まれる場合、ハードコート層用硬化性樹脂組成物の塗布時の表面張力を下げることができるので、レベリング性が良く、得られるハードコート層の外観が良好なものとなる。
 また、シリコーン系防汚剤を含むハードコート層は、滑り性が良く、耐擦傷性が良好である。このようなシリコーン系防汚剤を含むハードコート層を有する積層体を備える表示装置では、指やペン等で接触したときの滑りが良くなるため、触感が良くなる。
 防汚剤は、防汚性能の耐久性を高めるために、反応性官能基を有することが好ましい。防汚剤が反応性官能基を有さない場合には、積層体の形態がロール状であるかシート状であるかにかかわらず、積層体を重ねたときに、積層体のハードコート層側の面とは反対側の面に防汚剤が転移してしまい、積層体のハードコート層側の面とは反対側の面に他の層を貼付または塗布する際に、他の層が剥がれてしまうおそれがあり、さらに、繰り返し屈曲したときに他の層が剥がれやすくなるおそれがある。これに対し、防汚剤が反応性官能基を有する場合には、防汚性能の性能持続性が良好となる。
 防汚剤が有する反応性官能基の数は、1以上であればよく、好ましくは2以上である。2以上の反応性官能基を有する防汚剤を用いることにより、ハードコート層に優れた耐擦傷性を付与することができる。
 また、防汚剤は、重量平均分子量が5000以下であることが好ましい。防汚剤の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。
 防汚剤は、ハードコート層に均一に分散されていてもよいが、少ない添加量で十分な防汚性を得るとともにハードコート層の強度低下を抑制する観点から、ハードコート層の表面側に偏在していることが好ましい。
 防汚剤をハードコート層の表面側に偏在させる方法としては、例えば、ハードコート層の形成時において、ハードコート層用硬化性樹脂組成物の塗膜を乾燥させ、硬化させる前に、塗膜を加熱して、塗膜に含まれる樹脂成分の粘度を下げることにより流動性を上げて、防汚剤をハードコート層の表面側に偏在させる方法や、表面張力の低い防汚剤を用い、塗膜の乾燥時に熱をかけずに塗膜の表面に防汚剤を浮かせ、その後塗膜を硬化させることで、防汚剤をハードコート層の表面側に偏在させる方法等が挙げられる。
 防汚剤の含有量は、例えば、上記樹脂成分100質量部に対して、0.01質量部以上3.0質量部以下であることが好ましい。防汚剤の含有量が少なすぎると、ハードコート層に十分な防汚性を付与できない場合があり、また、防汚剤の含有量が多すぎると、ハードコート層の硬度が低下するおそれがある。
(vi)他の添加剤
 ハードコート層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、ハードコート層に付与する機能に応じて適宜選択され、特に限定はされないが、例えば、屈折率を調整するための無機又は有機粒子、赤外線吸収剤、防眩剤、防汚剤、帯電防止剤、青色色素や紫色色素等の着色剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、光安定化剤、表面改質剤等が挙げられる。
(d)ハードコート層の形成方法
 ハードコート層の形成方法としては、例えば、基材層上に、上記重合性化合物等を含むハードコート層用硬化性樹脂組成物を塗布し、硬化させる方法等が挙げられる。
 ハードコート層用硬化性樹脂組成物は、重合性化合物を含有し、必要に応じて、重合開始剤、粒子、紫外線吸収剤、溶剤、添加剤等をさらに含有していてもよい。
 基材層上にハードコート層用硬化性樹脂組成物を塗布する方法としては、目的とする厚さで塗布可能な方法であれば特に制限はなく、例えばグラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スプレーコート法、ダイコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、ハードコート層用樹脂組成物の塗膜の形成方法として転写法を用いることもできる。
 ハードコート層用硬化性樹脂組成物の塗膜は、必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、さらにはこれらの乾燥を組み合わせる方法等が挙げられる。例えば、30℃以上120℃以下の温度で10秒間以上180秒間以下加熱することで乾燥させることができる。
 ハードコート層用硬化性樹脂組成物の塗膜を硬化させる方法としては、重合性化合物の重合性基に応じて適宜選択され、例えば、光照射及び加熱の少なくともいずれかを用いることができる。
 光照射には、主に、紫外線、可視光線、電子線、電離放射線等が使用される。紫外線硬化の場合には、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用することができる。エネルギー線源の照射量は、例えば、紫外線波長365nmでの積算露光量として、50mJ/cm以上5000mJ/cm以下程度とすることができる。
 加熱をする場合は、例えば、40℃以上120℃以下の温度にて処理することができる。また、室温(25℃)で24時間以上放置することにより反応を行ってもよい。
(2)基材層
 本実施態様における基材層は、ハードコート層を支持する部材である。
(a)基材層の特性
 本実施態様において、基材層の複合弾性率は、例えば、5.7GPa以上であることが好ましく、6.5GPa以上であることがより好ましく、7.5GPa以上であることがさらに好ましい。基材層の複合弾性率が上記範囲であることにより、積層体のハードコートフィルム側の面の表面硬度を高めることができ、耐傷性を向上させることができる。
 また、後述の複合弾性率の測定方法によれば、ガラス基材の複合弾性率は約40GPaであることから、基材層の複合弾性率は、例えば、40GPa以下であることが好ましく、30GPa以下であることがより好ましく、20GPa以下であることがさらに好ましい。基材層の複合弾性率は、例えば、5.7GPa以上40GPa以下であることが好ましく、6.5GPa以上30GPa以下であることがより好ましく、7.5GPa以上20GPa以下であることがさらに好ましい。
 基材層の複合弾性率の測定方法は、上述の接合層の複合弾性率の測定方法と同様とすることができる。
 基材層の複合弾性率は、例えば、基材層に含まれる材料の種類や組成等によって調整することができる。
 本実施態様における積層体を例えば表示装置に用いる場合、基材層は、透明性を有することが好ましい。具体的には、基材層の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。
 また、基材層のヘイズは、例えば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
(b)基材層の材料
 基材層としては、例えば、樹脂基材を用いることができる。樹脂基材を構成する樹脂は、上述の複合弾性率を満たし、透明性を有することが好ましい。このような樹脂としては、例えば、ポリイミド系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、セルロース系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンナフタラート系樹脂等が挙げられる。ポリイミド系樹脂としては、例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミド等が挙げられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等が挙げられる。セルロース系樹脂としては、例えば、トリアセチルセルロース(TAC)等が挙げられる。アクリル系樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル等が挙げられる。なお、樹脂基材は、単層であってもよく、共押出フィルム等の多層であってもよい。中でも、耐屈曲性を有し、優れた硬度および透明性を有することから、ポリイミド系樹脂が好ましい。
 ポリイミド系樹脂としては、上述の複合弾性率を満たし、透明性を有するものであれば特に限定されるものではないが、上記の中でも、ポリイミド、ポリアミドイミドが好ましく用いられる。
(i)ポリイミド
 ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。ポリイミドとしては、上述の複合弾性率を満たし、透明性を有するものであれば特に限定されるものではないが、例えば、優れた透明性および優れた剛性を有する点から、下記一般式(1)および下記一般式(3)で表される構造からなる群から選ばれる少なくとも1種の構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)において、Rはテトラカルボン酸残基である4価の基、Rは、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、および下記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基を表す。nは繰り返し単位数を表し、1以上である。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(2)において、RおよびRはそれぞれ独立して、水素原子、アルキル基、またはパーフルオロアルキル基を表す。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(3)において、Rはシクロヘキサンテトラカルボン酸残基、シクロペンタンテトラカルボン酸残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸残基、および4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸残基からなる群から選ばれる少なくとも1種の4価の基、R10は、ジアミン残基である2価の基を表す。n’は繰り返し単位数を表し、1以上である。
 なお、「テトラカルボン酸残基」とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。また、「ジアミン残基」とは、ジアミンから2つのアミノ基を除いた残基をいう。
 上記一般式(1)における、Rはテトラカルボン酸残基であり、テトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。テトラカルボン酸二無水物としては、例えば国際公開第2018/070523号に記載のものを挙げることができる。上記一般式(1)におけるRとしては、中でも、透明性が向上し、かつ剛性が向上する点から、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸残基、3,3’,4,4’-ビフェニルテトラカルボン酸残基、ピロメリット酸残基、2,3’,3,4’-ビフェニルテトラカルボン酸残基、3,3’,4,4’-ベンゾフェノンテトラカルボン酸残基、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸残基、4,4'-オキシジフタル酸残基、シクロヘキサンテトラカルボン酸残基、およびシクロペンタンテトラカルボン酸残基からなる群から選択される少なくとも1種を含むことが好ましく、さらに、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸残基、4,4’-オキシジフタル酸残基、および3,3’,4,4’-ジフェニルスルホンテトラカルボン酸残基からなる群から選択される少なくとも1種を含むことが好ましい。
 Rにおいて、これらの好適な残基を合計で、50モル%以上含むことが好ましく、さらに70モル%以上含むことが好ましく、よりさらに90モル%以上含むことが好ましい。
 また、Rとして、3,3’,4,4’-ビフェニルテトラカルボン酸残基、3,3’,4,4’-ベンゾフェノンテトラカルボン酸残基、およびピロメリット酸残基からなる群から選択される少なくとも1種のような剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸残基、2,3’,3,4’-ビフェニルテトラカルボン酸残基、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸残基、4,4'-オキシジフタル酸残基、シクロヘキサンテトラカルボン酸残基、およびシクロペンタンテトラカルボン酸残基からなる群から選択される少なくとも1種のような透明性を向上するのに適したテトラカルボン酸残基群(グループB)とを混合して用いることも好ましい。
 この場合、上記の剛直性を向上するのに適したテトラカルボン酸残基群(グループA)と、透明性を向上するのに適したテトラカルボン酸残基群(グループB)との含有比率は、透明性を向上するのに適したテトラカルボン酸残基群(グループB)1モルに対して、剛直性を向上するのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、さらに0.1モル以上5モル以下であることが好ましく、よりさらに0.3モル以上4モル以下であることが好ましい。
 上記一般式(1)におけるRとしては、中でも、透明性が向上し、かつ剛性が向上する点から、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、および上記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましく、さらに、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、ならびに、RおよびRがパーフルオロアルキル基である上記一般式(2)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましい。
 上記一般式(3)におけるRとしては、中でも、透明性が向上し、かつ剛性が向上する点から、4,4'-(ヘキサフルオロイソプロピリデン)ジフタル酸残基、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸残基、およびオキシジフタル酸残基を含むことが好ましい。
 Rにおいて、これらの好適な残基を、50モル%以上含むことが好ましく、さらに70モル%以上含むことが好ましく、よりさらに90モル%以上含むことが好ましい。
 上記一般式(3)におけるR10はジアミン残基であり、ジアミンから2つのアミノ基を除いた残基とすることができる。ジアミンとしては、例えば国際公開第2018/070523号に記載のものを挙げることができる。上記一般式(3)におけるR10としては、中でも、透明性が向上し、かつ剛性が向上する点から、2,2’-ビス(トリフルオロメチル)ベンジジン残基、ビス[4-(4-アミノフェノキシ)フェニル]スルホン残基、4,4’-ジアミノジフェニルスルホン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン残基、ビス[4-(3-アミノフェノキシ)フェニル]スルホン残基、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ジフェニルエーテル残基、1,4-ビス[4-アミノ-2-(トリフルオロメチル)フェノキシ]ベンゼン残基、2,2-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン残基、4,4’-ジアミノ-2-(トリフルオロメチル)ジフェニルエーテル残基、4,4’-ジアミノベンズアニリド残基、N,N’-ビス(4-アミノフェニル)テレフタルアミド残基、および9,9-ビス(4-アミノフェニル)フルオレン残基からなる群から選ばれる少なくとも1種の2価の基を含むことが好ましく、さらに、2,2’-ビス(トリフルオロメチル)ベンジジン残基、ビス[4-(4-アミノフェノキシ)フェニル]スルホン残基、および4,4’-ジアミノジフェニルスルホン残基からなる群から選ばれる少なくとも1種の2価の基を含むことが好ましい。
 R10において、これらの好適な残基を合計で、50モル%以上含むことが好ましく、さらに70モル%以上含むことが好ましく、よりさらに90モル%以上含むことが好ましい。
 また、R10として、ビス[4-(4-アミノフェノキシ)フェニル]スルホン残基、4,4’-ジアミノベンズアニリド残基、N,N’-ビス(4-アミノフェニル)テレフタルアミド残基、パラフェニレンジアミン残基、メタフェニレンジアミン残基、および4,4’-ジアミノジフェニルメタン残基からなる群から選択される少なくとも1種のような剛直性を向上するのに適したジアミン残基群(グループC)と、2,2’-ビス(トリフルオロメチル)ベンジジン残基、4,4’-ジアミノジフェニルスルホン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン残基、ビス[4-(3-アミノフェノキシ)フェニル]スルホン残基、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ジフェニルエーテル残基、1,4-ビス[4-アミノ-2-(トリフルオロメチル)フェノキシ]ベンゼン残基、2,2-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン残基、4,4’-ジアミノ-2-(トリフルオロメチル)ジフェニルエーテル残基、および9,9-ビス(4-アミノフェニル)フルオレン残基からなる群から選択される少なくとも1種のような透明性を向上するのに適したジアミン残基群(グループD)とを混合して用いることも好ましい。
 この場合、上記の剛直性を向上するのに適したジアミン残基群(グループC)と、透明性を向上するのに適したジアミン残基群(グループD)との含有比率は、透明性を向上するのに適したジアミン残基群(グループD)1モルに対して、剛直性を向上するのに適したジアミン残基群(グループC)が0.05モル以上9モル以下であることが好ましく、さらに0.1モル以上5モル以下であることが好ましく、0.3モル以上4モル以下であることがより好ましい。
 上記一般式(1)および上記一般式(3)で表される構造において、nおよびn’はそれぞれ独立に、繰り返し単位数を表し、1以上である。ポリイミドにおける繰り返し単位数nは、構造に応じて適宜選択されれば良く、特に限定されない。平均繰り返し単位数は、例えば10以上2000以下とすることができ、15以上1000以下であることが好ましい。
 また、ポリイミドは、その一部にポリアミド構造を含んでいても良い。含んでいても良いポリアミド構造としては、例えば、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構造や、テレフタル酸のようなジカルボン酸残基を含むポリアミド構造が挙げられる。
 透明性を向上させ、且つ、表面硬度を向上させる点から、RおよびRのテトラカルボン酸残基である4価の基、及び、RおよびR10のジアミン残基である2価の基の少なくとも1つは、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていてもよいアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むことが好ましい。ポリイミドが、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり配向性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。一方で、ポリイミドが(i)フッ素原子を含むと、ポリイミド骨格内の電子状態を電荷移動し難くすることができる点から透明性が向上する。また、ポリイミドが(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から透明性が向上する。また、ポリイミドが(iii)芳香族環同士をスルホニル基又はフッ素で置換されていてもよいアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から透明性が向上する。
 中でも、透明性を向上させ、且つ、表面硬度を向上させる点から、RおよびRのテトラカルボン酸残基である4価の基、及び、RおよびR10のジアミン残基である2価の基の少なくとも1つは、芳香族環とフッ素原子とを含むことが好ましく、RおよびR10のジアミン残基である2価の基が、芳香族環とフッ素原子とを含むことが好ましい。
 このようなポリイミドの具体例としては、国際公開第2018/070523号に記載の特定の構造を有するものが挙げられる。
 ポリイミドは、公知の方法により合成することができる。また、ポリイミドは、市販のものを用いても良い。ポリイミドの市販品としては、例えば、三菱ガス化学社製のネオプリム(登録商標)等が挙げられる。
 ポリイミドの重量平均分子量は、例えば、3000以上50万以下であることが好ましく、5000以上30万以下であることがより好ましく、1万以上20万以下であることがさらに好ましい。重量平均分子量が小さすぎると、充分な強度が得られない場合があり、重量平均分子量が大きすぎると、粘度が上昇し、溶解性が低下するため、表面が平滑で厚み均一な基材層が得られない場合がある。
 なお、ポリイミドの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。具体的には、ポリイミドを0.1質量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、37℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
(ii)ポリアミドイミド
 ポリアミドイミドとしては、上述の複合弾性率を満たし、透明性を有するものであれば特に限定されるものではなく、例えば、ジアンヒドリド由来の構成単位およびジアミン由来の構成単位を含む第1ブロックと、芳香族ジカルボニル化合物由来の構成単位および芳香族ジアミン由来の構成単位を含む第2ブロックと、を有するものを挙げることができる。上記ポリアミドイミドにおいて、上記ジアンヒドリドは、例えば、ビフェニルテトラカルボン酸二無水物(BPDA)および2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)を含むことができる。また、上記ジアミンは、ビストリフルオロメチルベンジジン(TFDB)を含むことができる。すなわち、上記ポリアミドイミドは、ジアンヒドリドおよびジアミンを含む単量体が共重合された第1ブロックと、芳香族ジカルボニル化合物および芳香族ジアミンを含む単量体が共重合された第2ブロックとを有するポリアミドイミド前駆体をイミド化させた構造を有するものである。上記ポリアミドイミドは、イミド結合を含む第1ブロックとアミド結合を含む第2ブロックとを有することにより、光学特性だけでなく、熱的、機械的特性に優れたものとなる。特に、第1ブロックを形成するジアミンとして、ビストリフルオロメチルベンジジン(TFDB)を使用することにより、熱安定性および光学特性を向上させることができる。また、第1ブロックを形成するジアンヒドリドとして、2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)およびビフェニルテトラカルボン酸二無水物(BPDA)を使用することにより、複屈折の向上および耐熱性の確保を図ることができる。
 第1ブロックを形成するジアンヒドリドは、2種類のジアンヒドリド、すなわち、6FDAおよびBPDAを含む。第1ブロックには、TFDBおよび6FDAが結合された重合体とTFDBおよびBPDAが結合された重合体とが、別途の繰り返し単位を基準にそれぞれ区分されて含まれていてもよく、同じ繰り返し単位内に規則的に配列されていてもよく、あるいは完全にランダムに配列されて含まれていてもよい。
 第1ブロックを形成する単量体のうち、ジアンヒドリドとして、BPDAおよび6FDAが1:3~3:1のモル比で含まれることが好ましい。光学的特性の確保だけでなく、機械的特性及び耐熱性の低下を抑制することができ、優れた複屈折を有することができるからである。
 第1ブロックおよび第2ブロックのモル比は、5:1~1:1であることが好ましい。第2ブロックの含有量が著しく低い場合、第2ブロックによる熱的安定性及び機械的特性の向上の効果が十分に得られない場合がある。また、第2ブロックの含有量が第1ブロックの含有量よりもさらに高い場合、熱的安定性及び機械的特性は向上できるものの、黄色度や透過度等が低下する等、光学特性が悪くなり、複屈折特性も高まる場合がある。なお、第1ブロックおよび第2ブロックは、ランダム共重合体であってもよく、ブロック共重合体であってもよい。ブロックの繰り返し単位は特に限定されない。
 第2ブロックを形成する芳香族ジカルボニル化合物としては、例えば、テレフタロイルクロリド(p-Terephthaloyl chloride、TPC)、テレフタル酸(Terephthalic acid)、イソフタロイルジクロリド(Iso-phthaloyl dichloride)及び4,4’-ベンゾイルジクロリド(4,4’-benzoyl chloride)からなる群から選択される1種以上を挙げることができる。好ましくは、テレフタロイルクロリド(p-Terephthaloyl chloride、TPC)及びイソフタロイルジクロリド(Iso-phthaloyl dichloride)の中から選択される1種以上とすることができる。
 第2ブロックを形成するジアミンとしては、例えば、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン(HFBAPP)、ビス(4-(4-アミノフェノキシ)フェニル)スルホン(BAPS)、ビス(4-(3-アミノフェノキシ)フェニル)スルホン(BAPSM)、4,4’-ジアミノジフェニルスルホン(4DDS)、3,3’-ジアミノジフェニルスルホン(3DDS)、2,2-ビス(4-(4-アミノフェノキシ)フェニルプロパン(BAPP)、4,4’-ジアミノジフェニルプロパン(6HDA)、1,3-ビス(4-アミノフェノキシ)ベンゼン(134APB)、1,3-ビス(3-アミノフェノキシ)ベンゼン(133APB)、1,4-ビス(4-アミノフェノキシ)ビフェニル(BAPB)、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル(6FAPBP)、3,3-ジアミノ-4,4-ジヒドロキシジフェニルスルホン(DABS)、2,2-ビス(3-アミノ-4-ヒドロキシロキシフェニル)プロパン(BAP)、4,4’-ジアミノジフェニルメタン(DDM)、4,4’-オキシジアニリン(4-ODA)及び3,3’-オキシジアニリン(3-ODA)からなる群から選択される1種以上の柔軟基を有するジアミンを挙げることができる。
 芳香族ジカルボニル化合物を使用する場合、高い熱安定性及び機械的物性を実現するには容易であるが、分子構造内のベンゼン環によって高い複屈折を示すことがある。そのため、第2ブロックによる複屈折の低下を抑制するために、ジアミンは、分子構造に柔軟基が導入されたものを使用することが好ましい。具体的には、ジアミンは、ビス(4-(3-アミノフェノキシ)フェニル)スルホン(BAPSM)、4,4’-ジアミノジフェニルスルホン(4DDS)及び2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン(HFBAPP)の中から選択される1種以上のジアミンであることがより好ましい。特に、BAPSMのように柔軟基の長さが長く、置換基の位置がメタ位にあるジアミンであるほど、優れた複屈折率を示すことができる。
 ビフェニルテトラカルボン酸二無水物(BPDA)および2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)を含むジアンヒドリドと、ビストリフルオロメチルベンジジン(TFDB)を含むジアミンとが共重合された第1ブロック、ならびに、芳香族ジカルボニル化合物と芳香族ジアミンとが共重合された第2ブロックを分子構造内に含むポリアミドイミド前駆体は、GPCによって測定した重量平均分子量が例えば200,000以上215,000以下であることが好ましく、粘度が例えば2400poise以上2600poise以下であることが好ましい。
 ポリアミドイミドは、ポリアミドイミド前駆体をイミド化することにより得ることができる。また、ポリアミドイミドを用いてポリアミドイミドフィルムを得ることができる。ポリアミドイミド前駆体をイミド化する方法およびポリアミドイミドフィルムの製造方法については、例えば、特表2018-506611号公報を参照することができる。
4.ガラス基材
 本実施態様におけるガラス基材の厚さは、100μm以下であり、好ましくは90μm以下、より好ましくは80μm以下、さらに好ましくは70μm以下である。ガラス基材の厚さが上記範囲のように薄いことにより、良好な耐屈曲性を得ることができるともに、十分な硬度を得ることができる。また、積層体のカールを抑制することもできる。さらに、積層体の軽量化の面で好ましい。一方、ガラス基材の厚さは、例えば、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上、特に好ましくは30μm以上である。ガラス基材の厚さが上記範囲であることにより、良好な耐衝撃性を得ることができる。ガラス基材の厚さは、10μm以上100μm以下であり、好ましくは15μm以上90μm以下、より好ましくは20μm以上80μm以下、さらに好ましくは25μm以上75μm以下である。
 また、積層体の総厚さに対するガラス基材の厚さの比率は、例えば、30%以上であることが好ましく、より好ましくは40%以上、さらに好ましくは50%以上である。上記の比率が上記範囲であれば、ガラス基材の厚さを相対的に厚くすることができ、ガラス基材によるガラスの質感や触感を維持することができる。一方、積層体の総厚さに対するガラス基材の厚さの比率は、例えば、90%以下であることが好ましく、より好ましくは80%以下、さらに好ましくは70%以下である。上記の比率が上記範囲であれば、ハードコートフィルムの厚さを相対的に厚くすることができ、耐衝撃性を高めることができる。積層体の総厚さに対するガラス基材の厚さの比率は、例えば、30%以上90%以下であることが好ましく、より好ましくは40%以上80%以下、さらに好ましくは50%以上70%以下である。
 ガラス基材を構成するガラスは、特に限定されないが、中でも、化学強化ガラスであることが好ましい。化学強化ガラスは機械的強度に優れており、その分薄くできる点で好ましい。化学強化ガラスは、典型的には、ガラスの表面近傍について、ナトリウムをカリウムに代える等、イオン種を一部交換することで、化学的な方法によって機械的物性を強化したガラスであり、表面に圧縮応力層を有する。
 化学強化ガラス基材を構成するガラスとしては、例えば、アルミノシリケートガラス、ソーダライムガラス、ホウ珪酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウ珪酸ガラス等が挙げられる。また、化学強化ガラス基材は、結晶化ガラスで構成されていてもよい。
 化学強化ガラス基材の市販品としては、例えば、コーニング社のGorilla Glass(ゴリラガラス)、AGC社のDragontrail(ドラゴントレイル)、ショット社の化学強化ガラス等が挙げられる。
5.機能層
 本実施態様における積層体は、ハードコート層の基材層とは反対の面側、ハードコート層と基材層との間、基材層と接合層との間、ガラス基材と接合層との間、あるいはガラス基材の接合層とは反対の面側に、機能層をさらに有することができる。
 また、機能層は、単層であってもよく、複数の層を有していてもよい。また、機能層は、単一の機能を有する層であってもよく、互いに異なる機能を有する複数の層を有していてもよい。
 ハードコート層の基材層とは反対の面側に配置される機能層としては、例えば、反射防止層、防眩層、保護層等が挙げられる。また、ハードコート層と基材層との間に配置される機能層としては、例えば、プライマー層、飛散防止層、衝撃吸収層等が挙げられる。また、基材層と接合層との間に配置される機能層としては、例えば、加飾層、プライマー層、調色層、飛散防止層、衝撃吸収層等が挙げられる。また、ガラス基材と接合層との間に配置される機能層としては、例えば、ITO等の電極、アンテナ配線等が挙げられる。また、ガラス基材の接合層とは反対の面側に配置される機能層としては、例えば、接着層、加飾層、衝撃吸収層等が挙げられる。
(反射防止層)
 本実施態様における積層体は、例えば図2に示すように、ハードコート層6の基材層5とは反対の面側に反射防止層7を有していてもよい。また、反射防止層7は、例えば図2に示すようにハードコートフィルム4を構成する層であってもよい。
 反射防止層は、単層で構成されていてもよく、多層で構成されていてもよい。
 反射防止層としては、一般的な反射防止層を適用することができ、例えば、ハードコート層よりも屈折率が低い材料を含有する単層膜や、ハードコート層側から高屈折率層と低屈折率層とを有する多層膜、ハードコート層側から高屈折率層と低屈折率層とが交互に積層されている多層膜、ハードコート層側から順に中屈折率層と高屈折率層と低屈折率層とを有する多層膜等が挙げられる。
 反射防止層が単層膜である場合、単層膜に含有される材料としては、ハードコート層よりも屈折率が低い材料であればよく、例えば、フッ化マグネシウム等が挙げられる。
 また、反射防止層が多層膜である場合、低屈折率層の屈折率は、例えば、1.45以下であることが好ましく、1.40以下であることがより好ましい。低屈折率層の屈折率を上記範囲とすることで、反射防止性が良好となる。また、低屈折率層の屈折率の下限は、1.10以上が実際的である。
 低屈折率層としては、例えば、金属アルコキシドの加水分解重縮合物を含有するもの、低屈折率の樹脂を含有するもの、低屈折粒子を含有するもの、バインダー樹脂および低屈折粒子を含有するもの等を挙げることができる。
 金属アルコキシドの加水分解重縮合物は、例えば、ゾルゲル法により得ることができる。
 低屈折率の樹脂としては、例えば、フッ素樹脂が挙げられる。
 低屈折率粒子としては、特に限定されるものではなく、例えば、シリカやフッ化マグネシウム等の無機系、または有機系のいずれも用いることができる。中でも、反射防止層の反射率を低下させる観点から、空隙を有する粒子が好ましい。空隙を有する粒子は、微細な空隙を内部に有し、空隙の中に空気を含むため、屈折率が低いものとなっている。空隙を有する粒子としては、多孔質粒子および中空粒子が挙げられる。中でも、中空粒子が好ましい。
 中空粒子とは、外殻層を有し、当該外殻層に囲まれた粒子内部が空洞であり、粒子内部に空気を含む粒子をいう。
 中空粒子の外殻層は、無機物であっても有機物であってもよく、例えば、金属、金属酸化物、樹脂、シリカ等からなるものが挙げられる。中でも、外殻層がシリカである、中空シリカ粒子が好ましい。外殻層がシリカである場合、当該シリカは、結晶性、ゾル状、ゲル状のいずれの状態であってもよい。
 中空粒子の形状は、真球状、回転楕円体状および球体に近似できる多面体形状等の略球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよい。中でも、真球状および略球状であることが好ましく、回転楕円体状または真球状であることがより好ましい。
 低屈折率層がバインダー樹脂および低屈折粒子を含有する場合、低屈折率粒子は表面処理されたものが好ましい。低屈折率粒子の表面処理は、シランカップリング剤を用いた表面処理が好ましい。中でも、(メタ)アクリロイル基を有するシランカップリング剤を用いた表面処理が好ましい。低屈折率粒子に表面処理を施すことにより、バインダー樹脂との親和性が向上し、粒子の分散が均一となり、粒子同士の凝集が生じにくくなるので、凝集由来の大粒子化による低屈折率層の透明化の低下や、低屈折率層用組成物の塗布性、低屈折率層用組成物の塗膜強度の低下を抑制することができる。
 低屈折率粒子の表面処理において好ましく用いられるシランカップリング剤としては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン及びビニルトリエトキシシラン等が挙げられる。
 低屈折率粒子の平均粒子径は、例えば、5nm以上200nm以下であることが好ましく、10nm以上150nm以下であることがより好ましい。また、低屈折率粒子が中空粒子の場合、平均粒子径は、例えば、5nm以上200nm以下であることが好ましく、30nm以上150nm以下であることがより好ましく、50nm以上110nm以下であることがさらに好ましい。平均粒子径が上記範囲であれば、低屈折率層の厚さを均一にしやすくできる。また、平均粒子径を5nm以上とすることにより、粒子の凝集を抑制しやすくできるとともに、中空粒子の場合において、低屈折率層の屈折率を十分に下げやすくできる。また、平均粒子径を200nm以下とすることにより、粒子の拡散による白化で視認性が低下することを抑制しやすくできる。
 低屈折率粒子および後述の高屈折率粒子の平均粒子径は、以下の(1)~(3)の作業により算出できる。
(1)反射防止層の断面をTEMまたはSTEMで撮像する。TEMまたはSTEMの加速電圧は、例えば10kv以上30kV以下、倍率は、例えば5万倍以上30万倍以下とすることが好ましい。
(2)観察画像から任意の10個の粒子を抽出し、個々の粒子の粒子径を算出する。粒子径は、粒子の断面を任意の平行な2本の直線で挟んだとき、該2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。
(3)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の数平均から得られる値を粒子の平均粒子径とする。
 低屈折率層がバインダー樹脂および低屈折粒子を含有する場合、低屈折率粒子の含有量は、低屈折率層のバインダー樹脂100質量部に対して、20質量部以上250質量部以下であることが好ましく、30質量部以上230質量部以下であることがより好ましく、40質量部以上200質量部以下であることがさらに好ましい。低屈折率粒子の含有量が上記範囲内にあれば、反射防止性と耐擦傷性とのバランスを良好にすることができる。
 また、低屈折率層に含まれる低屈折率粒子の全量に対する中空粒子の割合は、40質量%以上が好ましく、50質量%以上がより好ましい。中空粒子の割合を上記範囲とすることで、低屈折率層の屈折率を十分に下げることができ、反射防止性が良好となる。
 低屈折率層に含有されるバインダー樹脂としては、硬化性樹脂組成物の硬化物が挙げられる。硬化性樹脂組成物としては、ハードコート層で例示したものと同様のものを用いることができ、光硬化性樹脂組成物が好適である。
 また、バインダー樹脂を形成する硬化性樹脂組成物は、光硬化性官能基を有する含フッ素オリゴマーおよび/またはモノマー等の含フッ素化合物を含むことが好ましい。フッ素化合物を含むことにより、低屈折率層の屈折率を低くしやすくできるとともに、低屈折率層に防汚性および滑り性を付与できる。
 また、低屈折率層の厚さは、可視光線の波長域の1/4程度(100nm前後)であることが好ましいため、例えば、80nm以上120nm以下であることが好ましく、85nm以上110nm以下であることがより好ましく、90nm以上105nmであることがさらに好ましい。
 低屈折率層の形成方法としては、ウェット法およびドライ法が挙げられる。ウェット法としては、金属アルコキシド等を用いてゾルゲル法により形成する手法、低屈折率の樹脂を塗布して形成する手法、バインダー樹脂および低屈折率粒子を含有する低屈折率層用組成物を塗布して形成する手法が挙げられる。ドライ法としては、低屈折率粒子を用いて、物理気相成長法または化学気相成長法により形成する手法が挙げられる。ウェット法は生産効率の点で優れており、中でも、バインダー樹脂および低屈折率粒子を含有する低屈折率層用組成物を塗布して形成する手法が好ましい。
 また、高屈折率層の屈折率は、例えば、1.55以上1.85以下であることが好ましく、1.56以上1.70以下であることがより好ましい。高屈折率層の屈折率を所定の値以上とすることで、反射防止性が良好となる。また、高屈折率層の上限は1.85以下が実際的である。
 高屈折率層としては、例えば、バインダー樹脂および高屈折粒子を含有するものが挙げられる。
 高屈折率粒子としては、例えば、五酸化アンチモン、酸化亜鉛、酸化チタン、酸化セリウム、スズドープ酸化インジウム、アンチモンドープ酸化スズ、酸化イットリウム及び酸化ジルコニウム等が挙げられる。
 高屈折率粒子の平均粒子径は、例えば、5nm以上200nm以下が好ましく、5nm以上100nm以下がより好ましく、10nm以上80nm以下がさらに好ましい。平均粒子径を5nm以上とすることにより、粒子の凝集を抑制しやすくでき、平均粒子径を200nm以下とすることにより、粒子の拡散による白化で視認性が低下することを抑制しやすくできる。
 高屈折率粒子の含有量は、塗膜の高屈折率化および塗膜強度のバランスの観点から、バインダー樹脂100質量部に対して、50質量部以上500質量部以下であることが好ましく、100質量部以上450質量部以下であることがより好ましく、200質量部以上430質量部以下であることがさらに好ましい。
 高屈折率層に含有されるバインダー樹脂としては、硬化性樹脂組成物の硬化物が挙げられる。硬化性樹脂組成物としては、ハードコート層で例示したものと同様のものを用いることができ、光硬化性樹脂組成物が好適である。
 また、高屈折率層の厚さは、例えば、200nm以下であることが好ましく、50nm以上180nm以下であることがより好まく、90nm以上160nm以下であることがさらに好ましい。高屈折率層の厚さを上記範囲とすることで、可視光領域(380nm~780nm)の内、広い波長域で低反射性を示すことができる。
 高屈折率層の形成方法としては、例えば、バインダー樹脂および高屈折率粒子を含有する高屈折率層用組成物を塗布して形成する手法が挙げられる。
 反射防止層の厚さは、一般的な反射防止層の厚さと同様とすることができ、反射防止層の層構成に応じて適宜選択される。
 反射防止層の形成方法としては、例えば、塗布法、蒸着法等を挙げることができ、反射防止層の材料等に応じて適宜選択される。
6.第2の接合層
 本実施態様における積層体においては、例えば図4に示すように、ガラス基材2の接合層3とは反対の面側に第2の接合層10が配置されていてもよい。第2の接合層は、積層体と他の部材とを接合するための層である。他の部材としては、例えば、後述の表示装置における表示パネル等が挙げられる。また、第2の接合層は、通常、積層体の最表面に配置される。
 なお、本明細書においては、説明の便宜上、ガラス基材と基材層との間に配置されている接合層を単に「接合層」と称し、ガラス基材の接合層とは反対側の面に配置されている接合層を「第2の接合層」と称する。
 ここで、ガラス基材の衝撃破壊の一つに、曲げ破壊がある。曲げ破壊は、ガラス基材が受けた衝撃によってガラス基材が撓み、撓み量が限界に達することによってガラス基材が割れる現象である。ガラス基材の表面に瞬間的かつ局所的に衝撃が加わった場合、ガラス基材が瞬間的かつ局所的に変形し、ガラス基材の裏面において瞬間的かつ局所的に引張応力が生じ、ガラス基材の裏面において上記引張応力に耐えられず割れや破断が生じる。
 本開示の発明者らは、ガラス基材と接合層とハードコートフィルムとをこの順に有する積層体において、上記積層体がガラス基材の接合層とは反対の面側に第2の接合層をさらに有する場合の耐衝撃性および耐屈曲性について鋭意検討を行った。第2の接合層は、通常、ガラス基材、基材層およびハードコート層よりも柔らかいことから、衝撃により変形しやすい。そのため、積層体に衝撃が加わった際に、第2の接合層の変形の程度が大きいと、ガラス基材に瞬間的かつ局所的な変形が生じやすくなると考えられる。この場合、ガラス基材に曲げ破壊が生じやすくなり、耐衝撃性が低下する懸念がある。そして、上記積層体がガラス基材の接合層とは反対の面側に第2の接合層をさらに有する場合には、第2の接合層の硬さや厚さ等によって耐衝撃性が大きく変化することが判明した。さらには、上記積層体がガラス基材の接合層とは反対の面側に第2の接合層をさらに有する場合であっても、第2の接合層の厚さ(μm)に対する、第2の接合層の20℃における貯蔵弾性率(MPa)の比が所定の範囲内である場合には、ガラス基材の曲げ破壊を抑制し、耐衝撃性を損なうことなく、良好な耐屈曲性を得ることができることを見出した。
 すなわち、第2の接合層の厚さ(μm)に対する、第2の接合層の20℃における貯蔵弾性率(MPa)の比は、例えば、0.001以上0.4以下であることが好ましく、0.002以上0.35以下であることがより好ましく、0.003以上0.3以下であることがさらに好ましく、0.004以上0.2以下であることが特に好ましい。上述したように、第2の接合層は、通常、ガラス基材ならびにハードコートフィルムの基材層およびハードコート層よりも柔らかいことから、衝撃により変形しやすく、第2の接合層の厚さが厚いほど、衝撃による変形の程度が大きくなる傾向がある。そのため、上記の第2の接合層の厚さに対する貯蔵弾性率の比が小さすぎると、第2の接合層の厚さが相対的に厚くなり、耐衝撃性が低下するおそれがある。また、上記の第2の接合層の厚さに対する貯蔵弾性率の比が大きくなると、耐衝撃性向上の効果が飽和してしまう。さらに、上記の第2の接合層の厚さに対する貯蔵弾性率の比が大きすぎると、第2の接合層の厚さが相対的に薄く、第2の接合層の貯蔵弾性率が相対的に大きくなり、耐屈曲性が低下するおそれがある。
 上述したように、上記接合層に、感熱接着剤または硬化型接着剤を用いる場合、さらにはヒートシール剤、紫外線硬化型接着剤または熱硬化型接着剤を用いる場合、特にヒートシール剤を用いる場合には、上記接合層のガラス転移温度や複合弾性率を好ましい範囲に調整しやすく、耐衝撃性を向上させることができる。そのため、このような場合において、さらに第2の接合層を配置する場合には、耐衝撃性が損なわれないように、上記の第2の接合層の厚さに対する貯蔵弾性率の比が上記範囲内であることが好ましい。
 第2の接合層の厚さは、上記の第2の接合層の厚さに対する貯蔵弾性率の比を満たしていれば特に限定されないが、例えば、5μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましく、15μm以上50μm以下であることがさらに好ましい。第2の接合層の厚さが所定の値以上である場合には、接着性が良好である。中でも、第2の接合層の厚さが15μm以上である場合には、接着性が良好であるため、耐屈曲性、特に動的屈曲性を良好にすることができる。また、上述したように、第2の接合層は、通常、ガラス基材ならびにハードコートフィルムの基材層およびハードコート層よりも柔らかいことから、衝撃により変形しやすく、第2の接合層の厚さが厚いほど、衝撃による変形の程度が大きくなる傾向がある。そのため、第2の接合層の厚さが所定の値以下である場合には、第2の接合層による耐衝撃性の低下を抑制することができる。中でも、第2の接合層の厚さが50μm以下である場合には、良好な耐衝撃性を得ることができる。
 第2の接合層の20℃における貯蔵弾性率は、上記の第2の接合層の厚さに対する貯蔵弾性率の比を満たしていれば特に限定されないが、例えば、0.10MPa以上10MPa以下であることが好ましく、0.10MPa以上5MPa以下であることがより好ましく、0.10MPa以上3MPa以下であることがさらに好ましい。第2の接合層の貯蔵弾性率が所定の値以上であり、ある程度の硬さを有することにより、良好な耐衝撃性を維持することができる。また、第2の接合層の貯蔵弾性率が所定の値以下であることにより、耐屈曲性、特に動的屈曲性を良好にすることができる。
 ここで、第2の接合層の20℃における貯蔵弾性率E’は、動的粘弾性測定装置(DMA)によって測定された値である。動的粘弾性測定装置(DMA)によって、第2の接合層の貯蔵弾性率E’を測定する際には、まず、第2の接合層の材料を溶解する、または第2の接合層の材料を溶融することによって溶液を調製し、基板上に溶液を塗布し、乾燥させた後、基板から膜を剥離することで、第2接合層の試験片を得る。溶剤は、第2の接合層の材料に応じて適宜選択され、例えば、酢酸エチル等が挙げられる。基板は、例えば、ニチアス社製のナフロン(登録商標)シート(300mm×300mm×1mm厚)を用いることができる。そして、第2の接合層を巻くことによって、φ5mm×高さ5mm程度の円柱状にする。動的粘弾性測定装置の圧縮冶具(パラレルプレートφ8mm)の間に、上記の円柱状の測定サンプルを取り付ける。その後、圧縮荷重をかけ、周波数1Hzの縦振動を与えて、-50℃以上200℃以下の範囲での動的粘弾性測定を行い、それぞれの温度での第2の接合層の貯蔵弾性率E’を測定する。動的粘弾性測定装置としては、例えば、TAインスツルメンツ社製のRSAIIIを用いることができる。なお、上記方法における具体的な測定条件を下記に示す。
(貯蔵弾性率E’の測定条件)
・測定サンプル:φ5mm×高さ5mmの円柱状
・測定治具:圧縮(パラレルプレート)
・測定モード:温度依存性(温度範囲:-50℃~200℃、昇温速度:5℃/min)
・周波数:1Hz
 第2の接合層の貯蔵弾性率は、例えば、第2の接合層に含まれる材料の種類や組成等によって調整することができる。
 また、後述するように、第2の接合層に光学透明粘着剤を用いる場合、粘着剤の貯蔵弾性率の調整方法としては、公知の弾性率の調整方法を用いることができ、例えば、架橋密度、官能基含有モノマーの種類等によって弾性率を調整することができる。例えば、架橋密度が大きくなると、貯蔵弾性率が大きくなる傾向がある。
 また、第2の接合層のガラス転移温度は、例えば、-50℃以上30℃以下であることが好ましく、-50℃以上25℃以下であることがより好ましく、-50℃以上0℃以下であることがさらに好ましく、-45℃以上-5℃以下であることが特に好ましく、-40℃以上-5℃以下であることがより好ましい。第2の接合層のガラス転移温度が上記範囲であれば、上述の貯蔵弾性率を満たす第2の接合層が得やすくなる。また、第2の接合層のガラス転移温度が-40℃以上である場合には、低温屈曲性を良好にすることができる。また、第2の接合層のガラス転移温度が25℃以下である場合には、常温屈曲性を良好にすることができる。
 なお、第2の接合層のガラス転移温度の測定方法は、上記接合層のガラス転移温度の測定方法と同様とすることができる。
 また、第2の接合層の厚さ(μm)をT、第2の接合層の20℃における貯蔵弾性率(MPa)をE’、ガラス基材の厚さ(μm)をTとしたとき、下記式(4)を満たすことが好ましい。
   T×E’/T≧0.1   (4)
上記式(4)を満たす場合には、例えば、ガラス基材の厚さが比較的薄い場合であっても、第2の接合層の貯蔵弾性率が大きく、第2の接合層がある程度の硬さを有する場合には、耐衝撃性を良好にすることができる。上記式(4)の左辺は、0.1以上30以下であることが好ましい。
 本実施態様における積層体を例えば表示装置に用いる場合、第2の接合層は、透明性を有することが好ましい。具体的には、第2の接合層の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。
 また、第2の接合層のヘイズは、例えば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
 第2の接合層に用いられる材料は、上述の第2の接合層の厚さに対する貯蔵弾性率の比を満たす材料であることが好ましく、例えば、光学透明粘着剤(OCA;Optical Clear Adhesive)を挙げることができる。
 光学透明粘着剤としては、例えば、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、酢酸ビニル系粘着剤等が挙げられる。中でも、耐屈曲性、密着性、透明性の観点から、アクリル系粘着剤が好ましい。また、光学透明粘着剤としては、市販品を用いることもできる。
 第2の接合層の配置方法としては、例えば、ガラス基材上に粘着剤を塗布する方法や、フィルム状の第2の接合層を用い、ガラス基材上に第2の接合層を貼り合わせる方法が挙げられる。
7.第2の基材層および第3の接合層
 本実施態様における積層体においては、例えば図3に示すように、ガラス基材2の接合層3とは反対の面側に、ガラス基材2側から、第3の接合層8および第2の基材層9が配置されていてもよい。
 なお、本明細書においては、説明の便宜上、ガラス基材と基材層との間に配置されている接合層を単に「接合層」と称し、ガラス基材と第2の基材層との間に配置されている接合層を「第3の接合層」と称する。また、第3の接合層は、上記第2の接合層には含まれない。
 ガラス基材の接合層とは反対の面側に、ガラス基材側から、第3の接合層および第2の基材層が配置されていることにより、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることができる。この理由は以下のように推察される。
 本開示の発明者らは、衝撃によるガラス基材の割れおよび破断について鋭意検討を行い、ガラス基材の表面に瞬間的かつ局所的に衝撃が加わった場合、ガラス基材が瞬間的かつ局所的に変形し、ガラス基材の裏面において瞬間的かつ局所的に引張応力が生じ、ガラス基材の裏面において上記引張応力に耐えられず割れや破断が生じることを新たに知見した。
 ガラス基材の接合層とは反対側の面(裏面)に、第3の接合層を介して、第2の基材層が配置されている場合には、積層体のハードコートフィルム側の面からの衝撃によるガラス基材の瞬間的かつ局所的な変形を抑制することができ、ガラス基材の裏面において瞬間的かつ局所的に引張応力が生じるのを抑制することができる。よって、耐衝撃性を向上させることが可能である。
(1)第2の基材層
 本実施態様における第2の基材層は、ガラス基材の接合層とは反対の面側に第3の接合層を介して配置され、衝撃によるガラス基材の瞬間的かつ局所的な変形を抑制するための層である。本実施態様における積層体を例えば表示装置の表示パネルの観察者側に配置する場合には、積層体は、第2の基材層側の面が表示パネルに対向するように配置される。また、本実施態様における積層体を例えば樹脂成型品の表面に配置する場合には、積層体は、第2の基材層側の面が樹脂成型品に対向するように配置される。
 本実施態様において、第2の基材層の複合弾性率は、例えば、7.0GPa以上であることが好ましく、7.3GPa以上であることがより好ましく、7.5GPa以上であることがさらに好ましい。第2の基材層の複合弾性率が上記範囲であることにより、衝撃によるガラス基材の瞬間的かつ局所的な変形を抑制し、衝撃によるガラス基材の割れを抑制することができ、耐衝撃性を向上させることができる。一方、第2の基材層の複合弾性率は、例えば、100GPa以下であり、90GPa以下であってもよく、80GPa以下であってもよい。第2の基材層の複合弾性率は、例えば、7.0GPa以上100GPa以下であることが好ましく、7.3GPa以上90GPa以下であることがより好ましく、7.5GPa以上80GPa以下であることがさらに好ましい。
 なお、第2の基材層の複合弾性率の測定方法は、上述の接合層の複合弾性率の測定方法と同様とすることができる。
 第2の基材層の複合弾性率は、例えば、第2の基材層に含まれる材料の種類や組成等によって調整することができる。
 本実施態様における積層体を例えば表示装置に用いる場合、第2の基材層は、透明性を有することが好ましい。具体的には、第2の基材層の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。
 また、第2の基材層のヘイズは、例えば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
 第2の基材層の厚さは、衝撃によるガラス基材の瞬間的かつ局所的な変形を抑制することができる厚さであれば特に限定されるものではなく、例えば、25μm以上であることが好ましく、27μm以上であることがより好ましく、29μm以上であることがさらに好ましい。第2の基材層の厚さが厚いほど、耐衝撃性を向上させることができる。一方、第2の基材層の厚さは、ガラス基材の厚さ以下であることが好ましく、例えば、100μm以下であることが好ましく、90μm以下であることがより好ましく、80μm以下であることがさらに好ましい。第2の基材層の厚さが厚すぎると、耐屈曲性が低下するおそれがある。第2の基材層の厚さが上記範囲内であれば、耐屈曲性を維持しつつ、耐衝撃性を高めることができる。第2の基材層の厚さは、例えば、25μm以上100μm以下であることが好ましく、27μm以上90μm以下であることがより好ましく、29μm以上80μm以下であることがさらに好ましい。
 第2の基材層としては、上述の複合弾性率を満たすものであれば特に限定されるものではなく、例えば、ガラス層、ポリイミド系樹脂またはアラミド樹脂を含有する樹脂層が挙げられる。中でも、第2の基材層はガラス層であることが好ましい。ガラス層は、通常、樹脂層よりも複合弾性率が大きいことから、耐衝撃性を向上させることができる。
 第2の基材層がガラス層である場合、ガラス層を構成するガラスは、上述のガラス基材を構成するガラスと同様とすることができる。
 また、第2の基材層が樹脂層である場合、樹脂層に含有される樹脂としては、ポリイミド系樹脂、アラミド樹脂が挙げられる。
 ポリイミド系樹脂としては、上述の複合弾性率を満たすものであれば特に限定されず、例えば、ポリイミド、ポリアミドイミド等が挙げられる。ポリイミドおよびポリアミドイミドについては、上述の基材層が樹脂基材である場合において、樹脂基材に含有されるポリイミドおよびポリアミドイミドと同様とすることができる。
 アラミド樹脂としては、上述の複合弾性率を満たすものであれば特に限定されない。
 樹脂層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、無機粒子、巻き取りを円滑にするためのシリカフィラー、製膜性や脱泡性を向上させる界面活性剤、密着性向上剤等が挙げられる。
 第2の基材層の配置方法としては、例えば、ガラス基材の接合層とは反対の面側に、第3の接合層を介して第2の基材層を貼り合わせる方法が挙げられる。
(2)第3の接合層
 本実施態様における第3の接合層は、ガラス基材と第2の基材層との間に配置され、ガラス基材と第2の基材層とを接合するための層である。
 第3の接合層の厚さは、ガラス基材の厚さよりも薄いことが好ましく、例えば、100μm未満であることが好ましく、50μm以下であることがより好ましく、25μm以下であることがさらに好ましい。第3の接合層の厚さが厚すぎると、耐屈曲性が損なわれるおそれがある。また、第3の接合層は、通常、ガラス基材および第2の基材層よりも柔らかいことから、衝撃により変形しやすく、第3の接合層の厚さが厚いほど、衝撃による変形の程度が大きくなる傾向がある。そのため、第3の接合層の厚さが厚すぎると、積層体に衝撃が加わった際に、第3の接合層の変形の程度が大きくなることにより、ガラス基材に瞬間的かつ局所的な変形が生じやすくなると考えられる。この場合、ガラス基材に割れや破断が生じやすくなり、耐衝撃性が低下するおそれがある。一方、第3の接合層の厚さは、例えば、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることがさらに好ましい。第3の接合層の厚さが薄すぎると、接着性が弱くなり剥がれてしまうおそれがある。第3の接合層の厚さは、例えば、0.5μm以上100μm未満であることが好ましく、1μm以上50μm以下であることがより好ましく、5μm以上25μm以下であることがさらに好ましい。
 第3の接合層の複合弾性率は、例えば、1.0MPa以上であることが好ましく、2.0MPa以上であることがより好ましく、3.0MPa以上であることがさらに好ましい。第3の接合層の複合弾性率が上記範囲であり、ある程度の硬さを有することにより、耐衝撃性を高めることができる。また、第3の接合層は、上述したように、通常、ガラス基材および第2の基材層よりも柔らかいことから、衝撃により変形しやすく、第3の接合層の複合弾性率が小さいほど、衝撃による変形の程度が大きくなる傾向がある。そのため、第3の接合層の複合弾性率が小さすぎると、積層体に衝撃が加わった際に、第3の接合層の変形の程度が大きくなることにより、ガラス基材に瞬間的かつ局所的な変形が生じやすくなると考えられる。この場合、ガラス基材に割れや破断が生じやすくなり、耐衝撃性が低下するおそれがある。一方、第3の接合層の複合弾性率は、例えば、1.9GPa以下であることが好ましく、1.8GPa以下であることがより好ましく、1.5GPa以下であることがさらに好ましい。第3の接合層の複合弾性率が上記範囲であれば、ガラス基材および第2の基材層よりも柔らかいことにより、衝撃を吸収することができ、耐衝撃性を高めることができる。また、第3の接合層の複合弾性率が大きすぎると、耐屈曲性が損なわれるおそれがある。第3の接合層の複合弾性率は、例えば、1.0MPa以上1.9GPa以下であることが好ましく、2.0MPa以上1.8GPa以下であることがより好ましく、3.0MPa以上1.5GPa以下であることがさらに好ましい。
 第3の接合層の複合弾性率の測定方法は、上述の接合層の複合弾性率の測定方法と同様とすることができる。
 第3の接合層の複合弾性率は、例えば、接合層に含有される材料の種類等によって調整することができる。
 また、後述するように、第3の接合層に光学透明粘着剤を用いる場合、粘着剤の複合弾性率の調整方法としては、公知の弾性率の調整方法を用いることができ、例えば、架橋密度、官能基含有モノマーの種類等によって弾性率を調整することができる。例えば、架橋密度が大きくなると、複合弾性率が大きくなる傾向がある。
 本実施態様における積層体を例えば表示装置に用いる場合、第3の接合層は、透明性を有することが好ましい。具体的には、第3の接合層の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。
 また、第3の接合層のヘイズは、例えば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
 第3の接合層に用いられる材料としては、ガラス基材および第2の基材層を接合することができる材料であれば特に限定されないが、上述の複合弾性率および透明性を満たす材料であることが好ましく、例えば、光学透明粘着剤(OCA;Optical Clear Adhesive)、硬化型接着剤等を挙げることができる。
 光学透明粘着剤としては、例えば、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、エポキシ系粘着剤、酢酸ビニル系粘着剤等が挙げられる。中でも、耐屈曲性、密着性、透明性の観点から、アクリル系粘着剤が好ましい。
 特に、光学透明粘着剤は、上述の複合弾性率を満たすものであることが好ましい。このような光学透明粘着剤としては、市販品を用いることができる。具体的には、3M社製の「8146-2」、リンテック社製の「MO-3018C」、「F619」、「N632」等が挙げられる。
 硬化型接着剤については、上述の接合層に用いられる硬化型接着剤と同様とすることができる。
8.保護フィルム
 本実施態様における積層体においては、ハードコートフィルムの接合層とは反対の面側に保護フィルムが配置されていてもよい。保護フィルムにより、積層体を保護するとともに、耐衝撃性を高めることができる。
 本実施態様においては、上述したように、ハードコート層の厚さA、基材層の厚さB、接合層の厚さCの比率(A+B)/Cを所定の値以上とすることにより、積層体のハードコートフィルム側の面の表面硬度を高め、耐傷性を向上させることができる。保護フィルムが配置されている場合には、保護フィルム自体に傷や凹みが生じる可能性があるが、ハードコートフィルムは表面硬度が高いことから、耐傷性が良好である。
 一方、上記の厚さの比率(A+B)/Cが所定の値に満たない場合には、保護フィルムが配置されている場合であっても、ハードコートフィルムに傷や凹みが生じる可能性がある。
9.積層体の特性
 本実施態様における積層体は、表示装置に用いる場合には、透明性を有することが好ましい。具体的には、本実施態様における積層体の全光線透過率は、例えば、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。このように全光線透過率が高いことにより、透明性が良好な積層体とすることができる。
 ここで、積層体の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
 本実施態様における積層体のヘイズは、例えば、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。このようにヘイズが低いことにより、透明性が良好な積層体とすることができる。
 ここで、積層体のヘイズは、JIS K-7136に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
 本実施態様における積層体は、耐屈曲性を有することが好ましい。具体的には、本実施態様における積層体においては、積層体に対して下記に説明する動的屈曲試験を行った場合に、積層体に割れ、破断、または剥がれが生じないことが好ましい。
 動的屈曲試験では、ガラス基材が外側となるように積層体を折りたたんでもよく、あるいは、ガラス基材が内側となるように積層体を折りたたんでもよいが、いずれの場合であっても、積層体に割れ、破断、または剥がれが生じないことが好ましい。
 動的屈曲試験は、以下のようにして行われる。図5(a)に示すように動的屈曲試験においては、まず、20mm×100mmの大きさの積層体1の短辺部1Cと、短辺部1Cと対向する短辺部1Dとを、平行に配置された固定部21でそれぞれ固定する。また、図5(a)に示すように、固定部21は水平方向にスライド移動可能になっている。次に、図5(b)に示すように、固定部21を互いに近接するように移動させることで、積層体1の折りたたむように変形させ、更に、図5(c)に示すように、積層体1の固定部21で固定された対向する2つの短辺部1C、1Dの間隔dが所定の値となる位置まで固定部21を移動させた後、固定部21を逆方向に移動させて積層体1の変形を解消させる。図5(a)~(c)に示すように固定部21を移動させることで、積層体1を180°折りたたむことができる。また、積層体1の屈曲部1Eが固定部21の下端からはみ出さないように動的屈曲試験を行い、かつ固定部21が最接近したときの間隔dを制御することで、積層体1の対向する2つの短辺部1C、1Dの間隔dを所定の値にできる。例えば、対向する2つの短辺部1C、1Dの間隔dが10mmである場合には、屈曲部1Eの外径を10mmとみなす。
 積層体においては、積層体1の対向する短辺部1C、1Dの間隔dが10mmとなるように180°折りたたむ試験を、20万回繰り返し行った場合に割れ、破断、または剥がれが生じないことが好ましく、中でも、積層体1の対向する短辺部1C、1Dの間隔dが8mmとなるように180°折りたたむ試験を、20万回繰り返し行った場合に割れ、破断、または剥がれが生じないことがより好ましい。
 ここで、動的屈曲試験において、「割れ」とは、積層体にクラックが生じる現象をいう。また、「破断」とは、積層体が完全に2つに割れる現象をいう。また、「剥がれ」とは、積層体を構成するいずれかの層が剥がれるまたは浮く現象をいう。
 また、本実施態様における積層体においては、積層体に対して下記に説明する静的屈曲試験を行った場合に、積層体において、静的屈曲試験後の開き角θが、100°以上であることが好ましく、130°以上であることがより好ましい。
 静的屈曲試験は、以下のようにして行われる。まず、図6(a)に示されるように、20mm×100mmの大きさの積層体1の積層体1の短辺部1Cと、短辺部1Cと対向する短辺部1Dとを、短辺部1Cと短辺部1Dの間隔dが10mmとなるように平行に配置された固定部22でそれぞれ固定する。そして、積層体1を折りたたんだ状態で、23℃で240時間静置する静的屈曲試験を行う。その後、図6(b)に示されるように、静的屈曲試験後に短辺部1Dから固定部22を外すことによって、折りたたみ状態を開放して、室温で30分後に積層体1が自然に開く角度である開き角θを測定する。なお、開き角θは、大きいほど復元性が良好であることを意味し、最大で180°である。
 静的屈曲試験では、ガラス基材が内側となるように積層体を折りたたんでもよく、あるいは、ガラス基材が外側となるように積層体を折りたたんでもよいが、いずれの場合であっても、開き角θが100°以上であることが好ましく、130°以上であることがより好ましい。
 本実施態様における積層体においては、積層体に対して下記に説明する突き刺し試験を行った場合に、突き刺し破断力が、例えば、16N以上であることが好ましく、19N以上であることがより好ましく、25N以上であることがさらに好ましい。突き刺し破断力が上記範囲であると、耐衝撃性が良好となる。
 突き刺し試験は、以下のようにして行われる。まず、積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、複合弾性率9.6MPa)を介して、厚さ100μmのPETフィルム(東洋紡社製「A4160(現品番)」(「A4100(旧品番)」)、複合弾性率6.9GPa)を貼り合わせて、試験用積層体を作製する。次に、試験用積層体について、A&D社製のテンシロン万能材料試験機(RTC-1310A)を用いて、針先端の曲率半径0.5mm、突き刺し速度50mm/分の条件で、試験用積層体のハードコートフィルム側の面からPETフィルム側の面に向かって突き刺し試験を行う。この際、試験用積層体表面でのストローク、荷重をゼロとして測定を行う。そして、ガラス基材が割れた時点での最大応力を突き刺し破断力とする。
10.積層体の用途
 本実施態様における積層体の用途は、特に限定されるものではなく、例えば、表示装置において、表示パネルの観察者側に配置される部材として用いることができる。本実施態様における積層体は、例えば、スマートフォン、タブレット端末、ウェアラブル端末、パーソナルコンピュータ、テレビジョン、デジタルサイネージ、パブリックインフォメーションディスプレイ(PID)、車載ディスプレイ等の表示装置に用いることができる。
 本実施態様における積層体は、耐屈曲性および耐衝撃性が良好であることから、中でも、曲面に対応できる部材として好適に用いることができる。本開示における積層体は、例えば、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ、スライダブルディスプレイ等のフレキシブルディスプレイに好ましく用いることができ、フォルダブルディスプレイにより好ましく用いることができる。また、本実施態様における積層体は、例えば、曲面を有する樹脂成型品の表面材としても用いることができ、意匠性や美感を与えることができる。
 本実施態様における積層体は、表示装置や樹脂成型品等の表面に配置する場合、ガラス基材側の面が内側、ハードコートフィルム側の面が外側になるように配置される。
 本実施態様における積層体を表示装置や樹脂成型品等の表面に配置する方法としては、特に限定されず、例えば、接着層を介する方法等が挙げられる。接着層としては、積層体の接着に使用される公知の接着層を用いることができる。
II.第2実施態様
 本開示の発明者らは、ガラス基材を有する積層体について鋭意検討を行い、薄いガラス基材の表面に樹脂層を配置し、さらに樹脂層の厚さを厚くすることにより、ガラス基材の割れを抑制し、耐衝撃性を高めることができることを見出した。しかし、ガラス基材の表面に樹脂組成物を塗布して比較的厚い樹脂層を形成する場合、樹脂組成物の塗布後の加熱または硬化時に、ガラス基材と樹脂層との収縮差の影響が大きくなり、カールが生じてしまう場合があることが判明した。そして、本開示の本発明者らはさらに検討を重ね、予め樹脂層をフィルム化し、薄いガラス基材の表面に接合層を介して樹脂フィルムを貼り合わせることにより、カールを抑制しつつ、さらに耐衝撃性を高めることができることを見出した。
 ところで、上記積層体を他の部材に接合するために、上記積層体において、ガラス基材の接合層とは反対の面側に第2の接合層を配置することができる。本開示の発明者らは、第2の接合層とガラス基材と接合層と樹脂フィルムとをこの順に有する積層体について、さらに検討を行った。そして、このような積層体においては、第2の接合層の種類によっては、耐衝撃性が低下する場合があることを見出した。
 本実施態様は、上記実情に鑑みてなされたものであり、耐屈曲性および耐衝撃性を両立することが可能な積層体を提供することを目的とする。
 本開示における積層体の第2実施態様は、ハードコート層と、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体であって、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記第2の接合層は、上記積層体と他の部材とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、下記式(1)を満たす。
 0.001≦{(E×D +E×D +E×D )×E×D ×E×1000}/D≦3.0     (1)
(上記式(1)中、Eは上記ハードコート層の複合弾性率(GPa)、Dは上記ハードコート層の厚さ(mm)、Eは上記基材層の複合弾性率(GPa)、Dは上記基材層の厚さ(mm)、Eは上記接合層の複合弾性率(GPa)、Dは上記接合層の厚さ(mm)、Eは上記ガラス基材の複合弾性率(GPa)、Dは上記ガラス基材の厚さ(mm)、Eは上記第2の接合層の貯蔵弾性率(GPa)、Dは上記第2の接合層の厚さ(mm)を示す。)
 図7は、本実施態様における積層体の一例を示す概略断面図である。図7に示すように、積層体1は、ハードコート層6と、基材層5と、接合層3と、ガラス基材2と、第2の接合層10と、をこの順に有する。ガラス基材2は、所定の厚さを有する。また、ハードコート層6の複合弾性率Eおよび厚さDと、基材層5の複合弾性率Eおよび厚さDと、接合層3の複合弾性率Eおよび厚さDと、ガラス基材2の複合弾性率Eおよび厚さDと、第2の接合層10の貯蔵弾性率Eおよび厚さDとは、上記式(1)を満たす。
 本実施態様における積層体においては、ガラス基材は、厚さが所定の値以下であり薄いため、耐屈曲性を高めることができる。一方、ガラス基材は、厚さが所定の値以下であり薄いため、割れやすく耐衝撃性が低いことが懸念される。これに対し、本実施態様においては、ハードコート層と、基材層と、接合層と、ガラス基材と、第2の接合層とがこの順に配置されており、各層の弾性率および厚さが上記式(1)を満たすことにより、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることができる。この理由は以下のように推察される。
 ここで、ガラスの衝撃破壊は、大きく分けて2種類ある。1つ目は、曲げ破壊である。2つ目は、ヘルツ破壊である。ヘルツ破壊は、集中応力破壊とも称される。曲げ破壊は、ガラスの衝撃面とは反対側の面で生じる。一方、ヘルツ破壊は、ガラスの衝撃面で生じる。
 本開示の発明者らは、ハードコート層と、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体の耐衝撃性および耐屈曲性について、鋭意検討を行った。第2の接合層は、通常、ガラス基材、基材層およびハードコート層よりも柔らかいことから、衝撃により変形しやすい。そのため、積層体に衝撃が加わった際に、第2の接合層の変形の程度が大きいと、ガラス基材に瞬間的かつ局所的な変形が生じやすくなると考えられる。この場合、ガラス基材に曲げ破壊が生じやすくなる懸念がある。一方で、第2の接合層の厚さが相対的に薄い場合には、ガラス基材の曲げ破壊を抑制できると考えられる。また、第2の接合層の硬さが相対的に硬い場合にも、ガラス基材の曲げ破壊を抑制できると考えられる。しかしながら、第2の接合層の厚さを相対的に薄くしたり、第2の接合層の硬さを相対的に硬くしたりすることで、ガラス基材の曲げ破壊を抑制できたとしても、ガラス基材のヘルツ破壊は抑制できない。ガラス基材のヘルツ破壊を抑制するためには、ハードコート層、基材層、および接合層の厚さを相対的に厚くしたり、ハードコート層、基材層、および接合層の硬さを相対的に硬くしたりすることが好ましい。また、ガラス基材の衝撃破壊に対しては、各層の厚さのうち、ガラス基材の厚さの影響が最も大きい。しかしながら、ハードコート層、基材層、および接合層の厚さを相対的に厚くしたり、ハードコート層、基材層、および接合層の硬さを相対的に硬くしたりすることで、ガラス基材のヘルツ破壊を抑制できたとしても、耐屈曲性が低下するおそれがある。また、ガラス基材の厚さを厚くすることで、ガラス基材の衝撃破壊を抑制できたとしても、耐屈曲性が低下するおそれがある。このような耐衝撃性および耐屈曲性に対する各層の厚さおよび硬さの影響と、後述の実施例および比較例に記載するような実験結果とに基づいて、各層の厚さおよび弾性率と、耐衝撃性および耐屈曲性との相関を示す、上記式(1)を導出した。
 上記式(1)の中辺の値が小さすぎると、第2の接合層の厚さが相対的に厚くなる、あるいは、第2の接合層の貯蔵弾性率が相対的に低くなる。そのため、ガラス基材に曲げ破壊が生じやすくなり、耐衝撃性が低下するおそれがある。また、上記式(1)の中辺の値が大きすぎると、ガラス基材、ハードコート層、基材層、および接合層の厚さが相対的に厚くなったり、ハードコート層、基材層、および接合層の複合弾性率が相対的に高くなったりする。そのため、耐屈曲性が低下するおそれがある。したがって、本実施態様においては、各層の弾性率および厚さが上記式(1)を満たすことにより、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることができる。
 このように、本実施態様においては、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることが可能である。また、積層体におけるガラス基材が破損したとしても、人体を傷付けるリスクを低減することができ、安全性の高い積層体とすることができる。よって、本実施態様における積層体は、折り曲げることが可能であり、多種多様な用途に使用することができる。本実施態様における積層体は、例えば、多種多様な表示装置に用いることができ、具体的にはフォルダブルディスプレイ用部材として使用することができる。
 本実施態様における積層体は、下記式(1)を満たす。
 0.001≦{(E×D +E×D +E×D )×E×D ×E×1000}/D≦3.0     (1)
(上記式(1)中、Eは上記ハードコート層の複合弾性率(GPa)、Dは上記ハードコート層の厚さ(mm)、Eは上記基材層の複合弾性率(GPa)、Dは上記基材層の厚さ(mm)、Eは上記接合層の複合弾性率(GPa)、Dは上記接合層の厚さ(mm)、Eは上記ガラス基材の複合弾性率(GPa)、Dは上記ガラス基材の厚さ(mm)、Eは上記第2の接合層の貯蔵弾性率(GPa)、Dは上記第2の接合層の厚さ(mm)を示す。)
 上記式(1)の中辺の値は、0.001以上3以下であり、0.0015以上1.5以下であることが好ましく、0.003以上1以下であることがより好ましく、0.005以上0.7以下であることがさらに好ましく、0.01以上0.4以下であることが特に好ましい。上述したように、上記式(1)の中辺の値が小さすぎると、第2の接合層の厚さが相対的に厚くなる、あるいは、第2の接合層の貯蔵弾性率が相対的に低くなる。そのため、ガラス基材に曲げ破壊が生じやすくなり、耐衝撃性が低下するおそれがある。また、上記式(1)の中辺の値が大きすぎると、ガラス基材、ハードコート層、基材層、および接合層の厚さが相対的に厚くなったり、ハードコート層、基材層、および接合層の複合弾性率が相対的に高くなったりする。そのため、耐屈曲性が低下するおそれがある。
 また、上述のように、第2の接合層の厚さを相対的に薄くしたり、第2の接合層の硬さを相対的に硬くしたりすることで、ガラス基材の曲げ破壊を抑制できたとしても、ガラス基材のヘルツ破壊は抑制できない。そのため、上記式(1)の中辺の値が所定の値以上になると、ガラス基材の曲げ破壊を抑制する効果が飽和してしまう。よって、上記式(1)の中辺の値は、0.4以下であることが好ましい。
 ハードコート層の厚さ、基材層の厚さ、接合層の厚さ、ガラス基材の厚さ、第2の接合層の厚さは、上記第1実施態様の積層体における各層の厚さと同様である。
 ハードコート層の複合弾性率は、例えば、4GPa以上10GPa以下であることが好ましく、5GPa以上9GPa以下であることがより好ましく、6GPa以上8GPa以下であることがさらに好ましい。ハードコート層の複合弾性率が小さすぎると、十分な耐傷性が得られない可能性がある。また、ハードコート層の複合弾性率が大きすぎると、硬さが高くなりすぎて屈曲しにくくなり、耐屈曲性、特に動的屈曲性が低下するおそれがある。
 ハードコート層の複合弾性率の測定方法は、上記第1実施態様における接合層の複合弾性率の測定方法と同様である。
 ハードコート層の複合弾性率は、例えば、ハードコート層に含まれる材料の種類や組成等によって調整することができる。
 基材層の複合弾性率は、上記第1実施態様における基材層の複合弾性率と同様である。
 接合層の複合弾性率は、上記第1実施態様における接合層の複合弾性率と同様である。
 ガラス基材の複合弾性率は、例えば、40GPa以上100GPa以下であることが好ましく、50GPa以上90GPa以下であることがより好ましく、60GPa以上80GPa以下であることがさらに好ましい。
 第2の接合層の貯蔵弾性率は、20℃における貯蔵弾性率である。第2の接合層の貯蔵弾性率は、上記第1実施態様における第2の接合層の貯蔵弾性率と同様である。
 本実施態様におけるハードコート層、基材層、接合層、ガラス基材、および第2の接合層は、上記第1実施態様における各層と同様である。
 本実施態様の積層体は、ハードコート層の基材層とは反対の面側、ハードコート層と基材層との間、基材層と接合層との間、ガラス基材と接合層との間、あるいはガラス基材と第2の接合層との間に、機能層をさらに有することができる。機能層は、上記第1実施態様における機能層と同様である。
 本実施態様の積層体においては、ハードコート層の基材層とは反対の面側に保護フィルムが配置されていてもよい。保護フィルムは、上記第1実施態様における保護フィルムと同様である。
 本実施態様の積層体の特性および用途は、上記第1実施態様の積層体の特性および用途と同様である。
III.第3実施態様
 本実施態様は、上記第2実施態様と同様に、耐屈曲性および耐衝撃性を両立することが可能な積層体を提供することを目的とする。
 本開示における積層体の第3実施態様は、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体であって、上記接合層は、上記ガラス基材と上記基材層とを接合する層であり、上記第2の接合層は、上記積層体と他の部材とを接合する層であり、上記ガラス基材の厚さが10μm以上100μm以下であり、下記式(2)を満たす。
 0.001≦{(E×D +E×D )×E×D ×E×1000}/D≦3.0     (2)
(上記式(2)中、Eは上記基材層の複合弾性率(GPa)、Dは上記基材層の厚さ(mm)、Eは上記接合層の複合弾性率(GPa)、Dは上記接合層の厚さ(mm)、Eは上記ガラス基材の複合弾性率(GPa)、Dは上記ガラス基材の厚さ(mm)、Eは上記第2の接合層の貯蔵弾性率(GPa)、Dは上記第2の接合層の厚さ(mm)を示す。)
 図8は、本実施態様における積層体の一例を示す概略断面図である。図7に示すように、積層体1は、基材層5と、接合層3と、ガラス基材2と、第2の接合層10と、をこの順に有する。ガラス基材2は、所定の厚さを有する。また、基材層5の複合弾性率Eおよび厚さDと、接合層3の複合弾性率Eおよび厚さDと、ガラス基材2の複合弾性率Eおよび厚さDと、第2の接合層10の貯蔵弾性率Eおよび厚さDとは、上記式(2)を満たす。
 本実施態様における積層体においては、ガラス基材は、厚さが所定の値以下であり薄いため、耐屈曲性を高めることができる。一方、ガラス基材は、厚さが所定の値以下であり薄いため、割れやすく耐衝撃性が低いことが懸念される。これに対し、本実施態様においては、基材層と、接合層と、ガラス基材と、第2の接合層とがこの順に配置されており、各層の弾性率および厚さが上記式(2)を満たすことにより、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることができる。この理由は以下のように推察される。
 本開示の発明者らは、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体の耐衝撃性および耐屈曲性について、鋭意検討を行った。第2の接合層は、通常、ガラス基材および基材層よりも柔らかいことから、衝撃により変形しやすい。そのため、積層体に衝撃が加わった際に、第2の接合層の変形の程度が大きいと、ガラス基材に瞬間的かつ局所的な変形が生じやすくなると考えられる。この場合、ガラス基材に曲げ破壊が生じやすくなる懸念がある。一方で、第2の接合層の厚さが相対的に薄い場合には、ガラス基材の曲げ破壊を抑制できると考えられる。また、第2の接合層の硬さが相対的に硬い場合にも、ガラス基材の曲げ破壊を抑制できると考えられる。しかしながら、第2の接合層の厚さを相対的に薄くしたり、第2の接合層の硬さを相対的に硬くしたりすることで、ガラス基材の曲げ破壊を抑制できたとしても、ガラス基材のヘルツ破壊は抑制できない。ガラス基材のヘルツ破壊を抑制するためには、基材層および接合層の厚さを相対的に厚くしたり、基材層および接合層の硬さを相対的に硬くしたりすることが好ましい。また、ガラス基材の衝撃破壊に対しては、各層の厚さのうち、ガラス基材の厚さの影響が最も大きい。しかしながら、基材層および接合層の厚さを相対的に厚くしたり、基材層および接合層の硬さを相対的に硬くしたりすることで、ガラス基材のヘルツ破壊を抑制できたとしても、耐屈曲性が低下するおそれがある。また、ガラス基材の厚さを厚くすることで、ガラス基材の衝撃破壊を抑制できたとしても、耐屈曲性が低下するおそれがある。このような耐衝撃性および耐屈曲性に対する各層の厚さおよび硬さの影響と、後述の実施例および比較例に記載するような実験結果とに基づいて、各層の厚さおよび弾性率と、耐衝撃性および耐屈曲性との相関を示す、上記式(2)を導出した。
 上記式(2)の中辺の値が小さすぎると、第2の接合層の厚さが相対的に厚くなる、あるいは、第2の接合層の貯蔵弾性率が相対的に低くなる。そのため、ガラス基材に曲げ破壊が生じやすくなり、耐衝撃性が低下するおそれがある。また、上記式(2)の中辺の値が大きすぎると、ガラス基材、基材層、および接合層の厚さが相対的に厚くなったり、基材層および接合層の複合弾性率が相対的に高くなったりする。そのため、耐屈曲性が低下するおそれがある。したがって、本実施態様においては、各層の弾性率および厚さが上記式(2)を満たすことにより、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることができる。
 このように、本実施態様においては、良好な耐屈曲性を維持しつつ、耐衝撃性を向上させることが可能である。また、積層体におけるガラス基材が破損したとしても、人体を傷付けるリスクを低減することができ、安全性の高い積層体とすることができる。よって、本実施態様における積層体は、折り曲げることが可能であり、多種多様な用途に使用することができる。本実施態様における積層体は、例えば、多種多様な表示装置に用いることができ、具体的にはフォルダブルディスプレイ用部材として使用することができる。
 本実施態様における積層体は、下記式(2)を満たす。
 0.001≦{(E×D +E×D )×E×D ×E×1000}/D≦3.0     (2)
(上記式(2)中、Eは上記基材層の複合弾性率(GPa)、Dは上記基材層の厚さ(mm)、Eは上記接合層の複合弾性率(GPa)、Dは上記接合層の厚さ(mm)、Eは上記ガラス基材の複合弾性率(GPa)、Dは上記ガラス基材の厚さ(mm)、Eは上記第2の接合層の貯蔵弾性率(GPa)、Dは上記第2の接合層の厚さ(mm)を示す。)
 上記式(2)の中辺の値は、0.001以上3以下であり、0.0015以上1.5以下であることが好ましく、0.003以上1以下であることがより好ましく、0.005以上0.7以下であることがさらに好ましく、0.01以上0.4以下であることが特に好ましい。上述したように、上記式(2)の中辺の値が小さすぎると、第2の接合層の厚さが相対的に厚くなる、あるいは、第2の接合層の貯蔵弾性率が相対的に低くなる。そのため、ガラス基材に曲げ破壊が生じやすくなり、耐衝撃性が低下するおそれがある。また、上記式(2)の中辺の値が大きすぎると、ガラス基材、基材層、および接合層の厚さが相対的に厚くなったり、基材層、および接合層の複合弾性率が相対的に高くなったりする。そのため、耐屈曲性が低下するおそれがある。
 また、上述のように、第2の接合層の厚さを相対的に薄くしたり、第2の接合層の硬さを相対的に硬くしたりすることで、ガラス基材の曲げ破壊を抑制できたとしても、ガラス基材のヘルツ破壊は抑制できない。そのため、上記式(2)の中辺の値が所定の値以上になると、ガラス基材の曲げ破壊を抑制する効果が飽和してしまう。よって、上記式(2)の中辺の値は、0.4以下であることが好ましい。
 基材層の厚さ、接合層の厚さ、ガラス基材の厚さ、第2の接合層の厚さは、上記第1実施態様の積層体における各層の厚さと同様である。
 基材層の複合弾性率は、上記第1実施態様における基材層の複合弾性率と同様である。
 接合層の複合弾性率は、上記第1実施態様における接合層の複合弾性率と同様である。
 ガラス基材の複合弾性率は、上記第2実施態様におけるガラス基材の複合弾性率と同様である。
 第2の接合層の貯蔵弾性率は、20℃における貯蔵弾性率である。第2の接合層の貯蔵弾性率は、上記第1実施態様における第2の接合層の貯蔵弾性率と同様である。
 本実施態様における基材層、接合層、ガラス基材、および第2の接合層は、上記第1実施態様における各層と同様である。
 本実施態様の積層体は、基材層の接合層とは反対の面側、基材層と接合層との間、ガラス基材と接合層との間、あるいはガラス基材と第2の接合層との間に、機能層をさらに有することができる。機能層は、上記第1実施態様における機能層と同様である。
 本実施態様の積層体においては、基材層の接合層とは反対の面側に保護フィルムが配置されていてもよい。保護フィルムは、上記第1実施態様における保護フィルムと同様である。
 本実施態様の積層体の特性および用途は、上記第1実施態様の積層体の特性および用途と同様である。
B.表示装置
 本開示における表示装置は、表示パネルと、上記表示パネルの観察者側に配置された、上述の積層体と、を備え、上記積層体は、上記ガラス基材側の面が上記表示パネルと対向するように配置されている。すなわち、本開示における表示装置は、表示パネルと、上記表示パネルの観察者側に配置された、上述の積層体と、を備え、上記積層体は、上記ガラス基材側の面が上記表示パネルに隣接するように配置されている。
 図9は、本開示における表示装置の一例を示す概略断面図である。図9に示すように、表示装置30は、表示パネル31と、表示パネル31の観察者側に配置された積層体1と、を備える。積層体1は、ガラス基材2側の面が表示パネル31に隣接するように配置されている。表示装置30において、積層体1は表示装置30の表面に配置される部材として用いられており、積層体1と表示パネル31との間には接着層32が配置されている。
 本開示における積層体については、上述の積層体と同様とすることができる。
 本開示における表示パネルとしては、例えば、液晶表示装置、有機EL表示装置、LED表示装置等の表示装置に用いられる表示パネルを挙げることができる。
 本開示における表示装置は、表示パネルと積層体との間にタッチパネル部材を有することができる。
 本開示における表示装置は、フレキシブルディスプレイであることが好ましい。中でも、本開示における表示装置は、折りたたみ可能であることが好ましい。すなわち、本開示における表示装置は、フォルダブルディスプレイであることがより好ましい。本開示における表示装置は、上述の積層体を有することから、耐衝撃性および耐屈曲性に優れており、フレキシブルディスプレイ、さらにはフォルダブルディスプレイとして好適である。
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。
 以下、実施例および比較例を示し、本開示をさらに説明する。
[比較例1]
 厚さ70μmの化学強化されたガラス基材を用いた。
[実施例1]
(1)ハードコートフィルムの作製
(1-1)基材層の作製
 国際公開2014/046180号公報の合成例1を参照して、下記化学式で表されるテトラカルボン酸二無水物を合成した。
Figure JPOXMLDOC01-appb-C000007
 500mLのセパラブルフラスコを窒素置換し、脱水されたジメチルアセトアミド(DMAc)を293.29g、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を14.3g(44.7mmol)溶解させた溶液が液温30℃となるように制御したところに、上記化学式で表されるテトラカルボン酸二無水物(TMPBPTME)24.8g(40.1mmol)を温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで3時間撹拌した。その後、上記溶液にテレフタル酸ジクロリド(TPC)0.91g(4.5mmol)を添加して更に3時間撹拌することでポリアミド酸溶液を得た。次に、触媒であるピリジン6.66g(84.2mmol)及び無水酢酸8.60g(84.2mmol)を投入して、25℃で30分間攪拌して溶液が均一であることを確認し、70℃に加温して1時間攪拌した。その後、常温まで冷却させた溶液に対して、2-プロピルアルコール(IPA)174.26gを徐々に加え、僅かに濁りが見られる溶液を得た。濁りの見られる溶液にIPA435.64gを一気に加え白色スラリーを得た。上記スラリーをろ過して5回IPAで洗浄した後、100℃に加熱したオーブンで減圧しながら6時間乾燥させることでポリアミドイミドの粉体(37.1g)を得た。GPCによって測定したポリアミドイミドの重量平均分子量は、62000であった。
 ポリアミドイミドの固形分濃度が19質量%となるように、ポリアミドイミドにDMAcを添加して、ポリアミドイミドがワニス中に19質量%のポリアミドイミドワニスを作製した。ポリアミドイミドワニス(固形分濃度19質量%)の25℃における粘度は4000mPa・sであった。
 ガラス板上に、ポリアミドイミドワニス(固形分濃度19質量%)を、後述する循環オーブン中での乾燥後のフィルム膜厚が表1に示した膜厚になるように塗布した。次いで、120℃の循環オーブンで10分乾燥後、25℃まで冷却し、ポリイミド系樹脂塗膜を剥離した。
 剥離したポリイミド系樹脂塗膜を150mm×200mmの大きさに切り出した。金属枠(外寸150mm×200mm、内寸130mm×180mm)を2枚使用して、切り出したポリイミド系樹脂塗膜を挟持し、固定治具で金属枠とポリイミド系樹脂塗膜とを固定した。固定したポリイミド系樹脂塗膜を窒素気流下(酸素濃度100ppm以下)、循環オーブン中で、昇温速度10℃/分で、300℃まで昇温し、300℃で1時間保持後、25℃まで冷却し、単層のポリイミド系樹脂フィルムを作製した。
(1-2)ハードコート層の形成
 下記に示す組成となるように各成分を配合して、ハードコート層用硬化性樹脂組成物を調製した。
<ハードコート層用硬化性樹脂組成物の組成>
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
・ジペンタエリスリトールEO変性ヘキサアクリレート(A-DPH-6E、新中村化学社製) 25質量部
・異型シリカ微粒子(平均粒径25nm、日揮触媒化成社製) 50質量部(固形換算)
・光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Omnirad184」、IGM Resins B.V.社製) 4質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・紫外線吸収剤1(DAINSORB P6、大和化成製) 3質量部
・溶剤(MIBK) 150質量部
 次に、上記基材層上に、上記ハードコート層用組成物を、硬化後の膜厚が10μmとなるように塗布し、70℃で1分間乾燥させた後、照射量200mJ/cmで紫外線を照射して硬化させ、ハードコート層を形成した。これにより、ハードコートフィルムを得た。
(2)積層体の作製
 上記ハードコートフィルムの基材層側の面に、厚さ25μmの接合層(アクリル系粘着シート、OCA)(3M社製「8146-1」)をハンドローラを用いて貼合し、接合層付きハードコートフィルムを得た。次いで、接合層付きハードコートフィルムの接合層側の面を、厚さ70μmの化学強化されたガラス基材に、ハンドローラを用いて貼合し、積層体を得た。
[実施例2~9および比較例2~4]
 ハードコートフィルムの基材層の厚さを下記表1に示すように変更したこと、および接合層の厚さが15μm、10μmまたは5μmの場合は、接合層(アクリル系粘着シート、OCA)としてパナック社製「パナクリーンPD-S1」を用いたこと以外は、実施例1と同様にして積層体を得た。
[実施例10]
(1)ハードコートフィルムの作製
 実施例7と同様にしてハードコートフィルムを作製した。
(2)感熱接着層の形成
 下記に示す組成となるように各成分を配合して、ヒートシール性樹脂組成物を調製した。
<ヒートシール性樹脂組成物の組成>
・非晶性ポリエステル系樹脂(バイロン560、東洋紡社製) 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 310質量部
・溶剤(トルエン) 310質量部
 次に、上記ハードコートフィルムの基材層側の面に、上記ヒートシール性樹脂組成物を、乾燥後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、感熱接着層を形成し、感熱接着層付きハードコートフィルムを得た。
(3)積層体の作製
 上記感熱接着層付きハードコートフィルムを、感熱接着層側の面が、厚さ70μmの化学強化されたガラス基材と接するように配置し、ガラス基材の感熱接着層付きハードコートフィルムとは反対側の面に厚さ2mmのガラス支持基板を配置して、ロールラミネータ(アコ・ブランズ・ジャパン社製、商品名:デスクトップロールラミネーター B35A3)を用いて感熱接着層付きハードコートフィルムとガラス基材とを加熱しながら貼合し、積層体を得た。この際、ロール温度は140℃~149℃、送り速度は0.3m/minとした。その後、積層体を、70℃で2日間エージングした。
[実施例11~14および比較例5]
 接合層の厚さを、下記表1に示すように変更したこと以外は、実施例10と同様にして積層体を得た。
[実施例15]
 感熱接着層に変えて、感圧接着層を形成したこと、および積層体の作製において、ロール温度を20℃~30℃としたこと以外は、実施例10と同様にして積層体を得た。
(感圧接着層の形成)
 下記に示す組成となるように各成分を配合して、感圧接着剤組成物を調製した。
<感圧接着剤組成物の組成>
・ポリエーテルウレタン系樹脂 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 310質量部
・溶剤(トルエン) 310質量部
 ハードコートフィルムの基材層側の面に、上記感圧接着剤組成物を、乾燥後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、感圧接着層を形成した。
[実施例16]
 接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(リンテック社製「D692」)を用いたこと以外は、実施例7と同様にして積層体を得た。
[実施例17]
 下記に示すヒートシール性樹脂組成物を用いたこと以外は、実施例10と同様にして積層体を得た。
<ヒートシール性樹脂組成物の組成>
・変性ポリオレフィン系樹脂 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 310質量部
・溶剤(トルエン) 310質量部
[実施例18]
 下記に示すヒートシール性樹脂組成物を用いたこと以外は、実施例10と同様にして積層体を得た。
<ヒートシール性樹脂組成物の組成>
・ポリエステルウレタン系樹脂(UR-8300、固形分30%、東洋紡社製) 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 1.5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 1.5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 58質量部
・溶剤(トルエン) 58質量部
[実施例19]
 下記に示すヒートシール性樹脂組成物を用いたこと以外は、実施例10と同様にして積層体を得た。
<ヒートシール性樹脂組成物の組成>
・ポリエステルウレタン系樹脂(UR-5537、固形分30%、東洋紡社製) 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 1.5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 1.5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 58質量部
・溶剤(トルエン) 58質量部
[実施例20]
 下記に示すヒートシール性樹脂組成物を用いたこと以外は、実施例10と同様にして積層体を得た。
<ヒートシール性樹脂組成物の組成>
・非晶性ポリエステル系樹脂(バイロン240、東洋紡社製) 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 310質量部
・溶剤(トルエン) 310質量部
[実施例21]
 下記に示すヒートシール性樹脂組成物を用いたこと以外は、実施例10と同様にして積層体を得た。
<ヒートシール性樹脂組成物の組成>
・非晶性ポリエステル系樹脂(バイロン600、東洋紡社製) 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 310質量部
・溶剤(トルエン) 310質量部
[実施例22]
(1)ハードコートフィルムの作製
 実施例7と同様にしてハードコートフィルムを作製した。
(2)接着剤層の形成
 下記に示す組成となるように各成分を配合して、紫外線硬化型樹脂組成物を調製した。
<紫外線硬化型樹脂組成物の組成>
・ウレタンアクリレート(製品名「UV-3310B」、三菱ケミカル株式会社製):35質量部
・エトキシ化ペンタエリスリトールテトラアクリレート(製品名「ATM-35E」、新中村化学工業株式会社製):10質量部
・フェノキシエチルアクリレート(製品名「ビスコート#192」、大阪有機化学工業社製):5質量部
・ペンタエリスリトールトリアクリレートおよびペンタエリスリトールテトラアクリレートの混合物(製品名「KAYARAD PET-30」、日本化薬株式会社製):50質量部
・光重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Omnirad184」、IGM Resins B.V.社製):5質量部
・メチルイソブチルケトン:10質量部
 次に、上記ハードコートフィルムの基材層側の面に、上記紫外線硬化型樹脂組成物を、硬化後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、接着剤層を形成し、接着剤層付きハードコートフィルムを得た。
(3)積層体の作製
 上記接着剤層付きハードコートフィルムの接着剤層側の面を、厚さ70μmの化学強化されたガラス基材に、ハンドローラを用いて貼合した。次に、ハードコートフィルム側から、照射量400mJ/cmで紫外線を照射して接着剤層を硬化させ、積層体を得た。
[実施例23]
(1)ハードコートフィルムの作製
 実施例7と同様にしてハードコートフィルムを作製した。
(2)接着剤層の形成
 下記に示す組成となるように各成分を配合して、熱硬化型樹脂組成物を調製した。
<熱硬化型樹脂組成物の組成>
・特殊ノボラック型エポキシ樹脂(jER157S65 三菱ケミカル製) 25質量部
・ビスA/ビスF混合タイプエポキシ樹脂(jER4250 三菱ケミカル製) 75質量部
・2-エチル-4-メチルイミダゾール(東京化成工業製) 6.5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 600質量部
次に、上記ハードコートフィルムの基材層側の面に、上記熱硬化型樹脂組成物を、硬化後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、接着剤層を形成し、接着剤層付きハードコートフィルムを得た。
(3)積層体の作製
 上記接着剤層付きハードコートフィルムの接着剤層側の面を、厚さ70μmの化学強化されたガラス基材に、ハンドローラを用いて貼合した。次に、130℃で60分間加熱して、接着剤層を硬化させ、積層体を得た。
[実施例24]
 下記に示す熱硬化型樹脂組成物を用いたこと以外は、実施例23と同様にして積層体を得た。
<熱硬化型樹脂組成物の組成>
・特殊ノボラック型エポキシ樹脂(jER157S65 三菱ケミカル製) 50質量部
・ビスAタイプエポキシ樹脂(jER1256 三菱ケミカル製) 50質量部
・2-エチル-4-メチルイミダゾール(東京化成工業製) 6.5質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 5質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 600質量部
[実施例25]
(1)ハードコートフィルムの作製
 基材層として、厚さ60μmのTACフィルム(富士フイルム社製「TG60UL」)を用い、ハードコート層の厚さを下記表1に示すように変更したこと以外は、実施例10と同様にしてハードコートフィルムを作製した。
(2)感熱接着層の形成
 実施例10と同様にして、感熱接着層付きハードコートフィルムを得た。
(3)積層体の作製
 実施例10と同様にして、積層体を得た。
[実施例26]
(1)ハードコートフィルムの作製
 基材層として、厚さ50μmのPETフィルム(東洋紡社製「A4360(現品番)」(「A4300(旧品番)」))を用い、ハードコート層の厚さを下記表1に示すように変更したこと以外は、実施例10と同様にしてハードコートフィルムを作製した。
(2)感熱接着層の形成
 実施例10と同様にして、感熱接着層付きハードコートフィルムを得た。
(3)積層体の作製
 実施例10と同様にして、積層体を得た。
[実施例27]
 基材層として、厚さ50μmのPENフィルム(帝人社製)を用いたこと以外は、実施例26と同様にして積層体を作製した。
[実施例28~30および比較例6]
 ガラス基材の厚さを、下記表3に示すように変更したこと以外は、実施例10と同様にして積層体を得た。
[評価1]
(1)鉛筆硬度
 まず、実施例1~30および比較例2~6については積層体のガラス基材側の面に、比較例1についてはガラス基材に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、複合弾性率9.6MPa)を介して、厚さ100μmのPETフィルム(東洋紡社製「A4160(現品番)」(「A4100(旧品番)」)、複合弾性率6.9GPa)を貼り合わせて、試験用積層体を作製した。実施例1~30および比較例2~6の積層体については、試験用積層体のハードコートフィルム側の表面における鉛筆硬度を測定した。また、比較例1のガラス基材については、試験用積層体のガラス基材側の表面における鉛筆硬度を測定した。この際、鉛筆硬度は、JIS K5600-5-4(1999)に準拠して測定した。また、鉛筆硬度試験機(製品名「鉛筆引っかき塗膜硬さ試験機(電動式)」、株式会社東洋精機製作所製)を用い、測定条件は、角度45°、荷重1kg、速度0.5mm/秒以上1mm/秒以下、温度23±2℃とした。
 実施例1~9および比較例1~4について、鉛筆硬度は、下記の基準で評価した。
 2A:鉛筆硬度が5H以上である。
 A:鉛筆硬度が4Hである。
 B:鉛筆硬度が3Hである。
 C:鉛筆硬度がHである。
 D:鉛筆硬度がH未満である。
 実施例10~30および比較例5~6について、鉛筆硬度は、下記の基準で評価した。
 2A:鉛筆硬度が5H以上である。
 A:鉛筆硬度が4Hである。
 B:鉛筆硬度が3Hである。
 C:鉛筆硬度が3H未満である。
(2)衝撃試験(ペンドロップ試験)
 実施例1~30および比較例2~6の積層体ならびに比較例1のガラス基材に対して、衝撃試験として、ペンドロップ試験を行った。まず、実施例1~30および比較例2~6については積層体のガラス基材側の面に、比較例1についてはガラス基材に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、複合弾性率9.6MPa)を介して、厚さ100μmのPETフィルム(東洋紡社製「A4160(現品番)」(「A4100(旧品番)」)、複合弾性率6.9GPa)を貼り合わせて、試験用積層体を作製した。この試験用積層体のPETフィルム側の面が厚さ30mmの金属プレートに接するように、金属プレート上に試験用積層体を置いた。次に、試験用積層体の中央部に対して、試験高さより、ペンをその先端を下にして試験用積層体上に落下させた。ペンには、ゼブラ社製のブレン0.5BAS88-BK(重量12g、ペン先0.5mmφ)を用いた。表1~3に、ガラス基材に割れが生じなかった最大の試験高さを示す。なお、数値が大きいほど、耐衝撃性が高いことを示す。
(3)突き刺し試験
 実施例10の積層体および比較例1のガラス基材に対して、上述の突き刺し試験を行い、突き刺し破断力を測定した。なお、数値が大きいほど、耐衝撃性が高いことを示す。
(4)動的屈曲試験
 実施例1~30および比較例2~6の積層体ならびに比較例1のガラス基材に対して、上述の動的屈曲試験を行い、耐屈曲性を評価した。この際、積層体またはガラス基材の対向する2つの短辺部の間隔dは3mm、4mm、6mm、8mmまたは10mmとした。また、積層体は、ガラス基材側の面が外側、ハードコートフィルム側の面が内側になるように20万回屈曲させた。動的屈曲試験の結果は、下記の基準で評価した。
 4A:間隔dが3mmでも積層体またはガラス基材に割れ、破断、および剥がれがないこと
 3A:間隔dが4mmでも積層体またはガラス基材に割れ、破断、および剥がれがないこと
 2A:間隔dが6mmでも積層体またはガラス基材に割れ、破断、および剥がれがないこと
 A:間隔dが8mmでも積層体またはガラス基材に割れ、破断、および剥がれがないこと
 B:間隔dが10mmで積層体またはガラス基材に割れ、破断、および剥がれがないこと
 C:間隔dが10mmで積層体またはガラス基材に割れ、破断、および剥がれが発生した
(5)複合弾性率
 実施例1~30および比較例2~6の積層体について、上述の複合弾性率の測定方法により、基材層および接合層の複合弾性率を測定した。
(6)ガラス転移温度(Tg)
 実施例1~30および比較例2~6の積層体について、上述のガラス転移温度の測定方法により、接合層のガラス転移温度を測定した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表1~3から、厚さの比率(A+B)/Cが所定の範囲内である場合には、耐衝撃性および耐屈曲性が良好であり、さらに表面硬度が高く耐傷性が良好であることが確認された。
[実施例31]
 実施例10の積層体のガラス基材側の面に、厚さ100μmの第2の接合層(光学透明粘着フィルム(OCA)、貯蔵弾性率0.10MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例32]
 第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例33]
 第2の接合層として、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例34]
 第2の接合層として、厚さ50μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.10MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例35]
 第2の接合層として、厚さ55μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.12MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例36]
 第2の接合層として、厚さ30μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.12MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例37]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.32MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例38]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.15MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例39]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(リンテック社製「F619」、貯蔵弾性率0.19MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例40]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(リンテック社製「N632」、貯蔵弾性率0.20MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例41]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.57MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例42]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(貯蔵弾性率1.17MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例43]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(リンテック社製「D692、貯蔵弾性率2.33MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例44]
 第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(貯蔵弾性率2.22MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例45]
 第2の接合層として、厚さ15μmの光学透明粘着フィルム(OCA)(リンテック社製「D692、貯蔵弾性率2.14MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例46]
 第2の接合層として、厚さ15μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.12MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例47]
 第2の接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.91MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例48]
 第2の接合層として、厚さ10μmの光学透明粘着フィルム(OCA)(貯蔵弾性率2.22MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例49]
 第2の接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(貯蔵弾性率1.95MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[比較例7]
 第2の接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(貯蔵弾性率2.22MPa)とを用いたこと以外は、実施例31と同様にして積層体を作製した。
[比較例8]
 第2の接合層として、厚さ15μmの光学透明粘着フィルム(OCA)(貯蔵弾性率12.74MPa)を用いたこと以外は、実施例31と同様にして積層体を作製した。
[実施例50]
 実施例18の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例51]
 実施例19の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例52]
 実施例20の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例53]
 実施例21の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例54]
 実施例22の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例55]
 実施例23の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例56]
 実施例28の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例57]
 ハードコート層の厚さを10μmとしたこと以外は、実施例26と同様にして積層体を作製した。この積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例58]
 実施例26の積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例59]
 ガラス基材の厚さを50μmとしたこと以外は、実施例57と同様にして積層体を作製した。
[実施例60]
 接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(複合弾性率0.0096GPa)を用いたこと以外は、実施例33と同様にして積層体を作製した。
[実施例61]
 接合層として、厚さ50μmの光学透明粘着フィルム(OCA)(複合弾性率0.0096GPa)を用いたこと以外は、実施例59と同様にして積層体を作製した。
[実施例62]
 ガラス基材の厚さを50μmとしたこと、および、第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例33と同様にして積層体を作製した。
[実施例63]
 基材層として、厚さ50μmのPENフィルム(帝人社製)を用いたこと以外は、実施例62と同様にして積層体を作製した。
[実施例64]
 基材層として、厚さ50μmのPETフィルム(東洋紡社製「A4360」)を用いたこと以外は、実施例62と同様にして積層体を作製した。
[実施例65]
 ガラス基材の厚さを30μmとしたこと、および、第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例33と同様にして積層体を作製した。
[実施例66]
 基材層として、厚さ50μmのPENフィルム(帝人社製)を用いたこと以外は、実施例65と同様にして積層体を作製した。
[実施例67]
 基材層として、厚さ50μmのPETフィルム(東洋紡社製「A4360」)を用いたこと以外は、実施例65と同様にして積層体を作製した。
[実施例68]
 接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(複合弾性率0.0096GPa)を用いたこと、および、第2の接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(複合弾性率0.23MPa)を用いたこと以外は、実施例67と同様にして積層体を作製した。
[実施例69]
 基材層の厚さを80μmとしたこと、および、ガラス基材の厚さを50μmとしたこと以外は、実施例33と同様にして積層体を作製した。
[実施例70]
 基材層として、厚さ23μmのPETフィルム(東レ社製「U403」)を用いたこと、および、ガラス基材の厚さを30μmとしたこと以外は、実施例59と同様にして積層体を作製した。
[比較例9]
 第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例68と同様にして積層体を作製した。
[比較例10]
 厚さ70μmの化学強化されたガラス基材の一方の面に、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[比較例11]
 ガラス基材の厚さを50μmとしたこと以外は、比較例10と同様にして積層体を作製した。
[比較例12]
 ガラス基材の厚さを30μmとしたこと以外は、比較例10と同様にして積層体を作製した。
[実施例71]
 実施例1と同様にして、厚さ80μmのポリイミド系樹脂フィルムからなる基材層を作製した。基材層の一方の面に、実施例10と同様にして感熱接着層を形成し、感熱接着層付き基材層を得た。感熱接着層付き基材層を、感熱接着層側の面が、厚さ70μmの化学強化されたガラス基材と接するように配置し、ガラス基材の感熱接着層付き基材層とは反対側の面に厚さ2mmのガラス支持基板を配置して、ロールラミネータ(アコ・ブランズ・ジャパン社製、商品名:デスクトップロールラミネーター B35A3)を用いて感熱接着層付き基材層とガラス基材とを加熱しながら貼合し、積層体を得た。この際、ロール温度は140℃~149℃、送り速度は0.3m/minとした。その後、積層体を、70℃で2日間エージングした。次に、積層体のガラス基材側の面に、厚さ50μmの光学透明粘着フィルム(OCA)(3M社製「8146-2」、貯蔵弾性率0.23MPa)をハンドローラを用いて貼合し、積層体を得た。
[実施例72]
 基材層の厚さを50μmとしたこと以外は、実施例71と同様にして積層体を作製した。
[実施例73]
 基材層の厚さを50μmとしたこと、および、ガラス基材の厚さを50μmとしたこと以外は、実施例71と同様にして積層体を作製した。
[実施例74]
 基材層の厚さを50μmとしたこと、および、ガラス基材の厚さを30μmとしたこと以外は、実施例71と同様にして積層体を作製した。
[実施例75]
 基材層の厚さを30μmとしたこと以外は、実施例71と同様にして積層体を作製した。
[実施例76]
 基材層として、厚さ75μmのPETフィルム(東洋紡社製「A4360」)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例77]
 基材層として、厚さ50μmのPETフィルム(東洋紡社製「A4360」)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例78]
 ガラス基材の厚さを50μmとしたこと以外は、実施例77と同様にして積層体を作製した。
[実施例79]
 ガラス基材の厚さを30μmとしたこと以外は、実施例77と同様にして積層体を作製した。
[実施例80]
 基材層として、厚さ23μmのPETフィルム(東レ社製「U403」)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例81]
 基材層として、厚さ60μmのTACフィルム(富士フイルム社製「TG60UL」)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例82]
 基材層として、厚さ50μmのPENフィルム(帝人社製)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例83]
 ガラス基材の厚さを50μmとしたこと、および、第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例84]
 基材層として、厚さ50μmのPENフィルム(帝人社製)を用いたこと以外は、実施例83と同様にして積層体を作製した。
[実施例85]
 基材層として、厚さ50μmのPETフィルム(東洋紡社製「A4360」)を用いたこと以外は、実施例83と同様にして積層体を作製した。
[実施例86]
 ガラス基材の厚さを30μmとしたこと、および、第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例71と同様にして積層体を作製した。
[実施例87]
 基材層として、厚さ50μmのPENフィルム(帝人社製)を用いたこと以外は、実施例86と同様にして積層体を作製した。
[実施例88]
 基材層として、厚さ50μmのPETフィルム(東洋紡社製「A4360」)を用いたこと以外は、実施例86と同様にして積層体を作製した。
[実施例89]
 接合層として、厚さ25μmの光学透明粘着フィルム(OCA)(複合弾性率0.0096GPa)を用いたこと、および、第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例88と同様にして積層体を得た。
[実施例90]
 第2の接合層として、厚さ15μmの光学透明粘着フィルム(OCA)(貯蔵弾性率2.14MPa)を用いたこと以外は、実施例72と同様にして積層体を得た。
[実施例91]
 第2の接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(貯蔵弾性率0.91MPa)を用いたこと以外は、実施例72と同様にして積層体を得た。
[実施例92]
 第2の接合層として、厚さ10μmの光学透明粘着フィルム(OCA)(貯蔵弾性率2.22MPa)を用いたこと以外は、実施例72と同様にして積層体を得た。
[実施例93]
 第2の接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(貯蔵弾性率1.95MPa)を用いたこと以外は、実施例72と同様にして積層体を得た。
[実施例94]
 基材層として、厚さ23μmのPETフィルム(東レ社製「U403」)を用いたこと、および、ガラス基材の厚さを30μmとしたこと以外は、実施例71と同様にして積層体を作製した。
[比較例13]
 第2の接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(貯蔵弾性率2.22MPa)を用いたこと以外は、実施例72と同様にして積層体を得た。
[比較例14]
 第2の接合層として、厚さ100μmの光学透明粘着フィルム(OCA)(3M社製「8146-4」、貯蔵弾性率0.23MPa)を用いたこと以外は、実施例94と同様にして積層体を得た。
[評価2]
(1)衝撃試験(ペンドロップ試験)
 積層体に対して、衝撃試験として、ペンドロップ試験を行った。まず、積層体の第2の接合層側の面に、厚さ100μmのPETフィルム(東洋紡社製「A4160」複合弾性率6.9GPa)を貼り合わせて、試験用積層体を作製した。この試験用積層体のPETフィルム側の面が厚さ30mmの金属プレートに接するように、金属プレート上に試験用積層体を置いた。次に、試験用積層体の中央部に対して、試験高さより、ペンをその先端を下にして試験用積層体上に落下させた。ペンには、ゼブラ社製のブレン0.5BAS88-BK(重量12g、ペン先0.5mmφ)を用いた。表4~6に、ガラス基材に割れが生じなかった最大の試験高さを示す。なお、数値が大きいほど、耐衝撃性が高いことを示す。
(2)動的屈曲試験
 まず、積層体の第2の接合層側の面に、厚さ38μmのPETフィルム(東洋紡社製「A4360」)をハンドローラで貼り合わせて、試験用積層体を作製した。上記の評価1と同様にして、動的屈曲試験を行い、耐屈曲性を評価した。この際、試験用積層体は、第2の接合層側の面が外側、ハードコート層または基材層側の面が内側になるように20万回屈曲させた。
(3)ガラス基材、接合層、基材層およびハードコート層の複合弾性率
 上述の複合弾性率の測定方法により、ガラス基材、接合層、基材層およびハードコートの複合弾性率を測定した。
(4)第2の接合層の20℃における貯蔵弾性率
 上述の第2の接合層の貯蔵弾性率の測定方法により、第2の接合層の20℃における貯蔵弾性率を測定した。
 図10に、上述の式(1)の中辺の値とペンドロップ試験の試験高さとの関係を示すグラフを示す。また、図11に、上述の式(2)の中辺の値とペンドロップ試験の試験高さとの関係を示すグラフを示す。
(5)接合層および第2の接合層のガラス転移温度(Tg)
 上述のガラス転移温度の測定方法により、接合層および第2の接合層のガラス転移温度を測定した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表4~5および図10から、上述の式(1)を満たす場合には、耐衝撃性を損なうことなく、良好な耐屈曲性が得られることが確認された。また、表6および図11から、上述の式(2)を満たす場合には、耐衝撃性を損なうことなく、良好な耐屈曲性が得られることが確認された。
[実施例95]
 厚さ50μmのPETフィルム(東洋紡社製「A4160」)を準備し、PETフィルム上に、バーコーターで、実施例1で用いたハードコート層用硬化性樹脂組成物を塗布し、塗膜を完成させた。その後、塗膜を100℃で3分間乾燥させた後、200mJの紫外線照射にて硬化させ、厚さ10μmのハードコート層を形成した。次いで、PETフィルムのハードコート層とは反対側の面に、実施例15と同様にして感圧接着層を形成した。これより、積層フィルムを得た。次に、厚さ30μmの化学強化されたガラス基材に、上記積層フィルムの接合層側の面を貼合し、積層体を得た。
[実施例96]
 接合層として、厚さ5μmの光学透明粘着フィルム(OCA)(リンテック社製「D692」、複合弾性率19MPa)を用いたこと以外は、実施例95と同様にして積層体を作製した。
[実施例97]
 接合層として、厚さ5μmの光学透明粘着フィルム(アクリル系粘着シート、OCA)(パナック社製「パナクリーンPD-S1」、複合弾性率13.7MPa)を用いたこと以外は、実施例95と同様にして積層体を作製した。
[実施例98]
 実施例95と同様にして、PETフィルム上にハードコート層を形成した。
 次に、PETフィルムのハードコート層とは反対側の面に、実施例17で用いたヒートシール性樹脂組成物を、乾燥後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、感熱接着層を形成し、積層フィルムを得た。
 次に、積層フィルムを、感熱接着層側の面が、厚さ30μmの化学強化されたガラス基材と接するように配置し、ガラス基材の積層フィルムとは反対側の面に厚さ2mmのガラス支持基板を配置して、ロールラミネータ(アコ・ブランズ・ジャパン社製、商品名:デスクトップロールラミネーター B35A3)を用いて積層フィルムとガラス基材とを加熱しながら貼合し、積層体を得た。この際、ロール温度は140℃~149℃、送り速度は0.3m/minとした。その後、積層体を、70℃で2日間エージングした。
[実施例99]
 実施例10で用いたヒートシール性樹脂組成物を用いたこと以外は、実施例98と同様にして積層体を作製した。
[実施例100]
 実施例18で用いたヒートシール性樹脂組成物を用いたこと以外は、実施例98と同様にして積層体を作製した。
[実施例101]
 実施例19で用いたヒートシール性樹脂組成物を用いたこと以外は、実施例98と同様にして積層体を作製した。
[実施例102]
 実施例21で用いたヒートシール性樹脂組成物を用いたこと以外は、実施例98と同様にして積層体を作製した。
[実施例103]
 実施例20で用いたヒートシール性樹脂組成物を用いたこと以外は、実施例98と同様にして積層体を作製した。
[実施例104]
 実施例95と同様にして、PETフィルム上にハードコート層を形成した。
 次に、PETフィルムのハードコート層とは反対側の面に、実施例22で用いた紫外線硬化型樹脂組成物を、硬化後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、接着剤層を形成し、積層フィルムを得た。
 積層フィルムの接着剤層側の面を、厚さ30μmの化学強化されたガラス基材に、ハンドローラを用いて貼合した。次に、ハードコート層側から、照射量400mJ/cmで紫外線を照射して接着剤層を硬化させ、積層体を得た。
[実施例105]
 下記のヒートシール性樹脂組成物を用いたこと以外は、実施例98と同様にして積層体を作製した。
<ヒートシール性樹脂組成物の組成>
・非晶性ポリエステル系樹脂(TP-235S20TM、固形分20%、三菱ケミカル社製) 100質量部
・ヘキサンメチレンジイソシアネート(コロネート2203、日本ポリウレタン工業社製) 1質量部
・シランカップリング剤(KBM-403、信越化学工業社製) 1質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・溶剤(MEK) 34質量部
・溶剤(トルエン) 10質量部
[実施例106]
 実施例95と同様にして、PETフィルム上にハードコート層を形成した。
 次に、PETフィルムのハードコート層とは反対側の面に、実施例23で用いた熱硬化型樹脂組成物を、硬化後の膜厚が5μmとなるように塗布し、70℃で1分間乾燥させて、接着剤層を形成し、接着剤層付きハードコートフィルムを得た。
 上記接着剤層付きハードコートフィルムの接着剤層側の面を、厚さ30μmの化学強化されたガラス基材に、ハンドローラを用いて貼合した。次に、130℃で60分間加熱して、接着剤層を硬化させ、積層体を得た。
[評価3]
(1)鉛筆硬度
 上記の評価1と同様にして、積層体のハードコート層側の面における鉛筆硬度を測定した。鉛筆硬度は、下記の基準で評価した。
 2A:鉛筆硬度が2H以上である。
 A:鉛筆硬度がHである。
 B:鉛筆硬度がFである。
 C:鉛筆硬度がHB以下である。
(2)衝撃試験(ペンドロップ試験)
 上記の評価1と同様にして、積層体に対して、衝撃試験として、ペンドロップ試験を行った。表7に、ガラス基材に割れが生じなかった最大の試験高さを示す。なお、数値が大きいほど、耐衝撃性が高いことを示す。
(3)動的屈曲試験
 上記の評価1と同様にして、動的屈曲試験を行い、耐屈曲性を評価した。この際、(a)温度23℃、(b)温度60℃湿度90%RH、(c)温度-20℃の3つの条件で、動的屈曲試験を行った。
Figure JPOXMLDOC01-appb-T000014
 接合層のガラス転移温度の好ましい範囲は-40℃以上150℃以下であるが、高温高湿や低温の環境下での動的屈曲性の観点から、接合層のガラス転移温度は、-40℃以上25℃以下、および50℃以上150℃以下であることより好ましいことが示唆された。
 1 … 積層体
 2 … ガラス基材
 3 … 接合層
 4 … ハードコートフィルム
 5 … 基材層
 6 … ハードコート層
 7 … 反射防止層
 10 … 第2の接合層
 11 … 保護フィルム
 12 … 樹脂基材
 13 … 粘着層
 14 … 第2のハードコート層
 30 … 表示装置
 31 … 表示パネル

Claims (16)

  1.  ガラス基材と、接合層と、ハードコートフィルムと、をこの順に有し、
     前記ハードコートフィルムが、前記接合層側から、基材層と、ハードコート層とを有し、
     前記接合層は、前記ガラス基材と前記基材層とを接合する層であり、
     前記ガラス基材の厚さが10μm以上100μm以下であり、
     前記ハードコート層の厚さをA、前記基材層の厚さをB、前記接合層の厚さをCとしたとき、Cに対する(A+B)の比が3.0以上500以下である、積層体。
  2.  ハードコート層と、基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体であって、
     前記接合層は、前記ガラス基材と前記基材層とを接合する層であり、
     前記第2の接合層は、前記積層体と他の部材とを接合する層であり、
     前記ガラス基材の厚さが10μm以上100μm以下であり、
     下記式(1)を満たす、積層体。
     0.001≦{(E×D +E×D +E×D )×E×D ×E×1000}/D≦3.0     (1)
    (上記式(1)中、Eは前記ハードコート層の複合弾性率(GPa)、Dは前記ハードコート層の厚さ(mm)、Eは前記基材層の複合弾性率(GPa)、Dは前記基材層の厚さ(mm)、Eは前記接合層の複合弾性率(GPa)、Dは前記接合層の厚さ(mm)、Eは前記ガラス基材の複合弾性率(GPa)、Dは前記ガラス基材の厚さ(mm)、Eは前記第2の接合層の貯蔵弾性率(GPa)、Dは前記第2の接合層の厚さ(mm)を示す。)
  3.  基材層と、接合層と、ガラス基材と、第2の接合層と、をこの順に有する積層体であって、
     前記接合層は、前記ガラス基材と前記基材層とを接合する層であり、
     前記第2の接合層は、前記積層体と他の部材とを接合する層であり、
     前記ガラス基材の厚さが10μm以上100μm以下であり、
     下記式(2)を満たす、積層体。
     0.001≦{(E×D +E×D )×E×D ×E×1000}/D≦3.0     (2)
    (上記式(2)中、Eは前記基材層の複合弾性率(GPa)、Dは前記基材層の厚さ(mm)、Eは前記接合層の複合弾性率(GPa)、Dは前記接合層の厚さ(mm)、Eは前記ガラス基材の複合弾性率(GPa)、Dは前記ガラス基材の厚さ(mm)、Eは前記第2の接合層の貯蔵弾性率(GPa)、Dは前記第2の接合層の厚さ(mm)を示す。)
  4.  前記第2の接合層のガラス転移温度が-50℃以上30℃以下である、請求項2または請求項3に記載の積層体。
  5.  前記第2の接合層が、光学透明粘着剤を含有する、請求項2から請求項4までのいずれかの請求項に記載の積層体。
  6.  前記接合層の複合弾性率が1MPa以上6000MPa以下である、請求項1から請求項5までのいずれかの請求項に記載の積層体。
  7.  前記接合層のガラス転移温度が-40℃以上150℃以下である、請求項1から請求項6までのいずれかの請求項に記載の積層体。
  8.  前記基材層の複合弾性率が5.7GPa以上である、請求項1から請求項7までのいずれかの請求項に記載の積層体。
  9.  前記ガラス基材が化学強化ガラスである、請求項1から請求項8までのいずれかの請求項に記載の積層体。
  10.  前記接合層が、感圧接着層である、または感熱接着層である、または硬化型接着剤組成物の硬化物を含有する、請求項1から請求項9までのいずれかの請求項に記載の積層体。
  11.  前記接合層が、ポリエステル樹脂、ポリオレフィン樹脂、およびウレタン樹脂からなる群から選択される少なくとも1種を含有する、請求項1から請求項10までのいずれかの請求項に記載の積層体。
  12.  前記ハードコート層の前記基材層とは反対の面側に反射防止層を有する、請求項1から請求項11までのいずれかの請求項に記載の積層体。
  13.  前記積層体の前記ガラス基材側の面が外側、前記積層体の前記ハードコート層側の面が内側となり、かつ、前記積層体の対向する辺部の間隔が10mmとなるように前記積層体を180°折り曲げる動作を20万回繰り返し行った場合に、割れ、破断、または剥がれが生じない、請求項1から請求項12までのいずれかの請求項に記載の積層体。
  14.  前記ハードコート層の前記基材層とは反対の面側に保護フィルムを有する、請求項1から請求項13までのいずれかの請求項に記載の積層体。
  15.  表示パネルと、
     前記表示パネルの観察者側に配置された、請求項1から請求項14までのいずれかの請求項に記載の積層体と、
     を備え、前記積層体は、前記ガラス基材側の面が前記表示パネルに隣接するように配置されている、表示装置。
  16.  フォルダブルディスプレイである、請求項15に記載の表示装置。
PCT/JP2021/039948 2020-10-30 2021-10-29 積層体および表示装置 WO2022092249A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237017048A KR20230098223A (ko) 2020-10-30 2021-10-29 적층체 및 표시 장치
CN202180073729.XA CN116507595A (zh) 2020-10-30 2021-10-29 层积体和显示装置
US18/250,924 US20240329280A1 (en) 2020-10-30 2021-10-29 Laminate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-183221 2020-10-30
JP2020183221 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092249A1 true WO2022092249A1 (ja) 2022-05-05

Family

ID=81382651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039948 WO2022092249A1 (ja) 2020-10-30 2021-10-29 積層体および表示装置

Country Status (6)

Country Link
US (1) US20240329280A1 (ja)
JP (1) JP2022074108A (ja)
KR (1) KR20230098223A (ja)
CN (1) CN116507595A (ja)
TW (1) TW202224938A (ja)
WO (1) WO2022092249A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005128A1 (ja) * 2022-06-29 2024-01-04 大日本印刷株式会社 積層体、表示装置および積層体用部材
WO2024014458A1 (ja) * 2022-07-13 2024-01-18 大日本印刷株式会社 光学フィルム、光学作用フィルム、易接着性フィルム、光学積層体、表面板、画像表示装置および偏光板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024205097A1 (ko) * 2023-03-24 2024-10-03 동우 화인켐 주식회사 광학 적층체 및 이를 구비한 화상표시장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088789A (ja) * 2009-10-23 2011-05-06 Nitto Denko Corp 透明基板
JP2011140187A (ja) * 2010-01-08 2011-07-21 Teijin Chem Ltd 積層フィルム、透明導電性積層フィルムおよび電子部品
WO2019235160A1 (ja) * 2018-06-04 2019-12-12 株式会社カネカ ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板
JP2019214159A (ja) * 2018-06-12 2019-12-19 旭化成株式会社 ポリイミドフィルムとフレキシブルガラスとの積層体
JP2020203479A (ja) * 2019-06-17 2020-12-24 大日本印刷株式会社 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2021144215A (ja) * 2020-03-11 2021-09-24 日東電工株式会社 前面板、光学積層体および画像表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6544134B2 (ja) 2015-08-17 2019-07-17 三菱ケミカル株式会社 ガラス積層体、ガラス積層体ロール、電子デバイス用基板、及び離型フィルム付きガラス層保護フィルム
WO2017123899A1 (en) 2016-01-15 2017-07-20 Corning Incorporated Foldable electronic device assemblies and cover elements for the same
CN110770179A (zh) 2017-06-02 2020-02-07 肖特玻璃科技(苏州)有限公司 具有高抗接触性的柔性超薄玻璃
JP2019025902A (ja) 2017-07-28 2019-02-21 株式会社ダイセル 積層体、及び前記積層体を備えたフレキシブルデバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088789A (ja) * 2009-10-23 2011-05-06 Nitto Denko Corp 透明基板
JP2011140187A (ja) * 2010-01-08 2011-07-21 Teijin Chem Ltd 積層フィルム、透明導電性積層フィルムおよび電子部品
WO2019235160A1 (ja) * 2018-06-04 2019-12-12 株式会社カネカ ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板
JP2019214159A (ja) * 2018-06-12 2019-12-19 旭化成株式会社 ポリイミドフィルムとフレキシブルガラスとの積層体
JP2020203479A (ja) * 2019-06-17 2020-12-24 大日本印刷株式会社 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2021144215A (ja) * 2020-03-11 2021-09-24 日東電工株式会社 前面板、光学積層体および画像表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005128A1 (ja) * 2022-06-29 2024-01-04 大日本印刷株式会社 積層体、表示装置および積層体用部材
WO2024014458A1 (ja) * 2022-07-13 2024-01-18 大日本印刷株式会社 光学フィルム、光学作用フィルム、易接着性フィルム、光学積層体、表面板、画像表示装置および偏光板

Also Published As

Publication number Publication date
JP2022074108A (ja) 2022-05-17
CN116507595A (zh) 2023-07-28
US20240329280A1 (en) 2024-10-03
KR20230098223A (ko) 2023-07-03
TW202224938A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022092249A1 (ja) 積層体および表示装置
KR20190042637A (ko) 광학 필름 및 화상 표시 장치
KR20190104565A (ko) 광학 필름 및 화상 표시 장치
WO2021177288A1 (ja) 表示装置用部材、光学積層体および表示装置
JP7544063B2 (ja) 表示装置用前面板、フレキシブル有機エレクトロルミネッセンス表示装置、表示装置用積層体、および積層体
JP2020203479A (ja) 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
KR20210018123A (ko) 적층체
KR102156445B1 (ko) 표면 처리 적층 필름 및 그것을 사용한 편광판
JP2022058298A (ja) ガラス積層体、表示装置、電子機器および樹脂層
JP2022165392A (ja) 表示装置用積層体および表示装置
JP2022073319A (ja) 積層体および表示装置
JP2022159116A (ja) 表示装置用積層体および表示装置
JP2022058310A (ja) ガラス基材、ガラス積層体、表示装置、電子機器、およびガラス積層体の製造方法
WO2020255864A1 (ja) ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2022210725A1 (ja) 表示装置用積層体および表示装置
WO2024147334A1 (ja) ガラス積層体、表示装置およびガラス積層体の製造方法
WO2022239821A1 (ja) 表示装置用積層体および表示装置
JP7547892B2 (ja) 表示装置用部材、表示装置および電子機器
WO2021182443A1 (ja) フレキシブル表示装置用積層体、表示装置用積層体、およびフレキシブル表示装置
WO2023027167A1 (ja) 表示装置用積層体および表示装置
WO2021182453A1 (ja) フレキシブル表示装置用積層体、表示装置用積層体およびフレキシブル表示装置
WO2022191319A1 (ja) 表示装置用積層体および表示装置
JP2024097718A (ja) ガラス積層体の製造方法、ガラス積層体および表示装置
TW202138439A (zh) 顯示裝置用前面板、可撓性有機電致發光顯示裝置、顯示裝置用積層體及積層體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180073729.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237017048

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886366

Country of ref document: EP

Kind code of ref document: A1