WO2021177288A1 - 表示装置用部材、光学積層体および表示装置 - Google Patents

表示装置用部材、光学積層体および表示装置 Download PDF

Info

Publication number
WO2021177288A1
WO2021177288A1 PCT/JP2021/007902 JP2021007902W WO2021177288A1 WO 2021177288 A1 WO2021177288 A1 WO 2021177288A1 JP 2021007902 W JP2021007902 W JP 2021007902W WO 2021177288 A1 WO2021177288 A1 WO 2021177288A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
display device
layer
resin
group
Prior art date
Application number
PCT/JP2021/007902
Other languages
English (en)
French (fr)
Inventor
崇 網江
前田 高徳
真 七海
一義 佐竹
小野 修之
陽介 和田
敬輔 脇田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020227034158A priority Critical patent/KR20220148888A/ko
Priority to CN202180030101.1A priority patent/CN115428058A/zh
Priority to JP2022504387A priority patent/JPWO2021177288A1/ja
Priority to US17/905,394 priority patent/US20230311456A1/en
Publication of WO2021177288A1 publication Critical patent/WO2021177288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/1033Laminated safety glass or glazing containing temporary protective coatings or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10752Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polycarbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/41Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present disclosure relates to display device members, optical laminates, and display devices.
  • a glass or resin cover member has been used for the display device for the purpose of protecting the display device.
  • This cover member protects the display device from impacts and scratches, and is required to have strength, impact resistance, scratch resistance, and the like.
  • the glass cover member has features such as high surface hardness, scratch resistance, and high transparency
  • the resin cover member has features such as light weight and resistance to breakage. Further, in general, the thicker the cover member, the higher the function of protecting the display device from impact, and the material and thickness of the cover member are appropriately selected and used from the viewpoint of weight, cost, size of the display device, and the like.
  • the cover member In a display device that can be bent, the cover member also needs to be bent in accordance with the movement of the display device, so a cover member that can be bent is applied.
  • a resin cover member a film of polyimide or polyamide-imide that has been made colorless and transparent by devising a chemical structure has been developed (see, for example, Patent Document 1).
  • a cover member such as ultra-thin glass (UTG) that can be bent by thinning the glass (for example, a patent).
  • UTG ultra-thin glass
  • Reference 2 Among the glasses, the one with particularly high bending resistance is called chemically strengthened glass, and by imposing stress that expands on the glass surface, minute scratches generated on the glass surface are prevented from becoming large during bending. So, it makes the glass hard to break.
  • Glass has a higher elastic modulus than resin, so if it has the same thickness, it has a higher ability to protect the display device than resin. Further, glass has high optical transparency, and it is possible to manufacture a display device having better visibility. On the other hand, as the glass becomes thinner, it becomes more fragile and the impact resistance is dramatically deteriorated. If the glass of the cover member is broken by an external impact, not only the function of protecting the display device is deteriorated, but also the generated debris and sharp end faces may damage the fingertips of the user.
  • the present disclosure has been made in view of the above circumstances, and it is an object of the present invention to provide a display device member, an optical laminate, and a display device including the same, which are excellent in impact resistance, flexibility, and safety.
  • a second object of the present disclosure is to provide a display device member having excellent strength, impact resistance, scratch resistance and flexibility, and improved safety, and a display device including the same.
  • a glass substrate having a thickness of 100 ⁇ m or less and a glass substrate arranged on one surface side of the glass substrate have a composite elastic modulus of 5.7 GPa or more and a thickness of 5 ⁇ m or more and 60 ⁇ m or less.
  • a display device member having a resin layer which is.
  • the display device member in the present disclosure may have a primer layer between the glass base material and the resin layer.
  • the display device member in the present disclosure can have a functional layer on the surface side of the resin layer opposite to the glass base material.
  • the functional layer can be a hard coat layer.
  • the display device member in the present disclosure preferably has a total light transmittance of 80% or more. Further, the display device member in the present disclosure preferably has a haze of 2.0% or less.
  • the resin layer may contain polyimide or polyamide-imide.
  • the weight average molecular weight of the polyimide is preferably 100,000 or more.
  • the weight average molecular weight of the above-mentioned polyamide-imide is 50,000 or more.
  • Another embodiment of the present disclosure is an optical laminate having a glass base material, a first resin layer, a second resin layer, and a third resin layer in this order, and the thickness of the glass base material. Is 100 ⁇ m or less, the composite elastic coefficient of the first resin layer is 5.7 GPa or more, the thickness of the first resin layer is 5 ⁇ m or more and 60 ⁇ m or less, and the second resin layer is an adhesive layer.
  • the third resin layer is a resin film containing a resin selected from the group consisting of a polyester resin, a polycycloolefin resin, an acetyl cellulose resin, a polycarbonate resin, and a polypropylene resin. do.
  • the total thickness of the resin layer arranged on the surface side of the first resin layer of the glass substrate is 143 ⁇ m or less.
  • the optical laminate in the present disclosure can have a functional layer on the surface side of the third resin layer opposite to the second resin layer.
  • the functional layer can be a hard coat layer.
  • the optical laminate in the present disclosure preferably has a total light transmittance of 80% or more. Further, the optical laminate in the present disclosure preferably has a haze of 2.0% or less.
  • the first resin layer can contain polyimide or polyamide-imide.
  • the weight average molecular weight of the polyimide is preferably 100,000 or more.
  • the weight average molecular weight of the above-mentioned polyamide-imide is 50,000 or more.
  • Another embodiment of the present disclosure provides a display device comprising a display panel and the above-mentioned display device member or the above-mentioned optical laminate arranged on the observer side of the display panel.
  • the display device in the present disclosure is preferably foldable.
  • a display device member and an optical laminate having excellent impact resistance and flexibility and improved safety. Further, in the present disclosure, it is possible to provide a display device member having excellent strength, impact resistance, scratch resistance, flexibility, and improved safety.
  • the "film” also includes a member called a "sheet”.
  • A. Display device members In order to solve the above problems, the inventors of the present disclosure have diligently studied, used a thin glass base material having flexibility, and arranged a resin layer on one surface side of the glass base material. As a result, cracking of the glass base material can be suppressed and impact resistance can be enhanced, and further, cracking of the glass base material can be further suppressed and impact resistance can be further enhanced by increasing the thickness of the resin layer. I found that I could do it. However, when the display device member in which the resin layer is arranged on one surface side of the glass base material is arranged on the observer side of the display panel of the display device, the surface of the display device member on the resin layer side is the observer.
  • the inventors of the present disclosure have further studied, and by setting the composite elastic modulus of the resin layer within a predetermined range, even when the thickness of the resin layer is made relatively thin in order to increase the surface hardness. , It was found that the cracking of the glass substrate can be suppressed. That is, it was found that a display device member having excellent strength, impact resistance, scratch resistance, and flexibility can be obtained. In addition, it was found that by using a resin layer having predetermined characteristics, even if the glass substrate is damaged, its fragments and sharp end faces are not exposed, and safer use is possible. The display device member in the present disclosure is based on such knowledge.
  • the display device member in the present disclosure is arranged on one surface side of a glass base material having a thickness of 100 ⁇ m or less and the glass base material, has a composite elastic modulus of 5.7 GPa or more, and has a thickness of 5 ⁇ m or more and 60 ⁇ m. It has the following resin layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of a display device member in the present disclosure.
  • the display device member 1 has a glass base material 2 and a resin layer 3 arranged on one surface side of the glass base material 2.
  • the glass base material 2 has a predetermined thickness
  • the resin layer 3 has a predetermined thickness and a predetermined composite elastic modulus.
  • the glass base material has a thickness of a predetermined value or less and is thin, there is a concern that it is easily broken and has low impact resistance.
  • a resin layer is arranged on one surface side of the glass base material. As a result, when an impact is applied to the display device member, the resin layer can absorb the impact, suppress cracking of the glass base material, and improve impact resistance. Furthermore, even if the glass substrate is broken, the resin layer can suppress the scattering of the glass.
  • the thickness of the resin layer is increased, cracking of the glass base material can be further suppressed, and impact resistance can be further improved.
  • the thickness of the resin layer is large, the hardness of the surface of the display device member on the resin layer side is lowered, and the scratch resistance is lowered. Therefore, in order to increase the hardness of the surface of the display device member on the resin layer side, it is necessary to make the thickness of the resin layer relatively thin.
  • the composite elastic modulus of the resin layer is within a predetermined range, cracking of the glass substrate is suppressed even when the thickness of the resin layer is relatively thin in order to increase the surface hardness. can do. Therefore, both impact resistance and scratch resistance can be improved.
  • the composite elastic modulus of the resin layer is measured by the nanoindentation method (indentation test method) as described later. Further, as one of the evaluations of the impact resistance of the thin glass base material, there is a pen drop test, and the impact resistance of the display device member is evaluated by the pen drop test as described in Examples described later. Can be done.
  • the elastic modulus includes various elastic moduli in addition to the composite elastic modulus.
  • the composite elastic modulus of the resin layer is adopted. This is because the indenter is pushed into the measurement sample in the measurement of the composite elastic modulus of the resin layer by the nanoindentation method (pushing test method), and the tip of the pen collides with the sample and is pushed in in the pen drop test. Because it is similar to.
  • the impact resistance by the pen drop test can be improved.
  • the thickness of the glass base material is not more than a predetermined value and is thin, and the thickness of the resin layer is within a predetermined range and is relatively thin, flexibility can be enhanced and a display device can be used.
  • the display device member in the present disclosure can be bent and can be used for a wide variety of display device members, for example, as a foldable display member.
  • the composite elastic modulus of the resin layer when the composite elastic modulus of the resin layer is equal to or higher than a predetermined value, it is possible to increase the restoring force when the resin layer is deformed.
  • the composite elastic modulus is an index showing the difficulty of deformation, and the larger the composite elastic modulus of the resin layer, the greater the force to restore when the resin layer is deformed, while the resin layer The smaller the composite elastic modulus of, the smaller the restoring force tends to be when the resin layer is deformed. Therefore, when the composite elastic modulus of the resin layer is at least a predetermined value, it is possible to improve the resilience after the display device member has been bent for a long time. In addition, the resilience after repeatedly bending the display device member can be improved.
  • the present disclosure it is possible to use a display device member having excellent strength, impact resistance, scratch resistance and flexibility. Further, even if the glass base material is damaged, the risk of injuring the human body can be reduced, and the member can be used as a highly safe display device member.
  • an optical film having a resin base material is also known, but in a foldable display using the optical film as the member, there are traces of folding. There are problems that it is easy to stick, the image quality is deteriorated, and the appearance is spoiled.
  • a glass base material is used, and the display device member having the glass base material is less likely to leave a fold mark, and can improve the image quality and the appearance.
  • the resin layer in the present disclosure is a member having a composite elastic modulus of 5.7 GPa or more, a thickness of 5 ⁇ m or more and 60 ⁇ m or less, and is arranged on one surface side of a glass base material.
  • the resin layer is a member having shock absorption, and also functions as a member for suppressing scattering of glass when the glass base material is broken.
  • the resin layer has light transmission property, and when the display device member in the present disclosure is arranged on the observer side of the display panel of the display device, the resin layer is arranged on the observer side rather than the glass base material.
  • the composite elastic modulus of the resin layer can be 5.7 GPa or more, preferably 6.0 GPa or more, and more preferably 6.5 GPa or more.
  • the composite elastic modulus of the resin layer is within the above range, cracking of the glass base material due to impact can be suppressed even when the thickness of the resin layer is relatively thin in order to increase the surface hardness. Impact resistance and scratch resistance can be improved.
  • the composite elastic modulus of the resin layer is preferably, for example, 40 GPa or less, preferably 20 GPa or less. More preferably.
  • the composite elastic modulus of the resin layer is defined as being calculated by using the contact projected area A p that is determined in measuring indentation hardness of the resin layer (H IT).
  • the "indentation hardness” is a value obtained from a load-displacement curve from indenter load to unloading obtained by hardness measurement by the nanoindentation method.
  • the composite elastic modulus of the resin layer is the elastic modulus including the elastic deformation of the resin layer and the elastic deformation of the indenter.
  • Measurement of indentation hardness shall be performed using the "TI950 TriboIndenter" of BRUKER Corp. measurement sample. Specifically, first, a block in which a display device member cut out to 1 mm ⁇ 10 mm is embedded with an embedding resin is prepared, and a uniform thickness of 50 nm without holes or the like is produced from this block by a general section preparation method. Cut out a section of 100 nm or more. "Ultra Microtome EM UC7" (manufactured by Leica Microsystems, Inc.) or the like can be used for preparing the sections. Then, the remaining block from which a uniform section having no holes or the like is cut out is used as a measurement sample.
  • a Berkovich indenter (triangular pyramid, TI-0039 manufactured by BRUKER) was used as the indenter under the following measurement conditions in a resin layer. Push vertically to the center of the cross section of the above for 10 seconds up to a maximum pushing load of 25 ⁇ N.
  • the Berkovich indenter is separated from the interface between the glass base material and the resin layer by 500 nm from the interface between the glass base material and the resin layer to the center side of the resin layer in order to avoid the influence of the glass base material and the influence of the side edges of the resin layer.
  • the resin layer is pushed into the portion of the resin layer 500 nm away from both end ends on the center side of the resin layer. If an arbitrary layer such as a hard coat layer is present on the surface of the resin layer opposite to the surface on the glass substrate side, the center side of the resin layer is also from the interface between the arbitrary layer and the resin layer. It shall be pushed into the portion of the resin layer separated by 500 nm. Then, after relaxation of residual stresses and kept constant, by unloading over 10 seconds, the maximum load after the relaxation is measured, said maximum load P max ([mu] N) and the contact projection area A p (nm 2 ) and used by P max / a p, calculates indentation hardness of (H IT).
  • the contact projection area is a contact projection area in which the curvature of the indenter tip is corrected by the Oliver-Pharr method using a standard sample of fused quartz (5-00998 manufactured by BRUKER).
  • Indentation hardness (H IT) is the arithmetic mean of the values obtained by measuring 10 points. If any of the measured values deviates from the arithmetic mean value by ⁇ 20% or more, the measured value shall be excluded and remeasurement shall be performed. Whether or not any of the measured values deviates from the arithmetic mean value by ⁇ 20% or more depends on (AB) / B ⁇ 100 when the measured value is A and the arithmetic mean value is B. Judgment shall be made based on whether the required value (%) is ⁇ 20% or more. Indentation hardness (H IT) can be adjusted depending on the type of the resin contained in the resin layer to be described later.
  • Composite elastic modulus E r of the resin layer the following equation (1), determined using the contact projected area A p that is determined in measuring the indentation hardness.
  • the indentation hardness is measured at 10 points, the composite elastic modulus is obtained each time, and the obtained composite elastic modulus is used as the arithmetic mean value of the obtained 10 points.
  • the thickness of the resin layer can be 5 ⁇ m or more and 60 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 15 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the resin layer is measured from a cross section in the thickness direction of the display device member observed by a transmission electron microscope (TEM), a scanning electron microscope (SEM), or a scanning transmission electron microscope (STEM). It can be the average value of the thicknesses of any 10 points obtained in the above. The same can be applied to the method for measuring the thickness of other layers of the display device member.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • STEM scanning transmission electron microscope
  • the resin layer may be arranged on only one surface of the glass base material, or may be arranged so as to cover two or more surfaces of the glass base material. Above all, since the resin layer is arranged so as to cover the end face (side surface) of the glass base material, it is possible to alleviate the impact from the side surface of the glass base material and suppress the occurrence of scratches on the glass. Damage can be suppressed.
  • the resin contained in the resin layer is not particularly limited as long as it satisfies the above-mentioned composite elastic coefficient and has light transmittance, and is not particularly limited, for example, polyimide or polyamide. Examples thereof include imide, acrylic resin, epoxy resin, urethane resin, and triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • Polyimide is obtained by reacting a tetracarboxylic acid component with a diamine component. It is preferable to obtain a polyamic acid by polymerization of a tetracarboxylic acid component and a diamine component and imidize the polyamic acid.
  • the imidization may be carried out by chemical imidization, thermal imidization, or a combination of chemical imidization and thermal imidization.
  • the polyimide is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus and has light transmittance, and for example, the structural unit represented by the following general formula (1) is 10 mol% or more and 100 mol% or less. And the structural unit represented by the following general formula (2) is contained in (100-x) mol% (where x is the molar% of the structural unit represented by the above general formula (1)), and the weight average molecular weight is 100. It is preferably 000 or more.
  • the polyimide has a tetracarboxylic acid residue having a specific structure containing a parabiphenylene group having a dihedral angle twisted in the main chain via an ester bond, and a diamine residue having an aromatic ring or an aliphatic ring. Moreover, by having a specific weight average molecular weight, it is easy to improve the balance between the composite elastic coefficient and the bending resistance.
  • R 1 to R 4 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and at least one of R 1 and R 2 and R 3 and at least one of R 4 is, .
  • A represents an alkyl group having 1 to 6 carbon atoms represents a tetravalent group is a tetracarboxylic acid residue having an aromatic ring or aliphatic ring
  • B is an aromatic Represents a divalent group that is a diamine residue having a group ring or an aliphatic ring.
  • the tetracarboxylic acid residue refers to a residue obtained by removing four carboxyl groups from the tetracarboxylic acid, and represents the same structure as the residue obtained by removing the acid dianhydride structure from the tetracarboxylic dianhydride. ..
  • the diamine residue refers to a residue obtained by removing two amino groups from a diamine.
  • At least one of R 1 and R 2 and at least one of R 3 and R 4 represent an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be a linear or branched alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, or i-. Examples thereof include a butyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group.
  • solvent solubility it is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms, and more preferably a methyl group. Further, among them, from the viewpoint of solvent solubility, it is preferable that R 1 and R 2 , and R 3 and R 4 represent a methyl group.
  • B represents a divalent group which is a diamine residue having an aromatic ring or an aliphatic ring.
  • the diamine residue having an aromatic ring or an aliphatic ring can be a residue obtained by removing two amino groups from a diamine having an aromatic ring or a diamine having an aliphatic ring.
  • diamine having an aromatic ring and the diamine having an aliphatic ring include those described in JP-A-2019-132930 and JP-A-2019-1989. These can be used alone or in combination of two or more.
  • A represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring
  • B is a diamine residue having an aromatic ring or an aliphatic ring. Represents a divalent group. Since B in the general formula (2) may be the same as B in the general formula (1), the description thereof will be omitted here. B in the general formula (1) and B in the general formula (2) may be the same or different from each other.
  • the tetracarboxylic dianhydride in A of the general formula (2) is a residue obtained by removing the acid dianhydride structure from the tetracarboxylic dianhydride having an aromatic ring, or a tetracarboxylic dianhydride having an aliphatic ring. It can be a residue obtained by removing the acid dianhydride structure from the anhydride.
  • tetracarboxylic dianhydride having an aromatic ring and the tetracarboxylic dianhydride having an aliphatic ring are described in, for example, JP-A-2019-132930 and JP-A-2019-1989. Can be mentioned. These can be used alone or in combination of two or more.
  • the polyimide preferably contains 10 mol% or more and 100 mol% or less of the structural unit represented by the above general formula (1). From the viewpoint of solubility in a solvent, the polyimide more preferably contains 15 mol% or more, more preferably 25 mol% or more, and 50 mol% or more of the structural unit represented by the above general formula (1). Is particularly preferred.
  • a copolymerization component may be contained, and the polyimide may contain 95 mol% or less of the structural unit represented by the above general formula (1), and 90 mol. It may contain less than%, and may contain less than 80 mol%.
  • the polyimide may contain (100-x) mol% of the structural unit represented by the general formula (2) (where x is the molar% of the structural unit represented by the general formula (1)). preferable. From the viewpoint of solubility in a solvent, the polyimide preferably contains 85 mol% or less of the structural unit represented by the general formula (2), more preferably 75 mol% or less, and 50 mol% or less. Is particularly preferred.
  • the structural unit represented by the general formula (2) is 0 mol%, that is, not contained.
  • the structural unit represented by the general formula (2) may be 0 mol%, but may be contained as a copolymerization component from the viewpoint of improving surface hardness and light transmission, and the polyimide is described above.
  • the structural unit represented by the general formula (2) may be contained in an amount of 5 mol% or more, 10 mol% or more, or 20 mol% or more.
  • At least one of the tetravalent group which is a tetracarboxylic acid residue of A and the divalent group which is a diamine residue of B is It contains an aromatic ring and comprises a structure in which (i) a fluorine atom, (ii) an aliphatic ring, and (iii) an aromatic ring are linked to each other with a sulfonyl group or an alkylene group which may be substituted with fluorine. It preferably comprises at least one selected from the group.
  • the polyimide contains at least one selected from a tetracarboxylic acid residue having an aromatic ring and a diamine residue having an aromatic ring
  • the molecular skeleton becomes rigid, the orientation is enhanced, and the surface hardness is improved, but the polyimide is rigid.
  • Aromatic ring skeletons tend to have longer absorption wavelengths and lower transmittance in the visible light region.
  • the polyimide contains (i) a fluorine atom, the light transmission is improved because the electronic state in the polyimide skeleton can be made difficult to transfer charges.
  • the polyimide contains (ii) an aliphatic ring
  • the light transmission is improved in that the transfer of charges in the skeleton can be inhibited by breaking the conjugation of ⁇ electrons in the polyimide skeleton.
  • the polyimide contains a structure in which (iii) aromatic rings are linked to each other by an alkylene group which may be substituted with a sulfonyl group or fluorine
  • the charge in the skeleton is charged by breaking the conjugation of ⁇ electrons in the polyimide skeleton. Light transmission is improved in that movement can be hindered.
  • At least one of a tetravalent group which is a tetracarboxylic acid residue of A and a divalent group which is a diamine residue of B from the viewpoint of improving light transmission and surface hardness.
  • a tetravalent group which is a tetracarboxylic acid residue of A and a divalent group which is a diamine residue of B from the viewpoint of improving light transmission and surface hardness.
  • the divalent group which is a diamine residue of B preferably contains an aromatic ring and a fluorine atom.
  • the diamine residue having the aromatic ring or the aliphatic ring in B in the general formulas (1) and (2) is trans.
  • a divalent group of at least one selected from the viewpoint of achieving both light transmission and surface hardness, 4,4'-diaminodiphenyl sulfone residue, 3,4'-diaminodiphenyl sulfone residue, and 2,2-bis (4-aminophenyl) propane residue.
  • R 5 and R 6 is a perfluoroalkyl group, among them, preferably a perfluoroalkyl group having 1 to 3 carbon atoms, More preferably, it is a trifluoromethyl group or a perfluoroethyl group.
  • the alkyl group in R 5 and R 6 in the following general formula (3) is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.
  • R 5 and R 6 independently represent a hydrogen atom, an alkyl group, or a perfluoroalkyl group.
  • the tetracarboxylic acid residue having an aromatic ring or an aliphatic ring in A in the above general formula (2) is cyclohexanetetracarboxylic from the viewpoint of light transmission, bending resistance and surface hardness.
  • these suitable residues are contained in a total of 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more.
  • a tetracarboxylic acid residue group (group) suitable for improving rigidity such as at least one selected from the group consisting of 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride residues.
  • group suitable for improving rigidity, such as at least one selected from the group consisting of 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride residues.
  • A) is preferably included.
  • cyclohexanetetracarboxylic acid dianhydride residue cyclopentanetetracarboxylic acid dianhydride residue, dicyclohexane-3, 4,3', 4'-tetracarboxylic acid dianhydride residue, cyclobutanetetracarboxylic acid dianhydride residue, 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride residue, 4,4 '-(Hexafluoroisopropylidene) diphthalic acid anhydride residue, 3,4'-(hexafluoroisopropylidene) diphthalic acid anhydride residue, 3,3'-(hexafluoroisopropyridene) diphthalic acid anhydride residue , 4,4'-oxydiphthalic acid anhydride residue, and tetracarboxylic suitable for improving light transmission, such as at least one selected from the group consisting of 3,4'-
  • a tetracarboxylic acid residue group suitable for improving the rigidity group A
  • a tetracarboxylic acid residue group suitable for improving light transmission group
  • the content ratio with B) is the tetracarboxylic acid residue group suitable for improving the rigidity with respect to 1 mol of the tetracarboxylic acid residue group (group B) suitable for improving the light transmission.
  • Group A) is preferably 0.05 mol or more and 9 mol or less, more preferably 0.1 mol or more and 5 mol or less, and further preferably 0.3 mol or more and 4 mol or less.
  • the group B includes 4,4'-(hexafluoroisopropyridene) diphthalic anhydride residues containing a fluorine atom, and 3,4'-( Hexafluoroisopropylidene) It is preferable to use at least one of the diphthalic anhydride residues.
  • the content ratio of each repeating unit in the polyimide and the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue can be obtained from the molecular weight charged at the time of polyimide production. Further, the content ratio (mol%) of each tetracarboxylic acid residue and each diamine residue in the polyimide is determined by high performance liquid chromatography, gas chromatograph mass spectrometer, and NMR for the decomposition product of the polyimide obtained in the same manner as described above. , Elemental analysis, XPS / ESCA and TOF-SIMS.
  • Polyimide preferably has a weight average molecular weight of 100,000 or more in terms of polystyrene in gel permeation chromatography from the viewpoint of good bending resistance. From the viewpoint of bending resistance, the weight average molecular weight may be 120,000 or more, 140,000 or more, or 160,000 or more. On the other hand, the weight average molecular weight is preferably 270,000 or less from the viewpoint that bubble defects are unlikely to occur. Further, from the viewpoint of solubility, the weight average molecular weight may be 250,000 or less, 230,000 or less, or 210,000 or less.
  • the weight average molecular weight of polyimide can be measured by gel permeation chromatography (GPC). Specifically, polyimide is used as an N-methylpyrrolidone (NMP) solution having a concentration of 0.1% by mass, and a 30 mmol% LiBr-NMP solution having a water content of 500 ppm or less is used as a developing solvent. 8120, column used: GPC LF-804 manufactured by SHODEX), measurement is performed under the conditions of a sample injection amount of 50 ⁇ L, a solvent flow rate of 0.4 mL / min, and 37 ° C. The weight average molecular weight is determined based on a polystyrene standard sample having the same concentration as the sample.
  • polyamide-imide is not particularly limited as long as it satisfies the above-mentioned composite elastic modulus and has light transmittance, but for example, a polyimide structural unit including a structural unit represented by the following formula (4). And a polyamide constituent unit including the constitutional unit represented by the following formula (5) are preferably contained.
  • X represents a divalent group which is a dicarboxylic acid residue having an aromatic ring.
  • the polyamide-imide containing a polyimide structural unit containing a structural unit represented by the above formula (4) and a polyamide structural unit containing a structural unit represented by the above formula (5) It is possible to obtain a resin layer having a high composite elastic modulus and bending resistance.
  • the above-mentioned polyamide-imide has good bending resistance even in a high humidity environment.
  • the amide bond site and the ester bond site in the polyimide constituent unit form a hydrogen bond, so that hydrogen bond with water can be suppressed even in a high humidity environment, so that bending in a high humidity environment can be suppressed. It is presumed that the deterioration of resistance is suppressed and the bending resistance is improved.
  • the solubility in a solvent is good even if the said-mentioned polyamide-imide contains the structural unit represented by the above-mentioned formula (4).
  • the polyimide structural unit is a structural unit obtained by reacting a tetracarboxylic acid component with a diamine component, and examples thereof include a structural unit represented by the general formula (2) described in the section of polyimide.
  • the structural units represented by the above formula (4) are tetracarboxylic dianhydride represented by the following formula (4-1) and 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl. Can be obtained by reacting.
  • the content ratio of the structural units represented by the above formula (4) may be 100 mol% with respect to the total of the polyimide structural units in the polyamide-imide. Further, the polyimide structural unit may contain another polyimide structural unit different from the structural unit represented by the above formula (4).
  • the content ratio of the structural unit represented by the above formula (4) is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol, based on the total of the polyimide structural units in the polyamide-imide. % Or more, preferably 100 mol% or less, and may be 90 mol% or less.
  • the content ratio of the structural unit represented by the above formula (4) is within the above range, it is possible to have a high composite elastic modulus and bending resistance while having sufficient transparency. Even if it contains other polyimide structural units that are different from the structural units represented by the above formula (4) in order to improve the balance between transparency, composite elastic modulus and bending resistance, and to add further characteristics. good.
  • the content ratio of the tetracarboxylic dianhydride residue represented by the above formula (4-1) is preferably 50 mol% with respect to the total number of tetracarboxylic acid residues contained in the polyimide constituent units in the polyamide-imide.
  • the above is more preferably 60 mol% or more, further preferably 70 mol% or more, preferably 100 mol% or less, and may be 90 mol% or less.
  • the content ratio of the tetracarboxylic dianhydride residue represented by the above formula (4-1) is within the above range, it is possible to have a high composite elastic modulus and bending resistance while having sufficient transparency. ..
  • tetras different from the tetracarboxylic dianhydride residue represented by the above formula (4-1) in order to improve the balance between transparency, composite elastic modulus and flexural resistance, and to add further properties. It may contain a carboxylic acid dianhydride residue.
  • the structural unit represented by the above formula (4) is Different polyimide building blocks can be mentioned.
  • a and B may be the same or different in each structural unit. That is, in the structural unit represented by the general formula (2), A and B may be independently contained in one type or two or more types.
  • A represents a tetravalent group which is a tetracarboxylic acid residue having an aromatic ring or an aliphatic ring.
  • A for example, a tetravalent group represented by the following formulas (a1) to (a7), and a part or all of hydrogen atoms in the tetravalent group represented by these formulas are fluorogroups and methyl. Examples thereof include a tetravalent group substituted with one or more substituents selected from the group consisting of a group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group.
  • the bonding position of Q a to each ring may be independently set to the ortho position or the meta position with respect to one of the two carboxy groups bonded to each ring.
  • the bond position of Qa2 with respect to each ring is preferably the meta-position or the para-position with respect to the phenylene group, and more preferably the para-position.
  • the above formulas (a4) to (a7) As described above, when an aliphatic ring is contained, it is preferable because it has an aliphatic structure and is excellent in transparency and solubility. Among them, the tetravalent group represented by the structure (a4), (a5), or (a6) having few bending sites is preferable from the viewpoint of improving the composite elastic modulus, and among them, the tetravalence represented by (a4) is preferable. Group is preferred.
  • B represents a divalent group which is a diamine residue having an aromatic ring or an aliphatic ring.
  • a divalent group represented by the following formulas (b1) to (b6), and a part or all of hydrogen atoms in the divalent group represented by these formulas are fluorogroups and methyl. Examples thereof include a divalent group substituted with one or more substituents selected from the group consisting of a group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group.
  • the bond position of Q b with respect to each ring is preferably a meta-position or a para-position with respect to the amino group bonded to each ring, and more preferably a para-position.
  • the bond position of Q b2 with respect to each ring is preferably the meta-position or the para-position with respect to the phenylene group, and more preferably the para-position.
  • B is a phenylene skeleton from the viewpoint of transparency and maintenance of composite elastic modulus among the divalent groups represented by the above formulas (b1) to (b6). It is preferable that the phenylene group has a molecular structure in which the ⁇ -conjugation between the phenylene groups is cleaved, and it is more preferable that the phenylene group contains fluorine.
  • Q b is -O-, -S-, -CH 2- , -CH (CH). 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , or -SO 2- , preferably -C (CF 3 ) 2- or -SO 2-. Is preferable.
  • B is selected from the group consisting of divalent groups represented by the general formula (3) from the viewpoint of transparency and maintenance of composite elastic modulus. It is preferably at least one divalent group.
  • Examples of the divalent group represented by the general formula (3), transparency R 5 and R 6 are a methyl group in terms of, or more preferably a trifluoromethyl group, trifluoromethoxy view of transparency It is even more preferably a methyl group.
  • polyimide structural unit different from the structural unit represented by the above formula (4) may be a structural unit represented by the following formula (6).
  • B' represents a divalent group which is a diamine residue having an aromatic ring or an aliphatic ring, and is a 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl residue. Different from the group.
  • B' represents a diamine residue having an aromatic ring or an aliphatic ring, which is different from the 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl residue, and is described above. It may be the same as B in the general formula (5).
  • the structural unit represented by the following formula (7), the structural unit represented by the following formula (8), or a combination thereof may be contained. preferable.
  • the structural unit represented by the following formula (7), the structural unit represented by the following formula (8), or a combination thereof is contained, the transparency is improved and the solubility in a solvent is enhanced. preferable.
  • the constituent unit represented by the following formula (7) it is more preferable from the viewpoint of improving transparency while maintaining a high composite elastic modulus.
  • the structural unit represented by the above formula (7) can be obtained by reacting cyclobutanetetracarboxylic dianhydride with 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl.
  • the structural unit represented by the above formula (8) is a reaction between 4,4'-(hexafluoroisopropyridene) diphthalic anhydride and 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl. Can be obtained.
  • the total content ratio of the other polyimide structural units which is different from the structural unit represented by the above formula (4), may be 0 mol%, but is included in the total of the polyimide structural units in the polyamide-imide. In this case, it is preferably 5 mol% or more, may be 10 mol% or more, preferably 50 mol% or less, still more preferably 40 mol% or less, still more preferably 30 mol% or less.
  • the total content ratio of the other polyimide constituent units is within the above range, high transparency can be imparted and the composite elastic modulus becomes good.
  • the above formula is relative to the total of the polyimide structural units in the polyamide-imide.
  • the total content ratio of the structural unit represented by (7) and the structural unit represented by the above formula (8) is preferably 5 mol% or more, may be 10 mol% or more, and is preferably 50. It is mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less. If the total content ratio of the structural unit represented by the above formula (7) and the structural unit represented by the above formula (8) is within the above range, high transparency can be imparted and the composite elastic modulus is good. Become.
  • the polyamide structural unit is a structural unit obtained by reacting a dicarboxylic acid component and a diamine component, and examples thereof include a structural unit represented by the following general formula (9).
  • X represents a divalent group which is a dicarboxylic acid residue having an aromatic ring
  • B represents a divalent group which is a diamine residue having an aromatic ring or an aliphatic ring. show.
  • the dicarboxylic acid residue refers to a residue obtained by removing two carboxyl groups from a dicarboxylic acid, and represents the same structure as a residue obtained by removing two carboxyl group groups from a dicarboxylic acid chloride.
  • the diamine residue refers to a residue obtained by removing two amino groups from a diamine.
  • the polyamide structural unit in polyamide-imide contains the structural unit represented by the above formula (5) as an essential component.
  • the constitutional unit represented by the above formula (5) includes one kind or two or more kinds in the polyamide constitutional unit.
  • the structural unit represented by the above formula (5) can be obtained by reacting a dicarboxylic acid component having an aromatic ring with 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl.
  • the dicarboxylic acid component include a dicarboxylic acid and a dicarboxylic acid chloride, and it is preferable to use a dicarboxylic acid chloride from the viewpoint of reactivity.
  • the structural unit represented by the above formula (5) is that X in the above formula (5) is at least one selected from the group consisting of the structures represented by the following formulas (x1) to (x3). Is preferable. It is possible to obtain a resin layer having a high composite elastic modulus while having sufficient transparency. Further, not only the 1,4-phenylene group represented by the following formula (x1) but also a 1,3-phenylene group may be used.
  • L is -O-, -S-, -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , or -CO-, * represents a bond.
  • the content ratio of the constituent units represented by the above formula (5) may be 100 mol% with respect to the total of the polyamide constituent units in the polyamide-imide. Further, the polyamide constituent unit may further contain another polyamide constituent unit different from the constituent unit represented by the above formula (5).
  • the content ratio of the structural unit represented by the above formula (5) is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 90 mol, based on the total of the polyamide structural units in the polyamide-imide. % Or more, preferably 100 mol% or less, and may be 95 mol% or less.
  • X in the above formula (5) is the above formulas (x1) to (x1) with respect to the total of the structural units represented by the above formula (5) in the polyamide-imide.
  • the total content ratio of one or more selected from the group consisting of the structure represented by x3) may be 100 mol%, 80 mol% or more and 100 mol% or less, and further 90 mol% or more and 100 mol% or less. It is preferable that it is 95 mol% or more and 100 mol% or less.
  • the polyamide constitutional unit may include other polyamide constitutional units different from the constitutional unit represented by the above formula (5).
  • a polyamide structural unit different from the structural unit represented by the above formula (5) can be mentioned.
  • X and B may be the same or different in each structural unit. That is, in the structural unit represented by the general formula (9), X and B may be independently contained in one type or two or more types.
  • X may be the same as X in the structural unit represented by the above formula (5), and B may be the same as B in the structural unit represented by the general formula (5). May be.
  • Another polyamide constituent unit which may be contained in the polyamide constituent unit and is different from the constituent unit represented by the above formula (5), is X in the above general formula (9) from the viewpoint of transparency.
  • Is -C (CF 3 ) 2- or -SO 2- , or R 5 and R 6 are methyl groups in the divalent group represented by the above general formula (3).
  • Q b is more preferably ⁇ C (CF 3 ) 2 ⁇ .
  • the content ratio of the polyamide structural unit including the structural unit represented by the above formula (5) is the polyimide structural unit including the structural unit represented by the above formula (4) and the structural unit represented by the above formula (5). It is preferably 10 mol% or more, further preferably 30 mol% or more, still more preferably 40 mol% or more, still more preferably 50 mol% or more, and preferably 50 mol% or more, based on the total of the polyamide constituent units contained. It is 80 mol% or less, more preferably 70 mol% or less, still more preferably 60 mol% or less.
  • the content ratio of the polyamide structural unit including the structural unit represented by the above formula (5) is within the above range, the composite elastic modulus of the resin layer and the bending resistance at room temperature can be easily improved, and the polyamide-imide can be added to the solvent. Solubility and bending resistance under high temperature and high humidity tend to be good.
  • the content ratio of the dicarboxylic acid residue X having an aromatic ring in the above formula (5) is preferably 10 mol% or more with respect to the total of the tetracarboxylic acid residue and the dicarboxylic acid residue in the polyamideimide resin. More preferably 30 mol% or more, still more preferably 40 mol% or more, still more preferably 50 mol% or more, preferably 80 mol% or less, still more preferably 70 mol% or less, still more preferably 60. It is less than mol%.
  • the content ratio of the dicarboxylic acid residue X having an aromatic ring in the above formula (5) is within the above range, the composite elastic modulus of the resin layer and the bending resistance at room temperature are likely to be improved, and the polyamide-imide solvent. Solubility in and bending resistance under high temperature and high humidity tend to be good.
  • the polyamide-imide may have a structure different from the polyimide structural unit and the polyamide structural unit in a part thereof.
  • the total of the polyimide structural unit including the structural unit represented by the above formula (4) and the polyamide structural unit including the structural unit represented by the above formula (5) is 95 of all the structural units of polyamide-imide. % Or more, more preferably 98% or more, and even more preferably 100%.
  • the structure different from the polyimide structural unit and the polyamide structural unit includes, for example, a structural unit in which the tetracarboxylic acid component is not completely imidized and has a polyamic acid structure in part, and a tricarboxylic acid such as trimellitic anhydride.
  • a structural unit in which the tetracarboxylic acid component is not completely imidized and has a polyamic acid structure in part and a tricarboxylic acid such as trimellitic anhydride.
  • examples thereof include polyamideimide structural units containing acid residues.
  • the respective structural units in the polyamide-imide, and the content of each residue (mol%) can be determined using 1 H-NMR, the time polyamideimide production can also be determined from the charging ratio of the raw materials.
  • the structure of polyamide-imide can be carried out by using NMR, various mass spectrometry and the like.
  • polyamide-imide is decomposed with an alkaline aqueous solution or supercritical methanol, and the obtained decomposition product is subjected to high performance liquid chromatography or gas chromatograph mass spectrometer. , NMR, elemental analysis, XPS / ESCA and TOF-MeOH.
  • the weight average molecular weight of the polyamide-imide is preferably 50,000 or more, more preferably 100,000 or more, still more preferably 150,000 or more, preferably 1,000,000 or less, and more preferably. It is 500,000 or less, more preferably 300,000 or less.
  • appearance defects such as cracks and whitening are unlikely to occur after firing, it is easy to obtain a resin layer with good transparency, and it is high during synthesis, varnish preparation, and resin layer formation. Viscosity is suppressed and the resin layer is easily formed.
  • the method for measuring the weight average molecular weight of polyamide-imide can be the same as the method for measuring the weight average molecular weight of the above-mentioned polyimide.
  • the resin layer may contain an ultraviolet absorber. Deterioration of the resin layer due to ultraviolet rays can be suppressed. Above all, when the resin layer contains polyimide, it is possible to suppress the color change of the resin layer containing polyimide with time. Further, in a display device including a display device member, deterioration of a member arranged on the display panel side of the display device member, such as a polarizer, due to ultraviolet rays can be suppressed.
  • Examples of the ultraviolet absorber contained in the resin layer include benzophenone-based ultraviolet absorbers such as triazine-based ultraviolet absorbers and hydroxybenzophenone-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers.
  • benzophenone-based ultraviolet absorbers such as triazine-based ultraviolet absorbers and hydroxybenzophenone-based ultraviolet absorbers
  • benzotriazole-based ultraviolet absorbers include those described in JP-A-2019-132930, for example. can.
  • the ultraviolet absorber a triazine-based ultraviolet absorber, a hydroxybenzophenone-based ultraviolet absorber, and a benzotriazole-based ultraviolet absorber are preferably used.
  • the ultraviolet absorber is preferably a polymer or an oligomer. This is because it is possible to suppress the bleed-out of the ultraviolet absorber when the display device member is repeatedly bent.
  • examples of such an ultraviolet absorber include a polymer or oligomer having a triazine skeleton, a benzophenone skeleton, or a benzotriazole skeleton. It is preferably obtained by thermally copolymerizing methyl methacrylate (MMA) at an arbitrary ratio.
  • the content of the ultraviolet absorber in the resin layer is not particularly limited, but is preferably 1% by mass or more and 6% by mass or less, and more preferably 2% by mass or more and 5% by mass or less. If the content of the UV absorber is too small, the effect of the UV absorber may not be sufficiently obtained. Further, if the content of the ultraviolet absorber is too large, the resin layer may be remarkably colored or the strength of the resin layer may be lowered.
  • the resin layer can further contain additives, if necessary.
  • additives include inorganic particles, a silica filler for facilitating winding, a surfactant for improving film forming property and defoaming property, and an adhesion improving agent.
  • a method for forming the resin layer for example, a method of applying a resin composition on a glass substrate can be mentioned.
  • the coating method is not particularly limited as long as it can be coated with a desired thickness.
  • Examples thereof include general coating methods such as a blade coating method, a dip coating method, and a screen printing method.
  • a transfer method can also be used as a method for forming the resin layer.
  • the resin layer contains polyimide or polyamide-imide will be described as an example.
  • Method for forming a resin layer containing polyimide for example, a method of applying a polyimide varnish containing polyimide and an organic solvent on a glass substrate and drying it, and a method of forming the resin layer.
  • a method for forming a resin layer containing polyimide for example, a method of applying a polyimide varnish containing polyimide and an organic solvent on a glass substrate and drying it, and a method of forming the resin layer.
  • a method for forming a resin layer containing polyimide for example, a method of applying a polyimide varnish containing polyimide and an organic solvent on a glass substrate and drying it, and a method of forming the resin layer.
  • a polyimide precursor composition containing a polyimide precursor (polyamic acid) and an organic solvent is applied onto a glass substrate, and then the polyimide precursor is imidized by heat treatment or chemical treatment.
  • the heating conditions of the film forming process can be relaxed.
  • the following manufacturing method is mentioned as a preferable manufacturing method from the viewpoint that bubble defects are less likely to occur and a resin layer having good thickness uniformity can be easily obtained.
  • the method for forming the resin layer containing polyimide is a polyimide varnish containing polyimide and an organic solvent, and the content ratio of the polyimide is 6% by mass or more and 15% by mass or less in the polyimide varnish.
  • the heating conditions of the film forming process can be relaxed. Therefore, it is preferable to form the resin layer using a polyimide varnish in which the polyimide is dissolved in the organic solvent.
  • the polyimide has a specific amount or more of a structural unit containing a tetracarboxylic acid residue having a specific structure including a parabiphenylene group having a twisted dihedral angle in the main chain via an ester bond, it is easily dissolved in an organic solvent. ..
  • the method for forming the resin layer can be preferably used.
  • the polyimide content ratio in the varnish can be increased to a sufficient concentration, and the varnish can be adjusted to a desired viscosity range, so that bubble defects are less likely to occur and the thickness is uniform. Can obtain a good resin layer.
  • the organic solvent is not particularly limited as long as the polyimide can be dissolved, and for example, an aprotic polar solvent, a water-soluble alcohol solvent, or the like can be used. Among them, it contains nitrogen atoms such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, and 1,3-dimethyl-2-imidazolidinone.
  • Organic solvent it is preferable to use ⁇ -butyrolactone or the like.
  • the said organic solvent can be used as one kind or two or more kinds of mixed solvents.
  • the method for forming the resin layer containing polyamide-imide is not particularly limited, and for example, polyamide containing polyamide-imide and an organic solvent on a glass substrate. Examples thereof include a method of applying imide varnish and drying it.
  • the method for producing the polyamideimide is not particularly limited, but for example, the tetracarboxylic acid dianhydride represented by the above formula (4-1) and the tetracarboxylic acid dianhydride having an aromatic ring or an aliphatic ring as required. It has one or more kinds of tetracarboxylic acid dianoxides including a product, 2,2-bis (trifluoromethyl) -4,4-diaminobiphenyl and, if necessary, an aromatic ring or an aliphatic ring.
  • a step of obtaining a polyamide-polyimide precursor (polyamic acid) copolymer by reacting with an acid component and a step of imidizing the obtained polyamide-polyimide precursor (polyamic acid) copolymer. can do.
  • the organic solvent contained in the polyamide-imide varnish can be the same as the organic solvent contained in the polyimide varnish described above.
  • the coating method of the above-mentioned polyamide-imide varnish is not particularly limited as long as it can be coated with a desired thickness.
  • a gravure coating method a gravure reverse coating method, a gravure offset coating method, a spin coating method, a roll coating method, etc.
  • General coating methods such as a reverse roll coating method, a blade coating method, a dip coating method, and a screen printing method can be mentioned.
  • a transfer method can also be used as a method for forming the coating film of the polyamide-imide varnish.
  • the solvent in the coating film is dried at a temperature of 150 ° C. or lower, preferably 30 ° C. or higher and 120 ° C. or lower, until the coating film becomes tack-free.
  • the drying time may be appropriately adjusted according to the thickness of the coating film, the type of solvent, the drying temperature, etc., and is preferably 5 minutes or more and 60 minutes or less, preferably 10 minutes or more and 40 minutes or less. If the drying time is too long, the efficiency of forming the resin layer may decrease. On the other hand, if the drying time is too short, the appearance of the obtained resin layer may be affected by the rapid drying of the solvent.
  • the method for drying the solvent is not particularly limited as long as the solvent can be dried at the above temperature, and for example, an oven, a drying oven, a hot plate, infrared heating, or the like can be used.
  • the drying step may include a first drying step of drying the coating film and a second drying step of heating the coating film at a high temperature after the drying.
  • the heating temperature in the second drying step is preferably, for example, 150 ° C. or higher. From the viewpoint of bending resistance, it is preferable to remove the residual solvent in the resin layer as much as possible.
  • the glass base material in the present disclosure has a thickness of 100 ⁇ m or less and is a member that supports the resin layer.
  • the glass constituting the glass base material is not particularly limited, but among them, chemically strengthened glass is preferable. Chemically tempered glass is preferable because it has excellent mechanical strength and can be made thinner accordingly. Chemically tempered glass is typically glass whose mechanical properties have been strengthened by a chemical method by partially exchanging ionic species such as replacing sodium with potassium in the vicinity of the surface of the glass. It has a compressive stress layer.
  • Examples of the glass constituting the chemically strengthened glass base material include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminosophyllic acid glass.
  • Examples of commercially available chemically strengthened glass base materials include Corning's Gorilla Glass and AGC's Dragontrail. Further, as the chemically strengthened glass base material, for example, those described in JP-A-2019-194143 can also be used.
  • the thickness of the glass substrate is 100 ⁇ m or less, preferably 15 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more and 90 ⁇ m or less, and further preferably 25 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the glass base material is as thin as the above range, good flexibility can be obtained and sufficient hardness can be obtained. In addition, curling of the display device member can be suppressed. Further, it is preferable in terms of weight reduction of the display device member.
  • the display device member in the present disclosure may further have a functional layer on the surface side of the resin layer opposite to the glass base material.
  • the functional layer include a hard coat layer, a protective layer, an antireflection layer, an antiglare layer and the like.
  • the functional layer may be a single layer or may have a plurality of layers. Further, the functional layer may be a layer having a single function, or may have a plurality of layers having different functions from each other.
  • the display device member in the present disclosure may have a hard coat layer and a protective layer as functional layers in order from the resin layer side.
  • the display device member in the present disclosure preferably further has a hard coat layer 4 on the surface side of the resin layer 3 opposite to the glass base material 2. ..
  • the hard coat layer is a member for increasing the surface hardness. By arranging the hard coat layer, scratch resistance can be improved.
  • the "hard coat layer” is a member for increasing the surface hardness, and specifically, in the configuration in which the display device member in the present disclosure has the hard coat layer.
  • the pencil hardness of the surface of the display device member on the hard coat layer side is H or more. It is preferably 2H or more, more preferably 3H or more, and even more preferably 3H or more.
  • the pencil hardness is measured by the pencil hardness test specified in JIS K5600-5-4 (1999). Specifically, using a test pencil specified by JIS-S-6006, a pencil hardness test specified by JIS K5600-5-4 (1999) was performed on the surface of the display device member on the hard coat layer side. This can be done by assessing the highest non-scratch pencil hardness.
  • the measurement conditions can be an angle of 45 °, a load of 750 g, a speed of 0.5 mm / sec or more and 1 mm / sec or less, and a temperature of 23 ⁇ 2 ° C.
  • the pencil hardness tester for example, a pencil scratch coating film hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
  • the hard coat layer may be a single layer or may have a multi-layer structure of two or more layers.
  • the hard coat layer is dynamically combined with a layer for satisfying the pencil hardness. It is preferable to have a layer for satisfying the bending test (a layer for satisfying scratch resistance).
  • (C) Material of hard coat layer As the material of the hard coat layer, for example, an organic material, an inorganic material, an organic-inorganic composite material, or the like can be used.
  • the material of the hard coat layer is preferably an organic material.
  • the hard coat layer preferably contains a cured product of a resin composition containing a polymerizable compound.
  • a cured product of the resin composition containing the polymerizable compound can be obtained by subjecting the polymerizable compound to a polymerization reaction by a known method using a polymerization initiator, if necessary.
  • a polymerizable compound has at least one polymerizable functional group in the molecule.
  • the polymerizable compound for example, at least one of a radical polymerizable compound and a cationically polymerizable compound can be used.
  • a radically polymerizable compound is a compound having a radically polymerizable group.
  • the radically polymerizable group contained in the radically polymerizable compound may be a functional group capable of causing a radical polymerization reaction, and is not particularly limited, and examples thereof include a group containing a carbon-carbon unsaturated double bond. Examples thereof include a vinyl group and a (meth) acryloyl group.
  • these radically polymerizable groups may be the same or different from each other.
  • the number of radically polymerizable groups contained in one molecule of the radically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having a (meth) acryloyl group is preferable from the viewpoint of high reactivity, and for example, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and melamine (Polyfunctional (meth) acrylate monomer having several (meth) acryloyl groups in the molecule called meta) acrylate, polyfluoroalkyl (meth) acrylate, silicone (meth) acrylate, etc. and having a molecular weight of hundreds to thousands.
  • oligomers can be preferably used, and polyfunctional (meth) acrylate polymers having two or more (meth) acryloyl groups in the side chains of the acrylate polymer can also be preferably used.
  • a polyfunctional (meth) acrylate monomer having two or more (meth) acryloyl groups in one molecule can be preferably used.
  • the hardness of the hard coat layer can be improved, and the adhesion can be further improved.
  • a polyfunctional (meth) acrylate oligomer or polymer having two or more (meth) acryloyl groups in one molecule can also be preferably used.
  • the hard coat layer contains a cured product of a polyfunctional (meth) acrylate oligomer or a polymer, the hardness and bending resistance of the hard coat layer can be improved, and the adhesion can be further improved.
  • (meth) acryloyl represents each of acryloyl and methacryloyl
  • (meth) acrylate represents each of acrylate and methacrylate
  • polyfunctional (meth) acrylate monomer examples include those described in JP-A-2019-132930. Among them, those having 3 or more and 6 or less (meth) acryloyl groups in one molecule are preferable from the viewpoints of high reactivity, improvement of hardness of the hard coat layer, and adhesion, for example, pentaerythritol.
  • Triacrylate PETA, Dipentaerythritol Hexaacrylate (DPHA), Pentaerythritol Tetraacrylate (PETTA), Dipentaerythritol Pentaacrylate (DPPA), Trimethylol Propantri (Meta) Acrylate, Trypentaerythritol Octa (Meta) Acrylate, Tetrapentaerythritol deca (meth) acrylate and the like can be preferably used, and in particular, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexaacrylate, and these are PO, EO, or At least one selected from those modified with caprolactone is preferable.
  • the resin composition may contain a monofunctional (meth) acrylate monomer as a radically polymerizable compound in order to adjust hardness, viscosity, improve adhesion, and the like.
  • a monofunctional (meth) acrylate monomer as a radically polymerizable compound in order to adjust hardness, viscosity, improve adhesion, and the like.
  • Specific examples of the monofunctional (meth) acrylate monomer include those described in JP-A-2019-132930.
  • a cationically polymerizable compound is a compound having a cationically polymerizable group.
  • the cationically polymerizable group contained in the cationically polymerizable compound may be a functional group capable of causing a cationic polymerization reaction, and is not particularly limited, and examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationically polymerizable groups may be the same or different from each other.
  • the number of cationically polymerizable groups contained in one molecule of the cationically polymerizable compound is preferably two or more, and more preferably three or more, from the viewpoint of improving the hardness of the hard coat layer.
  • a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable, and a compound having at least two or more kinds of an epoxy group and an oxetanyl group in one molecule. Is more preferable.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable because the shrinkage associated with the polymerization reaction is small.
  • compounds having an epoxy group are easily available, compounds having various structures are easily available, the durability of the obtained hard coat layer is not adversely affected, and compatibility with radically polymerizable compounds is easily controlled. There is an advantage.
  • the oxetanyl group has a higher degree of polymerization than the epoxy group and has low toxicity, and when the obtained hard coat layer is combined with a compound having an epoxy group, it is contained in the coating film.
  • Examples of the cationically polymerizable compound having an epoxy group include polyglycidyl ether of a polyhydric alcohol having an alicyclic ring, or a cyclohexene ring or cyclopentene ring-containing compound with an appropriate oxidizing agent such as hydrogen peroxide or peracid.
  • Alicyclic epoxy resin obtained by epoxidation polyglycidyl ether of aliphatic polyhydric alcohol or its alkylene oxide adduct, polyglycidyl ester of aliphatic long chain polybasic acid, homopolymer of glycidyl (meth) acrylate, An aliphatic epoxy resin such as a copolymer; a glycidyl ether produced by reacting bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives such as alkylene oxide adducts and caprolactone adducts thereof with epichlorohydrin. And novolak epoxy resin and the like, and glycidyl ether type epoxy resin derived from bisphenols and the like can be mentioned.
  • alicyclic epoxy resin examples include those described in JP-A-2018-104682, for example.
  • the cured product of the resin composition containing the polymerizable compound contained in the hard coat layer includes a Fourier transform infrared spectrophotometer (FTIR), a thermal decomposition gas chromatograph device (GC-MS), and a decomposition product of the polymer.
  • FTIR Fourier transform infrared spectrophotometer
  • GC-MS thermal decomposition gas chromatograph device
  • decomposition product of the polymer includes a Fourier transform infrared spectrophotometer (FTIR), a thermal decomposition gas chromatograph device (GC-MS), and a decomposition product of the polymer.
  • FTIR Fourier transform infrared spectrophotometer
  • GC-MS thermal decomposition gas chromatograph device
  • the resin composition may contain a polymerization initiator, if necessary.
  • a radical polymerization initiator, a cationic polymerization initiator, a radical, a cationic polymerization initiator and the like can be appropriately selected and used.
  • These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations to promote radical polymerization and cation polymerization. In some cases, the polymerization initiator is completely decomposed and does not remain in the hard coat layer.
  • radical polymerization initiator and the cationic polymerization initiator include those described in JP-A-2018-104682.
  • the hard coat layer preferably contains inorganic or organic particles, and more preferably contains inorganic fine particles. Hardness can be improved by containing particles in the hard coat layer.
  • the inorganic particles include metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide.
  • metal oxides such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide.
  • metal fluoride particles such as magnesium fluoride and sodium fluoride
  • metal particles, metal sulfide particles, and metal nitride particles are preferable, at least one selected from silica particles and aluminum oxide particles is more preferable, and silica particles are even more preferable. This is because excellent hardness can be obtained.
  • the inorganic particles have at least a reactive functional group having a photoreactivity capable of forming a covalent bond by cross-linking the inorganic particles with each other or at least one of the polymerizable compounds on the surface of the inorganic particles. It is preferable that it is a reactive inorganic particle contained in a part of the above.
  • the hardness of the hard coat layer can be further improved by performing a cross-linking reaction between the reactive inorganic particles or between the reactive inorganic particles and at least one of a radically polymerizable compound and a cationically polymerizable compound.
  • Reactive inorganic particles have an organic component coated on at least a part of the surface and have a reactive functional group introduced by the organic component on the surface.
  • a reactive functional group for example, a polymerizable unsaturated group is preferably used, and more preferably a photocurable unsaturated group.
  • the reactive functional group include an ethylenically unsaturated bond such as a (meth) acryloyl group, a vinyl group and an allyl group, and an epoxy group.
  • the reactive silica particles are not particularly limited, and conventionally known ones can be used, and examples thereof include reactive silica particles described in JP-A-2008-165040.
  • Examples of commercially available products of the reactive silica particles include those manufactured by Nissan Chemical Industries, Ltd .; MIBK-SD, MIBK-SDMS, MIBK-SDL, MIBK-SDZL, and JGC Catalysts and Chemicals Co., Ltd .; V8802, V8803 and the like.
  • the silica particles may be spherical silica particles, but are preferably atypical silica particles. Spherical silica particles and atypical silica particles may be mixed.
  • the atypical silica particles mean silica particles having a shape having random potato-like irregularities on the surface. Since the surface area of the atypical silica particles is larger than that of the spherical silica particles, the contact area with the resin component and the like is increased by containing such atypical silica particles, and the hardness of the hard coat layer is further improved. Can be made.
  • the particles are atypical silica particles can be confirmed by observing the cross section of the hard coat layer with an electron microscope.
  • the average particle size of the inorganic particles is preferably 5 nm or more, more preferably 10 nm or more, from the viewpoint of improving hardness. If the average particle size of the inorganic particles is too small, it is difficult to produce the particles, and the particles may easily aggregate with each other.
  • the average particle size of the inorganic particles is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less from the viewpoint of transparency. If the average particle size of the inorganic particles is too large, large irregularities may be formed on the hard coat layer and the haze may increase.
  • the average particle size of the inorganic particles can be measured by observing the cross section of the hard coat layer with an electron microscope, and the average particle size of 10 arbitrarily selected particles is taken as the average particle size.
  • the average particle size of the atypical silica particles is the average value of the maximum value (major axis) and the minimum value (minor axis) of the distance between two points on the outer periphery of the atypical silica particles that appeared by observing the cross section of the hard coat layer with a microscope. be.
  • the hardness of the hard coat layer can be controlled by adjusting the size and content of the inorganic particles.
  • the content of silica particles is preferably 25 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the above-mentioned polymerizable compound.
  • the hard coat layer may contain an ultraviolet absorber. Deterioration of the resin layer due to ultraviolet rays can be suppressed. Above all, when the resin layer contains polyimide, it is possible to suppress the color change of the resin layer containing polyimide with time. Further, in a display device including a display device member, deterioration of a member arranged on the display panel side of the display device member, such as a polarizer, due to ultraviolet rays can be suppressed.
  • the ultraviolet absorber contained in the hard coat layer preferably has an absorption wavelength peak of 300 nm or more and 390 nm or less, more preferably 320 nm or more and 370 nm or less, and preferably 330 nm or more and 370 nm or less. More preferred.
  • Such an ultraviolet absorber can efficiently absorb ultraviolet rays in the UVA region, while inhibiting the curing of the hard coat layer by shifting the absorption wavelength of the initiator for curing the hard coat layer to 250 nm and the peak wavelength. This is because a hard coat layer having an ultraviolet absorbing ability can be formed without causing the above.
  • the peak of the absorption wavelength is 380 nm or less because coloring by the ultraviolet absorber can be suppressed.
  • the absorbance of the ultraviolet absorber can be measured using, for example, an ultraviolet-visible near-infrared spectrophotometer (for example, JASCO Corporation V-7100).
  • an ultraviolet-visible near-infrared spectrophotometer for example, JASCO Corporation V-7100.
  • the ultraviolet absorber can be the same as the ultraviolet absorber used for the resin layer.
  • one or more kinds of ultraviolet absorbers selected from the group consisting of hydroxybenzophenone-based ultraviolet absorbers and benzotriazole-based ultraviolet absorbers are preferable, and hydroxybenzophenone-based ultraviolet rays are preferable. More preferably, one or more UV absorbers selected from the group consisting of absorbers.
  • hydroxybenzophenone-based ultraviolet absorber examples include those described in JP-A-2019-132930.
  • hydroxybenzophenone-based ultraviolet absorber a 2-hydroxybenzophenone-based ultraviolet absorber is preferable, and one or more selected from the group consisting of benzophenone-based ultraviolet absorbers having the following general formula (A) is more preferable. preferable. Deterioration of the resin layer due to ultraviolet rays can be suppressed, and durability can be improved.
  • X 1 and X 2 independently represent a hydroxyl group, ⁇ OR a , or a hydrocarbon group having 1 to 15 carbon atoms, and Ra is a hydrocarbon having 1 to 15 carbon atoms. Represents a group.
  • the hydrocarbon group X 1, X 2 and the carbon atoms in R a 1 ⁇ 15 are methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl Examples include a group, a dodecyl group, an allyl group, a benzyl group and the like.
  • Each of the aliphatic hydrocarbon groups having 3 or more carbon atoms may be linear or branched.
  • the hydrocarbon group preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, and more preferably a methyl group or an allyl group, from the viewpoint of easily improving light transmission.
  • X 1 and X 2 are independently hydroxyl groups or ⁇ OR a.
  • benzophenone-based ultraviolet absorbers having the general formula (A) 2,2', 4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4, It is preferably at least one selected from the group consisting of 4'-dimethoxybenzophenone and 2,2'-dihydroxy-4,4'-diallyloxybenzophenone, preferably 2,2', 4,4'-tetrahydroxy. More preferably, it is at least one selected from the group consisting of benzophenone and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone.
  • benzotriazole-based ultraviolet absorber examples include those described in JP-A-2019-132930.
  • benzotriazole-based ultraviolet absorber 2- (2-hydroxyphenyl) benzotriazoles are preferable, and one or more selected from the group consisting of benzotriazole-based ultraviolet absorbers having the following general formula (B). More preferably. Deterioration of the resin layer due to ultraviolet rays can be suppressed, and durability can be improved.
  • Y 1 , Y 2 , and Y 3 independently represent a hydrogen atom, a hydroxyl group, ⁇ OR b , or a hydrocarbon group having 1 to 15 carbon atoms, and R b is a carbon atom.
  • R b is a carbon atom.
  • Y 4 represents a hydrocarbon group. Represents a hydrogen atom or a halogen atom.
  • the hydrocarbon groups having 1 to 15 carbon atoms in Y 1 , Y 2 , Y 3 and R b are methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group. , Heptyl group, octyl group, dodecyl group and the like.
  • Each of the aliphatic hydrocarbon groups having 3 or more carbon atoms may be linear or branched.
  • the hydrocarbon group preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, preferably a linear or branched alkyl group, and among them, a methyl group, a t-butyl group, or t. -Pentyl group, n-octyl group, or t-octyl group is preferable.
  • halogen atom in Y 4 a chlorine atom, a fluorine atom, a bromine atom, and among others a chlorine atom is preferable.
  • Y 1 and Y 3 are hydrogen atoms and Y 2 is a hydroxyl group or ⁇ OR b , and 2- (2-hydroxy-4-octyloxyphenyl) -2H. More preferably, it is one or more selected from the group of -benzotriazole and 2- (2,4-dihydroxyphenyl) -2H-benzotriazole. Deterioration of the resin layer due to ultraviolet rays can be suppressed, and durability can be improved.
  • the content of the ultraviolet absorber in the hard coat layer is preferably, for example, 10% by mass or less, and more preferably 7% by mass or less, from the viewpoint of suppressing haze due to mixing the ultraviolet absorber. preferable. Further, from the viewpoint of suppressing deterioration of the resin layer due to ultraviolet rays and improving durability, the content of the ultraviolet absorber in the hard coat layer is preferably 1% by mass or more and 6% by mass or less, preferably 2% by mass. It is more preferably 5% by mass or less.
  • the hard coat layer may contain an antifouling agent. Antifouling property can be imparted to the display device member.
  • the antifouling agent is not particularly limited, and examples thereof include silicone-based antifouling agents, fluorine-based antifouling agents, and silicone-based and fluorine-based antifouling agents. Further, the antifouling agent may be an acrylic antifouling agent. As the antifouling agent, one type may be used alone, or two or more types may be mixed and used.
  • the hard coat layer containing silicone-based antifouling agent and fluorine-based antifouling agent is hard to get fingerprints (not noticeable) and has good wiping property. Further, when a silicone-based antifouling agent or a fluorine-based antifouling agent is contained, the surface tension at the time of applying the curable resin composition for the hard coat layer can be lowered, so that the leveling property is good and the obtained hard coat layer can be obtained. The appearance of is good.
  • the hard coat layer containing a silicone-based antifouling agent has good slipperiness and scratch resistance.
  • the slipperiness when contacted with a finger, a pen, or the like is improved, so that the tactile sensation is improved.
  • the antifouling agent preferably has a reactive functional group in order to enhance the durability of the antifouling performance.
  • the display device member is used when the display device members are stacked, regardless of whether the display device member is in the form of a roll or a sheet.
  • the antifouling agent is transferred to the surface of the member opposite to the surface of the hard coat layer side, and another layer is attached or applied to the surface of the display device member opposite to the surface of the hard coat layer side. At that time, the other layer may be peeled off, and further, the other layer may be easily peeled off when repeatedly bent.
  • the antifouling agent has a reactive functional group, the performance sustainability of the antifouling performance becomes good.
  • the number of reactive functional groups contained in the antifouling agent may be 1 or more, preferably 2 or more.
  • the antifouling agent preferably has a weight average molecular weight of 5000 or less.
  • the weight average molecular weight of the antifouling agent can be measured by gel permeation chromatography (GPC).
  • the antifouling agent may be uniformly dispersed in the hard coat layer, but from the viewpoint of obtaining sufficient antifouling property with a small amount of addition and suppressing a decrease in strength of the hard coat layer, the antifouling agent is placed on the surface side of the hard coat layer. It is preferable that they are unevenly distributed.
  • the coating film of the curable resin composition for the hard coat layer is dried and before being cured.
  • the antifouling agent is unevenly distributed on the surface side of the hard coat layer, or an antifouling agent having a low surface tension is used. Examples thereof include a method in which the antifouling agent is floated on the surface of the coating film without applying heat when the coating film is dried, and then the coating film is cured so that the antifouling agent is unevenly distributed on the surface side of the hard coat layer.
  • the content of the antifouling agent is preferably 0.01 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the resin component. If the content of the antifouling agent is too small, it may not be possible to impart sufficient antifouling property to the hard coat layer, and if the content of the antifouling agent is too large, the hardness of the hard coat layer may decrease. be.
  • the hard coat layer may further contain additives, if desired.
  • the additive is appropriately selected according to the function to be imparted to the hard coat layer, and is not particularly limited.
  • Antistatic agents, colorants such as blue pigments and purple pigments, leveling agents, surfactants, lubricants, various sensitizers, flame retardants, adhesive enhancers, polymerization inhibitors, antioxidants, light stabilizers examples include surface modifiers.
  • the thickness of the hard coat layer may be appropriately selected depending on the material of the hard coat layer, the function of the hard coat layer, and the application of the display device member.
  • the thickness of the hard coat layer is preferably 2 ⁇ m or more and 50 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, and 5 ⁇ m or more and 20 ⁇ m or less. More preferably, it is 6 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the hard coat layer can be about several tens of nm. When the thickness of the hard coat layer is within the above range, sufficient hardness can be obtained as the hard coat layer, and a display device member having good bending resistance can be obtained.
  • the method for forming the hard coat layer is appropriately selected according to the material of the hard coat layer and the like. For example, curing for a hard coat layer containing the polymerizable compound or the like on the resin layer. Examples thereof include a method of applying and curing the sex resin composition, a vapor deposition method, a sputtering method and the like.
  • the curable resin composition for the hard coat layer contains a polymerizable compound, and may further contain a polymerization initiator, particles, an ultraviolet absorber, a solvent, an additive, and the like, if necessary.
  • the method for applying the curable resin composition for a hard coat layer on the resin layer is not particularly limited as long as it can be applied to the desired thickness, for example, a gravure coating method, a gravure reverse coating method, or a gravure offset.
  • a gravure coating method for example, a gravure coating method, a gravure reverse coating method, or a gravure offset.
  • examples thereof include general coating methods such as a coating method, a spin coating method, a roll coating method, a reverse roll coating method, a blade coating method, a dip coating method, and a screen printing method.
  • a transfer method can also be used as a method for forming a coating film of the resin composition for a hard coat layer.
  • the solvent is removed from the coating film of the curable resin composition for the hard coat layer by drying if necessary.
  • drying method include vacuum drying, heat drying, and a method of combining these drying methods.
  • it can be dried by heating at a temperature of 30 ° C. or higher and 120 ° C. or lower for 10 seconds or longer and 180 seconds or lower.
  • the coating film of the curable resin composition for the hard coat layer it is appropriately selected depending on the polymerizable group of the polymerizable compound, and for example, at least one of light irradiation and heating can be used.
  • Ultraviolet rays, visible rays, electron beams, ionizing radiation and the like are mainly used for light irradiation.
  • ultraviolet curing for example, ultraviolet rays emitted from light rays such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be used.
  • the amount of irradiation with the energy radiation source for example, accumulative exposure at an ultraviolet wavelength of 365 nm, may be of the order 50 mJ / cm 2 or more 5000 mJ / cm 2 or less.
  • heating for example, it can be processed at a temperature of 40 ° C. or higher and 120 ° C. or lower. Further, the reaction may be carried out by leaving it at room temperature (25 ° C.) for 24 hours or more.
  • the display device member in the present disclosure may further have a protective layer on the surface side of the resin layer opposite to the glass base material.
  • the protective layer is transparent. Specifically, the total light transmittance of the protective layer is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more.
  • the total light transmittance of the protective layer can be measured in accordance with JIS K7361-1, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the same can be applied to the method for measuring the total light transmittance of other layers.
  • the protective layer is not particularly limited as long as it has transparency, and may contain, for example, a resin.
  • the resin used for the protective layer is not particularly limited as long as it is a resin capable of obtaining a transparent protective layer, and a general resin can be used.
  • a protective film is used as the protective layer, and the resin layer and the protective film are bonded to each other via the adhesive layer, or the protective layer is placed on the resin layer. Examples thereof include a method of forming.
  • the adhesive layer has transparency. Specifically, the total light transmittance of the adhesive layer is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more.
  • Examples of the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer include a pressure-sensitive adhesive such as OCA and a photosensitive pressure-sensitive adhesive.
  • the thickness of the adhesive layer is preferably 1 ⁇ m or more and 100 ⁇ m or less, for example. If the adhesive layer is too thick, the flexibility may be impaired. On the other hand, if the thickness of the adhesive layer is too thin, the adhesiveness cannot be guaranteed and the adhesive layer may be peeled off.
  • the display device member in the present disclosure may have other layers, if necessary, in addition to the above-mentioned layers.
  • examples of other layers include a primer layer, a second resin layer, a decorative layer, and the like.
  • the display device member in the present disclosure may have a primer layer 5 between the glass base material 2 and the resin layer 3. Further, when the display device member in the present disclosure has a second resin layer 6 on the surface side of the glass base material 2 opposite to the resin layer 3, as shown in FIG. 4, for example, the glass base. A primer layer 7 may be provided between the material 2 and the second resin layer 6. The primer layer can improve the adhesion between the glass substrate and the resin layer and the second resin layer.
  • the material of the primer layer is not particularly limited as long as it is a material capable of enhancing the adhesion between the glass base material and the resin layer or the second resin layer, and examples thereof include resin.
  • the resin include (meth) acrylic resin, urethane resin, (meth) acrylic urethane copolymer, vinyl chloride-vinyl acetate copolymer resin, polyester, butyral resin, chlorinated polypropylene, chlorinated polyethylene, and epoxy resin.
  • examples include silicone resin. These resins may be used alone or in combination of two or more.
  • the thickness of the primer layer may be any thickness as long as it can enhance the adhesion between the glass base material and the resin layer or the second resin layer, and can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less. It can be preferably 0.2 ⁇ m or more and 5 ⁇ m or less.
  • Examples of the method for forming the primer layer include a method of applying the composition for the primer layer on a glass substrate.
  • a coating method for example, general gravure coating method, gravure reverse coating method, gravure offset coating method, spin coating method, roll coating method, reverse roll coating method, blade coating method, dip coating method, screen printing method and the like are used.
  • An application method can be mentioned.
  • a transfer method can also be used as a method for forming the primer layer.
  • the display device member in the present disclosure has a second resin layer 6 on the surface side of the glass base material 2 opposite to the resin layer 3. You may be doing it.
  • the second resin layer can absorb the impact, suppress cracking of the glass base material, and improve impact resistance.
  • the resin contained in the second resin layer is not particularly limited as long as it is a resin capable of absorbing impact, and is, for example, a urethane resin, an epoxy resin, a polyimide, a polyamide-imide, an acrylic resin, or triacetyl cellulose. (TAC) and the like. These resins may be used alone or in combination of two or more.
  • the second resin layer can further contain additives, if necessary.
  • additives include an ultraviolet absorber and the like.
  • the ultraviolet absorber may be the same as the ultraviolet absorber used for the resin layer.
  • the thickness of the second resin layer may be any thickness capable of absorbing impact, and is preferably 5 ⁇ m or more and 60 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and further preferably 15 ⁇ m. It can be 40 ⁇ m or more and 40 ⁇ m or less.
  • the method for forming the second resin layer can be the same as the method for forming the resin layer.
  • the display device member in the present disclosure has a decorative layer between the glass base material and the resin layer, or on the surface side of the glass base material opposite to the resin layer. You may.
  • the decorative layer contains a colorant and a binder resin.
  • the binder resin contained in the decorative layer is not particularly limited, and a resin used for a general decorative layer can be used.
  • the colorant contained in the decorative layer is not particularly limited, and a known colorant used for a general decorative layer can be used.
  • the decorative layer is usually arranged on a part of the glass substrate. Further, the decorative layer may have a pattern shape.
  • the thickness of the decorative layer is not particularly limited, but can be, for example, 5 ⁇ m or more and 40 ⁇ m or less.
  • the display device member in the present disclosure preferably has a total light transmittance of, for example, 80% or more, more preferably 85% or more, and further preferably 88% or more. .. Due to the high total light transmittance as described above, it is possible to obtain a display device member having good transparency.
  • the total light transmittance of the display device member can be measured in accordance with JIS K7361-1, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Laboratory.
  • the haze of the display device member in the present disclosure is, for example, preferably 2.0% or less, more preferably 1.5% or less, and further preferably 1.0% or less. With such a low haze, it is possible to obtain a display device member having good transparency.
  • the haze of the display device member can be measured in accordance with JIS K-7136, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the display device member in the present disclosure preferably has bending resistance. Specifically, when the dynamic bending test described below is repeated 200,000 times on the display device member, it is preferable that the display device member does not crack or break, and the dynamic bending test is performed. It is more preferable that the display device member does not crack or break when repeated 1 million times.
  • the display device member may be folded so that the glass base material is on the outside, or the display device member may be folded so that the glass base material is on the inside. However, it is preferable that the display device member is not cracked or broken.
  • the dynamic bending test is performed as follows. As shown in FIG. 5A, in the dynamic bending test, first, the short side portion 1C of the display device member 1 having a size of 20 mm ⁇ 100 mm and the short side portion 1D facing the short side portion 1C are formed. , Are fixed by the fixing portions 21 arranged in parallel. Further, as shown in FIG. 5A, the fixing portion 21 can be slidably moved in the horizontal direction. Next, as shown in FIG. 5 (b), by moving the fixing portions 21 so as to be close to each other, the display device member 1 is deformed so as to be folded, and further, as shown in FIG. 5 (c).
  • the fixing portion 21 After moving the fixing portion 21 to a position where the distance d between the two opposing short side portions 1C and 1D fixed by the fixing portion 21 of the display device member 1 becomes a predetermined value, the fixing portion 21 is moved in the opposite direction. To eliminate the deformation of the display device member 1.
  • the display device member 1 By moving the fixing portion 21 as shown in FIGS. 5A to 5C, the display device member 1 can be folded by 180 °. Further, a dynamic bending test is performed so that the bent portion 1E of the display device member 1 does not protrude from the lower end of the fixed portion 21, and the interval d when the fixed portion 21 is closest to the fixed portion 21 is controlled to control the display device.
  • the distance d between the two opposing short side portions 1C and 1D of the member 1 can be set to a predetermined value. For example, when the distance d between the two short side portions 1C and 1D facing each other is 10 mm, the outer diameter of the bent portion 1E is regarded as 10 mm.
  • the display device member shall not crack or break when the 180 ° folding test is repeated 200,000 times so that the distance d between the opposing short side portions 1C and 1D of the display device member 1 is 10 mm.
  • a dynamic bending test of 200,000 is performed by folding 180 ° so that the distance d between the opposing short sides of the display device member is 10 mm, 8 mm, 6 mm, 5 mm, 4 mm, 3 mm, 2.5 mm, or 2 mm. It is more preferable that cracks or breaks do not occur when repeated times.
  • the opening angle ⁇ of the display device member after the static bending test is 100 ° or more.
  • the static bending test is performed as follows. First, as shown in FIG. 6A, the distance between the short side portion 1C of the display device member 1 and the short side portion 1D facing the short side portion 1C is the distance between the short side portion 1C and the short side portion 1D. Each is fixed by the fixing portions 22 arranged in parallel so that d becomes a predetermined value. Then, a static bending test is performed in which the display device member 1 is allowed to stand at 23 ° C. for 240 hours in a folded state. Then, as shown in FIG. 6B, the fixed portion 22 is removed from the short side portion 1D after the static bending test to release the folded state, and the display device member 1 naturally becomes available after 30 minutes at room temperature. The opening angle ⁇ , which is the opening angle, is measured. The larger the opening angle ⁇ , the better the resilience, and the maximum is 180 °.
  • the opening angle ⁇ after the static bending test is It is preferably 100 ° or more.
  • the display device member may be folded so that the glass base material is on the inside, or the display device member may be folded so that the glass base material is on the outside.
  • the opening angle ⁇ is 100 ° or more.
  • the display device members in the present disclosure can be used as members arranged on the observer side of the display panel in the display device.
  • the display device members in the present disclosure can be used, for example, for display device members such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays.
  • the display device member in the present disclosure can be preferably used for a flexible display such as a foldable display, a rollable display, and a bendable display, and can be preferably used for a foldable display member.
  • the surface that becomes the outermost surface after the display device member is arranged on the surface of the display device is preferably the surface on the resin layer side.
  • the method of arranging the display device member in the present disclosure on the surface of the display device is not particularly limited, and examples thereof include a method via an adhesive layer.
  • the adhesive layer a known adhesive layer used for adhering display device members can be used.
  • the inventors of the present disclosure have conducted diligent studies, used a thin glass base material having flexibility, and arranged a resin layer on one surface side of the glass base material. By suppressing cracking of the glass substrate and increasing impact resistance, and by setting the composite elastic modulus of the resin layer within a predetermined range, the thickness of the resin layer is made relatively thin for flexibility. It has been found that even in such a case, the cracking of the glass substrate can be suppressed and the impact resistance can be enhanced. Then, the inventors of the present disclosure have further studied and laminated a first resin layer having a predetermined composite elastic modulus, a second resin layer which is an adhesive layer, and a third resin layer which is a predetermined resin film.
  • the optical laminate in the present disclosure is an optical laminate having a glass base material, a first resin layer, a second resin layer, and a third resin layer in this order, and the thickness of the glass base material is high.
  • the composite elasticity of the first resin layer is 5.7 GPa or more
  • the thickness of the first resin layer is 5 ⁇ m or more and 60 ⁇ m or less
  • the second resin layer is an adhesive layer, and the above.
  • the third resin layer is a resin film containing a resin selected from the group consisting of a polyester resin, a polycycloolefin resin, an acetyl cellulose resin, a polycarbonate resin, and a polypropylene resin.
  • FIG. 7 is a schematic cross-sectional view showing an example of the optical laminate in the present disclosure.
  • the optical laminate 11 has a glass base material 12, a first resin layer 13, a second resin layer 14, and a third resin layer 15 in this order.
  • the glass base material 12 has a predetermined thickness
  • the first resin layer 13 has a predetermined thickness and a predetermined composite elastic modulus
  • the second resin layer 14 is an adhesive layer
  • the third resin layer 15 has a predetermined thickness.
  • the thickness of the glass base material is equal to or less than a predetermined value and is thin, there is a concern that the glass base material is easily broken and has low impact resistance.
  • the first resin layer having a ratio, the second resin layer which is an adhesive layer, and the third resin layer which is a predetermined resin film are laminated in this order, when an impact is applied to the optical laminate.
  • the first resin layer, the second resin layer, and the third resin layer can absorb the impact, suppress the cracking of the glass base material, and improve the impact resistance. The reason for this is not clear, but it is presumed as follows.
  • the second resin layer is an adhesive layer
  • the third resin layer is a predetermined resin film
  • the second resin layer is the first resin layer.
  • the third resin layer is a layer softer than the first resin layer.
  • the tensile elasticity of the resin contained in the resin film constituting the third resin layer is 2.8 to 4 GPa for polyethylene terephthalate (PET), 2.1 GPa for polycycloolefin (COP), and triacetyl cellulose (TAC).
  • the third resin layer is a softer layer than the first resin layer. Therefore, as compared with the case where only the first resin layer is arranged on one surface side of the glass substrate, the first resin layer, the second resin layer, and the third resin layer are arranged on one surface side of the glass substrate. When and are laminated in this order, when an impact is applied to the optical laminate, the second resin layer and the third resin layer are more easily deformed than the first resin layer, so that the impact is easily dispersed. Conceivable.
  • the second resin layer and the third resin layer which are softer than the first resin layer, are arranged on the surface side of the first resin layer opposite to the glass substrate, an impact is applied to the optical laminate. At that time, it is considered that the impact is less likely to be transmitted to the glass base material. Therefore, when the first resin layer, the second resin layer, and the third resin layer are laminated, it is presumed that the shock absorption becomes higher than the case where only the first resin layer is used. Further, when only the second resin layer and the third resin layer are laminated in this order on one surface side of the glass base material, the second resin layer and the third resin layer and the third resin layer are laminated when an impact is applied to the optical laminate.
  • the resin layer is relatively soft and easily deformed, there is a risk of damaging the glass substrate before it can sufficiently absorb the impact. Therefore, when the first resin layer, the second resin layer, and the third resin layer are laminated, the impact resistance is higher than the case where only the second resin layer and the third resin layer are laminated. It is presumed that the sex will be higher.
  • the composite elastic modulus of the first resin layer is adopted by the first resin layer by the nanoindentation method (indentation test method). This is because in the measurement of the composite modulus of elasticity, the indenter is pushed into the measurement sample, which is similar to the tip of the pen colliding with the sample and being pushed in in the pen drop test.
  • the impact resistance by the pen drop test can be improved.
  • the scattering of the glass can be suppressed by the first resin layer, the second resin layer and the third resin layer.
  • the thickness of the glass substrate is not more than a predetermined value and is thin, and the thickness of the first resin layer having a composite elastic modulus of more than a predetermined value is within a predetermined range and is relatively thin.
  • the second resin layer is an adhesive layer and is a relatively soft layer, and the third resin layer is a predetermined resin film, the flexibility can be enhanced. Therefore, when the optical laminate is bent, cracking of the first resin layer, the second resin layer, and the third resin layer can be suppressed, and bending resistance can be maintained. Therefore, the optical laminate in the present disclosure can be bent and can be used for a wide variety of optical laminates, for example, as a member for a foldable display.
  • the composite elastic modulus of the first resin layer when the composite elastic modulus of the first resin layer is equal to or higher than a predetermined value, it is possible to increase the force to restore the first resin layer when it is deformed. Therefore, when the composite elastic modulus of the first resin layer is at least a predetermined value, it is possible to improve the resilience after the optical laminate has been bent for a long time. In addition, the resilience after repeated bending of the optical laminate can be improved.
  • an optical laminate having excellent impact resistance and flexibility can be obtained. Furthermore, even if the glass base material is damaged, the risk of damaging the human body can be reduced, and a highly safe optical laminate can be obtained.
  • the first resin layer in the present disclosure is a member having a composite elastic modulus of 5.7 GPa or more, a thickness of 5 ⁇ m or more and 60 ⁇ m or less, and is arranged on one surface side of a glass base material.
  • the first resin layer is a member having shock absorption property, and also functions as a member for suppressing scattering of glass when the glass base material is broken.
  • the first resin layer has transparency, and when the optical laminate in the present disclosure is arranged on the observer side of the display panel of the display device, it is arranged on the observer side rather than the glass base material.
  • the composite elastic modulus of the first resin layer can be the same as the composite elastic modulus of the resin layer in the above-mentioned display device member.
  • the method for measuring the composite elastic modulus of the first resin layer can be the same as the method for measuring the composite elastic modulus of the resin layer in the above-mentioned display device member.
  • the Berkovich indenter is 500 nm from the interface between the glass base material and the first resin layer to the center side of the first resin layer in order to avoid the influence of the glass base material and the influence of the side edge of the first resin layer. It shall be separated and pushed into the portion of the first resin layer 500 nm away from both ends of the first resin layer toward the center side of the first resin layer, respectively. Further, it is assumed that the resin layer is pushed into the portion of the first resin layer 500 nm away from the interface between the second resin layer and the first resin layer on the central side of the first resin layer.
  • the thickness of the first resin layer can be the same as the thickness of the resin layer in the above-mentioned display device member.
  • the arrangement of the first resin layer on the glass base material can be the same as the arrangement of the resin layer on the glass base material in the above-mentioned display device member.
  • the first resin layer may contain an ultraviolet absorber.
  • the ultraviolet absorber can be the same as the ultraviolet absorber contained in the resin layer of the above-mentioned display device member.
  • the first resin layer may further contain additives, if necessary.
  • the additive can be the same as the additive contained in the resin layer in the above-mentioned display device member.
  • the method for forming the first resin layer can be the same as the method for forming the resin layer in the above-mentioned display device member.
  • the second resin layer in the present disclosure is an adhesive layer.
  • the first resin layer and the third resin layer, which is a predetermined resin film, can be bonded to each other via the second resin layer which is an adhesive layer.
  • the second resin layer is a member having shock absorption.
  • the second resin layer has transparency, and when the optical laminate in the present disclosure is arranged on the observer side of the display panel of the display device, it is arranged on the observer side rather than the glass base material.
  • the second resin layer has transparency, and specifically, the total light transmittance of the second resin layer is preferably 85% or more, more preferably 88% or more, and 90%. It is more preferably% or more.
  • the total light transmittance of the second resin layer can be measured in accordance with JIS K7361-1, and can be measured by, for example, a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • a haze meter HM150 manufactured by Murakami Color Technology Research Institute.
  • the same can be applied to the method for measuring the total light transmittance of other layers.
  • the pressure-sensitive adhesive used for the second resin layer is not particularly limited as long as it is a pressure-sensitive adhesive capable of obtaining a transparent pressure-sensitive adhesive layer, and for example, OCA (Optical Clear Adhesive) can be used. Specific examples thereof include acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, polyvinyl ether-based pressure-sensitive adhesives, polyvinyl acetate-based pressure-sensitive adhesives, and the like.
  • the thickness of the second resin layer is preferably, for example, 1 ⁇ m or more and 100 ⁇ m or less. If the thickness of the second resin layer is too thick, the flexibility may be impaired. On the other hand, if the thickness of the second resin layer is too thin, the adhesiveness cannot be guaranteed and the second resin layer may be peeled off.
  • the second resin layer for example, an adhesive film can be used. Further, for example, the pressure-sensitive adhesive composition may be applied onto the first resin layer or the third resin layer to form the second resin layer.
  • the third resin layer in the present disclosure is a resin film containing a resin selected from the group consisting of polyester resins, polycycloolefin resins, acetyl cellulose resins, polycarbonate resins, and polypropylene resins. ..
  • the third resin layer is a member having shock absorption property, and also functions as a member for suppressing scattering of glass when the glass base material is broken.
  • the third resin layer has transparency, and when the optical laminate in the present disclosure is arranged on the observer side of the display panel of the display device, it is arranged on the observer side rather than the glass base material.
  • the third resin layer has transparency, and specifically, the total light transmittance of the third resin layer is preferably 85% or more, more preferably 88% or more, and 90%. It is more preferably% or more.
  • the resin contained in the resin film constituting the third resin layer is a resin selected from the group consisting of polyester-based resin, polycycloolefin-based resin, acetylcellulose-based resin, polycarbonate-based resin, and polypropylene-based resin.
  • the polyester-based resin is not particularly limited as long as it can obtain a transparent resin film, and examples thereof include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate (PBT). Be done.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • the polycycloolefin resin is not particularly limited as long as a transparent resin film can be obtained.
  • a norbornene resin for example, a norbornene resin, a monocyclic cyclic olefin resin, a cyclic conjugated diene resin, and the like.
  • examples thereof include vinyl alicyclic hydrocarbon resins and hydrides thereof.
  • the acetyl cellulose-based resin is not particularly limited as long as it can obtain a transparent resin film, and examples thereof include triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • the polycarbonate-based resin is not particularly limited as long as it can obtain a transparent resin film, and examples thereof include polycarbonate (PC).
  • the polypropylene-based resin is not particularly limited as long as it can obtain a transparent resin film, and examples thereof include polypropylene (PP).
  • the third resin layer may contain additives such as fillers, ultraviolet absorbers, stabilizers, antioxidants, antistatic agents, flame retardants, and lubricants.
  • the thickness of the third resin layer is, for example, preferably 0.5 ⁇ m or more and 30 ⁇ m or less, more preferably 1.0 ⁇ m or more and 25 ⁇ m or less, and further preferably 1.5 ⁇ m or more and 20 ⁇ m or less. If the thickness of the third resin layer is too thick, flexibility and flexibility may be impaired. On the other hand, if the thickness of the third resin layer is too thin, sufficient impact resistance may not be obtained.
  • the third resin layer which is a resin film, can be attached to the first resin layer via the second resin layer, which is an adhesive layer.
  • the glass base material in the present disclosure has a thickness of 100 ⁇ m or less and is a member that supports the first resin layer.
  • the glass base material can be the same as the glass base material in the above-mentioned display device member.
  • the optical laminate in the present disclosure may further have a functional layer on the surface side of the third resin layer opposite to the second resin layer.
  • the functional layer include a hard coat layer, an antireflection layer, and an antiglare layer.
  • the functional layer may be a single layer or may have a plurality of layers. Further, the functional layer may be a layer having a single function, or may have a plurality of layers having different functions from each other.
  • the optical laminate in the present disclosure preferably further has a hard coat layer 16 on the surface side of the third resin layer 15 opposite to the second resin layer 14. .
  • the hard coat layer is a member for increasing the surface hardness. By arranging the hard coat layer, scratch resistance can be improved.
  • the hard coat layer can be the same as the hard coat layer in the above-mentioned display device member.
  • optical laminate in the present disclosure may have other layers, if necessary, in addition to the above-mentioned layers.
  • the optical laminate in the present disclosure further has a second hard coat layer 17 between the first resin layer 13 and the second resin layer 14, as shown in FIG. 9, for example. Can be done.
  • the second hard coat layer is a member for increasing the surface hardness. By arranging the second hard coat layer, the impact resistance can be improved.
  • the second hard coat layer can be the same as the above-mentioned hard coat layer, the description here will be omitted.
  • the optical laminate in the present disclosure may have a fourth resin layer on the surface side of the glass substrate opposite to the first resin layer.
  • the impact can be absorbed not only by the first resin layer, the second resin layer and the third resin layer but also by the fourth resin layer, and cracking of the glass substrate can be suppressed. Impact resistance can be improved.
  • the resin contained in the fourth resin layer is not particularly limited as long as it is a resin capable of absorbing impact, and is, for example, a urethane resin, an epoxy resin, a polyimide, a polyamide-imide, an acrylic resin, or triacetyl cellulose ( TAC) and the like. These resins may be used alone or in combination of two or more.
  • the fourth resin layer can further contain additives, if necessary.
  • additives include fillers, ultraviolet absorbers, stabilizers, antioxidants, antistatic agents, flame retardants, lubricants and the like.
  • the thickness of the fourth resin layer may be any thickness capable of absorbing impact, and is preferably 5 ⁇ m or more and 60 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and further preferably 15 ⁇ m or more. It can be 40 ⁇ m or less.
  • the method for forming the fourth resin layer can be the same as the method for forming the first resin layer.
  • the optical laminate in the present disclosure may have a primer layer between the glass base material and the first resin layer.
  • a primer is provided between the glass base material and the fourth resin layer. It may have a layer. The primer layer can improve the adhesion between the glass base material and the first resin layer and the adhesion between the glass base material and the fourth resin layer.
  • the primer layer can be the same as the primer layer in the above-mentioned display device member.
  • a decorative layer is provided between the glass base material and the first resin layer, or on the surface side of the glass base material opposite to the first resin layer. You may have.
  • the decorative layer can be the same as the decorative layer in the above-mentioned display device member.
  • the total thickness of the resin layers arranged on the surface side of the first resin layer of the glass substrate is such that impact resistance and flexibility can be obtained. Although not particularly limited, for example, it is preferably 143 ⁇ m or less, and more preferably 135 ⁇ m or less. When the total thickness of the resin layer is within the above range, the flexibility of the optical laminate can be improved.
  • the resin layer arranged on the surface side of the first resin layer of the glass substrate refers to all the layers including the resin among the layers arranged on the surface side of the first resin layer of the glass substrate. say.
  • the resin layer includes at least the above-mentioned first resin layer, second resin layer and third resin layer, and can further include the above-mentioned functional layer, second hard coat layer, primer layer and decorative layer.
  • the total light transmittance and haze of the optical laminate in the present disclosure can be the same as those for the above-mentioned display device member.
  • the optical laminate in the present disclosure preferably has bending resistance. Specifically, it is preferable that the optical laminate does not crack or break when the dynamic bending test described below is repeated 200,000 times.
  • the optical laminate may be folded so that the glass substrate is on the outside, or the optical laminate may be folded so that the glass substrate is on the inside. , It is preferable that the optical laminate does not crack or break.
  • the dynamic bending test can be the same as the dynamic bending test described in the above-mentioned display device member section.
  • cracking or breakage does not occur when the 180 ° folding test is repeated 200,000 times so that the distance d between the opposing short side portions 1C and 1D of the optical laminate 1 is 10 mm. .. Above all, it is more preferable that cracking or breakage does not occur when the 180 ° folding test is repeated 70,000 times so that the distance d between the opposing short side portions 1C and 1D of the optical laminate 1 is 8 mm, and 100,000. It is more preferable that cracks or breaks do not occur when repeated times, and it is particularly preferable that cracks or breaks do not occur when repeated 200,000 times.
  • the opening angle ⁇ after the static bending test of the optical laminated body is 100 ° or more.
  • the static bending test can be the same as the static bending test described in the above-mentioned display device member section.
  • the opening angle ⁇ after the static bending test is 100 °. The above is preferable.
  • the optical laminate may be folded so that the glass substrate is on the inside, or the optical laminate may be folded so that the glass substrate is on the outside.
  • the opening angle ⁇ is preferably 100 ° or more, and more preferably 130 ° or more.
  • optical laminate in the present disclosure can be the same as the use of the above-mentioned display device member.
  • the optical laminate in the present disclosure is arranged on the surface of the display device, the optical laminate is arranged so that the surface on the glass substrate side is on the display panel side and the surface on the third resin layer side is on the outside.
  • the method of arranging the optical laminate in the present disclosure on the surface of the display device can be the same as the above-mentioned display device member.
  • the display device in the present disclosure includes a display panel and the above-mentioned display device member or the above-mentioned optical laminate arranged on the observer side of the display panel.
  • FIG. 10 is a schematic cross-sectional view showing an example of the display device in the present disclosure.
  • the display device 30 includes a display panel 31, a touch panel member 32, and a display device member 1 arranged on the observer side of the display panel 31 and the touch panel member 32.
  • the display device member 1 is used as a member arranged on the surface of the display device 30, and an adhesive layer 34 is arranged between the display device member 1 and the touch panel member 32. Further, the adhesive layer 33 is also arranged between the display panel 31 and the touch panel member 32.
  • FIG. 11 is a schematic cross-sectional view showing another example of the display device in the present disclosure.
  • the display device 30 includes a display panel 31 and an optical laminate 11 arranged on the observer side of the display panel 31.
  • the optical laminate 11 is used as a member arranged on the surface of the display device 30, and an adhesive layer 35 is arranged between the optical laminate 11 and the display panel 31.
  • the display device member in the present disclosure can be the same as the display device member described above.
  • optical laminate in the present disclosure can be the same as the above-mentioned optical laminate.
  • Examples of the display panel in the present disclosure include a display panel used for a display device such as a liquid crystal display device, an organic EL display device, and an LED display device.
  • the display device in the present disclosure may have a touch panel member between the display panel and the display device member or the optical laminate.
  • the display device in the present disclosure is preferably a flexible display.
  • the display device in the present disclosure is preferably foldable. That is, the display device in the present disclosure is more preferably a foldable display.
  • the display device in the present disclosure is excellent in bending resistance because it has the above-mentioned display device member, or is excellent in impact resistance and flexibility because it has the above-mentioned optical laminate, and is a flexible display. Furthermore, it is suitable as a foldable display.
  • a chemically strengthened glass substrate having a thickness of 70 ⁇ m is prepared, the composition for the primer layer is applied onto the glass substrate to a predetermined thickness, and dried at 80 ° C. for 3 minutes and at 150 ° C. for 60 minutes. , A primer layer having a thickness of 1 ⁇ m was formed.
  • TMPBPTME tetracarboxylic dianhydride
  • TMPBPTME TMPBPTME: PMDA
  • the weight average molecular weight of the polyimide precursor was 75,000.
  • the above-mentioned polyimide precursor solution (2162 g) cooled to room temperature was added to a 5 L separable flask.
  • Dehydrated N, N-dimethylacetamide (432 g) was added thereto, and the mixture was stirred until uniform.
  • the catalysts pyridine (6.622 g) and acetic anhydride (213.67 g) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution.
  • N, N-dimethylacetamide (DMAc) 2000 g was added to the obtained polyimide solution, and the mixture was stirred until uniform.
  • the polyimide solution was divided into 3 equal parts in a 5 L beaker and transferred, and isopropyl alcohol (3500 g) was gradually added to each beaker to obtain a white slurry.
  • the above slurry was transferred onto a Büchner funnel, filtered, then flushed with isopropyl alcohol (9000 g in total) for washing, and then filtered.
  • the process was repeated three times, dried at 110 ° C. using a vacuum dryer, and the polyimide (polyimide). Polyimide powder) was obtained.
  • the weight average molecular weight of the polyimide measured by GPC was 100,000.
  • N, N-dimethylacetamide (DMAc) was added to the polyimide so that the solid content concentration of the polyimide was 12% by mass, and a polyimide varnish (resin composition) having a polyimide content of 12% by mass was prepared.
  • the viscosity of the polyimide varnish (resin composition) (solid content concentration 12% by mass) at 25 ° C. was 15000 cps.
  • the polyimide varnish (resin composition) is applied onto the primer layer to a predetermined thickness, dried at 100 ° C. for 10 minutes, 150 ° C. for 10 minutes, and 230 ° C. for 30 minutes to a thickness of 5 ⁇ m to 60 ⁇ m. Resin layer was formed.
  • the curable resin composition for a hard coat layer is applied onto the resin layer to a predetermined thickness, dried at 80 ° C. for 3 minutes, and then cured by ultraviolet irradiation to form a hard coat layer having a thickness of 10 ⁇ m. Formed.
  • Example 1-2 A display device member was produced in the same manner as in Example 1-1 except that the resin layer was formed as described below.
  • TPC terephthalic acid dichloride
  • 6.66 g (84.2 mmol) of pyridine and 8.60 g (84.2 mmol) of acetic anhydride as catalysts were added, and the mixture was stirred at 25 ° C. for 30 minutes to confirm that the solution was uniform.
  • the mixture was heated to ° C. and stirred for 1 hour.
  • 174.26 g of 2-propyl alcohol (IPA) was gradually added to the solution cooled to room temperature to obtain a solution in which slight turbidity was observed.
  • IPA435.64 g was added to the turbid solution at once to obtain a white slurry.
  • the slurry was filtered and washed with IPA 5 times, and then dried in an oven heated to 100 ° C. under reduced pressure for 6 hours to obtain a polyamide-imide powder (37.1 g).
  • the weight average molecular weight of polyamide-imide measured by GPC was 62000.
  • DMAc was added to the polyamide-imide so that the solid content concentration of the polyamide-imide was 19% by mass to prepare a polyamide-imide varnish having a polyamide-imide of 19% by mass in the varnish.
  • the viscosity of the polyamide-imide varnish (solid content concentration 19% by mass) at 25 ° C. was 4000 mPa ⁇ s.
  • the above polyamide-imide varnish (resin composition) is applied onto the primer layer to a predetermined thickness, dried at 100 ° C. for 10 minutes, 150 ° C. for 10 minutes, and 230 ° C. for 30 minutes to a thickness of 5 ⁇ m to 60 ⁇ m. Resin layer was formed.
  • Example 1-3 A display device member was produced in the same manner as in Example 1-1 except that the resin layer was formed as described below.
  • TMPBPTME tetracarboxylic dianhydride
  • TMPBPTME TMPBPTME
  • PMDA TMPBPTME
  • the weight average molecular weight of the polyimide precursor was 75,000.
  • the above-mentioned polyimide precursor solution (2162 g) cooled to room temperature was added to a 5 L separable flask.
  • Dehydrated N, N-dimethylacetamide (432 g) was added thereto, and the mixture was stirred until uniform.
  • the catalysts pyridine (6.622 g) and acetic anhydride (213.67 g) were added and stirred at room temperature for 24 hours to synthesize a polyimide solution.
  • N, N-dimethylacetamide (DMAc) 2000 g was added to the obtained polyimide solution, and the mixture was stirred until uniform.
  • the polyimide solution was divided into 3 equal parts in a 5 L beaker and transferred, and isopropyl alcohol (3500 g) was gradually added to each beaker to obtain a white slurry.
  • the above slurry was transferred onto a Büchner funnel, filtered, then flushed with isopropyl alcohol (9000 g in total) for washing, and then filtered.
  • the process was repeated three times, dried at 110 ° C. using a vacuum dryer, and the polyimide (polyimide). Polyimide powder) was obtained.
  • the weight average molecular weight of the polyimide measured by GPC was 100,000.
  • N, N-dimethylacetamide (DMAc) was added to the polyimide so that the solid content concentration of the polyimide was 12% by mass, and a polyimide varnish (resin composition) having a polyimide content of 12% by mass was prepared.
  • the viscosity of the polyimide varnish (resin composition) (solid content concentration 12% by mass) at 25 ° C. was 15000 cps.
  • the polyimide varnish (resin composition) is applied onto the primer layer to a predetermined thickness, dried at 100 ° C. for 10 minutes, 150 ° C. for 10 minutes, and 230 ° C. for 30 minutes to a thickness of 5 ⁇ m to 60 ⁇ m. A resin layer was formed.
  • Example 1-1 A display device member was produced in the same manner as in Example 1-1 except that the resin layer was formed as described below.
  • a composition containing a urethane-modified copolymerized polyester resin (Byron UR4800, manufactured by Toyobo) was applied to a predetermined thickness and dried at 100 ° C. for 5 minutes to form a resin layer having a thickness of 5 ⁇ m to 60 ⁇ m.
  • Example 1-2 A display device member was produced in the same manner as in Example 1-1 except that the resin layer was formed as described below.
  • a composition containing an epoxy resin (1256B40, manufactured by Mitsubishi Chemical Corporation) was applied to a predetermined thickness and dried at 80 ° C. for 5 minutes and at 150 ° C. for 60 minutes to form a resin layer having a thickness of 5 ⁇ m to 60 ⁇ m.
  • Example 1-3 A display device member was produced in the same manner as in Example 1-1 except that the resin layer was formed as described below.
  • N, N-dimethylacetamide 500 g was added to the container, and while flowing N 2 inside the container, N, N-dimethylacetamide was heated at about 80 ° C. with stirring. The amount of dissolved oxygen in N, N-dimethylacetamide is monitored one by one, and heating is stopped when the amount of dissolved oxygen in N, N-dimethylacetamide falls below the detection limit of the dissolved oxygen meter (less than 0.005 mg / L). After cooling to room temperature, N, N-dimethylacetamide was applied to the next step.
  • the above-mentioned polyimide precursor solution cooled to room temperature was added to a 5 L separable flask.
  • pyridine and acetic anhydride as catalysts were added, and the mixture was stirred for 24 hours at room temperature to synthesize a polyimide solution.
  • N, N-dimethylacetamide (DMAc) was added to the obtained polyimide solution, and the mixture was stirred until uniform.
  • the polyimide solution was divided into 3 equal parts in a 5 L beaker and transferred, and isopropyl alcohol was gradually added to each beaker to obtain a white slurry.
  • the above slurry is transferred onto a Büchner funnel, filtered, then flushed with isopropyl alcohol for washing, and then filtered. The process is repeated three times, dried at 110 ° C. using a vacuum dryer, and polyimide (polyimide powder).
  • N, N-dimethylacetamide (DMAc) was added to the polyimide so that the solid content concentration of the polyimide was 12% by mass, and a polyimide varnish (resin composition) having a polyimide content of 12% by mass was prepared.
  • the viscosity of the polyimide varnish (resin composition) (solid content concentration 12% by mass) at 25 ° C. was 3000 cps.
  • the polyimide varnish (resin composition) is applied onto the primer layer to a predetermined thickness, dried at 100 ° C. for 10 minutes, 150 ° C. for 10 minutes, and 230 ° C. for 30 minutes to a thickness of 5 ⁇ m to 60 ⁇ m. Resin layer was formed.
  • H IT indentation hardness
  • a block in which a display device member cut out to 1 mm ⁇ 10 mm is embedded with an embedding resin is prepared, and a uniform thickness of 50 nm without holes or the like is produced from this block by a general section preparation method. Sections of 100 nm or less were cut out. "Ultra Microtome EM UC7" (manufactured by Leica Microsystems, Inc.) was used to prepare the sections.
  • a Berkovich indenter triangular pyramid, TI-0039 manufactured by BRUKER
  • a Berkovich indenter was used as an indenter in the resin layer under the following measurement conditions. It was pushed vertically into the center of the cross section over 10 seconds until the maximum pushing load was 25 ⁇ N.
  • the Berkovich indenter is separated from the interface between the glass base material and the resin layer by 500 nm to the center side of the resin layer, and both sides of the resin layer.
  • the contact projection area was defined as the contact projection area in which the curvature of the indenter tip was corrected by the Oliver-Pharr method using a standard sample of fused quartz (5-00998 manufactured by BRUKER). If any of the measured values deviated from the arithmetic mean value by ⁇ 20% or more, the measured value was excluded and remeasurement was performed.
  • Pencil hardness In the display device members of Examples and Comparative Examples, when the thickness of the resin layer is 20 ⁇ m, the pencil hardness on the surface of the display device member on the hard coat layer side is determined by JIS K5600-5. Measured according to 4 (1999). When measuring the hardness of a pencil, a pencil hardness tester (product name "pencil scratch coating hardness tester (electric type)", manufactured by Toyo Seiki Seisakusho Co., Ltd.) is used, and the measurement conditions are an angle of 45 ° and a load. The temperature was set to 750 g, a speed of 0.5 mm / sec or more and 1 mm / sec or less, and a temperature of 23 ⁇ 2 ° C.
  • the total light transmittance and haze of the display device members were measured when the thickness of the resin layer was 20 ⁇ m.
  • the total light transmittance of the display device member was measured by a haze meter (HM150 manufactured by Murakami Color Technology Laboratory) in accordance with JIS K7361-1.
  • the haze of the display device member was measured with a haze meter (HM150 manufactured by Murakami Color Technology Laboratory) in accordance with JIS K-7136.
  • a dynamic bending test was performed on the display device members of Examples and Comparative Examples to evaluate the bending resistance. Specifically, first, a display device member having a size of 20 mm ⁇ 100 mm is attached to a durability tester (product name “DLDMLLH-FS”, manufactured by Yuasa System Equipment Co., Ltd.) on the short side (20 mm) of the display device member. ) Sides are fixed by fixing portions, and as shown in FIG. 5C, the minimum distance d between the two opposing short side portions is adjusted to be 10 mm, and the surface of the display device member is 180. ° Folding dynamic flexion test was performed 200,000 times.
  • the display device member was folded so that the surface on the hard coat layer side was on the inside and the surface on the glass substrate side of the display device member was on the outside. Further, using another display device member, a dynamic bending test is performed in which the display device member is folded so that the surface of the display device member on the hard coat layer side is on the outside and the surface of the display device member on the glass substrate side is on the inside. , The same procedure as above was performed. Then, after the dynamic bending test, the fixed portion is removed from one of the short sides to open the folded state, and the opening angle (see FIG. 6B), which is the angle at which the display device member naturally opens, is measured. bottom. The opening angle is different depending on whether the display device member is folded so that the surface on the hard coat layer side is on the inside or the display device member is folded so that the surface on the hard coat layer side is on the outside. The smaller one was adopted.
  • (5-2) Static Bending Test A static bending test was performed on the display device members of Examples and Comparative Examples, and the opening angle after the static bending test was measured. Specifically, first, the short side (20 mm) side of the display device member having a size of 20 mm ⁇ 100 mm is arranged in parallel so that the distance d between the opposing short side portions of the display device member is 10 mm. A static bending test was conducted in which the display device members were fixed to each of the fixed portions and allowed to stand at 23 ° C. for 240 hours in a folded state. Then, after the static bending test, the fixed portion is removed from one of the short sides to open the folded state, and the opening angle is the angle at which the display device member naturally opens after 30 minutes at room temperature (FIG.
  • the hard coat layer formed on the third resin layer is formed on the first hard coat layer and the first resin layer.
  • the hard coat layer to be formed is referred to as a second hard coat layer.
  • Example 2-2 (1) Preparation of Hard Coat Film A PET film with a thickness of 50 ⁇ m (manufactured by Toyobo Co., Ltd., product name A4100) is prepared as a third resin layer, and the same hardware as in Example 1-1 is used on the PET film with a bar coater. A curable resin composition for a coat layer was applied to complete a coating film. Then, the formed coating film was dried at 100 ° C. for 3 minutes and then cured by irradiation with ultraviolet rays of 200 mJ to form a first hard coat layer having a thickness of 10 ⁇ m. As a result, a hard coat film was obtained.
  • a PET film with a thickness of 50 ⁇ m manufactured by Toyobo Co., Ltd., product name A4100
  • a curable resin composition for a coat layer was applied to complete a coating film. Then, the formed coating film was dried at 100 ° C. for 3 minutes and then cured by irradiation with ultraviolet rays of
  • Examples 2-1 to 2-8 (1) Preparation of Glass Resin Laminate A primer layer and a first resin layer are formed on a glass base material in the same manner as in Comparative Example 2-1 except that the thickness of the first resin layer is 10 ⁇ m to 40 ⁇ m. bottom. As a result, a glass resin laminate was obtained.
  • Example 2-9 (1) Preparation of Glass Resin Laminated Body
  • the primer layer, the first resin layer and the second resin layer were formed on the glass substrate in the same manner as in Comparative Example 2-1 except that the thickness of the first resin layer was 23 ⁇ m.
  • a hard coat layer was formed. As a result, a glass resin laminate was obtained.
  • the indentation hardness of the first resin layer was measured. Measurement of indentation hardness (H IT) is measured samples was performed using BRUKER Corp. to "TI950 TriboIndenter" about. Specifically, first, a block in which an optical laminate cut out to 1 mm ⁇ 10 mm is embedded with an embedding resin is prepared, and a uniform thickness of 50 nm or more without holes or the like is produced from this block by a general section preparation method. Sections of 100 nm or less were cut out. "Ultra Microtome EM UC7" (manufactured by Leica Microsystems, Inc.) was used to prepare the sections.
  • a Berkovich indenter triangular pyramid, TI-0039 manufactured by BRUKER Co., Ltd.
  • the Berkovich indenter is 500 nm from the interface between the glass base material and the first resin layer to the center side of the first resin layer in order to avoid the influence of the glass base material and the influence of the side edge of the first resin layer.
  • the contact projection area was defined as the contact projection area in which the curvature of the indenter tip was corrected by the Oliver-Pharr method using a standard sample of fused quartz (5-00998 manufactured by BRUKER). If any of the measured values deviated from the arithmetic mean value by ⁇ 20% or more, the measured value was excluded and remeasurement was performed.
  • Dynamic bending test A dynamic bending test was performed on the optical laminates of Examples and Comparative Examples to evaluate the bending resistance. Specifically, first, an optical laminate having a size of 20 mm ⁇ 100 mm is applied to a durability tester (product name “DLDMLLH-FS”, manufactured by Yuasa System Equipment Co., Ltd.) on the short side (20 mm) side of the optical laminate. As shown in FIG. 5 (c), the minimum distance d between the two short side portions facing each other is adjusted to be 10 mm or 8 mm, and the surface of the optical laminate is 180 °. The folding dynamic flexion test was performed 200,000 or 70,000 times.
  • the optical laminate was folded so that the surface on the hard coat layer side was on the outside and the surface on the glass substrate side of the optical laminate was on the inside. Then, in an environment of 25 ° C. and 50% RH, it was visually inspected at 2000 Lx in the bright room whether or not the bent portion was cracked or broken.
  • the results of the dynamic flexion test were evaluated according to the following criteria. A: No cracks or breaks occurred in the bent portion. B: The bent portion was cracked or broken.
  • Comparative Example 2-1 because the second resin layer and the third resin layer were not arranged, the impact resistance was inferior. Further, in Comparative Example 2-2, since the first resin layer was not arranged, the impact resistance was inferior. On the other hand, in Examples 2-1 to 2-9, since the predetermined first resin layer, second resin layer, and third resin layer are arranged in this order, the impact resistance is excellent. Further, when Examples 2-1 to 2-7 and Example 2-8 were compared, when the total thickness of the resin layer was not more than a predetermined value, the bending resistance was also excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本開示は、厚さが100μm以下のガラス基材と、上記ガラス基材の一方の面側に配置され、複合弾性率が5.7GPa以上であり、厚さが5μm以上60μm以下である樹脂層と、を有する、表示装置用部材を提供する。

Description

表示装置用部材、光学積層体および表示装置
 本開示は、表示装置用部材、光学積層体および表示装置に関する。
 従来、表示装置には、表示装置を保護する目的で、ガラス製や樹脂製のカバー部材が用いられている。このカバー部材は、表示装置を衝撃や傷から保護するものであり、強度、耐衝撃性、耐傷性等が求められる。ガラス製のカバー部材は、表面硬度が高く傷が付きにくい、透明度が高い等の特徴があり、樹脂製のカバー部材は、軽量、割れにくいといった特徴がある。また、一般にカバー部材の厚みが厚いほど表示装置を衝撃から保護する機能が高く、重量やコスト、表示装置のサイズ等から、カバー部材の材質や厚みが適宜選択されて用いられている。
 近年、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブルディスプレイの開発が盛んに行われており、中でも、フォルダブルディスプレイ、すなわち折り曲げられる表示装置の開発が進められている。
 折れ曲げられる表示装置においては、カバー部材も表示装置の動きに追随して曲がる必要があることから、折り曲げることができるカバー部材が適用されている。樹脂製のカバー部材の場合、化学構造の工夫により無色透明化したポリイミドやポリアミドイミドのフィルムが開発されている(例えば特許文献1参照)。また、ガラス製のカバー部材の場合、超薄板ガラス(Ultra-Thin Glass;UTG)等のようにガラスを薄くすることで折り曲げることができるようにしたカバー部材の検討が進められている(例えば特許文献2参照)。ガラスの中でも、特に、屈曲耐性が高いのは、化学強化ガラスといわれるもので、ガラス表面に膨張する応力を内在させることにより、ガラス表面に生じた微小な傷が屈曲時に大きくならないようにすることで、ガラスを割れにくくしている。
特開2019-137864号公報 特開2018-188335号公報
 ガラスは、樹脂に比べ弾性率が高いので、同じ厚みの場合、樹脂よりも表示装置を保護する能力が高い。また、ガラスは、光学的にも透明性が高く、より視認性の良い表示装置を製造することが可能となる。一方で、ガラスは薄くなることで、より割れやすくなってしまい、耐衝撃性が劇的に悪化する。外部からの衝撃によって、カバー部材のガラスが割れてしまうと、表示装置を保護する機能が低下するだけでなく、発生した破片や鋭利な端面により使用者の指先等を傷付けてしまうおそれがある。
 本開示は、上記実情に鑑みてなされたものであり、耐衝撃性および柔軟性に優れ、安全性も向上した表示装置用部材、光学積層体、およびこれを備える表示装置を提供することを第1の目的とする。また、本開示は、強度、耐衝撃性、耐傷性および柔軟性に優れ、安全性も向上した表示装置用部材、およびこれを備える表示装置を提供することを第2の目的とする。
 本開示の一実施形態は、厚さが100μm以下のガラス基材と、上記ガラス基材の一方の面側に配置され、複合弾性率が5.7GPa以上であり、厚さが5μm以上60μm以下である樹脂層と、を有する、表示装置用部材を提供する。
 本開示における表示装置用部材は、上記ガラス基材と上記樹脂層との間にプライマー層を有することができる。
 また、本開示における表示装置用部材は、上記樹脂層の上記ガラス基材とは反対の面側に機能層を有することができる。この場合、上記機能層はハードコート層とすることができる。
 本開示における表示装置用部材は、全光線透過率が80%以上であることが好ましい。また、本開示における表示装置用部材は、ヘーズが2.0%以下であることが好ましい。
 また、本開示における表示装置用部材においては、上記樹脂層がポリイミドまたはポリアミドイミドを含有することができる。この場合、上記ポリイミドの重量平均分子量が100,000以上であることが好ましい。また、上記ポリアミドイミドの重量平均分子量が50,000以上であることが好ましい。
 本開示の他の実施形態は、ガラス基材と、第1樹脂層と、第2樹脂層と、第3樹脂層と、をこの順に有する光学積層体であって、上記ガラス基材の厚さが100μm以下であり、上記第1樹脂層の複合弾性率が5.7GPa以上であり、上記第1樹脂層の厚さが5μm以上60μm以下であり、上記第2樹脂層が粘着層であり、上記第3樹脂層が、ポリエステル系樹脂、ポリシクロオレフィン系樹脂、アセチルセルロース系樹脂、ポリカーボネート系樹脂、およびポリプロピレン系樹脂からなる群から選択される樹脂を含む樹脂フィルムである、光学積層体を提供する。
 本開示における光学積層体においては、上記ガラス基材の上記第1樹脂層の面側に配置されている樹脂層の総厚さが143μm以下であることが好ましい。
 本開示における光学積層体は、上記第3樹脂層の上記第2樹脂層とは反対の面側に機能層を有することができる。この場合、上記機能層はハードコート層とすることができる。
 本開示における光学積層体は、全光線透過率が80%以上であることが好ましい。また、本開示における光学積層体は、ヘーズが2.0%以下であることが好ましい。
 また、本開示における光学積層体においては、上記第1樹脂層がポリイミドまたはポリアミドイミドを含有することができる。この場合、上記ポリイミドの重量平均分子量が100,000以上であることが好ましい。また、上記ポリアミドイミドの重量平均分子量が50,000以上であることが好ましい。
 本開示の他の実施形態は、表示パネルと、上記表示パネルの観察者側に配置された、上述の表示装置用部材または上述の光学積層体と、を備える表示装置を提供する。
 本開示における表示装置は、折りたたみ可能であることが好ましい。
 本開示においては、耐衝撃性および柔軟性に優れ、安全性も向上した表示装置用部材および光学積層体を提供することができるという効果を奏する。また、本開示においては、強度、耐衝撃性、耐傷性および柔軟性に優れ、安全性も向上した表示装置用部材を提供することができるという効果を奏する。
本開示における表示装置用部材を例示する概略断面図である。 本開示における表示装置用部材を例示する概略断面図である。 本開示における表示装置用部材を例示する概略断面図である。 本開示における表示装置用部材を例示する概略断面図である。 動的屈曲試験を説明するための模式図である。 静的屈曲試験を説明するための模式図である。 本開示における光学積層体を例示する概略断面図である。 本開示における光学積層体を例示する概略断面図である。 本開示における光学積層体を例示する概略断面図である。 本開示における表示装置を例示する概略断面図である。 本開示における表示装置を例示する概略断面図である。 実施例および比較例の表示装置用樹脂部材における樹脂層の厚さと衝撃試験(ペンドロップ試験)の評価との関係を示すグラフである。
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。
 また、本明細書において、「フィルム」には、「シート」と呼ばれる部材も含まれる。
 以下、本開示における表示装置用部材、光学積層体および表示装置について詳細に説明する。
A.表示装置用部材
 上記課題を解決するために、本開示の発明者らは鋭意検討を行い、柔軟性を有する薄いガラス基材を用い、ガラス基材の一方の面側に樹脂層を配置することにより、ガラス基材の割れを抑制し、耐衝撃性を高めることができ、さらには樹脂層の厚さを厚くすることにより、ガラス基材の割れをさらに抑制し、耐衝撃性をさらに高めることができることを見出した。しかし、ガラス基材の一方の面側に樹脂層が配置された表示装置用部材を表示装置の表示パネルの観察者側に配置する場合において、表示装置用部材の樹脂層側の面が観察者側になるように配置する場合、樹脂層の厚さが厚いと、表示装置用部材の樹脂層側の表面の硬度が低下し、耐傷性が低くなることを知見した。そして、本開示の発明者らはさらに検討を重ね、樹脂層の複合弾性率を所定の範囲とすることにより、表面硬度を高めるために樹脂層の厚さを比較的薄くした場合であっても、ガラス基材の割れを抑制することができることを見出した。すなわち、強度、耐衝撃性、耐傷性および柔軟性のいずれにも優れる表示装置用部材が得られることを知見した。加えて、所定の特性を有する樹脂層を用いることで、たとえガラス基材が破損したとしてもその破片や鋭利な端面が露出せず、より安全な使用が可能であることを知見した。本開示における表示装置用部材はこのような知見に基づくものである。
 本開示における表示装置用部材は、厚さが100μm以下のガラス基材と、上記ガラス基材の一方の面側に配置され、複合弾性率が5.7GPa以上であり、厚さが5μm以上60μm以下である樹脂層と、を有する。
 図1は、本開示における表示装置用部材の一例を示す概略断面図である。図1に示すように、表示装置用部材1は、ガラス基材2と、ガラス基材2の一方の面側に配置された樹脂層3と、を有する。ガラス基材2は所定の厚さを有し、樹脂層3は所定の厚さおよび所定の複合弾性率を有する。
 本開示においては、ガラス基材は、厚さが所定の値以下であり薄いため、割れやすく耐衝撃性が低いことが懸念されるが、ガラス基材の一方の面側に樹脂層が配置されていることにより、表示装置用部材に衝撃が加わった際に、樹脂層が衝撃を吸収し、ガラス基材の割れを抑制することができ、耐衝撃性を向上させることができる。さらには、ガラス基材がたとえ割れた場合であっても、樹脂層によりガラスの飛散を抑制することができる。
 ここで、樹脂層の厚さを厚くすると、ガラス基材の割れをさらに抑制することができ、耐衝撃性をさらに向上させることができる。しかし、樹脂層の厚さが厚いと、表示装置用部材の樹脂層側の表面の硬度が低下し、耐傷性が低くなる。そのため、表示装置用部材の樹脂層側の表面の硬度を高くするには、樹脂層の厚さを比較的薄くする必要がある。本開示によれば、樹脂層の複合弾性率が所定の範囲であることにより、表面硬度を高めるために樹脂層の厚さを比較的薄くした場合であっても、ガラス基材の割れを抑制することができる。したがって、耐衝撃性および耐傷性の両方を向上させることができる。
 なお、樹脂層の複合弾性率は、後述するように、ナノインデンテーション法(押し込み試験法)により測定される。また、薄いガラス基材の耐衝撃性の評価の一つとして、ペンドロップ試験があり、表示装置用部材の耐衝撃性は、後述の実施例に記載するように、ペンドロップ試験により評価することができる。弾性率には、複合弾性率の他、各種の弾性率があるが、本開示においては、樹脂層の複合弾性率を採用している。これは、ナノインデンテーション法(押し込み試験法)による樹脂層の複合弾性率の測定において、測定サンプルに圧子が押し込まれることが、ペンドロップ試験において、ペンの先端がサンプルに衝突して押し込まれることに類似しているからである。
 本開示によれば、樹脂層の複合弾性率が所定の値以上であることにより、ペンドロップ試験による耐衝撃性を向上させることができる。
 また、本開示によれば、ガラス基材の厚さが所定の値以下であり薄く、樹脂層の厚さが所定の範囲内であり比較的薄いため、柔軟性を高めることができ、表示装置用部材を曲げた際に、樹脂層の割れを抑制することができ、屈曲耐性を維持することができる。よって、本開示における表示装置用部材は、折り曲げることが可能であり、多種多様な表示装置用部材に用いることができ、例えばフォルダブルディスプレイ用部材として使用することができる。
 また、本開示によれば、樹脂層の複合弾性率が所定の値以上であることにより、樹脂層に変形が加えられた際に復元する力を大きくすることができる。なお、複合弾性率は、変形のしにくさを表す指標であり、樹脂層の複合弾性率が大きいほど、樹脂層に変形が加えられた際に復元する力が大きくなり、一方で、樹脂層の複合弾性率が小さいほど、樹脂層に変形が加えられた際に復元する力が小さくなる傾向にある。そのため、樹脂層の複合弾性率が所定の値以上であることにより、表示装置用部材が長時間折り曲げられた状態が続いた後の復元性を高めることができる。また、表示装置用部材の折り曲げを繰り返し行った後の復元性も高めることができる。
 このように本開示においては、強度、耐衝撃性、耐傷性および柔軟性に優れる表示装置用部材とすることができる。さらには、たとえガラス基材が破損したとしても、人体を傷付けるリスクを低減することができ、安全性の高い表示装置用部材とすることができる。
 また、従来、フォルダブルディスプレイの表面に配置される部材としては、樹脂基材を有する光学フィルムも知られているが、上記部材として上記光学フィルムを用いたフォルダブルディスプレイにおいては、折りたたみの跡が付きやすく、画像品質が下がり、外観が損なわれるという不具合がある。これに対し、本開示によれば、ガラス基材を用いており、ガラス基材を有する表示装置用部材は、折りたたみの跡が残りにくく、画像品質を高め、外観を良くすることができる。
 以下、本開示における表示装置用部材の各構成について説明する。
1.樹脂層
 本開示における樹脂層は、複合弾性率が5.7GPa以上であり、厚さが5μm以上60μm以下であり、ガラス基材の一方の面側に配置される部材である。樹脂層は、衝撃吸収性を有する部材であり、ガラス基材が割れたときのガラスの飛散を抑制する部材としても機能する。樹脂層は、光透過性を有し、本開示における表示装置用部材を表示装置の表示パネルの観察者側に配置する場合には、ガラス基材よりも観察者側に配置される。
(1)樹脂層の特性
 樹脂層の複合弾性率は、5.7GPa以上であり、好ましくは6.0GPa以上、より好ましくは6.5GPa以上とすることができる。樹脂層の複合弾性率が上記範囲であることにより、表面硬度を高めるために樹脂層の厚さを比較的薄くした場合であっても、衝撃によるガラス基材の割れを抑制することができ、耐衝撃性および耐傷性を向上させることができる。
 また、後述の複合弾性率の測定方法によれば、ガラス基材の複合弾性率は約40GPaであることから、樹脂層の複合弾性率は、例えば、40GPa以下であることが好ましく、20GPa以下であることがより好ましい。
 ここで、樹脂層の複合弾性率は、樹脂層のインデンテーション硬さ(HIT)を測定する際に求められる接触投影面積Aを用いて算出するものとする。「インデンテーション硬さ」とは、ナノインデンテーション法による硬度測定によって得られる圧子の負荷から除荷までの荷重-変位曲線から求められる値である。樹脂層の複合弾性率は、樹脂層の弾性変形および圧子の弾性変形が含まれた弾性率である。
 インデンテーション硬さ(HIT)の測定は、測定サンプルについてBRUKER社製の「TI950 TriboIndenter」を用いて行うものとする。具体的には、まず、1mm×10mmに切り出した表示装置用部材を包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ50nm以上100nm以下の切片を切り出す。切片の作製には、「ウルトラミクロトーム EM UC7」(ライカ マイクロシステムズ社製)等を用いることができる。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとする。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、以下の測定条件で、上記圧子としてバーコビッチ(Berkovich)圧子(三角錐、BRUKER社製のTI-0039)を樹脂層の断面中央に10秒かけて最大押し込み荷重25μNまで垂直に押し込む。ここで、バーコビッチ圧子は、ガラス基材の影響を避けるためおよび樹脂層の側縁の影響を避けるために、ガラス基材と樹脂層との界面から樹脂層の中央側に500nm離れ、樹脂層の両側端からそれぞれ樹脂層の中央側に500nm離れた樹脂層の部分内に押し込むものとする。なお、樹脂層におけるガラス基材側の面とは反対側の面にハードコート層等の任意の層が存在する場合には、上記任意の層と樹脂層との界面からも樹脂層の中央側に500nm離れた樹脂層の部分内に押し込むものとする。その後、一定保持して残留応力の緩和を行った後、10秒かけて除荷させて、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と接触投影面積A(nm)とを用い、Pmax/Aにより、インデンテーション硬さ(HIT)を算出する。上記接触投影面積は、標準試料の溶融石英(BRUKER社製の5-0098)を用いてOliver-Pharr法で圧子先端曲率を補正した接触投影面積である。インデンテーション硬さ(HIT)は、10箇所測定して得られた値の算術平均値とする。なお、測定値の中に算術平均値から±20%以上外れるものが含まれている場合は、その測定値を除外し再測定を行うものとする。測定値の中に算術平均値から±20%以上外れているものが存在するか否かは、測定値をAとし、算術平均値をBとしたとき、(A-B)/B×100によって求められる値(%)が±20%以上であるかによって判断するものとする。インデンテーション硬さ(HIT)は、後述する樹脂層に含まれる樹脂の種類等によって調整することができる。
(測定条件)
・荷重速度:2.5μN/秒
・保持時間:5秒
・荷重除荷速度:2.5μN/秒
・測定温度:25℃
 樹脂層の複合弾性率Eは、下記数式(1)によって、インデンテーション硬さの測定の際に求められた接触投影面積Aを用いて求める。複合弾性率は、インデンテーション硬さを10箇所測定し、その都度複合弾性率を求め、得られた10箇所の複合弾性率の算術平均値とする。
Figure JPOXMLDOC01-appb-M000001
(上記数式(1)中、Aは接触投影面積であり、Eは樹脂層の複合弾性率であり、Sは接触剛性である。)
(2)樹脂層の構成
 樹脂層の厚さは、5μm以上60μm以下であり、好ましくは10μm以上50μm以下、より好ましくは15μm以上40μm以下とすることができる。樹脂層の厚さが上記範囲内であるように比較的薄いことにより、柔軟性を高めることができ、表示装置用部材を曲げた際に、樹脂層の割れを抑制することができ、屈曲耐性を維持することができる。
 ここで、樹脂層の厚さは、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)又は走査透過型電子顕微鏡(STEM)により観察される表示装置用部材の厚さ方向の断面から測定して得られた任意の10箇所の厚さの平均値とすることができる。なお、表示装置用部材が有する他の層の厚さの測定方法についても同様とすることができる。
 また、樹脂層は、ガラス基材の1つの面のみに配置されていてもよく、ガラス基材の2つ以上の面を覆うように配置されていてもよい。中でも、樹脂層がガラス基材の端面(側面)を覆うように配置されていることで、ガラス基材の側面からの衝撃を緩和したり擦り傷の発生を抑制したりすることができ、ガラスの破損を抑制することができる。
(3)樹脂層の材料
(a)樹脂
 樹脂層に含まれる樹脂としては、上述の複合弾性率を満たし、光透過性を有する樹脂であれば特に限定されるものではなく、例えば、ポリイミド、ポリアミドイミド、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、トリアセチルセルロース(TAC)等が挙げられる。
 以下、ポリイミドおよびポリアミドイミドを例に挙げて説明する。
(i)ポリイミド
 ポリイミドは、テトラカルボン酸成分とジアミン成分とを反応させて得られるものである。テトラカルボン酸成分とジアミン成分の重合によってポリアミド酸を得てイミド化することが好ましい。イミド化は、化学イミド化で行っても、熱イミド化で行ってもよく、化学イミド化と熱イミド化とを併用してもよい。
 ポリイミドとしては、上述の複合弾性率を満たし、光透過性を有するものであれば特に限定されないが、例えば、下記一般式(1)で表される構成単位を10モル%以上100モル%以下、及び下記一般式(2)で表される構成単位を(100-x)モル%(ここでxは、上記一般式(1)で表される構成単位のモル%)含み、重量平均分子量が100,000以上であることが好ましい。ポリイミドが、主鎖にエステル結合を介して2面角がねじれたパラビフェニレン基を含む特定の構造のテトラカルボン酸残基と、芳香族環又は脂肪族環を有するジアミン残基とを有し、且つ、特定の重量平均分子量を有することにより、複合弾性率と屈曲耐性のバランスを良好にしやすいからである。
Figure JPOXMLDOC01-appb-C000002
(一般式(1)及び(2)において、R~Rはそれぞれ独立に、水素原子又は炭素原子数1~6のアルキル基を表し、R及びRの少なくとも1つ、及びR及びRの少なくとも1つは、炭素原子数1~6のアルキル基を表す。Aは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Bは、芳香族環又は脂肪族環を有するジアミン残基である2価の基を表す。)
 ここで、テトラカルボン酸残基とは、テトラカルボン酸から、4つのカルボキシル基を除いた残基をいい、テトラカルボン酸二無水物から酸二無水物構造を除いた残基と同じ構造を表す。また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
 一般式(1)において、R及びRの少なくとも1つ、ならびにR及びRの少なくとも1つは、炭素原子数1~6のアルキル基を表す。炭素原子数1~6のアルキル基は、直鎖状又は分岐鎖状アルキル基であってよく、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。溶剤溶解性の点から、好ましくは炭素原子数1~4のアルキル基であり、より好ましくは炭素原子数1~2のアルキル基であり、より好ましくはメチル基である。また、中でも、溶剤溶解性の点から、R及びR、並びにR及びRが、メチル基を表すことが好ましい。
 一般式(1)において、Bは、芳香族環又は脂肪族環を有するジアミン残基である2価の基を表す。芳香族環又は脂肪族環を有するジアミン残基は、芳香族環を有するジアミン又は脂肪族環を有するジアミンから2つのアミノ基を除いた残基とすることができる。
 芳香族環を有するジアミンおよび脂肪族環を有するジアミンの具体例については、例えば特開2019-132930号公報、特開2019-1989号公報に記載のものを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。
 上記一般式(2)において、Aは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表し、Bは、芳香族環又は脂肪族環を有するジアミン残基である2価の基を表す。上記一般式(2)におけるBは、上記一般式(1)におけるBと同様であってよいので、ここでの説明を省略する。上記一般式(1)におけるBと上記一般式(2)におけるBとは、それぞれ同一であっても異なっていてもよい。
 上記一般式(2)のAにおけるテトラカルボン酸残基は、芳香族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基、又は、脂肪族環を有するテトラカルボン酸二無水物から酸二無水物構造を除いた残基とすることができる。
 芳香族環を有するテトラカルボン酸二無水物および脂肪族環を有するテトラカルボン酸二無水物の具体例については、例えば特開2019-132930号公報、特開2019-1989号公報に記載のものを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。
 ポリイミドは、上記一般式(1)で表される構成単位を10モル%以上100モル%以下含むことが好ましい。溶剤への溶解性の点から、ポリイミドは、上記一般式(1)で表される構成単位を15モル%以上含むことがより好ましく、25モル%以上含むことがさらに好ましく、50モル%以上含むことが特に好ましい。
 一方、表面硬度や光透過性が向上する点から、共重合成分を含んでもよく、ポリイミドは、上記一般式(1)で表される構成単位を95モル%以下含んでいてもよく、90モル%以下含んでいてもよく、80モル%以下含んでいてもよい。
 また、ポリイミドは、上記一般式(2)で表される構成単位を(100-x)モル%(ここでxは、上記一般式(1)で表される構成単位のモル%)含むことが好ましい。溶剤への溶解性の点から、ポリイミドは、上記一般式(2)で表される構成単位を85モル%以下含むことがより好ましく、75モル%以下含むことがさらに好ましく、50モル%以下含むことが特に好ましい。
 なお、ポリイミドが、上記一般式(1)で表される構成単位を100モル%含む場合には、上記一般式(2)で表される構成単位は0モル%、すなわち含まれない。上記一般式(2)で表される構成単位は0モル%であってもよいが、表面硬度や光透過性が向上する点から、共重合成分として含まれていてもよく、ポリイミドは、上記一般式(2)で表される構成単位を5モル%以上含んでいてもよく、10モル%以上含んでいてもよく、20モル%以上含んでいてもよい。
 光透過性を向上させ、且つ、表面硬度を向上させる点から、Aのテトラカルボン酸残基である4価の基、及び、Bのジアミン残基である2価の基の少なくとも1つは、芳香族環を含み、且つ、(i)フッ素原子、(ii)脂肪族環、及び(iii)芳香族環同士をスルホニル基又はフッ素で置換されていてもよいアルキレン基で連結した構造、からなる群から選択される少なくとも1つを含むことが好ましい。ポリイミドが、芳香族環を有するテトラカルボン酸残基及び芳香族環を有するジアミン残基から選ばれる少なくとも一種を含むことにより、分子骨格が剛直となり配向性が高まり、表面硬度が向上するが、剛直な芳香族環骨格は吸収波長が長波長に伸びる傾向があり、可視光領域の透過率が低下する傾向がある。一方で、ポリイミドが(i)フッ素原子を含むと、ポリイミド骨格内の電子状態を電荷移動し難くすることができる点から光透過性が向上する。また、ポリイミドが(ii)脂肪族環を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。また、ポリイミドが(iii)芳香族環同士をスルホニル基又はフッ素で置換されていてもよいアルキレン基で連結した構造を含むと、ポリイミド骨格内のπ電子の共役を断ち切ることで骨格内の電荷の移動を阻害することができる点から光透過性が向上する。
 中でも、光透過性を向上させ、且つ、表面硬度を向上させる点から、Aのテトラカルボン酸残基である4価の基、及び、Bのジアミン残基である2価の基の少なくとも1つは、芳香族環とフッ素原子とを含むことが好ましく、Bのジアミン残基である2価の基が、芳香族環とフッ素原子とを含むことが好ましい。
 ポリイミドは、光透過性の点、及び屈曲耐性及び表面硬度の点から、上記一般式(1)及び(2)中のBにおける、上記芳香族環又は脂肪族環を有するジアミン残基が、trans-シクロヘキサンジアミン残基、trans-1,4-ビスメチレンシクロヘキサンジアミン残基、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、3,3’-ビス(トリフルオロメチル)-4,4’-[(1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレンオキシ)]ジアニリン残基、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン残基、及び下記一般式(3)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましい。特に、光透過性と表面硬度の両立の点から、4,4’-ジアミノジフェニルスルホン残基、3,4’-ジアミノジフェニルスルホン残基、2,2-ビス(4-アミノフェニル)プロパン残基、及び、下記一般式(3)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましく、下記一般式(3)で表される2価の基であることがより好ましい。下記一般式(3)で表される2価の基としては、R及びRがパーフルオロアルキル基であることがより好ましく、中でも、炭素数1以上3以下のパーフルオロアルキル基が好ましく、トリフルオロメチル基又はパーフルオロエチル基であることがより好ましい。また、下記一般式(3)中のR及びRにおけるアルキル基としては、炭素数1以上3以下のアルキル基が好ましく、メチル基又はエチル基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000003
(一般式(3)において、R及びRはそれぞれ独立に、水素原子、アルキル基、またはパーフルオロアルキル基を表す。)
 ポリイミドは、中でも、光透過性の点、及び屈曲耐性及び表面硬度の点から、上記一般式(2)中のAにおける芳香族環又は脂肪族環を有するテトラカルボン酸残基が、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選ばれる少なくとも1種の4価の基であるであることが好ましい。
 上記一般式(2)中のAにおいて、これらの好適な残基を合計で、50モル%以上含むことが好ましく、70モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。
 上記一般式(2)中のAとしては、表面硬度が向上する点からは、ピロメリット酸二無水物残基、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基、及び、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物残基からなる群から選択される少なくとも一種のような剛直性を向上させるのに適したテトラカルボン酸残基群(グループA)を含むことが好ましい。また、上記一般式(2)中のAとしては、光透過性を向上させる点からは、シクロヘキサンテトラカルボン酸二無水物残基、シクロペンタンテトラカルボン酸二無水物残基、ジシクロヘキサン-3,4,3’,4’-テトラカルボン酸二無水物残基、シクロブタンテトラカルボン酸二無水物残基、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物残基、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、4,4’-オキシジフタル酸無水物残基、及び、3,4’-オキシジフタル酸無水物残基からなる群から選択される少なくとも一種のような光透過性を向上させるのに適したテトラカルボン酸残基群(グループB)を含むことが好ましい。グループAとグループBを混合して用いてもよい。
 グループAとグループBを混合する場合、上記剛直性を向上させるのに適したテトラカルボン酸残基群(グループA)と、光透過性を向上させるのに適したテトラカルボン酸残基群(グループB)との含有比率は、光透過性を向上させるのに適したテトラカルボン酸残基群(グループB)1モルに対して、上記剛直性を向上させるのに適したテトラカルボン酸残基群(グループA)が0.05モル以上9モル以下であることが好ましく、0.1モル以上5モル以下であることがより好ましく、0.3モル以上4モル以下であることがさらに好ましい。
 中でも、表面硬度と光透過性の向上の点から、上記グループBとしては、フッ素原子を含む、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基、及び3,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物残基の少なくとも一種を用いることが好ましい。
 ポリイミド中の各繰り返し単位の含有割合、各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、ポリイミド製造時には仕込みの分子量から求めることができる。また、ポリイミド中の各テトラカルボン酸残基や各ジアミン残基の含有割合(モル%)は、上記と同様に得られたポリイミドの分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
 ポリイミドは、屈曲耐性が良好な点から、ゲル浸透クロマトグラフィーのポリスチレン換算による重量平均分子量が100,000以上であることが好ましい。屈曲耐性の点から、重量平均分子量は120,000以上であってもよく、140,000以上であってもよく、160,000以上であってもよい。一方で、気泡欠陥が発生し難い点から、重量平均分子量は270,000以下であることが好ましい。さらに溶解性の点から、重量平均分子量は250,000以下であってもよく、230,000以下であってもよく、210,000以下であってもよい。
 ポリイミドの重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。具体的には、ポリイミドを0.1質量%の濃度のN-メチルピロリドン(NMP)溶液とし、展開溶媒は、含水量500ppm以下の30mmol%LiBr-NMP溶液を用い、東ソー製GPC装置(HLC-8120、使用カラム:SHODEX製GPC LF-804)を用い、サンプル打ち込み量50μL、溶媒流量0.4mL/分、37℃の条件で測定を行う。重量平均分子量は、サンプルと同濃度のポリスチレン標準サンプルを基準に求める。
(ii)ポリアミドイミド
 ポリアミドイミドとしては、上述の複合弾性率を満たし、光透過性を有するものであれば特に限定されないが、例えば、下記式(4)で表される構成単位を含むポリイミド構成単位と、下記式(5)で表される構成単位を含むポリアミド構成単位とを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(5)において、Xは芳香族環を有するジカルボン酸残基である2価の基を表す。)
 ポリアミドイミドが、上記式(4)で表される構成単位を含むポリイミド構成単位と、上記式(5)で表される構成単位を含むポリアミド構成単位とを含有することにより、十分な透明性を有しつつ、高い複合弾性率および屈曲耐性を有する樹脂層を得ることができる。上記ポリアミドイミドでは、主鎖にエステル結合を介して2面角が捻れたパラビフェニレン基を含む特定の構造のテトラカルボン酸残基と特定のジアミン残基とを有するポリイミド構成単位に、更に、芳香族環を有するジカルボン酸残基を含み、水素結合による分子間相互作用を促すポリアミド構成単位を導入している。高分子の主鎖構造に芳香族環の捻れを持たせることにより、π共役高分子で起こる分子間エネルギー遷移を抑制することができ、十分な透明性を達成しつつ、アミド結合部位と、ポリイミド構成単位中にエステル結合部位とを導入することにより、水素結合形成による分子間力を高めることができ、高い複合弾性率および屈曲耐性を有する樹脂層を得ることができると推定される。
 また、上記ポリアミドイミドは、特に高湿度環境下でも屈曲耐性が良好である。上記ポリアミドイミドでは、アミド結合部位と、ポリイミド構成単位中のエステル結合部位とが水素結合を形成することにより、高湿度環境下でも水分との水素結合を抑制できるため、高湿度環境下での屈曲耐性の劣化が抑制されて、屈曲耐性が良好になると推定される。
 また、上記ポリアミドイミドは、上記式(4)で表される構成単位を含むことから、上記式(4)で表される構成単位を含んでいても、溶剤への溶解性が良好である。
(ポリイミド構成単位)
 ポリイミド構成単位は、テトラカルボン酸成分とジアミン成分とを反応させて得られる構成単位であり、例えば、上記ポリイミドの項に記載した上記一般式(2)で表される構成単位が挙げられる。
 上記式(4)で表される構成単位は、下記式(4-1)で表されるテトラカルボン酸二無水物と、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニルとを反応させて得ることができる。
Figure JPOXMLDOC01-appb-C000005
 ポリアミドイミド中のポリイミド構成単位の合計に対して、上記式(4)で表される構成単位の含有割合は100モル%であってもよい。また、ポリイミド構成単位中には、上記式(4)で表される構成単位とは異なる、他のポリイミド構成単位を含有していてもよい。ポリアミドイミド中のポリイミド構成単位の合計に対して、上記式(4)で表される構成単位の含有割合は、好ましくは50モル%以上、更に好ましくは60モル%以上、より更に好ましくは70モル%以上であり、好ましくは100モル%以下であり、90モル%以下であってもよい。上記式(4)で表される構成単位の含有割合が上記範囲であれば、十分な透明性を有しつつ、高い複合弾性率および屈曲耐性を有することができる。透明性と複合弾性率と屈曲耐性のバランスの向上や、更なる特性の追加のために、上記式(4)で表される構成単位とは異なる、他のポリイミド構成単位を含有していてもよい。
 ポリアミドイミド中のポリイミド構成単位に含まれるテトラカルボン酸残基の合計に対して、上記式(4-1)で表されるテトラカルボン酸二無水物残基の含有割合は、好ましくは50モル%以上、更に好ましくは60モル%以上、より更に好ましくは70モル%以上であり、好ましくは100モル%以下であり、90モル%以下であってもよい。上記式(4-1)で表されるテトラカルボン酸二無水物残基の含有割合が上記範囲であれば、十分な透明性を有しつつ、高い複合弾性率および屈曲耐性を有することができる。透明性と複合弾性率と屈曲耐性のバランスの向上や、更なる特性の追加のために、上記式(4-1)で表されるテトラカルボン酸二無水物残基とは異なる、他のテトラカルボン酸二無水物残基を含有していてもよい。
 ポリイミド構成単位中に含まれていてもよい、他のポリイミド構成単位としては、例えば、上記一般式(2)で表される構成単位のうち、上記式(4)で表される構成単位とは異なるポリイミド構成単位が挙げられる。上記一般式(2)で表される構成単位において、A及びBは各構成単位において同一であっても異なっていてもよい。すなわち、上記一般式(2)で表される構成単位において、A及びBはそれぞれ独立に、1種であっても2種以上含まれていてもよい。
 上記一般式(2)で表される構成単位において、Aは芳香族環又は脂肪族環を有するテトラカルボン酸残基である4価の基を表す。Aとしては、例えば、下記式(a1)~(a7)で表される4価の基、及びこれらの式で表される4価の基中の水素原子の一部又は全部がフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基からなる群から選択される1種以上の置換基で置換された4価の基等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式(a1)~(a7)において、*は結合手を表し、Qは、単結合、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CO-、-SO-、-Ph-、-Ph-Qa2-Ph-、-Qa2-Ph-Qa2-、-Qa2-Ph-Ph-Qa2-、-Qa2-Ph-Qa2-Ph-Qa2-、又はフルオレン基を表す。Phはフェニレン基を表し、Qa2は、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CO-、又は-SO-を表す。)
 Qの各環に対する結合位置は、それぞれ独立に、各環に結合している2つのカルボキシ基のうち一方のカルボキシ基に対してオルト位又はメタ位となる場合が挙げられる。Qa2の各環に対する結合位置は、それぞれ独立に、フェニレン基に対してはメタ位又はパラ位であることが好ましく、パラ位であることがより好ましい。
 上記一般式(2)で表される構成単位において、Aとしては、上記式(a1)~(a7)で表される4価の基の中でも、上記式(a1)~(a3)のように芳香族環を含む構造の場合は、透明性と溶剤への溶解性を付与する観点で、上記式(a1)及び(a2)で表される4価の基が好ましい。また、更に芳香族環同士の間に屈曲可能な構造を持たせたものが好ましく、上記式(a2)におけるQとしては、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-Qa2-Ph-Qa2-(Qa2は、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CO-、又は-SO-を表す。)であることが好ましい。更に、フッ素原子を含有する方が透明性が向上することから、Qとしては、-C(CF-、-Qa2-Ph-Qa2-(Qa2は、-C(CF-)が好ましく、複合弾性率の点から、Qとしては、中でも-C(CF-がより好ましい。
 また、上記一般式(2)で表される構成単位において、Aとしては、上記式(a1)~(a7)で表される4価の基の中でも、上記式(a4)~(a7)のように脂肪族環を含む場合は、脂肪族構造であることより、透明性、溶解性に優れている点から好ましい。中でも、複合弾性率が良好になる点から、屈曲部位の少ない構造(a4)、(a5)、又は(a6)で表される4価の基が好ましく、中でも(a4)で表される4価の基が好ましい。
 上記一般式(2)で表される構成単位において、Bは、芳香族環又は脂肪族環を有するジアミン残基である2価の基を表す。Bとしては、例えば、下記式(b1)~(b6)で表される2価の基、及びこれらの式で表される2価の基中の水素原子の一部又は全部がフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基からなる群から選択される1種以上の置換基で置換された2価の基等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式(b1)~(b6)において、*は結合手を表し、Qは、単結合、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CO-、-SO-、-Ph-、-Ph-Qb2-Ph-、-Qb2-Ph-Qb2-、-Qb2-Ph-Ph-Qb2-、-Qb2-Ph-Qb2-Ph-Qb2-、又はフルオレン基を表す。Phはフェニレン基を表し、Qb2は、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CO-、又は-SO-を表す。)
 Qの各環に対する結合位置は、それぞれ独立に、各環に結合しているアミノ基に対してメタ位又はパラ位であることが好ましく、パラ位であることがより好ましくい。Qb2の各環に対する結合位置は、それぞれ独立に、フェニレン基に対してはメタ位又はパラ位であることが好ましく、パラ位であることがより好ましい。
 上記一般式(2)で表される構成単位において、Bとしては、上記式(b1)~(b6)で表される2価の基の中でも透明性と複合弾性率維持の点から、フェニレン骨格を有しつつ、フェニレン基同士のπ共役が切断された分子構造を有することが好ましく、更にフッ素を含んでいることがより好ましい。
 フェニレン基同士のπ共役が切断された分子構造として、上記式(b2)で表される2価の基において、Qが、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、又は-SO-であることが好ましく、更に-C(CF-又は-SO-であることが好ましい。
 また、上記一般式(2)で表される構成単位において、Bとしては、透明性と複合弾性率維持の点から上記一般式(3)で表される2価の基からなる群から選ばれる少なくとも1種の2価の基であることが好ましい。上記一般式(3)で表される2価の基としては、透明性の点からR及びRがメチル基、又はトリフルオロメチル基であることがより好ましく、透明性の点からトリフルオロメチル基であることがより更に好ましい。
 また、上記式(4)で表される構成単位とは異なる、他のポリイミド構成単位としては、下記式(6)で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000008
(式(6)において、B’は、芳香族環又は脂肪族環を有するジアミン残基である2価の基を表し、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニル残基とは異なる。)
 上記式(6)において、B’は、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニル残基とは異なる、芳香族環又は脂肪族環を有するジアミン残基を表し、上記一般式(5)におけるBと同様であって良い。
 ポリイミド構成単位中に、他のポリイミド構成単位を含む場合、中でも、下記式(7)で表される構成単位、下記式(8)で表される構成単位、又はこれらの組み合わせを含有することが好ましい。下記式(7)で表される構成単位、下記式(8)で表される構成単位、又はこれらの組み合わせを含有する場合には、透明性を向上し、溶剤への溶解性を高める点から好ましい。中でも、下記式(7)で表される構成単位を含有する場合は、高い複合弾性率を維持したまま、透明性を向上する点からより好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(7)で表される構成単位は、シクロブタンテトラカルボン酸二無水物と、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニルとを反応させて得ることができる。上記式(8)で表される構成単位は、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物と、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニルとを反応させて得ることができる。
 ポリアミドイミド中のポリイミド構成単位の合計に対して、上記式(4)で表される構成単位とは異なる、他のポリイミド構成単位の合計含有割合は、0モル%であってよいが、含まれる場合、好ましくは5モル%以上であり、10モル%以上であってもよく、好ましくは50モル%以下、更に好ましくは40モル%以下、より更に好ましくは30モル%以下である。上記他のポリイミド構成単位の合計含有割合が上記範囲内であれば、高透明性を付与でき、また複合弾性率が良好になる。
 中でも、上記式(7)で表される構成単位、上記式(8)で表される構成単位、又はこれらの組み合わせを含有する場合、ポリアミドイミド中のポリイミド構成単位の合計に対して、上記式(7)で表される構成単位、及び上記式(8)で表される構成単位の合計含有割合は、好ましくは5モル%以上であり、10モル%以上であってもよく、好ましくは50モル%以下、更に好ましくは40モル%以下、より更に好ましくは30モル%以下である。上記式(7)で表される構成単位、及び上記式(8)で表される構成単位の合計含有割合が上記範囲内であれば、高透明性を付与でき、また複合弾性率が良好になる。
(ポリアミド構成単位)
 ポリアミド構成単位は、ジカルボン酸成分とジアミン成分とを反応させて得られる構成単位であり、例えば、下記一般式(9)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(一般式(9)において、Xは芳香族環を有するジカルボン酸残基である2価の基を表し、Bは、芳香族環又は脂肪族環を有するジアミン残基である2価の基を表す。)
 ここで、ジカルボン酸残基とは、ジカルボン酸から、2つのカルボキシル基を除いた残基をいい、ジカルボン酸クロリドから2つのカルボン酸クロリド基を除いた残基と同じ構造を表す。また、ジアミン残基とは、ジアミンから2つのアミノ基を除いた残基をいう。
 ポリアミドイミドにおけるポリアミド構成単位には、上記式(5)で表される構成単位が必須成分として含まれる。上記式(5)で表される構成単位は、ポリアミド構成単位において1種又は2種以上含まれる。
 上記式(5)で表される構成単位は、芳香族環を有するジカルボン酸成分と、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニルとを反応させて得ることができる。ジカルボン酸成分としては、ジカルボン酸とジカルボン酸クロリドとが挙げられるが、反応性の点からジカルボン酸クロリドを用いることが好ましい。
 上記式(5)で表される構成単位は、上記式(5)中のXが、下記式(x1)~(x3)で表される構造からなる群から選択される少なくとも1つであることが好ましい。十分な透明性を有しつつ、高い複合弾性率を有する樹脂層を得ることができる。また、下記式(x1)で表される1,4-フェニレン基だけでなく、1,3-フェニレン基であってもよい。
Figure JPOXMLDOC01-appb-C000011
(式(x3)において、Lは、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、又は-CO-を表し、*は結合手を表す。)
 上記式(5)中のXにおいて、上記式(x1)~(x3)で表される構造の中では、高複合弾性率、及び屈曲耐性が向上する点から、上記式(x1)又は式(x2)で表される構造がより好ましく、上記式(x2)で表される構造がより更に好ましい。
 ポリアミドイミド中のポリアミド構成単位の合計に対して、上記式(5)で表される構成単位の含有割合は100モル%であってもよい。また、ポリアミド構成単位中には、上記式(5)で表される構成単位とは異なる、他のポリアミド構成単位を更に含有していてもよい。ポリアミドイミド中のポリアミド構成単位の合計に対して、上記式(5)で表される構成単位の含有割合は、好ましくは80モル%以上、更に好ましくは85モル%以上、より更に好ましくは90モル%以上であり、好ましくは100モル%以下であり、95モル%以下であってもよい。上記式(5)で表される構成単位の含有割合が上記範囲内であれば、透明性と複合弾性率のバランスが良好になる。
 透明性と複合弾性率のバランスの点から、ポリアミドイミド中の上記式(5)で表される構成単位の合計に対して、上記式(5)中のXが、上記式(x1)~(x3)で表される構造からなる群から選択される1種以上の合計の含有割合は100モル%であってもよく、80モル%以上100モル%以下、更に90モル%以上100モル%以下であることが好ましく、より更に95モル%以上100モル%以下であることが好ましい。
 ポリアミド構成単位中には、上記式(5)で表される構成単位とは異なる、他のポリアミド構成単位が含まれていてもよく、例えば、上記一般式(9)で表される構成単位のうち、上記式(5)で表される構成単位とは異なるポリアミド構成単位が挙げられる。上記一般式(9)で表される構成単位において、X及びBは各構成単位において同一であっても異なっていてもよい。すなわち、上記一般式(9)で表される構成単位において、X及びBはそれぞれ独立に、1種であっても2種以上含まれていてもよい。上記一般式(9)において、Xは、上記式(5)で表される構成単位におけるXと同様であってよく、Bは、上記一般式(5)で表される構成単位におけるBと同様であってよい。
 ポリアミド構成単位中に含まれていてもよい、上記式(5)で表される構成単位とは異なる、他のポリアミド構成単位としては、透明性の点から、上記一般式(9)において、Xは、上記式(x1)~(x3)で表される構造からなる群から選択される少なくとも1つであり、Bは、上記式(b2)で表される2価の基において、Qが、-O-、-S-、-CH-、-CH(CH)-、-C(CH-、-C(CF-、又は-SO-であるか、或いは、上記一般式(3)で表される2価の基においてR及びRが水素原子又はメチル基であることが好ましく、上記式(b2)で表される2価の基において、Qが、-C(CF-又は-SO-であるか、或いは、上記一般式(3)で表される2価の基において、R及びRがメチル基であることがより好ましく、上記式(b2)で表される2価の基において、Qが、-C(CF-であることがより更に好ましい。
(ポリアミドイミド)
 上記式(5)で表される構成単位を含むポリアミド構成単位の含有割合は、上記式(4)で表される構成単位を含むポリイミド構成単位と上記式(5)で表される構成単位を含むポリアミド構成単位との合計に対して、好ましくは10モル%以上、更に好ましくは30モル%以上、より更に好ましくは40モル%以上であり、より更に好ましくは50モル%以上であり、好ましくは80モル%以下、更に好ましくは70モル%以下、より更に好ましくは60モル%以下である。上記式(5)で表される構成単位を含むポリアミド構成単位の含有割合が上記範囲であれば、樹脂層の複合弾性率と室温での屈曲耐性が向上し易く、またポリアミドイミドの溶剤への溶解性と、高温高湿下での屈曲耐性が良好になり易い。
 上記式(5)中の芳香族環を有するジカルボン酸残基Xの含有割合は、ポリアミドイミド樹脂中のテトラカルボン酸残基とジカルボン酸残基の合計に対して、好ましくは10モル%以上、更に好ましくは30モル%以上、より更に好ましくは40モル%以上であり、より更に好ましくは50モル%以上であり、好ましくは80モル%以下、更に好ましくは70モル%以下、より更に好ましくは60モル%以下である。上記式(5)中の芳香族環を有するジカルボン酸残基Xの含有割合が上記範囲内であれば、樹脂層の複合弾性率と室温での屈曲耐性が向上し易く、またポリアミドイミドの溶剤への溶解性と、高温高湿下での屈曲耐性が良好になり易い。
 また、ポリアミドイミドは、その一部に上記ポリイミド構成単位及び上記ポリアミド構成単位とは異なる構造を有していてもよい。ポリアミドイミドは、上記式(4)で表される構成単位を含むポリイミド構成単位と上記式(5)で表される構成単位を含むポリアミド構成単位との合計が、ポリアミドイミドの全構成単位の95%以上であることが好ましく、98%以上であることがより好ましく、100%であることがより更に好ましい。
 上記ポリイミド構成単位及び上記ポリアミド構成単位とは異なる構造としては、例えば、テトラカルボン酸成分が完全にイミド化されずに一部にポリアミド酸構造を有する構成単位、トリメリット酸無水物のようなトリカルボン酸残基を含むポリアミドイミド構成単位等が挙げられる。
 ポリアミドイミド中の各構成単位、及び各残基の含有割合(モル%)は、H-NMRを用いて測定することができ、ポリアミドイミド製造時には原料の仕込み比から求めることもできる。また、ポリアミドイミドの構造は、NMR、各種質量分析等を用いて行うことができる。また、ポリアミドイミド中の各残基の構造や含有割合は、例えば、ポリアミドイミドをアルカリ水溶液、又は、超臨界メタノールにより分解し、得られた分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMSを用いて求めることができる。
 ポリアミドイミドの重量平均分子量は、好ましくは50,000以上であり、より好ましくは100,000以上、より更に好ましくは150,000以上であり、好ましくは1,000,000以下であり、より好ましくは500,000以下、より更に好ましくは300,000以下である。ポリアミドイミド樹脂の重量平均分子量が上記範囲内であれば、焼成後にクラックや白化などの外観不良が生じ難く、透明性が良好な樹脂層を得やすく、また合成、ワニス調製、樹脂層形成時に高粘度化が抑制され、樹脂層を形成しやすくなる。
 ポリアミドイミドの重量平均分子量の測定方法は、上記ポリイミドの重量平均分子量の測定方法と同様とすることができる。
(b)紫外線吸収剤
 樹脂層は、紫外線吸収剤を含有していてもよい。樹脂層の紫外線による劣化を抑制することができる。中でも、樹脂層がポリイミドを含有する場合には、ポリイミドを含有する樹脂層の経時的な色変化を抑制することができる。また、表示装置用部材を備える表示装置において、表示装置用部材よりも表示パネル側に配置されている部材、例えば偏光子等の紫外線による劣化を抑制することができる。
 樹脂層に含まれる紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ヒドロキシベンゾフェノン系紫外線吸収剤等のベンゾフェノン系紫外線吸収剤、及び、ベンゾトリアゾール系紫外線吸収剤等が挙げられる。
 トリアジン系紫外線吸収剤、ヒドロキシベンゾフェノン系紫外線吸収剤等のベンゾフェノン系紫外線吸収剤、及び、ベンゾトリアゾール系紫外線吸収剤の具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 紫外線吸収剤としては、中でも、トリアジン系紫外線吸収剤、ヒドロキシベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、が好適に用いられる。
 また、紫外線吸収剤は、ポリマーまたはオリゴマーであることが好ましい。表示装置用部材を繰り返し屈曲したときの紫外線吸収剤のブリードアウトを抑制することができるからである。このような紫外線吸収剤としては、例えばトリアジン骨格、ベンゾフェノン骨格、又はベンゾトリアゾール骨格を有するポリマー又はオリゴマーを挙げることができ、具体的には、ベンゾトリアゾール骨格やベンゾフェノン骨格を有する(メタ)アクリレートと、メチルメタクリレート(MMA)とを任意の比率で熱共重合したものであることが好ましい。
 樹脂層中の紫外線吸収剤の含有量としては、特に限定されないが、例えば1質量%以上6質量%以下であることが好ましく、2質量%以上5質量%以下であることがより好ましい。紫外線吸収剤の含有量が少なすぎると、紫外線吸収剤による効果を十分に得られない場合がある。また、紫外線吸収剤の含有量が多すぎると、樹脂層が著しく着色したり、樹脂層の強度が低下したりするおそれがある。
(c)他の添加剤
 樹脂層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、例えば、無機粒子、巻き取りを円滑にするためのシリカフィラー、製膜性や脱泡性を向上させる界面活性剤、密着性向上剤等が挙げられる。
(4)樹脂層の形成方法
 樹脂層の形成方法としては、例えば、ガラス基材上に樹脂組成物を塗布する方法が挙げられる。塗布方法としては、所望の厚さで塗布可能な方法であれば特に制限はなく、例えばグラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、樹脂層の形成方法として転写法を用いることもできる。
 以下、樹脂層がポリイミドまたはポリアミドイミドを含有する場合を例に挙げて説明する。
(i)ポリイミドを含有する樹脂層の形成方法
 ポリイミドを含有する樹脂層の形成方法としては、例えば、ガラス基材上に、ポリイミドおよび有機溶剤を含むポリイミドワニスを塗布し、乾燥させる方法、および、ガラス基材上に、ポリイミド前駆体(ポリアミド酸)および有機溶剤を含むポリイミド前駆体組成物を塗布した後、熱処理または化学処理によりポリイミド前駆体をイミド化する方法等が挙げられる。前者の方法では、製膜プロセスの加熱条件を緩和することができる。一方、後者の方法では、ポリイミドの溶解性に制約がなくなるため、ポリイミドの化学構造の選択肢を増やすことができる。
 中でも、気泡欠陥が発生し難く、厚さの均一性が良好な樹脂層を得やすい点から、好ましい製造方法としては以下の製造方法が挙げられる。
 ポリイミドを含有する樹脂層の形成方法は、ポリイミドと、有機溶剤とを含有するポリイミドワニスであって、上記ポリイミドの含有割合は、上記ポリイミドワニス中に6質量%以上15質量%以下であり、25℃における粘度が1,000cps以上50,000cps以下であるポリイミドワニスを調製する調製工程と、上記ポリイミドワニスをガラス基材上に塗布する塗布工程と、塗膜を140℃以下の温度で乾燥する第1乾燥工程と、当該乾燥後塗膜を200℃以上の温度で加熱する第2乾燥工程とを有することが好ましい。
 ポリイミドが有機溶剤に良好に溶解する場合には、製膜プロセスの加熱条件を緩和できることから、ポリイミドを有機溶剤に溶解させたポリイミドワニスを用いて樹脂層を形成することが好ましい。ポリイミドが、主鎖にエステル結合を介して2面角がねじれたパラビフェニレン基を含む特定の構造のテトラカルボン酸残基を含む構成単位を特定量以上有する場合には、有機溶剤に溶解し易い。ポリイミドが25℃で有機溶剤に6質量%以上溶解するような溶剤溶解性を有する場合には、上記樹脂層の形成方法を好適に用いることができる。
 上記樹脂層の形成方法によれば、ワニス中のポリイミド含有割合を十分な濃度に上げることができ、且つワニスを所望の粘度範囲に調整できるので、気泡欠陥が発生し難く、厚さの均一性が良好な樹脂層を得ることができる。
 上記有機溶剤としては、ポリイミドが溶解可能であれば特に制限はなく、例えば、非プロトン性極性溶剤または水溶性アルコール系溶剤等を用いることができる。中でも、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、1,3-ジメチル-2-イミダゾリジノン等の窒素原子を含む有機溶剤;γ-ブチロラクトン等を用いることが好ましい。また、上記有機溶媒は、1種類もしくは2種類以上の混合溶媒として用いることができる。
 上記ポリイミドを含有する樹脂層の形成方法については、例えば特開2019-1989号公報、特開2019-182974号公報に記載の方法を参照することができる。
(ii)ポリアミドイミドを含有する樹脂層の形成方法
 ポリアミドイミドを含有する樹脂層の形成方法としては、特に限定されるものではなく、例えば、ガラス基材上に、ポリアミドイミドおよび有機溶剤を含むポリアミドイミドワニスを塗布し、乾燥させる方法が挙げられる。
 ポリアミドイミドの製造方法としては特に限定されないが、例えば、上記式(4-1)で表されるテトラカルボン酸二無水物と必要に応じて芳香族環又は脂肪族環を有するテトラカルボン酸二無水物とを含む1種又は2種以上のテトラカルボン酸二無水物と、2,2-ビス(トリフルオロメチル)-4,4-ジアミノビフェニルと必要に応じて芳香族環又は脂肪族環を有するジアミンとを含む1種又は2種以上のジアミンとを反応させることにより、ポリイミド前駆体(ポリアミド酸)を得る工程と、得られた上記ポリイミド前駆体(ポリアミド酸)と、芳香族環を有するジカルボン酸成分とを反応させることにより、ポリアミド-ポリイミド前駆体(ポリアミド酸)共重合体を得る工程と、得られた上記ポリアミド-ポリイミド前駆体(ポリアミド酸)共重合体をイミド化する工程を経て製造することができる。
 ポリアミドイミドワニスに含まれる有機溶剤としては、上述のポリイミドワニスに含まれる有機溶剤と同様とすることができる。
 上記ポリアミドイミドワニスの塗布方法は、目的とする厚さで塗布可能な方法であれば特に制限はなく、例えばグラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、ポリアミドイミドワニスの塗膜の形成方法として転写法を用いることもできる。
 ポリアミドイミドワニスの塗布後は、例えば、塗膜がタックフリーとなるまで、150℃以下の温度、好ましくは30℃以上120℃以下の温度で塗膜中の溶剤を乾燥する。
 乾燥時間は、塗膜の厚さや、溶剤の種類、乾燥温度等に応じて適宜調整されればよく、例えば5分間以上60分間以下、好ましくは10分間以上40分間以下とすることが好ましい。乾燥時間が長すぎると、樹脂層の形成効率が低下する場合がある。一方、乾燥時間が短すぎると、急激な溶剤の乾燥によって、得られる樹脂層の外観等に影響を与えるおそれがある。
 溶剤の乾燥方法は、上記温度で溶剤の乾燥が可能であれば特に制限はなく、例えばオーブンや、乾燥炉、ホットプレート、赤外線加熱等を用いることが可能である。
 乾燥工程は、塗膜を乾燥する第1乾燥工程と、当該乾燥後塗膜を高温で加熱する第2乾燥工程とを有していてもよい。第2乾燥工程での加熱温度としては、例えば150℃以上であることが好ましい。屈曲耐性の点から、樹脂層中の残留溶剤を可能な限り除去することが好ましい。
2.ガラス基材
 本開示におけるガラス基材は、厚さが100μm以下であり、上記樹脂層を支持する部材である。
 ガラス基材を構成するガラスとしては、特に限定されないが、中でも、化学強化ガラスであることが好ましい。化学強化ガラスは機械的強度に優れており、その分薄くできる点で好ましい。化学強化ガラスは、典型的には、ガラスの表面近傍について、ナトリウムをカリウムに代える等、イオン種を一部交換することで、化学的な方法によって機械的物性を強化したガラスであり、表面に圧縮応力層を有する。
 化学強化ガラス基材を構成するガラスとしては、例えば、アルミノシリケートガラス、ソーダライムガラス、ホウ珪酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウ珪酸ガラス等が挙げられる。
 化学強化ガラス基材の市販品としては、例えば、コーニング社のGorilla Glass(ゴリラガラス)や、AGC社のDragontrail(ドラゴントレイル)等が挙げられる。また、化学強化ガラス基材としては、例えば特開2019-194143号公報に記載のものを用いることもできる。
 ガラス基材の厚さは、100μm以下であり、好ましくは15μm以上、100μm以下、より好ましくは20μm以上、90μm以下、さらに好ましくは25μm以上、80μm以下とすることができる。ガラス基材の厚さが上記範囲であるように薄いことにより、良好な柔軟性を得ることができるともに、十分な硬度を得ることができる。また、表示装置用部材のカールを抑制することもできる。さらに、表示装置用部材の軽量化の面で好ましい。
3.機能層
 本開示における表示装置用部材は、上記樹脂層の上記ガラス基材とは反対の面側に機能層をさらに有することができる。機能層としては、例えば、ハードコート層、保護層、反射防止層、防眩層等が挙げられる。
 また、機能層は、単層であってもよく、複数の層を有していてもよい。また、機能層は、単一の機能を有する層であってもよく、互いに異なる機能を有する複数の層を有していてもよい。例えば、本開示における表示装置用部材は、機能層として、上記樹脂層側から順に、ハードコート層および保護層を有していてもよい。
(1)ハードコート層
 本開示における表示装置用部材は、例えば図2に示すように、上記樹脂層3の上記ガラス基材2とは反対の面側にハードコート層4をさらに有することが好ましい。ハードコート層は、表面硬度を高めるための部材である。ハードコート層が配置されていることにより、耐傷性を向上させることができる。
(a)ハードコート層の特性
 ここで、「ハードコート層」とは、表面硬度を高めるための部材であり、具体的には、本開示における表示装置用部材がハードコート層を有する構成において、JIS K 5600-5-4(1999)で規定される鉛筆硬度試験を行った場合に、「H」以上の硬度を示すものをいう。
 本開示における表示装置用部材が、上記樹脂層のガラス基材とは反対の面側にハードコート層を有する場合、表示装置用部材のハードコート層側の表面の鉛筆硬度は、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましい。
 ここで、鉛筆硬度は、JIS K5600-5-4(1999)で規定される鉛筆硬度試験で測定される。具体的には、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験を表示装置用部材のハードコート層側の表面に行い、傷が付かない最も高い鉛筆硬度を評価することにより行うことができる。測定条件としては、角度45°、荷重750g、速度0.5mm/秒以上1mm/秒以下、温度23±2℃とすることができる。鉛筆硬度試験機としては、例えば、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。
(b)ハードコート層の構成
 ハードコート層は、単層であってもよく、2層以上の多層構造を有していてもよい。ハードコート層が多層構造を有する場合、表面硬度を向上し、かつ、耐屈曲性および弾性率のバランスを良好にするために、ハードコート層は、鉛筆硬度を充足させるための層と、動的屈曲試験を充足させるための層(耐擦傷性を充足させるための層)とを有することが好ましい。
(c)ハードコート層の材料
 ハードコート層の材料としては、例えば、有機材料、無機材料、有機無機複合材料等を用いることができる。
 中でも、ハードコート層の材料は有機材料であることが好ましい。具体的には、ハードコート層は、重合性化合物を含む樹脂組成物の硬化物を含むことが好ましい。重合性化合物を含む樹脂組成物の硬化物は、重合性化合物を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。
(i)重合性化合物
 重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性化合物としては、例えば、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種を用いることができる。
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
 ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。
 ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等と称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千の多官能(メタ)アクリレートモノマー及びオリゴマーを好ましく使用でき、またアクリレートポリマーの側鎖に(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレートポリマーも好ましく使用できる。中でも、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーを好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートモノマーの硬化物を含むことにより、ハードコート層の硬度を向上させ、さらに密着性を向上させることができる。また、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートオリゴマー又はポリマーも好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートオリゴマー又はポリマーの硬化物を含むことにより、ハードコート層の硬度及び屈曲耐性を向上させ、さらに、密着性を向上させることができる。
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
 多官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。中でも、反応性が高く、ハードコート層の硬度が向上する点、及び密着性の点から、1分子中に3個以上6個以下の(メタ)アクリロイル基を有するものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等を好ましく用いることができ、特に、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサアクリレート、並びにこれらをPO、EO、又はカプロラクトン変性したものから選ばれる少なくとも1種が好ましい。
 樹脂組成物は、ラジカル重合性化合物として、硬度や粘度調整、密着性の向上等のために、単官能(メタ)アクリレートモノマーを含んでいてもよい。単官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。
 カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。
 また、カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2個以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層を、エポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
 脂環族エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、および、オキセタニル基を有するカチオン重合性化合物の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。
 なお、ハードコート層に含まれる重合性化合物を含む樹脂組成物の硬化物は、フーリエ変換赤外分光光度計(FTIR)、熱分解ガスクロマトグラフ装置(GC-MS)や、重合物の分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等の組み合わせを用いて分析することができる。
(ii)重合開始剤
 樹脂組成物は、必要に応じて重合開始剤を含有していてもよい。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。なお、ハードコート層中には、重合開始剤が全て分解されて残留していない場合もある。
 ラジカル重合開始剤およびカチオン重合開始剤の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。
(iii)粒子
 ハードコート層は、無機又は有機粒子を含有することが好ましく、無機微粒子を含有することがより好ましい。ハードコート層が粒子を含有することにより、硬度を向上させることができる。
 無機粒子としては、例えば、シリカ(SiO)、酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子、金属粒子、金属硫化物粒子、金属窒化物粒子等が挙げられる。中でも、金属酸化物粒子が好ましく、シリカ粒子及び酸化アルミニウム粒子から選ばれる少なくとも一種がより好ましく、シリカ粒子がさらに好ましい。優れた硬度が得られるからである。
 また、無機粒子は、当該無機粒子表面に当該無機粒子同士又は重合性化合物の少なくとも1種との間で架橋反応し、共有結合が形成可能な光反応性を有する反応性官能基を少なくとも粒子表面の一部に有する反応性無機粒子であることが好ましい。反応性無機粒子同士又は反応性無機粒子とラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種との間で架橋反応することにより、ハードコート層の硬度をさらに向上させることができる。
 反応性無機粒子は、少なくとも表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有する。反応性官能基としては、例えば、重合性不飽和基が好適に用いられ、より好ましくは光硬化性不飽和基である。反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合、及びエポキシ基等が挙げられる。
 反応性シリカ粒子としては特に限定されず、従来公知のものを用いることができ、例えば、特開2008-165040号公報記載の反応性シリカ粒子等が挙げられる。また、反応性シリカ粒子の市販品としては、例えば、日産化学工業社製;MIBK-SD、MIBK-SDMS、MIBK-SDL、MIBK-SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。
 また、シリカ粒子は、球状シリカ粒子であってもよいが、異型シリカ粒子であることが好ましい。球状シリカ粒子と異型シリカ粒子とを混合させてもよい。なお、本明細書において、異型シリカ粒子とは、ジャガイモ状のランダムな凹凸を表面に有する形状のシリカ粒子を意味する。異型シリカ粒子は、その表面積が球状シリカ粒子と比較して大きいため、このような異型シリカ粒子を含有することで、上記樹脂成分等との接触面積が大きくなり、ハードコート層の硬度をより優れたものとすることができる。
 なお、異型シリカ粒子か否かは、ハードコート層の電子顕微鏡による断面観察により確認することができる。
 無機粒子の平均粒径は、硬度向上の点から、5nm以上であることが好ましく、10nm以上であることがより好ましい。無機粒子の平均粒径が小さすぎると、粒子の製造が困難であり、また粒子同士が凝集しやすくなるおそれがある。また、無機粒子の平均粒径は、透明性の点から、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。無機粒子の平均粒径が大きすぎると、ハードコート層に大きな凹凸が形成されるおそれや、ヘーズが高くなるおそれがある。
 ここで、無機粒子の平均粒径は、ハードコート層の電子顕微鏡による断面観察により測定することができ、任意に選択した10個の粒子の粒径の平均を平均粒径とする。なお、異型シリカ粒子の平均粒径は、ハードコート層の断面顕微鏡観察にて現れた異型シリカ粒子の外周の2点間距離の最大値(長径)と最小値(短径)との平均値である。
 無機粒子の大きさ及び含有量を調整することで、ハードコート層の硬度を制御できる。例えば、シリカ粒子の含有量は、上記重合性化合物100質量部に対して、25質量部以上60質量部以下であることが好ましい。
(iv)紫外線吸収剤
 ハードコート層は、紫外線吸収剤を含有していてもよい。上記樹脂層の紫外線による劣化を抑制することができる。中でも、上記樹脂層がポリイミドを含有する場合には、ポリイミドを含有する樹脂層の経時的な色変化を抑制することができる。また、表示装置用部材を備える表示装置において、表示装置用部材よりも表示パネル側に配置されている部材、例えば偏光子等の紫外線による劣化を抑制することができる。
 ハードコート層に含まれる紫外線吸収剤は、中でも、吸光度測定における吸収波長のピークが300nm以上390nm以下にあることが好ましく、320nm以上370nm以下にあることがより好ましく、330nm以上370nm以下にあることがさらに好ましい。このような紫外線吸収剤は、UVA領域の紫外線を効率良く吸収することができ、一方でハードコート層を硬化するための開始剤の吸収波長250nmとピーク波長をずらすことによってハードコート層の硬化阻害を生じさせることなく、紫外線吸収能を有するハードコート層を形成することができるからである。
 紫外線吸収剤は、中でも、吸収波長のピークが380nm以下であることが、紫外線吸収剤によって着色することを抑制できる点から好ましい。
 なお、紫外線吸収剤の吸光度は、例えば紫外可視近赤外分光光度計(例えば、日本分光(株) V-7100)を用いて測定することができる。
 紫外線吸収剤としては、上記樹脂層に用いられる紫外線吸収剤と同様とすることができる。
 中でも、上記樹脂層の紫外線による劣化を抑制する観点から、ヒドロキシベンゾフェノン系紫外線吸収剤、及びベンゾトリアゾール系紫外線吸収剤からなる群から選択される1種以上の紫外線吸収剤が好ましく、ヒドロキシベンゾフェノン系紫外線吸収剤からなる群から選択される1種以上の紫外線吸収剤がより好ましい。
 ヒドロキシベンゾフェノン系紫外線吸収剤の具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 ヒドロキシベンゾフェノン系紫外線吸収剤としては、中でも、2-ヒドロキシベンゾフェノン系紫外線吸収剤が好ましく、下記一般式(A)を有するベンゾフェノン系紫外線吸収剤からなる群から選択される1種以上であることがより好ましい。上記樹脂層の紫外線による劣化を抑制し、耐久性を向上させることができる。
Figure JPOXMLDOC01-appb-C000012
(一般式(A)において、X及びXはそれぞれ独立に、水酸基、-OR、又は炭素原子数1~15の炭化水素基を表し、Rは炭素原子数1~15の炭化水素基を表す。)
 一般式(A)において、X、X及びRにおける炭素原子数1~15の炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ドデシル基、アリル基、ベンジル基等が挙げられる。炭素原子数3以上の脂肪族炭化水素基は各々、直鎖又は分岐状であってよい。炭化水素基は炭素原子数1~12であることが好ましく、1~8であることがより好ましい。光透過性が向上しやすい点から、炭化水素基は、脂肪族炭化水素基であることが好ましく、中でもメチル基及びアリル基であることが好ましい。
 耐久性が向上しやすい点から、X及びXはそれぞれ独立に、水酸基、又は-ORであることが好ましい。
 一般式(A)を有するベンゾフェノン系紫外線吸収剤からなる群から選択される1種以上としては、中でも、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、及び2,2’-ジヒドロキシ-4,4’-ジアリルオキシベンゾフェノンからなる群から選択される1種以上であることが好ましく、2,2’,4,4’-テトラヒドロキシベンゾフェノン、及び2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンからなる群から選択される1種以上であることがより好ましい。
 ベンゾトリアゾール系紫外線吸収剤の具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。
 ベンゾトリアゾール系紫外線吸収剤としては、中でも、2-(2-ヒドロキシフェニル)ベンゾトリアゾール類が好ましく、下記一般式(B)を有するベンゾトリアゾール系紫外線吸収剤からなる群から選択される1種以上であることがより好ましい。上記樹脂層の紫外線による劣化を抑制し、耐久性を向上させることができる。
Figure JPOXMLDOC01-appb-C000013
(一般式(B)において、Y、Y、及びYはそれぞれ独立に、水素原子、水酸基、-OR、又は炭素原子数1~15の炭化水素基を表し、Rは炭素原子数1~15の炭化水素基を表し、Y、Y、及びYの少なくとも1つは、水酸基、-OR、又は炭素原子数1~15の炭化水素基を表す。Yは、水素原子又はハロゲン原子を表す。)
 一般式(B)において、Y、Y、及びY、並びにRにおける炭素原子数1~15の炭化水素基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ドデシル基等が挙げられる。炭素原子数3以上の脂肪族炭化水素基は各々、直鎖又は分岐状であってよい。炭化水素基は炭素原子数1~12であることが好ましく、1~8であることがより好ましい。光透過性が向上しやすい点から、炭化水素基は、脂肪族炭化水素基であることが好ましく、直鎖又は分岐のアルキル基であることが好ましく、中でも、メチル基、t-ブチル基、t-ペンチル基、n-オクチル基、又はt-オクチル基であることが好ましい。
 一般式(B)において、Yにおけるハロゲン原子としては、塩素原子、フッ素原子、臭素原子等が挙げられ、中でも塩素原子が好ましい。
 一般式(B)において、中でも、Y、及びYが水素原子で、Yが水酸基、又は-ORを表すことが好ましく、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-2H-ベンゾトリアゾール、及び2-(2,4-ジヒドロキシフェニル)-2H-ベンゾトリアゾールなる群から選択される1種以上であることがより好ましい。上記樹脂層の紫外線による劣化を抑制し、耐久性を向上させることができる。
 ハードコート層中の紫外線吸収剤の含有量としては、紫外線吸収剤を混合することによるヘーズを抑制する点から、例えば、10質量%以下であることが好ましく、7質量%以下であることがより好ましい。また、上記樹脂層の紫外線による劣化の抑制および耐久性の向上の観点から、ハードコート層中の紫外線吸収剤の含有量は、1質量%以上6質量%以下であることが好ましく、2質量%以上5質量%以下であることがより好ましい。
(v)防汚剤
 ハードコート層は、防汚剤を含有していてもよい。表示装置用部材に防汚性を付与することができる。
 防汚剤としては特に限定されず、例えば、シリコーン系防汚剤、フッ素系防汚剤、シリコーン系かつフッ素系防汚剤が挙げられる。また、防汚剤は、アクリル系防汚剤であってもよい。防汚剤は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 シリコーン系防汚剤やフッ素系防汚剤を含むハードコート層は、指紋が付きにくく(目立ちにくく)、拭き取り性が良好である。また、シリコーン系防汚剤やフッ素系防汚剤が含まれる場合、ハードコート層用硬化性樹脂組成物の塗布時の表面張力を下げることができるので、レベリング性が良く、得られるハードコート層の外観が良好なものとなる。
 また、シリコーン系防汚剤を含むハードコート層は、滑り性が良く、耐擦傷性が良好である。このようなシリコーン系防汚剤を含むハードコート層を有する表示装置用部材を備える表示装置では、指やペン等で接触したときの滑りが良くなるため、触感が良くなる。
 防汚剤は、防汚性能の耐久性を高めるために、反応性官能基を有することが好ましい。防汚剤が反応性官能基を有さない場合には、表示装置用部材の形態がロール状であるかシート状であるかにかかわらず、表示装置用部材を重ねたときに、表示装置用部材のハードコート層側の面とは反対側の面に防汚剤が転移してしまい、表示装置用部材のハードコート層側の面とは反対側の面に他の層を貼付または塗布する際に、他の層が剥がれてしまうおそれがあり、さらに、繰り返し屈曲したときに他の層が剥がれやすくなるおそれがある。これに対し、防汚剤が反応性官能基を有する場合には、防汚性能の性能持続性が良好となる。
 防汚剤が有する反応性官能基の数は、1以上であればよく、好ましくは2以上である。2以上の反応性官能基を有する防汚剤を用いることにより、ハードコート層に優れた耐擦傷性を付与することができる。
 また、防汚剤は、重量平均分子量が5000以下であることが好ましい。防汚剤の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定できる。
 防汚剤は、ハードコート層に均一に分散されていてもよいが、少ない添加量で十分な防汚性を得るとともにハードコート層の強度低下を抑制する観点から、ハードコート層の表面側に偏在していることが好ましい。
 防汚剤をハードコート層の表面側に偏在させる方法としては、例えば、ハードコート層の形成時において、ハードコート層用硬化性樹脂組成物の塗膜を乾燥させ、硬化させる前に、塗膜を加熱して、塗膜に含まれる樹脂成分の粘度を下げることにより流動性を上げて、防汚剤をハードコート層の表面側に偏在させる方法や、表面張力の低い防汚剤を用い、塗膜の乾燥時に熱をかけずに塗膜の表面に防汚剤を浮かせ、その後塗膜を硬化させることで、防汚剤をハードコート層の表面側に偏在させる方法等が挙げられる。
 防汚剤の含有量としては、例えば、上記樹脂成分100質量部に対して、0.01質量部以上3.0質量部以下であることが好ましい。防汚剤の含有量が少なすぎると、ハードコート層に十分な防汚性を付与できない場合があり、また、防汚剤の含有量が多すぎると、ハードコート層の硬度が低下するおそれがある。
(vi)他の添加剤
 ハードコート層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、ハードコート層に付与する機能に応じて適宜選択され、特に限定はされないが、例えば、屈折率を調整するための無機又は有機粒子、赤外線吸収剤、防眩剤、防汚剤、帯電防止剤、青色色素や紫色色素等の着色剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、光安定化剤、表面改質剤等が挙げられる。
(d)ハードコート層の厚さ
 ハードコート層の厚さは、ハードコート層の材料や、ハードコート層が有する機能及び表示装置用部材の用途により適宜選択されればよい。例えばハードコート層の材料が有機材料である場合、ハードコート層の厚さは、2μm以上50μm以下であることが好ましく、3μm以上30μm以下であることがより好ましく、5μm以上20μm以下であることがさらに好ましく、6μm以上10μm以下であることが特に好ましい。また、例えばハードコート層の材料が無機材料である場合、ハードコート層の厚さは、数十nm程度とすることができる。ハードコート層の厚さが上記範囲内であれば、ハードコート層として十分な硬度を得ることができるとともに、屈曲耐性が良好な表示装置用部材を得ることができる。
(e)ハードコート層の形成方法
 ハードコート層の形成方法としては、ハードコート層の材料等に応じて適宜され、例えば、上記樹脂層上に、上記重合性化合物等を含むハードコート層用硬化性樹脂組成物を塗布し、硬化させる方法や、蒸着法、スパッタリング法等が挙げられる。
 ハードコート層用硬化性樹脂組成物は、重合性化合物を含有し、必要に応じて、重合開始剤、粒子、紫外線吸収剤、溶剤、添加剤等をさらに含有していてもよい。
 樹脂層上にハードコート層用硬化性樹脂組成物を塗布する方法としては、目的とする厚さで塗布可能な方法であれば特に制限はなく、例えばグラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、ハードコート層用樹脂組成物の塗膜の形成方法として転写法を用いることもできる。
 ハードコート層用硬化性樹脂組成物の塗膜は、必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、さらにはこれらの乾燥を組み合わせる方法等が挙げられる。例えば、30℃以上120℃以下の温度で10秒間以上180秒間以下加熱することで乾燥させることができる。
 ハードコート層用硬化性樹脂組成物の塗膜を硬化させる方法としては、重合性化合物の重合性基に応じて適宜選択され、例えば、光照射及び加熱の少なくともいずれかを用いることができる。
 光照射には、主に、紫外線、可視光線、電子線、電離放射線等が使用される。紫外線硬化の場合には、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用することができる。エネルギー線源の照射量は、例えば、紫外線波長365nmでの積算露光量として、50mJ/cm以上5000mJ/cm以下程度とすることができる。
 加熱をする場合は、例えば、40℃以上120℃以下の温度にて処理することができる。また、室温(25℃)で24時間以上放置することにより反応を行ってもよい。
(2)保護層
 本開示における表示装置用部材は、上記樹脂層の上記ガラス基材とは反対の面側に保護層をさらに有していてもよい。
 保護層は、透明性を有する。具体的には、保護層の全光線透過率は、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。
 ここで、保護層の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。以下、他の層の全光線透過率の測定方法についても同様とすることができる。
 保護層は、透明性を有するものであれば特に限定されず、例えば樹脂を含むことができる。保護層に用いられる樹脂としては、透明性を有する保護層を得ることができる樹脂であれば特に限定されず、一般的な樹脂を使用することができる。
 ガラス基材の一方の面に保護層を配置する方法としては、例えば、保護層として保護フィルムを用い、粘着層を介して樹脂層および保護フィルムを貼り合わせる方法や、樹脂層上に保護層を形成する方法等が挙げられる。
 上記粘着層は、透明性を有する。具体的には、粘着層の全光線透過率は、85%以上であれば好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。
 粘着層に用いられる粘着剤としては、例えば、OCAのような粘着剤や、感光式の粘着剤を挙げることができる。
 粘着層の厚さは、例えば、1μm以上100μm以下であることが好ましい。粘着層の厚さが厚すぎると、屈曲性が損なわれるおそれがある。一方、粘着層の厚さが薄すぎると、接着性が担保できず剥がれてしまうおそれがある。
4.その他の構成
 本開示における表示装置用部材は、上記の各層の他に、必要に応じて他の層を有していてもよい。他の層としては、例えば、プライマー層、第2の樹脂層、加飾層等が挙げられる。
(1)プライマー層
 本開示における表示装置用部材は、例えば図3に示すように、上記ガラス基材2と上記樹脂層3との間にプライマー層5を有していてもよい。また、本開示における表示装置用部材が、例えば図4に示すように、上記ガラス基材2の上記樹脂層3とは反対の面側に第2の樹脂層6を有する場合には、ガラス基材2と第2の樹脂層6との間にプライマー層7を有していてもよい。プライマー層により、ガラス基材と樹脂層および第2の樹脂層との密着性を向上させることができる。
 プライマー層の材料としては、ガラス基材と樹脂層または第2の樹脂層との密着性を高めることができる材料であれば特に限定されるものではなく、例えば樹脂を挙げることができる。樹脂としては、例えば、(メタ)アクリル樹脂、ウレタン樹脂、(メタ)アクリルウレタン共重合体、塩化ビニル-酢酸ビニル共重合体樹脂、ポリエステル、ブチラール樹脂、塩素化ポリプロピレン、塩素化ポリエチレン、エポキシ樹脂、シリコーン樹脂等が挙げられる。これらの樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 プライマー層の厚さとしては、ガラス基材と樹脂層または第2の樹脂層との密着性を高めることが可能な厚さであればよく、例えば、0.1μm以上10μm以下とすることができ、好ましくは0.2μm以上5μm以下とすることができる。
 プライマー層の形成方法としては、例えば、ガラス基材上にプライマー層用組成物を塗布する方法が挙げられる。塗布方法としては、例えば、グラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、プライマー層の形成方法として転写法を用いることもできる。
(2)第2の樹脂層
 本開示における表示装置用部材は、例えば図4に示すように、上記ガラス基材2の上記樹脂層3とは反対の面側に第2の樹脂層6を有していてもよい。表示装置用部材に衝撃が加わった際に、樹脂層だけでなく第2の樹脂層でも衝撃を吸収し、ガラス基材の割れを抑制することができ、耐衝撃性を向上させることができる。
 第2の樹脂層に含まれる樹脂としては、衝撃を吸収することができる樹脂であれば特に限定されるものではなく、例えば、ウレタン樹脂、エポキシ樹脂、ポリイミド、ポリアミドイミド、アクリル樹脂、トリアセチルセルロース(TAC)等が挙げられる。これらの樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第2の樹脂層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、例えば、紫外線吸収剤等が挙げられる。紫外線吸収剤としては、上記樹脂層に用いられる紫外線吸収剤と同様とすることができる。
 第2の樹脂層の厚さとしては、衝撃を吸収することが可能な厚さであればよく、例えば、5μm以上60μm以下であることが好ましく、より好ましくは10μm以上50μm以下、さらに好ましくは15μm以上40μm以下とすることができる。
 第2の樹脂層の形成方法としては、上記樹脂層の形成方法と同様とすることができる。
(3)加飾層
 本開示における表示装置用部材は、上記ガラス基材と上記樹脂層との間、あるいは上記ガラス基材の上記樹脂層とは反対の面側に加飾層を有していてもよい。
 加飾層は、着色剤およびバインダ樹脂を含む。加飾層に含まれるバインダ樹脂としては、特に限定されず、一般的な加飾層に用いられる樹脂を用いることができる。また、加飾層に含まれる着色剤は、特に限定されず、一般的な加飾層に用いられる公知の着色剤を用いることができる。
 加飾層は、通常、ガラス基材上の一部に配置される。また、加飾層は、パターン形状を有していてもよい。
 加飾層の厚さは、特に限定されないが、例えば5μm以上40μm以下とすることができる。
5.表示装置用部材の特性
 本開示における表示装置用部材は、全光線透過率が、例えば80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。このように全光線透過率が高いことにより、透明性が良好な表示装置用部材とすることができる。
 ここで、表示装置用部材の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
 本開示における表示装置用部材のヘーズは、例えば2.0%以下であることが好ましく、1.5%以下であることがより好ましく、1.0%以下であることがさらに好ましい。このようにヘーズが低いことにより、透明性が良好な表示装置用部材とすることができる。
 ここで、表示装置用部材のヘーズは、JIS K-7136に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。
 本開示における表示装置用部材は、屈曲耐性を有することが好ましい。具体的には、表示装置用部材に対して下記に説明する動的屈曲試験を20万回繰り返し行った場合に、表示装置用部材に割れまたは破断が生じないことが好ましく、動的屈曲試験を100万回繰り返し行った場合に、表示装置用部材に割れまたは破断が生じないことがさらに好ましい。
 動的屈曲試験では、ガラス基材が外側となるように表示装置用部材を折りたたんでもよく、あるいは、ガラス基材が内側となるように表示装置用部材を折りたたんでもよいが、いずれの場合であっても、表示装置用部材に割れまたは破断が生じないことが好ましい。
 動的屈曲試験は、以下のようにして行われる。図5(a)に示すように動的屈曲試験においては、まず、20mm×100mmの大きさの表示装置用部材1の短辺部1Cと、短辺部1Cと対向する短辺部1Dとを、平行に配置された固定部21でそれぞれ固定する。また、図5(a)に示すように、固定部21は水平方向にスライド移動可能になっている。次に、図5(b)に示すように、固定部21を互いに近接するように移動させることで、表示装置用部材1の折りたたむように変形させ、更に、図5(c)に示すように、表示装置用部材1の固定部21で固定された対向する2つの短辺部1C、1Dの間隔dが所定の値となる位置まで固定部21を移動させた後、固定部21を逆方向に移動させて表示装置用部材1の変形を解消させる。図5(a)~(c)に示すように固定部21を移動させることで、表示装置用部材1を180°折りたたむことができる。また、表示装置用部材1の屈曲部1Eが固定部21の下端からはみ出さないように動的屈曲試験を行い、かつ固定部21が最接近したときの間隔dを制御することで、表示装置用部材1の対向する2つの短辺部1C、1Dの間隔dを所定の値にできる。例えば、対向する2つの短辺部1C、1Dの間隔dが10mmである場合には、屈曲部1Eの外径を10mmとみなす。
 表示装置用部材においては、表示装置用部材1の対向する短辺部1C、1Dの間隔dが10mmとなるように180°折りたたむ試験を20万回繰り返し行った場合に割れまたは破断が生じないことが好ましいが、表示装置用部材の対向する短辺部の間隔dが10mm、8mm、6mm、5mm、4mm、3mm、2.5mm、または2mmとなるように180°折りたたむ動的屈曲試験を20万回繰り返し行った場合に割れまたは破断が生じないことがさらに好ましい。
 また、表示装置用部材に対して下記に説明する静的屈曲試験を行った場合に、表示装置用部材において、静的屈曲試験後の開き角θが100°以上であることが好ましい。
 静的屈曲試験は、以下のようにして行われる。まず、図6(a)に示されるように、表示装置用部材1の短辺部1Cと、短辺部1Cと対向する短辺部1Dとを、短辺部1Cと短辺部1Dの間隔dが所定の値となるように平行に配置された固定部22でそれぞれ固定する。そして、表示装置用部材1を折りたたんだ状態で、23℃で240時間静置する静的屈曲試験を行う。その後、図6(b)に示されるように、静的屈曲試験後に短辺部1Dから固定部22を外すことによって、折りたたみ状態を開放して、室温で30分後に表示装置用部材1が自然に開く角度である開き角θを測定する。なお、開き角θは、大きいほど復元性が良好であることを意味し、最大で180°である。
 表示装置用部材においては、表示装置用部材1の対向する短辺部1C、1Dの間隔dが10mmとなるように静的屈曲試験を行った場合に、静的屈曲試験後の開き角θが100°以上であることが好ましい。
 静的屈曲試験では、ガラス基材が内側となるように表示装置用部材を折りたたんでもよく、あるいは、ガラス基材が外側となるように表示装置用部材を折りたたんでもよいが、いずれの場合であっても、開き角θが100°以上であることが好ましい。
6.表示装置用部材の用途
 本開示における表示装置用部材は、表示装置において、表示パネルよりも観察者側に配置される部材として用いることができる。本開示における表示装置用部材は、例えば、スマートフォン、タブレット端末、ウェアラブル端末、パーソナルコンピュータ、テレビジョン、デジタルサイネージ、パブリックインフォメーションディスプレイ(PID)、車載ディスプレイ等の表示装置用部材に用いることができる。中でも、本開示における表示装置用部材は、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブルディスプレイに好ましく用いることができ、フォルダブルディスプレイ用部材に好適に用いることができる。
 本開示における表示装置用部材において、表示装置用部材を表示装置の表面に配置した後に最表面となる面は、樹脂層側の面であることが好ましい。
 本開示における表示装置用部材を表示装置の表面に配置する方法としては、特に限定されず、例えば、接着層を介する方法等が挙げられる。接着層としては、表示装置用部材の接着に使用される公知の接着層を用いることができる。
B.光学積層体
 上記課題を解決するために、本開示の発明者らは鋭意検討を行い、柔軟性を有する薄いガラス基材を用い、ガラス基材の一方の面側に樹脂層を配置することにより、ガラス基材の割れを抑制し、耐衝撃性を高めることができること、さらには樹脂層の複合弾性率を所定の範囲とすることにより、柔軟性のために樹脂層の厚さを比較的薄くした場合であっても、ガラス基材の割れを抑制し、耐衝撃性を高めることができることを見出した。そして、本開示の発明者らはさらに検討を重ね、所定の複合弾性率を有する第1樹脂層と、粘着層である第2樹脂層と、所定の樹脂フィルムである第3樹脂層とを積層することにより、所定の複合弾性率を有する樹脂層のみの場合と比較して、ガラス基材の割れをさらに抑制し、耐衝撃性をさらに高めることができることを知見した。加えて、特定の第1樹脂層と第2樹脂層と第3樹脂層とを積層することで、たとえガラス基材が破損したとしてもその破片や鋭利な端面が露出せず、より安全な使用が可能であることを知見した。本開示における光学積層体はこのような知見に基づくものである。
 本開示における光学積層体は、ガラス基材と、第1樹脂層と、第2樹脂層と、第3樹脂層と、をこの順に有する光学積層体であって、上記ガラス基材の厚さが100μm以下であり、上記第1樹脂層の複合弾性率が5.7GPa以上であり、上記第1樹脂層の厚さが5μm以上60μm以下であり、上記第2樹脂層が粘着層であり、上記第3樹脂層が、ポリエステル系樹脂、ポリシクロオレフィン系樹脂、アセチルセルロース系樹脂、ポリカーボネート系樹脂、およびポリプロピレン系樹脂からなる群から選択される樹脂を含む樹脂フィルムである。
 図7は、本開示における光学積層体の一例を示す概略断面図である。図7に示すように、光学積層体11は、ガラス基材12と、第1樹脂層13と、第2樹脂層14と、第3樹脂層15と、をこの順に有する。ガラス基材12は所定の厚さを有し、第1樹脂層13は所定の厚さおよび所定の複合弾性率を有し、第2樹脂層14は粘着層であり、第3樹脂層15は所定の樹脂を含む樹脂フィルムである。
 本開示においては、ガラス基材は、厚さが所定の値以下であり薄いため、割れやすく耐衝撃性が低いことが懸念されるが、ガラス基材の一方の面側に、所定の複合弾性率を有する第1樹脂層と、粘着層である第2樹脂層と、所定の樹脂フィルムである第3樹脂層とがこの順に積層されていることにより、光学積層体に衝撃が加わった際に、第1樹脂層、第2樹脂層および第3樹脂層が衝撃を吸収し、ガラス基材の割れを抑制することができ、耐衝撃性を向上させることができる。この理由は明らかではないが、次のように推定される。
 すなわち、第1樹脂層は所定の複合弾性率を有しており、第2樹脂層は粘着層であり、第3樹脂層は所定の樹脂フィルムであるため、第2樹脂層は第1樹脂層および第3樹脂層よりも柔らかい層であり、第3樹脂層は第1樹脂層よりも柔らかい層である。例えば、第3樹脂層を構成する樹脂フィルムに含まれる樹脂の引張弾性率は、ポリエチレンテレフタレート(PET)が2.8~4GPa、ポリシクロオレフィン(COP)が2.1GPa、トリアセチルセルロース(TAC)が1.4GPa、ポリカーボネート(PC)が2.4GPa、ポリプロピレン(PP)が2GPaであり、第3樹脂層は第1樹脂層よりも柔らかい層であるといえる。そのため、ガラス基材の一方の面側に第1樹脂層のみが配置されている場合と比較して、ガラス基材の一方の面側に第1樹脂層と第2樹脂層と第3樹脂層とがこの順に積層されている場合には、光学積層体に衝撃が加わった際に、第2樹脂層および第3樹脂層が第1樹脂層よりも変形しやすいため、衝撃が分散されやすくなると考えられる。
 また、第1樹脂層よりも柔らかい第2樹脂層および第3樹脂層が、第1樹脂層のガラス基材とは反対の面側に配置されていることにより、光学積層体に衝撃が加わった際に、ガラス基材に衝撃が伝達されにくくなると考えられる。よって、第1樹脂層と第2樹脂層と第3樹脂層とが積層されている場合には、第1樹脂層のみの場合と比較して、衝撃吸収性が高くなるものと推量される。また、ガラス基材の一方の面側に第2樹脂層および第3樹脂層のみがこの順に積層されている場合には、光学積層体に衝撃が加わった際に、第2樹脂層および第3樹脂層が比較的柔らかく変形しやすいため、十分に衝撃を吸収しきる前に、ガラス基材に損傷を与えてしまうおそれがある。よって、第1樹脂層と第2樹脂層と第3樹脂層とが積層されている場合には、第2樹脂層および第3樹脂層のみが積層されている場合と比較しても、耐衝撃性が高くなるものと推量される。
 なお、上述の表示装置用部材の項に記載したように、本開示において、第1の樹脂層の複合弾性率を採用したのは、ナノインデンテーション法(押し込み試験法)による第1の樹脂層の複合弾性率の測定において、測定サンプルに圧子が押し込まれることが、ペンドロップ試験において、ペンの先端がサンプルに衝突して押し込まれることに類似しているからである。
 本開示によれば、第1の樹脂層の複合弾性率が所定の値以上であることにより、ペンドロップ試験による耐衝撃性を向上させることができる。
 また、本開示においては、ガラス基材がたとえ割れた場合であっても、第1樹脂層、第2樹脂層および第3樹脂層によりガラスの飛散を抑制することができる。
 また、本開示によれば、ガラス基材の厚さが所定の値以下であり薄く、複合弾性率が所定の値以上である第1樹脂層の厚さが所定の範囲内であり比較的薄く、第2樹脂層が粘着層で比較的柔らかい層であり、第3樹脂層が所定の樹脂フィルムであるため、柔軟性を高めることができる。そのため、光学積層体を曲げた際に、第1樹脂層、第2樹脂層および第3樹脂層の割れを抑制することができ、屈曲耐性を維持することができる。よって、本開示における光学積層体は、折り曲げることが可能であり、多種多様な光学積層体に用いることができ、例えばフォルダブルディスプレイ用部材として使用することができる。
 また、本開示によれば、第1の樹脂層の複合弾性率が所定の値以上であることにより、第1の樹脂層に変形が加えられた際に復元する力を大きくすることができる。そのため、第1の樹脂層の複合弾性率が所定の値以上であることにより、光学積層体が長時間折り曲げられた状態が続いた後の復元性を高めることができる。また、光学積層体の折り曲げを繰り返し行った後の復元性も高めることができる。
 このように本開示においては、耐衝撃性および柔軟性に優れる光学積層体とすることができる。さらには、たとえガラス基材が破損したとしても、人体を傷付けるリスクを低減することができ、安全性の高い光学積層体とすることができる。
 以下、本開示における光学積層体の各構成について説明する。
1.第1樹脂層
 本開示における第1樹脂層は、複合弾性率が5.7GPa以上であり、厚さが5μm以上60μm以下であり、ガラス基材の一方の面側に配置される部材である。第1樹脂層は、衝撃吸収性を有する部材であり、ガラス基材が割れたときのガラスの飛散を抑制する部材としても機能する。第1樹脂層は、透明性を有し、本開示における光学積層体を表示装置の表示パネルの観察者側に配置する場合には、ガラス基材よりも観察者側に配置される。
(1)第1樹脂層の特性
 第1樹脂層の複合弾性率は、上述の表示装置用部材における樹脂層の複合弾性率と同様とすることができる。
 ここで、第1樹脂層の複合弾性率の測定方法は、上述の表示装置用部材における樹脂層の複合弾性率の測定方法と同様とすることができる。
 なお、バーコビッチ圧子は、ガラス基材の影響を避けるためおよび第1樹脂層の側縁の影響を避けるために、ガラス基材と第1樹脂層との界面から第1樹脂層の中央側に500nm離れ、第1樹脂層の両側端からそれぞれ第1樹脂層の中央側に500nm離れた第1樹脂層の部分内に押し込むものとする。また、第2樹脂層と第1樹脂層との界面からも第1樹脂層の中央側に500nm離れた第1樹脂層の部分内に押し込むものとする。
(2)第1樹脂層の構成
 第1樹脂層の厚さは、上述の表示装置用部材における樹脂層の厚さと同様とすることができる。
 また、第1樹脂層のガラス基材に対する配置は、上述の表示装置用部材における樹脂層のガラス基材に対する配置と同様とすることができる。
(3)第1樹脂層の材料
(a)樹脂
 第1樹脂層に含まれる樹脂については、上述の表示装置用部材における樹脂層に含まれる樹脂と同様とすることができる。
(b)紫外線吸収剤
 第1樹脂層は、紫外線吸収剤を含有していてもよい。紫外線吸収剤については、上述の表示装置用部材における樹脂層に含まれる紫外線吸収剤と同様とすることができる。
(c)他の添加剤
 第1樹脂層は、必要に応じて、添加剤をさらに含有することができる。添加剤については、上述の表示装置用部材における樹脂層に含まれる添加剤と同様とすることができる。
(4)第1樹脂層の形成方法
 第1樹脂層の形成方法については、上述の表示装置用部材における樹脂層の形成方法と同様とすることができる。
2.第2樹脂層
 本開示における第2樹脂層は、粘着層である。粘着層である第2樹脂層を介して、第1樹脂層と所定の樹脂フィルムである第3樹脂層とを貼り合わせることができる。第2樹脂層は、衝撃吸収性を有する部材である。第2樹脂層は、透明性を有し、本開示における光学積層体を表示装置の表示パネルの観察者側に配置する場合には、ガラス基材よりも観察者側に配置される。
 第2樹脂層は、透明性を有しており、具体的には、第2樹脂層の全光線透過率は、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。
 ここで、第2樹脂層の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。以下、他の層の全光線透過率の測定方法についても同様とすることができる。
 第2樹脂層に用いられる粘着剤としては、透明性を有する粘着層を得ることができる粘着剤であれば特に限定されず、例えば、OCA(Optical Clear Adhesive)を用いることができる。具体的には、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリビニルエーテル系粘着剤、ポリ酢酸ビニル系粘着剤等を挙げることができる。
 第2樹脂層の厚さは、例えば、1μm以上100μm以下であることが好ましい。第2樹脂層の厚さが厚すぎると、屈曲性が損なわれるおそれがある。一方、第2樹脂層の厚さが薄すぎると、接着性が担保できず剥がれてしまうおそれがある。
 第2樹脂層としては、例えば、粘着フィルムを用いることができる。また、例えば、第1樹脂層または第3樹脂層上に粘着剤組成物を塗布して第2樹脂層を形成してもよい。
3.第3樹脂層
 本開示における第3樹脂層は、ポリエステル系樹脂、ポリシクロオレフィン系樹脂、アセチルセルロース系樹脂、ポリカーボネート系樹脂、およびポリプロピレン系樹脂からなる群から選択される樹脂を含む樹脂フィルムである。第3樹脂層は、衝撃吸収性を有する部材であり、ガラス基材が割れたときのガラスの飛散を抑制する部材としても機能する。第3樹脂層は、透明性を有し、本開示における光学積層体を表示装置の表示パネルの観察者側に配置する場合には、ガラス基材よりも観察者側に配置される。
 第3樹脂層は、透明性を有しており、具体的には、第3樹脂層の全光線透過率は、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。
 第3樹脂層を構成する樹脂フィルムに含まれる樹脂は、ポリエステル系樹脂、ポリシクロオレフィン系樹脂、アセチルセルロース系樹脂、ポリカーボネート系樹脂、およびポリプロピレン系樹脂からなる群から選択される樹脂である。ポリエステル系樹脂としては、透明性を有する樹脂フィルムを得ることができるものであれば特に限定されず、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等が挙げられる。また、ポリシクロオレフィン系樹脂としては、透明性を有する樹脂フィルムを得ることができるものであれば特に限定されず、例えば、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、およびこれらの水素化物等が挙げられる。また、アセチルセルロース系樹脂としては、透明性を有する樹脂フィルムを得ることができるものであれば特に限定されず、例えば、トリアセチルセルロース(TAC)等が挙げられる。ポリカーボネート系樹脂としては、透明性を有する樹脂フィルムを得ることができるものであれば特に限定されず、例えばポリカーボネート(PC)等が挙げられる。ポリプロピレン系樹脂としては、透明性を有する樹脂フィルムを得ることができるものであれば特に限定されず、例えばポリプロピレン(PP)等が挙げられる。
 第3樹脂層には、必要に応じて、フィラー、紫外線吸収剤、安定剤、酸化防止剤、帯電防止剤、難燃剤、滑剤等の添加剤が含有されていてもよい。
 第3樹脂層の厚さは、例えば、0.5μm以上30μm以下であることが好ましく、1.0μm以上25μm以下であることがより好ましく、1.5μm以上20μm以下であることがさらに好ましい。第3樹脂層の厚さが厚すぎると、柔軟性や屈曲性が損なわれるおそれがある。一方、第3樹脂層の厚さが薄すぎると、十分な耐衝撃性が得られない可能性がある。
 樹脂フィルムである第3樹脂層は、粘着層である第2樹脂層を介して、第1樹脂層に貼り合わせることができる。
4.ガラス基材
 本開示におけるガラス基材は、厚さが100μm以下であり、上記第1樹脂層を支持する部材である。ガラス基材については、上述の表示装置用部材におけるガラス基材と同様とすることができる。
5.機能層
 本開示における光学積層体は、上記第3樹脂層の上記第2樹脂層とは反対の面側に機能層をさらに有することができる。機能層としては、例えば、ハードコート層、反射防止層、防眩層等が挙げられる。
 また、機能層は、単層であってもよく、複数の層を有していてもよい。また、機能層は、単一の機能を有する層であってもよく、互いに異なる機能を有する複数の層を有していてもよい。
(1)ハードコート層
 本開示における光学積層体は、例えば図8に示すように、第3樹脂層15の第2樹脂層14とは反対の面側にハードコート層16をさらに有することが好ましい。ハードコート層は、表面硬度を高めるための部材である。ハードコート層が配置されていることにより、耐傷性を向上させることができる。
 ハードコート層については、上述の表示装置用部材におけるハードコート層と同様とすることができる。
6.その他の構成
 本開示における光学積層体は、上記の各層の他に、必要に応じて他の層を有していてもよい。
(1)第2のハードコート層
 本開示における光学積層体は、例えば図9に示すように、第1樹脂層13および第2樹脂層14の間に第2のハードコート層17をさらに有することができる。第2のハードコート層は、表面硬度を高めるための部材である。第2のハードコート層が配置されていることにより、耐衝撃性を向上させることができる。
 なお、第2のハードコート層については、上述のハードコート層と同様とすることができるので、ここでの説明は省略する。
(2)第4樹脂層
 本開示における光学積層体は、上記ガラス基材の上記第1樹脂層とは反対の面側に第4樹脂層を有していてもよい。光学積層体に衝撃が加わった際に、第1樹脂層、第2樹脂層および第3樹脂層だけでなく第4樹脂層でも衝撃を吸収し、ガラス基材の割れを抑制することができ、耐衝撃性を向上させることができる。
 第4樹脂層に含まれる樹脂としては、衝撃を吸収することができる樹脂であれば特に限定されるものではなく、例えば、ウレタン樹脂、エポキシ樹脂、ポリイミド、ポリアミドイミド、アクリル樹脂、トリアセチルセルロース(TAC)等が挙げられる。これらの樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第4樹脂層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、例えば、フィラー、紫外線吸収剤、安定剤、酸化防止剤、帯電防止剤、難燃剤、滑剤等が挙げられる。
 第4樹脂層の厚さとしては、衝撃を吸収することが可能な厚さであればよく、例えば、5μm以上60μm以下であることが好ましく、より好ましくは10μm以上50μm以下、さらに好ましくは15μm以上40μm以下とすることができる。
 第4樹脂層の形成方法としては、上記第1樹脂層の形成方法と同様とすることができる。
(3)プライマー層
 本開示における光学積層体は、上記ガラス基材と上記第1樹脂層との間にプライマー層を有していてもよい。また、本開示における光学積層体が、上記ガラス基材の上記第1樹脂層とは反対の面側に第4樹脂層を有する場合には、ガラス基材と第4樹脂層との間にプライマー層を有していてもよい。プライマー層により、ガラス基材および第1樹脂層の密着性や、ガラス基材および第4樹脂層の密着性を向上させることができる。
 プライマー層については、上述の表示装置用部材におけるプライマー層と同様とすることができる。
(4)加飾層
 本開示における光学積層体は、上記ガラス基材と上記第1樹脂層との間、あるいは上記ガラス基材の上記第1樹脂層とは反対の面側に加飾層を有していてもよい。
 加飾層については、上述の表示装置用部材における加飾層と同様とすることができる。
7.光学積層体
 本開示における光学積層体において、ガラス基材の第1樹脂層の面側に配置されている樹脂層の総厚さとしては、耐衝撃性および柔軟性が得られる厚さであれば特に限定されないが、例えば、143μm以下であることが好ましく、135μm以下であることがより好ましい。樹脂層の総厚さが上記範囲であることにより、光学積層体の屈曲性を向上させることができる。
 なお、ガラス基材の第1樹脂層の面側に配置されている樹脂層とは、ガラス基材の第1樹脂層の面側に配置されている層のうち、樹脂を含む全ての層をいう。樹脂層は、少なくとも上記の第1樹脂層、第2樹脂層および第3樹脂層を含み、上記の機能層、第2のハードコート層、プライマー層、加飾層をさらに含むことができる。
 本開示における光学積層体の全光線透過率およびヘーズについては、上述の表示装置用部材と同様とすることができる。
 本開示における光学積層体は、屈曲耐性を有することが好ましい。具体的には、光学積層体に対して下記に説明する動的屈曲試験を20万回繰り返し行った場合に、光学積層体に割れまたは破断が生じないことが好ましい。
 動的屈曲試験では、ガラス基材が外側となるように光学積層体を折りたたんでもよく、あるいは、ガラス基材が内側となるように光学積層体を折りたたんでもよいが、いずれの場合であっても、光学積層体に割れまたは破断が生じないことが好ましい。
 動的屈曲試験については、上述の表示装置用部材の項に記載した動的屈曲試験と同様とすることができる。
 光学積層体においては、光学積層体1の対向する短辺部1C、1Dの間隔dが10mmとなるように180°折りたたむ試験を20万回繰り返し行った場合に割れまたは破断が生じないことが好ましい。中でも、光学積層体1の対向する短辺部1C、1Dの間隔dが8mmとなるように180°折りたたむ試験を7万回繰り返し行った場合に割れまたは破断が生じないことがより好ましく、10万回繰り返し行った場合に割れまたは破断が生じないことがさらに好ましく、20万回繰り返し行った場合に割れまたは破断が生じないことが特に好ましい。
 また、光学積層体に対して下記に説明する静的屈曲試験を行った場合に、光学積層体において、静的屈曲試験後の開き角θが100°以上であることが好ましい。
 静的屈曲試験については、上述の表示装置用部材の項に記載した静的屈曲試験と同様とすることができる。
 光学積層体においては、光学積層体1の対向する短辺部1C、1Dの間隔dが10mmとなるように静的屈曲試験を行った場合に、静的屈曲試験後の開き角θが100°以上であることが好ましい。
 静的屈曲試験では、ガラス基材が内側となるように光学積層体を折りたたんでもよく、あるいは、ガラス基材が外側となるように光学積層体を折りたたんでもよいが、いずれの場合であっても、開き角θが100°以上であることが好ましく、130°以上であることがより好ましい。
 本開示における光学積層体の用途は、上述の表示装置用部材の用途と同様とすることができる。
 本開示における光学積層体は、表示装置の表面に配置する場合、ガラス基材側の面が表示パネル側、第3樹脂層側の面が外側になるように配置される。
 本開示における光学積層体を表示装置の表面に配置する方法としては、上述の表示装置用部材と同様とすることができる。
B.表示装置
 本開示における表示装置は、表示パネルと、上記表示パネルの観察者側に配置された、上述の表示装置用部材または上述の光学積層体と、を備える。
 図10は、本開示における表示装置の一例を示す概略断面図である。図10に示すように、表示装置30は、表示パネル31と、タッチパネル部材32と、表示パネル31およびタッチパネル部材32の観察者側に配置された表示装置用部材1と、を備える。表示装置30において、表示装置用部材1は表示装置30の表面に配置される部材として用いられており、表示装置用部材1とタッチパネル部材32との間には接着層34が配置されている。また、表示パネル31とタッチパネル部材32との間にも接着層33が配置されている。
 図11は、本開示における表示装置の他の例を示す概略断面図である。図11に示すように、表示装置30は、表示パネル31と、表示パネル31の観察者側に配置された光学積層体11と、を備える。表示装置30において、光学積層体11は表示装置30の表面に配置される部材として用いられており、光学積層体11と表示パネル31との間には接着層35が配置されている。
 本開示における表示装置用部材については、上述の表示装置用部材と同様とすることができる。
 本開示における光学積層体については、上述の光学積層体と同様とすることができる。
 本開示における表示パネルとしては、例えば、液晶表示装置、有機EL表示装置、LED表示装置等の表示装置に用いられる表示パネルを挙げることができる。
 本開示における表示装置は、表示パネルと表示装置用部材または光学積層体との間にタッチパネル部材を有することができる。
 本開示における表示装置は、フレキシブルディスプレイであることが好ましい。中でも、本開示における表示装置は、折りたたみ可能であることが好ましい。すなわち、本開示における表示装置は、フォルダブルディスプレイであることがより好ましい。本開示における表示装置は、上述の表示装置用部材を有することから、屈曲耐性に優れており、あるいは、上述の光学積層体を有することから、耐衝撃性および柔軟性に優れており、フレキシブルディスプレイ、さらにはフォルダブルディスプレイとして好適である。
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。
 以下、実施例および比較例を示し、本開示をさらに説明する。
[実施例1-1]
(1)プライマー層の形成
 下記に示す組成となるように各成分を配合して、プライマー層用組成物を調製した。
・ビスフェノールA型固形エポキシ樹脂(jER1256B40 三菱ケミカル製) 28質量部
・ビスフェノールAノボラック型固形エポキシ樹脂(jER157S65B80 三菱ケミカル製) 5質量部
・2-エチル-4-メチルイミダゾール(東京化成工業製) 1質量部
・溶剤(MEK) 11質量部
 厚さ70μmの化学強化されたガラス基材を準備し、ガラス基材上に上記プライマー層用組成物を所定の厚さとなるように塗布し、80℃で3分間および150℃で60分間乾燥させ、厚さ1μmのプライマー層を形成した。
(2)樹脂層の形成
 国際公開2014/046180号公報の合成例1を参照して、下記化学式で表されるテトラカルボン酸二無水物を合成した。
Figure JPOXMLDOC01-appb-C000014
 5Lのセパラブルフラスコに、脱水されたN,N-ジメチルアセトアミド(DMAc)(1833.2g)、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(138.48g)を溶解させた溶液を入れ、液温30℃に制御されたところへ、上記化学式で表されるテトラカルボン酸二無水物(TMPBPTME)(176.70g)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、ピロメリット酸二無水物(PMDA)(64.20g)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体が溶解したポリイミド前駆体溶液(固形分18質量%)を合成した。ポリイミド前駆体に用いられたテトラカルボン酸二無水物のTMPBPTMEとPMDAとのモル比(TMPBPTME:PMDA)は90:10であった。ポリイミド前駆体の重量平均分子量は、75,000であった。
 窒素雰囲気下で、5Lのセパラブルフラスコに、室温に下げた上記ポリイミド前駆体溶液(2162g)を加えた。そこへ、脱水されたN,N-ジメチルアセトアミド(432g)を加え均一になるまで撹拌した。次に触媒であるピリジン(6.622g)と無水酢酸(213.67g)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。
 得られたポリイミド溶液にN,N-ジメチルアセトアミド(DMAc)(2000g)を加え均一になるまで撹拌した。次に、ポリイミド溶液を5Lビーカーに3等分して移し、各ビーカーにイソプロピルアルコール(3500g)を徐々に加え白色スラリーを得た。上記スラリーをブフナー漏斗上に移してろ過し、続いてイソプロピルアルコール(合計9000g)でかけ流して洗浄し、その後ろ過するという工程を3回繰り返し、真空乾燥機を用いて110℃で乾燥し、ポリイミド(ポリイミド粉体)を得た。GPCによって測定したポリイミドの重量平均分子量は100,000であった。
 ポリイミドの固形分濃度が12質量%となるように、ポリイミドにN,N-ジメチルアセトアミド(DMAc)を添加して、ポリイミドがワニス中に12質量%のポリイミドワニス(樹脂組成物)を調製した。ポリイミドワニス(樹脂組成物)(固形分濃度12質量%)の25℃における粘度は15000cpsであった。
 上記プライマー層上に上記ポリイミドワニス(樹脂組成物)を所定の厚さとなるように塗布し、100℃で10分間、150℃で10分間、および230℃で30分間乾燥させ、厚さ5μm~60μmの樹脂層を形成した。
(3)ハードコート層の形成
 下記に示す組成となるように各成分を配合して、ハードコート層用硬化性樹脂組成物を調製した。
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成社製) 25質量部
・ジペンタエリスリトールEO変性ヘキサアクリレート(A-DPH-6E、新中村化学社製) 25質量部
・異型シリカ微粒子(平均粒径25nm、日揮触媒化成社製) 50質量部(固形換算)
・光重合開始剤(Irg184) 4質量部
・フッ素系レベリング剤(F568、DIC社製) 0.2質量部(固形換算)
・紫外線吸収剤1(DAINSORB P6、大和化成製) 3質量部
・溶剤(MIBK) 150質量部
 上記樹脂層上に、上記ハードコート層用硬化性樹脂組成物を所定の厚さとなるように塗布し、80℃で3分間乾燥後、紫外線照射にて硬化させ、厚さ10μmのハードコート層を形成した。
[実施例1-2]
 下記のように樹脂層を形成したこと以外は、実施例1-1と同様にして表示装置用部材を作製した。
 500mLのセパラブルフラスコをN置換し、脱水されたジメチルアセトアミド(DMAc)を293.29g、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を14.3g(44.7mmol)溶解させた溶液が液温30℃となるように制御したところに、上記実施例1で用いたテトラカルボン酸二無水物(TMPBPTME)24.8g(40.1mmol)を温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで3時間撹拌した。その後、上記溶液にテレフタル酸ジクロリド(TPC)0.91g(4.5mmol)を添加して更に3時間撹拌することでポリアミド酸溶液を得た。次に、触媒であるピリジン6.66g(84.2mmol)及び無水酢酸8.60g(84.2mmol)を投入して、25℃で30分間攪拌して溶液が均一であることを確認し、70℃に加温して1時間攪拌した。その後、常温まで冷却させた溶液に対して、2-プロピルアルコール(IPA)174.26gを徐々に加え、僅かに濁りが見られる溶液を得た。濁りの見られる溶液にIPA435.64gを一気に加え白色スラリーを得た。上記スラリーをろ過して5回IPAで洗浄した後、100℃に加熱したオーブンで減圧しながら6時間乾燥させることでポリアミドイミドの粉体(37.1g)を得た。GPCによって測定したポリアミドイミドの重量平均分子量は、62000であった。
 ポリアミドイミドの固形分濃度が19質量%となるように、ポリアミドイミドにDMAcを添加して、ポリアミドイミドがワニス中に19質量%のポリアミドイミドワニスを作製した。ポリアミドイミドワニス(固形分濃度19質量%)の25℃における粘度は4000mPa・sであった。
 プライマー層上に上記ポリアミドイミドワニス(樹脂組成物)を所定の厚さとなるように塗布し、100℃で10分間、150℃で10分間、および230℃で30分間乾燥させ、厚さ5μm~60μmの樹脂層を形成した。
[実施例1-3]
 下記のように樹脂層を形成したこと以外は、実施例1-1と同様にして表示装置用部材を作製した。
 5Lのセパラブルフラスコに、脱水されたN,N-ジメチルアセトアミド(DMAc)(1833.2g)、及び、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)(138.48g)を溶解させた溶液を入れ、液温30℃に制御されたところへ、上記化学式で表されるテトラカルボン酸二無水物(TMPBPTME)(256.026g)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、ピロメリット酸二無水物(PMDA)(4.7g)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体が溶解したポリイミド前駆体溶液(固形分18質量%)を合成した。ポリイミド前駆体に用いられたテトラカルボン酸二無水物のTMPBPTMEとPMDAとのモル比(TMPBPTME:PMDA)は95:5であった。ポリイミド前駆体の重量平均分子量は、75,000であった。
 窒素雰囲気下で、5Lのセパラブルフラスコに、室温に下げた上記ポリイミド前駆体溶液(2162g)を加えた。そこへ、脱水されたN,N-ジメチルアセトアミド(432g)を加え均一になるまで撹拌した。次に触媒であるピリジン(6.622g)と無水酢酸(213.67g)を加え24時間室温で撹拌し、ポリイミド溶液を合成した。
 得られたポリイミド溶液にN,N-ジメチルアセトアミド(DMAc)(2000g)を加え均一になるまで撹拌した。次に、ポリイミド溶液を5Lビーカーに3等分して移し、各ビーカーにイソプロピルアルコール(3500g)を徐々に加え白色スラリーを得た。上記スラリーをブフナー漏斗上に移してろ過し、続いてイソプロピルアルコール(合計9000g)でかけ流して洗浄し、その後ろ過するという工程を3回繰り返し、真空乾燥機を用いて110℃で乾燥し、ポリイミド(ポリイミド粉体)を得た。GPCによって測定したポリイミドの重量平均分子量は100,000であった。
 ポリイミドの固形分濃度が12質量%となるように、ポリイミドにN,N-ジメチルアセトアミド(DMAc)を添加して、ポリイミドがワニス中に12質量%のポリイミドワニス(樹脂組成物)を調製した。ポリイミドワニス(樹脂組成物)(固形分濃度12質量%)の25℃における粘度は15000cpsであった。
 プライマー層上に上記ポリイミドワニス(樹脂組成物)を所定の厚さとなるように塗布し、100℃で10分間、150℃で10分間、および230℃で30分間乾燥させ、厚さ5μm~60μmの樹脂層を形成した。
[比較例1-1]
 下記のように樹脂層を形成したこと以外は、実施例1-1と同様にして表示装置用部材を作製した。
 ウレタン変性共重合ポリエステル樹脂を含む組成物(バイロンUR4800、東洋紡製)を所定の厚さとなるように塗布し、100℃で5分間乾燥させ、厚さ5μm~60μmの樹脂層を形成した。
[比較例1-2]
 下記のように樹脂層を形成したこと以外は、実施例1-1と同様にして表示装置用部材を作製した。
 エポキシ樹脂を含む組成物(1256B40、三菱ケミカル製)所定の厚さとなるように塗布し、80℃で5分間、および150℃で60分間乾燥させ、厚さ5μm~60μmの樹脂層を形成した。
[比較例1-3]
 下記のように樹脂層を形成したこと以外は、実施例1-1と同様にして表示装置用部材を作製した。
 脱水されたN,N-ジメチルアセトアミド(沸点:165℃)500gを容器に加え、容器内部にNをフローしつつ、N,N-ジメチルアセトアミドを攪拌しながら約80℃で加熱した。N,N-ジメチルアセトアミドの溶存酸素量を逐一モニタリングし、N,N-ジメチルアセトアミド中の溶存酸素量が溶存酸素計の検出限界以下(0.005mg/L未満)となった時点で加熱を止め、室温まで冷却した上でN,N-ジメチルアセトアミドを次の工程に供した。
 以下の工程は窒素雰囲気下で行った。500mlのセパラブルフラスコに、上記N,N-ジメチルアセトアミド466.1g、及び、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(AprTMOS)2.46g(10mmol)をいれ、AprTMOSを溶解させた溶液の液温が30℃に制御されたところへ、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)1.23g(3mmol)を、温度上昇が2℃以下になるように徐々に投入し、メカニカルスターラーで30分撹拌した。そこへ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)60.8g(190mmol)を添加し、完全に溶解したことを確認後、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)91.6g(206mmol)を温度上昇が2℃以下になるように数回に分けて徐々に投入し、ポリイミド前駆体が溶解したポリイミド前駆体溶液(固形分25重量%)を合成した。ポリイミド前駆体に用いられたTFMBとAprTMOSとのモル比は95:5であった。ポリイミド前駆体溶液(固形分25重量%)の25℃における粘度は48900cpsであり、GPCによって測定したポリイミド前駆体の重量平均分子量は156400であった。
 窒素雰囲気下で、5Lのセパラブルフラスコに、室温に下げた上記ポリイミド前駆体溶液を加えた。そこへ、脱水されたN,N-ジメチルアセトアミドを加え均一になるまで撹拌した。次に触媒であるピリジンと無水酢酸を加え24時間室温で撹拌し、ポリイミド溶液を合成した。
 得られたポリイミド溶液にN,N-ジメチルアセトアミド(DMAc)を加え均一になるまで撹拌した。次に、ポリイミド溶液を5Lビーカーに3等分して移し、各ビーカーにイソプロピルアルコールを徐々に加え白色スラリーを得た。上記スラリーをブフナー漏斗上に移してろ過し、続いてイソプロピルアルコールでかけ流して洗浄し、その後ろ過するという工程を3回繰り返し、真空乾燥機を用いて110℃で乾燥し、ポリイミド(ポリイミド粉体)を得た。
 ポリイミドの固形分濃度が12質量%となるように、ポリイミドにN,N-ジメチルアセトアミド(DMAc)を添加して、ポリイミドがワニス中に12質量%のポリイミドワニス(樹脂組成物)を調製した。ポリイミドワニス(樹脂組成物)(固形分濃度12質量%)の25℃における粘度は3000cpsであった。
 上記プライマー層上に上記ポリイミドワニス(樹脂組成物)を所定の厚さとなるように塗布し、100℃で10分間、150℃で10分間、および230℃で30分間乾燥させ、厚さ5μm~60μmの樹脂層を形成した。
[評価1]
(1)複合弾性率
 実施例および比較例の表示装置用部材の樹脂層の複合弾性率を求めた。
 まず、樹脂層のインデンテーション硬さを測定した。インデンテーション硬さ(HIT)の測定は、測定サンプルについてBRUKER社製の「TI950 TriboIndenter」を用いて行った。具体的には、まず、1mm×10mmに切り出した表示装置用部材を包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ50nm以上100nm以下の切片を切り出した。切片の作製には、「ウルトラミクロトーム EM UC7」(ライカ マイクロシステムズ社製)を用いた。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとした。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、以下の測定条件で、圧子としてバーコビッチ(Berkovich)圧子(三角錐、BRUKER社製のTI-0039)を樹脂層の断面中央に10秒かけて最大押し込み荷重25μNとなるまで垂直に押し込んだ。この際、バーコビッチ圧子は、ガラス基材の影響を避けるためおよび樹脂層の側縁の影響を避けるために、ガラス基材と樹脂層の界面から樹脂層の中央側に500nm離れ、樹脂層の両側端からそれぞれ樹脂層の中央側に500nm離れた樹脂層の部分内であり、かつ、ハードコート層と樹脂層の界面からも樹脂層の中央側に500nm離れた樹脂層の部分内に押し込んだ。その後、一定保持して残留応力の緩和を行った後、10秒かけて除荷させて、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と接触投影面積A(nm)とを用い、Pmax/Aにより、インデンテーション硬さ(HIT)を算出した。上記接触投影面積は、標準試料の溶融石英(BRUKER社製の5-0098)を用いてOliver-Pharr法で圧子先端曲率を補正した接触投影面積とした。なお、測定値の中に算術平均値から±20%以上外れるものが含まれている場合は、その測定値を除外し再測定を行った。
(測定条件)
・荷重速度:2.5μN/秒
・保持時間:5秒
・荷重除荷速度:2.5μN/秒
・測定温度:25℃
 次いで、得られた樹脂層のインデンテーション硬さ(HIT)を測定する際に求められる上記接触投影面積Aを用いて、上記数式(1)から複合弾性率を求めた。複合弾性率は、インデンテーション硬さを10箇所測定し、その都度複合弾性率を求め、得られた10箇所の複合弾性率の算術平均値とした。
(2)衝撃試験(ペンドロップ試験)
 実施例および比較例の表示装置用部材について衝撃試験を行った。まず、表示装置用部材のガラス基材の面に光学粘着剤(OCA)およびPETをこの順に貼り合わせ、PET側が厚さ30mmの金属プレートに接するように、金属プレート上に表示装置用部材を置いた。次に、試験高さより、ペンをその先端を下にして表示装置用部材上に落下させ、ガラス基材に割れが生じない最も高い試験高さを評価した。実施例1-1~1-2および比較例1-1~1-3の表示装置用部材の結果を図12に示す。また、樹脂層の厚さが40μmであるときの結果を表1に示す。
(3)鉛筆硬度
 実施例および比較例の表示装置用部材において、樹脂層の厚さが20μmである場合に、表示装置用部材のハードコート層側の表面における鉛筆硬度を、JIS K5600-5-4(1999)に準拠して測定した。鉛筆硬度の測定の際には、鉛筆硬度試験機(製品名「鉛筆引っかき塗膜硬さ試験機(電動式)」、株式会社東洋精機製作所製)を用い、測定条件は、角度45°、荷重750g、速度0.5mm/秒以上1mm/秒以下、温度23±2℃とした。
(4)全光線透過率およびヘーズ
 実施例および比較例の表示装置用部材において、樹脂層の厚さが20μmである場合に、表示装置用部材の全光線透過率およびヘーズを測定した。表示装置用部材の全光線透過率は、JIS K7361-1に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。また、表示装置用部材のヘーズは、JIS K-7136に準拠して、ヘイズメーター(村上色彩技術研究所製 HM150)により測定した。
(5)屈曲耐性
 実施例および比較例の表示装置用部材において、樹脂層の厚さが20μmである場合に、表示装置用部材に対して動的屈曲試験および静的屈曲試験を行い、耐屈曲性を評価した。
(5-1)動的屈曲試験
 実施例および比較例の表示装置用部材に対して動的屈曲試験を行い、屈曲耐性を評価した。具体的には、まず、20mm×100mmの大きさの表示装置用部材を、耐久試験機(製品名「DLDMLH-FS」、ユアサシステム機器株式会社製)に、表示装置用部材の短辺(20mm)側を固定部でそれぞれ固定し、図5(c)に示したように対向する2つの短辺部の最小の間隔dが10mmとなるようにして調整し、表示装置用部材の表面を180°折りたたむ動的屈曲試験を20万回行った。この際、表示装置用部材のハードコート層側の面が内側となり、表示装置用部材のガラス基材側の面が外側となるように折りたたんだ。また、別の表示装置用部材を用いて、表示装置用部材のハードコート層側の面が外側となり、表示装置用部材のガラス基材側の面が内側となるように折りたたむ動的屈曲試験を、上記と同様にして行った。そして、動的屈曲試験後に片方の短辺部から固定部を外すことによって、折りたたみ状態を開放して、表示装置用部材が自然に開く角度である開き角(図6(b)参照)を測定した。開き角としては、表示装置用部材のハードコート層側の面が内側となるように折りたたむ場合と、表示装置用部材のハードコート層側の面が外側となるように折りたたむ場合とで、角度が小さい方を採用した。
(5-2)静的屈曲試験
 実施例および比較例の表示装置用部材に対して静的屈曲試験を行い、静的屈曲試験後の開き角を測定した。具体的には、まず、20mm×100mmの大きさの表示装置用部材の短辺(20mm)側を、表示装置用部材の対向する短辺部の間隔dが10mmとなるように平行に配置された固定部にそれぞれ固定し、表示装置用部材を折りたたんだ状態で、23℃で240時間静置する静的屈曲試験を行った。そして、静的屈曲試験後に片方の短辺部から固定部を外すことによって、折りたたみ状態を開放して、室温で30分後に表示装置用部材が自然に開く角度である開き角(図6(b)参照)を測定した。開き角としては、表示装置用部材のハードコート層側の面が内側となるように折りたたむ場合と、表示装置用部材のハードコート層側の面が外側となるように折りたたむ場合との両方で静的屈曲試験を行い、角度が小さい方を採用した。
Figure JPOXMLDOC01-appb-T000015
 表1および図12から、比較例1-1~1-3では、樹脂層の複合弾性率が所定の値未満であるため、樹脂層の厚さが厚くなると、表示装置用部材の表面硬度が低下した。これに対し、実施例1-1~1-3では、樹脂層の複合弾性率が所定の値以上であるため、例えば樹脂層の厚さが40μmの場合も表面硬度が高く、耐衝撃性および表面硬度の両立が可能であることが分かった。また、表1および図12から、樹脂層の複合弾性率が所定の値以上である場合には、樹脂層の厚さの増加に伴う耐衝撃性の上昇率が大きくなることが確認された。また、表1において、実施例1-1~1-3および比較例1-1~1-3の比較から、樹脂層の複合弾性率が所定の値以上である場合は、屈曲耐性が良くなる傾向があることが分かった。これは、樹脂層の複合弾性率が大きいほど、樹脂層に変形が加えられた際に復元する力が大きくなるためである。
 以下、比較例2-1~2-2および実施例2-1~2-9において、第3樹脂層上に形成されるハードコート層を第1のハードコート層、第1樹脂層上に形成されるハードコート層を第2のハードコート層と称する。
[比較例2-1]
(1)プライマー層の形成
 実施例1-1のプライマー層の形成と同様にして、ガラス基材上に厚さ1μmのプライマー層を形成した。
(2)第1樹脂層の形成
 実施例1-1の樹脂層の形成と同様にして、上記プライマー層上に厚さ20μmの第1樹脂層を形成した。
(3)第2のハードコート層の形成
 実施例1-1のハードコート層の形成と同様にして、上記第1樹脂層上に厚さ10μmの第2のハードコート層を形成した。これにより、光学積層体を得た。
[比較例2-2]
(1)ハードコートフィルムの作製
 第3樹脂層として、厚さ50μmのPETフィルム(東洋紡社製、製品名A4100)を準備し、PETフィルム上に、バーコーターで実施例1-1と同様のハードコート層用硬化性樹脂組成物を塗布し、塗膜を完成させた。その後、形成した塗膜を100℃で3分間乾燥させた後、200mJの紫外線照射にて硬化させ、厚さ10μmの第1のハードコート層を形成した。これにより、ハードコートフィルムを得た。
(2)光学積層体の作製
 厚さ70μmの化学強化されたガラス基材を準備し、厚さ50μmのアクリル系粘着剤フィルム(3M社製、製品名8146-2)を用いて、上記ガラス基材と上記ハードコートフィルムのPETフィルム側の面とを接着させた。これにより、光学積層体を得た。
[実施例2-1~2-8]
(1)ガラス樹脂積層体の作製
 第1樹脂層の厚さを10μm~40μmとしたこと以外は、比較例2-1と同様にして、ガラス基材上にプライマー層および第1樹脂層を形成した。これにより、ガラス樹脂積層体を得た。
(2)ハードコートフィルムの作製
 比較例2-2と同様にして、ハードコートフィルムを作製した。
(3)光学積層体の作製
 上記ガラス樹脂積層体の第1樹脂層側の面と、上記ハードコートフィルムのPETフィルム側の面とを、厚さ10μm~50μmのアクリル系粘着剤フィルム(3M社製、製品名8146-2)を用いて接着させた。これにより、光学積層体を作製した。
[実施例2-9]
(1)ガラス樹脂積層体の作製
 第1樹脂層の厚さを23μmとしたこと以外は、比較例2-1と同様にして、ガラス基材上にプライマー層、第1樹脂層および第2のハードコート層を形成した。これにより、ガラス樹脂積層体を得た。
(2)ハードコートフィルムの作製
 比較例2-2と同様にして、ハードコートフィルムを作製した。
(3)光学積層体の作製
 上記ガラス樹脂積層体の第2のハードコート層側の面と、上記ハードコートフィルムのPETフィルム側の面とを、厚さ50μmのアクリル系粘着剤フィルム(3M社製、製品名8146-2)を用いて接着させた。これにより、光学積層体を作製した。
[評価2]
(1)複合弾性率
 実施例および比較例の光学積層体の第1樹脂層の複合弾性率を求めた。
 まず、第1樹脂層のインデンテーション硬さを測定した。インデンテーション硬さ(HIT)の測定は、測定サンプルについてBRUKER社製の「TI950 TriboIndenter」を用いて行った。具体的には、まず、1mm×10mmに切り出した光学積層体を包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ50nm以上100nm以下の切片を切り出した。切片の作製には、「ウルトラミクロトーム EM UC7」(ライカ マイクロシステムズ社製)を用いた。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとした。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、以下の測定条件で、圧子としてバーコビッチ(Berkovich)圧子(三角錐、BRUKER社製のTI-0039)を第1樹脂層の断面中央に10秒かけて最大押し込み荷重25μNとなるまで垂直に押し込んだ。この際、バーコビッチ圧子は、ガラス基材の影響を避けるためおよび第1樹脂層の側縁の影響を避けるために、ガラス基材と第1樹脂層の界面から第1樹脂層の中央側に500nm離れ、第1樹脂層の両側端からそれぞれ第1樹脂層の中央側に500nm離れた第1樹脂層の部分内に押し込んだ。その後、一定保持して残留応力の緩和を行った後、10秒かけて除荷させて、緩和後の最大荷重を計測し、該最大荷重Pmax(μN)と接触投影面積A(nm)とを用い、Pmax/Aにより、インデンテーション硬さ(HIT)を算出した。上記接触投影面積は、標準試料の溶融石英(BRUKER社製の5-0098)を用いてOliver-Pharr法で圧子先端曲率を補正した接触投影面積とした。なお、測定値の中に算術平均値から±20%以上外れるものが含まれている場合は、その測定値を除外し再測定を行った。
(測定条件)
・荷重速度:2.5μN/秒
・保持時間:5秒
・荷重除荷速度:2.5μN/秒
・測定温度:25℃
 次いで、得られた第1樹脂層のインデンテーション硬さ(HIT)を測定する際に求められる上記接触投影面積Aを用いて、上記数式(1)から複合弾性率を求めた。複合弾性率は、インデンテーション硬さを10箇所測定し、その都度複合弾性率を求め、得られた10箇所の複合弾性率の算術平均値とした。
(2)衝撃試験(ペンドロップ試験)
 実施例および比較例の光学積層体について衝撃試験を行った。まず、光学積層体のガラス基材側の面に、厚さ50μmの光学粘着フィルム(OCA)と、厚さ100μmのPETフィルムとをこの順に貼り合わせて、試験用積層体を作製した。この試験用積層体のPETフィルム側の面が厚さ30mmの金属プレートに接するように、金属プレート上に試験用積層体を置いた。次に、試験高さより、ペンをその先端を下にして試験用積層体上に落下させた。ペンには、ゼブラ社製のブレン0.5BAS88-BK(重量12g、ペン先0.5mmφ)を用いた。表1に、ガラス基材に割れが生じなかった最も高い試験高さと、ガラス基材に割れが生じた最も低い試験高さとを示す。
(3)動的屈曲試験
 実施例および比較例の光学積層体に対して動的屈曲試験を行い、屈曲耐性を評価した。具体的には、まず、20mm×100mmの大きさの光学積層体を、耐久試験機(製品名「DLDMLH-FS」、ユアサシステム機器株式会社製)に、光学積層体の短辺(20mm)側を固定部でそれぞれ固定し、図5(c)に示したように対向する2つの短辺部の最小の間隔dが10mmまたは8mmとなるようにして調整し、光学積層体の表面を180°折りたたむ動的屈曲試験を20万回または7万回行った。この際、光学積層体のハードコート層側の面が外側となり、光学積層体のガラス基材側の面が内側となるように折りたたんだ。そして、25℃50%RHの環境下、明室2000Lxにて、目視で、屈曲部に割れまたは破断が生じていないか調べた。動的屈曲試験の結果は、下記の基準で評価した。
 A:屈曲部に割れおよび破断が生じていなかった。
 B:屈曲部に割れまたは破断が生じていた。
Figure JPOXMLDOC01-appb-T000016
 比較例2-1では、第2樹脂層および第3樹脂層が配置されていないため、耐衝撃性に劣っていた。また、比較例2-2では、第1樹脂層が配置されていないため、耐衝撃性に劣っていた。これに対し、実施例2-1~2-9では、所定の第1樹脂層と第2樹脂層と第3樹脂層とがこの順に配置されているため、耐衝撃性に優れていた。また、実施例2-1~2-7と実施例2-8を比較すると、樹脂層の総厚さが所定の値以下である場合には、屈曲耐性にも優れていた。
 1 … 表示装置用部材
 2 … ガラス基材
 3 … 樹脂層
 4 … ハードコート層
 11 … 光学積層体
 12 … ガラス基材
 13 … 第1樹脂層
 14 … 第2樹脂層
 15 … 第3樹脂層
 16 … ハードコート層

Claims (20)

  1.  厚さが100μm以下のガラス基材と、
     前記ガラス基材の一方の面側に配置され、複合弾性率が5.7GPa以上であり、厚さが5μm以上60μm以下である樹脂層と、
     を有する、表示装置用部材。
  2.  前記ガラス基材と前記樹脂層との間にプライマー層を有する、請求項1に記載の表示装置用部材。
  3.  前記樹脂層の前記ガラス基材とは反対の面側に機能層を有する、請求項1または請求項2に記載の表示装置用部材。
  4.  前記機能層がハードコート層である、請求項3に記載の表示装置用部材。
  5.  全光線透過率が80%以上である、請求項1から請求項4までのいずれかの請求項に記載の表示装置用部材。
  6.  ヘーズが2.0%以下である、請求項1から請求項5までのいずれかの請求項に記載の表示装置用部材。
  7.  前記樹脂層がポリイミドまたはポリアミドイミドを含有する、請求項1から請求項6までのいずれかの請求項に記載の表示装置用部材。
  8.  前記ポリイミドの重量平均分子量が100,000以上である、請求項7に記載の表示装置用部材。
  9.  前記ポリアミドイミドの重量平均分子量が50,000以上である、請求項7に記載の表示装置用部材。
  10.  ガラス基材と、第1樹脂層と、第2樹脂層と、第3樹脂層と、をこの順に有する光学積層体であって、
     前記ガラス基材の厚さが100μm以下であり、
     前記第1樹脂層の複合弾性率が5.7GPa以上であり、前記第1樹脂層の厚さが5μm以上60μm以下であり、
     前記第2樹脂層が粘着層であり、
     前記第3樹脂層が、ポリエステル系樹脂、ポリシクロオレフィン系樹脂、アセチルセルロース系樹脂、ポリカーボネート系樹脂、およびポリプロピレン系樹脂からなる群から選択される樹脂を含む樹脂フィルムである、光学積層体。
  11.  前記ガラス基材の前記第1樹脂層の面側に配置されている樹脂層の総厚さが143μm以下である、請求項10に記載の光学積層体。
  12.  前記第3樹脂層の前記第2樹脂層とは反対の面側に機能層を有する、請求項10または請求項11に記載の光学積層体。
  13.  前記機能層がハードコート層である、請求項12に記載の光学積層体。
  14.  全光線透過率が80%以上である、請求項10から請求項13までのいずれかの請求項に記載の光学積層体。
  15.  ヘーズが2.0%以下である、請求項10から請求項14までのいずれかの請求項に記載の光学積層体。
  16.  前記第1樹脂層がポリイミドまたはポリアミドイミドを含有する、請求項10から請求項15までのいずれかの請求項に記載の光学積層体。
  17.  前記ポリイミドの重量平均分子量が100,000以上である、請求項16に記載の光学積層体。
  18.  前記ポリアミドイミドの重量平均分子量が50,000以上である、請求項16に記載の光学積層体。
  19.  表示パネルと、
     前記表示パネルの観察者側に配置された、請求項1から請求項9までのいずれかの請求項に記載の表示装置用部材、または請求項10から請求項18までのいずれかの請求項に記載の光学積層体と、
     を備える表示装置。
  20.  折りたたみ可能である、請求項19に記載の表示装置。
PCT/JP2021/007902 2020-03-05 2021-03-02 表示装置用部材、光学積層体および表示装置 WO2021177288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227034158A KR20220148888A (ko) 2020-03-05 2021-03-02 표시 장치용 부재, 광학 적층체 및 표시 장치
CN202180030101.1A CN115428058A (zh) 2020-03-05 2021-03-02 显示装置用部件、光学层积体和显示装置
JP2022504387A JPWO2021177288A1 (ja) 2020-03-05 2021-03-02
US17/905,394 US20230311456A1 (en) 2020-03-05 2021-03-02 Display device member, optical laminate, and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020037853 2020-03-05
JP2020-037853 2020-03-05
JP2020064754 2020-03-31
JP2020-064754 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021177288A1 true WO2021177288A1 (ja) 2021-09-10

Family

ID=77613477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007902 WO2021177288A1 (ja) 2020-03-05 2021-03-02 表示装置用部材、光学積層体および表示装置

Country Status (6)

Country Link
US (1) US20230311456A1 (ja)
JP (1) JPWO2021177288A1 (ja)
KR (1) KR20220148888A (ja)
CN (1) CN115428058A (ja)
TW (1) TW202141131A (ja)
WO (1) WO2021177288A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022117457A (ja) * 2021-01-29 2022-08-10 エスケイシー・カンパニー・リミテッド ポリアミド-イミドフィルム、その製造方法、それを含むカバーウィンドウおよびディスプレイ装置
CN115124929A (zh) * 2022-08-30 2022-09-30 武汉天马微电子有限公司 一种光学透明胶及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200976605Y (zh) * 2006-09-28 2007-11-14 比亚迪股份有限公司 一种手机视窗
JP2011088789A (ja) * 2009-10-23 2011-05-06 Nitto Denko Corp 透明基板
JP2015533685A (ja) * 2012-08-31 2015-11-26 コーニング インコーポレイテッド 強化された薄型ガラス−ポリマー積層体
JP2016203515A (ja) * 2015-04-23 2016-12-08 三菱樹脂株式会社 ガラス積層体
WO2018070523A1 (ja) * 2016-10-14 2018-04-19 大日本印刷株式会社 光学フィルムおよび画像表示装置
CN108877529A (zh) * 2018-07-10 2018-11-23 昆山国显光电有限公司 柔性显示屏盖板、柔性显示模组以及柔性显示装置
JP2019504812A (ja) * 2016-01-15 2019-02-21 コーニング インコーポレイテッド 折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
WO2019066078A1 (ja) * 2017-09-29 2019-04-04 大日本印刷株式会社 光学フィルムおよび画像表示装置
CN110211499A (zh) * 2019-06-19 2019-09-06 Oppo(重庆)智能科技有限公司 折叠屏及其制造方法以及移动终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095556A (ko) * 2012-09-19 2019-08-14 혼슈우 카가쿠고교 가부시키가이샤 폴리이미드 및 그의 성형체
KR20150004496A (ko) * 2013-07-02 2015-01-13 삼성디스플레이 주식회사 표시장치용 윈도우 및 이를 포함하는 표시 장치
JP2018188335A (ja) * 2017-05-08 2018-11-29 Agc株式会社 折り曲げ可能なガラス板
JP2019137864A (ja) 2018-02-13 2019-08-22 大日本印刷株式会社 ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200976605Y (zh) * 2006-09-28 2007-11-14 比亚迪股份有限公司 一种手机视窗
JP2011088789A (ja) * 2009-10-23 2011-05-06 Nitto Denko Corp 透明基板
JP2015533685A (ja) * 2012-08-31 2015-11-26 コーニング インコーポレイテッド 強化された薄型ガラス−ポリマー積層体
JP2016203515A (ja) * 2015-04-23 2016-12-08 三菱樹脂株式会社 ガラス積層体
JP2019504812A (ja) * 2016-01-15 2019-02-21 コーニング インコーポレイテッド 折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
WO2018070523A1 (ja) * 2016-10-14 2018-04-19 大日本印刷株式会社 光学フィルムおよび画像表示装置
WO2019066078A1 (ja) * 2017-09-29 2019-04-04 大日本印刷株式会社 光学フィルムおよび画像表示装置
CN108877529A (zh) * 2018-07-10 2018-11-23 昆山国显光电有限公司 柔性显示屏盖板、柔性显示模组以及柔性显示装置
CN110211499A (zh) * 2019-06-19 2019-09-06 Oppo(重庆)智能科技有限公司 折叠屏及其制造方法以及移动终端

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022117457A (ja) * 2021-01-29 2022-08-10 エスケイシー・カンパニー・リミテッド ポリアミド-イミドフィルム、その製造方法、それを含むカバーウィンドウおよびディスプレイ装置
JP7535069B2 (ja) 2021-01-29 2024-08-15 エスケーマイクロワークス 株式会社 ポリアミド-イミドフィルム、その製造方法、それを含むカバーウィンドウおよびディスプレイ装置
US12084575B2 (en) 2021-01-29 2024-09-10 Sk Microworks Co., Ltd. Polyamide-imide film, preparation method thereof, cover window and display device comprising the same
CN115124929A (zh) * 2022-08-30 2022-09-30 武汉天马微电子有限公司 一种光学透明胶及其制造方法

Also Published As

Publication number Publication date
CN115428058A (zh) 2022-12-02
JPWO2021177288A1 (ja) 2021-09-10
TW202141131A (zh) 2021-11-01
KR20220148888A (ko) 2022-11-07
US20230311456A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP6973476B2 (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
JP6773118B2 (ja) 光学フィルムおよび画像表示装置
KR20190039180A (ko) 폴리이미드 필름, 적층체 및 디스플레이용 표면재
JP2020204022A (ja) ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7547792B2 (ja) 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2018230495A1 (ja) 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2021177288A1 (ja) 表示装置用部材、光学積層体および表示装置
JP7196384B2 (ja) ポリイミドフィルム、光学フィルムおよび画像表示装置
TW201920373A (zh) 膜、聚醯亞胺膜、積層體、顯示器用構件、觸摸面板構件、液晶顯示裝置、及有機電致發光顯示裝置
JP7512805B2 (ja) ポリアミドイミド樹脂、ポリアミドイミドワニス、ポリアミドイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP7544063B2 (ja) 表示装置用前面板、フレキシブル有機エレクトロルミネッセンス表示装置、表示装置用積層体、および積層体
JP2022058298A (ja) ガラス積層体、表示装置、電子機器および樹脂層
WO2022092249A1 (ja) 積層体および表示装置
WO2018030410A1 (ja) ポリイミドフィルム、積層体、及びディスプレイ用表面材
JP7139715B2 (ja) ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
TW201829551A (zh) 聚醯亞胺膜、聚醯亞胺、聚醯亞胺前驅物、積層體、及顯示器用表面材
JP2020167085A (ja) 光学フィルムおよび画像表示装置
JP2022058310A (ja) ガラス基材、ガラス積層体、表示装置、電子機器、およびガラス積層体の製造方法
JP7226312B2 (ja) ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
WO2020255864A1 (ja) ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2022073319A (ja) 積層体および表示装置
JP2022165392A (ja) 表示装置用積層体および表示装置
JP2022159116A (ja) 表示装置用積層体および表示装置
JP7547892B2 (ja) 表示装置用部材、表示装置および電子機器
JP2020169241A (ja) フィルム、ポリイミドフィルム、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504387

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764977

Country of ref document: EP

Kind code of ref document: A1