JP7402861B2 - 情報処理方法及び情報処理システム - Google Patents
情報処理方法及び情報処理システム Download PDFInfo
- Publication number
- JP7402861B2 JP7402861B2 JP2021509118A JP2021509118A JP7402861B2 JP 7402861 B2 JP7402861 B2 JP 7402861B2 JP 2021509118 A JP2021509118 A JP 2021509118A JP 2021509118 A JP2021509118 A JP 2021509118A JP 7402861 B2 JP7402861 B2 JP 7402861B2
- Authority
- JP
- Japan
- Prior art keywords
- driving
- self
- risk
- deviation
- information processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010365 information processing Effects 0.000 title claims description 136
- 238000003672 processing method Methods 0.000 title claims description 58
- 238000012384 transportation and delivery Methods 0.000 claims description 33
- 238000004364 calculation method Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 19
- 238000012544 monitoring process Methods 0.000 claims description 19
- 238000013461 design Methods 0.000 claims description 15
- 230000008901 benefit Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 description 33
- 238000007726 management method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000013439 planning Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0025—Planning or execution of driving tasks specially adapted for specific operations
- B60W60/00253—Taxi operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/005—Handover processes
- B60W60/0053—Handover processes from vehicle to occupant
- B60W60/0054—Selection of occupant to assume driving tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/005—Handover processes
- B60W60/0059—Estimation of the risk associated with autonomous or manual driving, e.g. situation too complex, sensor failure or driver incapacity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3407—Route searching; Route guidance specially adapted for specific applications
- G01C21/3415—Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B15/00—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
- G07B15/02—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points taking into account a variable factor such as distance or time, e.g. for passenger transport, parking systems or car rental systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/096805—Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
- G08G1/096811—Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
- G08G1/096816—Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard where the complete route is transmitted to the vehicle at once
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0968—Systems involving transmission of navigation instructions to the vehicle
- G08G1/096833—Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
- G08G1/096838—Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the user preferences are taken into account or the user selects one route out of a plurality
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
- G08G1/202—Dispatching vehicles on the basis of a location, e.g. taxi dispatching
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/20—Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
- G08G1/205—Indicating the location of the monitored vehicles as destination, e.g. accidents, stolen, rental
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
- B60W2050/146—Display means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/041—Potential occupants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/221—Physiology, e.g. weight, heartbeat, health or special needs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3407—Route searching; Route guidance specially adapted for specific applications
- G01C21/3438—Rendez-vous, i.e. searching a destination where several users can meet, and the routes to this destination for these users; Ride sharing, i.e. searching a route such that at least two users can share a vehicle for at least part of the route
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Traffic Control Systems (AREA)
Description
本開示は、情報処理方法及び情報処理システムに関する。
例えば特許文献1には、ダイナミックマップデータを利用して自動運転車による自動運転の可否を判定する判定部と、判定部により自動運転可能と判定された場合に、ダイナミックマップデータに基づく自動運転車の自動運転を許可し、自動運転不可と判定された場合に、表示機器に自動運転不可通知を表示する制御部とを備えた自動運転支援装置が開示されている。
しかしながら、特許文献1に開示される技術では、運行効率が低下するおそれがある。例えば、特許文献1では、制御部が自動運転不可と判定した場合、単に表示機器に自動運転不可通知が表示され、ユーザが一律に自動運転車を停止させることになるため、自動運転車の運行効率が低下してしまう。
そこで、本開示は、自動運転車の運行効率の低下を抑制することができる情報処理方法及び情報処理システムを提供することを目的とする。
本開示の一態様に係る情報処理方法は、コンピュータにより実行される情報処理方法であって、自動運転車に乗る人が手動運転可能な自動運転車を運転できるか否か及び運転できる度合いの少なくとも1つである運転スキルを取得し、複数の自動運転車の自動運転に関する仕様をそれぞれ取得し、前記人を配送するためのルートを取得し、前記仕様のそれぞれと前記ルートとに基づいて、自動運転車を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ判定し、前記逸脱リスクのそれぞれ及び前記運転スキルにしたがって、前記複数の自動運転車から前記人の配送に割り当てる自動運転車を選択し、選択した自動運転車を通知する。
なお、これらのうちの一部の具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータで読み取り可能なCD-ROM等の記録媒体を用いて実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせを用いて実現されてもよい。
本開示の情報処理方法等によれば、自動運転車の運行効率の低下を抑制することができる。
本開示の一態様に係る情報処理方法は、コンピュータにより実行される情報処理方法であって、自動運転車に乗る人が手動運転可能な自動運転車を運転できるか否か及び運転できる度合いの少なくとも1つである運転スキルを取得し、複数の自動運転車の自動運転に関する仕様をそれぞれ取得し、前記人を配送するためのルートを取得し、前記仕様のそれぞれと前記ルートとに基づいて、自動運転車を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ判定し、前記逸脱リスクのそれぞれ及び前記運転スキルにしたがって、前記複数の自動運転車から前記人の配送に割り当てる自動運転車を選択し、選択した自動運転車を通知する。
これによれば、人の運転スキルに応じた逸脱リスクの自動運転車を人に割り当てることができる。このため、自動運転システムが運行設計領域を逸脱することを抑制したり、逸脱しても人の配送の運行が滞ることを抑制したりすることができる。したがって、自動運転車の運行効率の低下を抑制することができる。
例えば、運転スキルが低い人(運転スキルが閾値以下の人)には、逸脱リスクの低い自動運転車が割り当てられる。また、運転スキルが高い人(運転スキルが閾値よりも高い人)には、逸脱リスクの高い(例えば逸脱リスクが閾値よりも高い)自動運転車が割り当てられる。逸脱リスクの高い自動運転車がルートの運行設計領域から逸脱したとしても、運転スキルが高い人は、自動運転車を走行させることができるためである。
本開示の他の態様に係る情報処理システムは、自動運転車に乗る人が手動運転可能な自動運転車を運転できるか否か及び運転できる度合いの少なくとも1つである運転スキルを取得する運転スキル取得部と、複数の自動運転車の自動運転に関する仕様をそれぞれ取得する仕様取得部と、前記人を配送するためのルートを算出するルート算出部と、前記仕様取得部が取得する前記仕様のそれぞれと前記ルート算出部が算出する前記ルートとに基づいて、前記複数の自動運転車を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ判定するリスク判定部と、前記リスク判定部が判定する前記逸脱リスクのそれぞれ及び前記運転スキル取得部が取得する前記運転スキルにしたがって、前記複数の自動運転車から前記人の配送に割り当てる自動運転車を選択する選択部と、前記選択部が選択した自動運転車を通知する出力部と、を備える。
この情報処理システムにおいても上述と同様の作用効果を奏する。
本開示の他の態様に係る情報処理方法において、運転要求に対する前記人の許容性を取得し、前記人の配送に割り当てる自動運転車の選択では、前記許容性にも応じて、前記人の配送に割り当てる自動運転車を前記複数の自動運転車から選択する。
これによれば、例えば、人の許容性があれば、人は手動運転状態の自動運転車を運転する意思があるため、運転スキルに応じた自動運転車の中で、逸脱リスクの高い自動運転車を提示することができる。また、人の許容性がなければ、人は手動運転状態の自動運転車を運転する意思が低いため、運転スキルに応じた自動運転車の中で逸脱リスクの低い自動運転車を提示することができる。人はこのような自動運転車を選択し予約をすることができるため、意図しない手動運転が要求されることが抑制される。また、逸脱リスクが高い自動運転車を割り当てられ、運行設計領域(ODD:Operational Design Domain)の逸脱が発生するせいで、人の配送が滞ることを抑制できる。したがって、自動運転車の運行効率を向上させることができる。
本開示の他の態様に係る情報処理方法において、前記人の体調を取得し、前記人の配送に割り当てる自動運転車の選択では、前記体調にも応じて、前記人の配送に割り当てる自動運転車を前記複数の自動運転車から選択する。
これによれば、例えば自動運転車に乗る人の体調が良好であれば、運転スキルに応じた自動運転車の中で逸脱リスクの高い自動運転車が提示される。また、自動運転車に乗る人の体調が良好でなければ、自動運転車の中で逸脱リスクが低い自動運転車が提示される。このように、人が運転可能な体調であるか否かに応じた逸脱リスクの自動運転車が割り当てられることにより、実際には運転できない体調の人に逸脱リスクが高い自動運転車が割り当てられ、ODDの逸脱が発生し、人の配送が滞ることを抑制できる。したがって、自動運転車の運行効率を向上させることができる。
本開示の他の態様に係る情報処理方法において、前記人の配送に割り当てる自動運転車の選択では、前記運転スキルがある又は前記運転スキルが閾値以上の場合、前記逸脱リスクがある又は前記逸脱リスクが閾値以上の自動運転車を前記複数の自動運転車から選択する。
これによれば、逸脱リスクの高い自動運転車が運転スキルの高い人に割り当てられる。このため、ODD逸脱が発生したとしても代わりに人が運転することにより、自動運転車の運行効率が低下することを抑制できる。
本開示の他の態様に係る情報処理方法において、前記逸脱リスクがある又は前記逸脱リスクが閾値以上の自動運転車は、前記複数の自動運転車のうちの他の自動運転車よりも、前記逸脱リスクが高く、かつ、前記人の受ける利得が高い自動運転車である。
これによれば、運転スキルの高い人へ逸脱リスクの高い自動運転車の利用を促すことができる。逸脱リスクの高い自動運転車を利用する人が増加するため、自動運転車の運行効率を向上させることができる。例えば、運転スキルの高い人には、要望時間に利用可能であったり、自動運転車のコストを安くしたり、乗り心地の良いシートを用いたり、自動運転車内の設備を充実したりする等の利得がある自動運転車が割り当てられる。
本開示の他の態様に係る情報処理方法において、前記人の配送に割り当てる自動運転車の選択では、前記運転スキルがない又は前記運転スキルが閾値より低い場合、前記逸脱リスクがない又は前記逸脱リスクが閾値より低い自動運転車を前記複数の自動運転車から選択する。
これによれば、逸脱リスクが低い自動運転車が運転スキルが低い人に割り当てられる。このため、ODD逸脱自体の発生が抑制される。
本開示の他の態様に係る情報処理方法において、前記逸脱リスクがない又は前記逸脱リスクが閾値より低い自動運転車は、前記複数の自動運転車のうちの他の自動運転車よりも、前記逸脱リスクが低い自動運転車である。
これによれば、逸脱リスクが他の自動運転車に比べて低い自動運転車を運転スキルの低い人に対して割り当てることができる。
本開示の他の態様に係る情報処理方法は、前記逸脱リスクがない又は前記逸脱リスクが前記閾値よりも低い自動運転車が選択されない場合、取得した前記ルートを別のルートに変更し、前記別のルートは、取得した前記ルートよりも前記逸脱リスクが低いルートである。
これによれば、運転スキルがない又は運転スキルの低い人には、取得したルートよりも逸脱リスクの低いルートを提示することができる。このため、運転スキルがない又は運転スキルの低い人を乗せた自動運転車がODDを逸脱することなく移動させやすくすることができる。
本開示の他の態様に係る情報処理方法は、前記逸脱リスクがない又は前記逸脱リスクが前記閾値よりも低い自動運転車が選択されない場合、前記人の前記運転スキルが向上するための提案を通知する。
これによれば、運転スキルの低い人に対して運転スキルを向上させるように促すことができる。
本開示の他の態様に係る情報処理方法は、前記選択された自動運転車についての前記逸脱リスク及び前記運転スキルにしたがって、前記選択された自動運転車を監視するためのリソースである監視リソースを算出し、算出された前記監視リソース、前記選択された自動運転車の前記仕様及び前記ルートにしたがって、前記選択された自動運転車による前記人の配送に関するコストを算出し、算出された前記コストを通知する。
これによれば、自動運転車に乗る予定の人に対して、選択された自動運転車の監視を含めた自動運転にかかるトータルのコストを提示することができる。
本開示の他の態様に係る情報処理方法は、前記選択された自動運転車の前記仕様及び前記ルートに対する前記逸脱リスクにしたがって、前記選択された自動運転車が前記ルート上で停止する可能性である停止リスクを算出し、算出された前記停止リスクを通知する。
これによれば、自動運転車に乗る予定の人に対して、予め停止リスクを提示することができる。例えば、人は、停止リスクを理解したうえで、自動運転車の配車を予約して決定することができる。目的地の途中又は近くまで移動できればよいと考える人も存在するため、このような場合に好適である。
本開示の他の態様に係る情報処理方法は、前記選択された自動運転車の前記仕様及び前記ルートに対する前記逸脱リスクにしたがって、前記選択された自動運転車の走行制御を決定し、決定された走行制御に基づき走行計画を生成し、生成された走行計画を通知する。
これによれば、自動運転車に乗る予定の人に対して、走行計画を提示することができる。このため、この人は、走行計画に示される移動時間、ルート等が自身の要望に適合しているかを判断する材料として用いることができる。例えば、人に対して複数の走行計画が提示された場合、この人は、所望の走行計画を選択することができる。
以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また全ての実施の形態において、各々の内容を組み合わせることもできる。
以下、本開示の一態様に係る情報処理方法及び情報処理システムについて、図面を参照しながら具体的に説明する。
(実施の形態1)
<構成:情報処理システム1>
図1は、実施の形態1における情報処理システム1を示すブロック図である。
<構成:情報処理システム1>
図1は、実施の形態1における情報処理システム1を示すブロック図である。
図1に示すように、情報処理システム1は、ユーザの求めに応じて、自動運転機能及び手動運転機能を有する車両である自動運転車5をユーザに配車することができるシステムである。情報処理システム1は、端末装置3等を使用するユーザから、出発日時、出発地及び目的地等を示す情報を取得することで、取得した情報に基づき、ユーザに応じた自動運転車5を配車することができる。自動運転車5は、自動運転状態から手動運転状態に遷移したり、手動運転状態から自動運転状態に遷移したりする。情報処理システム1、端末装置3及び1以上の自動運転車5は、自動運転システムを構成している。ユーザは、情報処理システム1を利用する人の一例である。
情報処理システム1は、例えばライドシェアリングサービス(Ride-sharing Service)、ライドヘイリングサービス(Ride-hailing Service)等のために自動運転車5が提供される共用型利用形態に適用される。
ライドシェアリングサービスは、車両を移動手段として、この車両に乗りたいユーザを結びつけるサービスの総称である。つまり、ライドシェアリングは、目的地へ移動を希望するユーザが、他のユーザが乗車している車両に乗合うことで、出発地から目的地又は目的地に近づく位置まで配送する車両の相乗りである。
また、ライドヘイリングサービスは、目的地へ移動を希望するユーザが、車両を移動手段として、希望地へ配車を要求することで、希望地から目的地まで配送することができるサービスである。なお、ライドヘイリングサービスにおいても、希望地から目的地まで配送する際に、他のユーザをさらに乗車させてライドシェアリングサービスとすることは可能である。
情報処理システム1の構成について、具体的に説明する。
情報処理システム1は、予約制御部21と、ユーザ管理部22と、車両管理部23と、ルート算出部24と、リスク推定部25と、マッチング部26と、配車制御部27と、通信部28とを備える。
[予約制御部21]
予約制御部21は、ユーザによる自動運転車5の予約に際して、ユーザに適した自動運転車5とユーザとを結びつけるように、ユーザ管理部22、マッチング部26、ルート算出部24等を制御する処理部である。予約制御部21は、通信部28を介して端末装置3から、ユーザの予約情報を取得すると、予約情報に含まれるユーザの要望、ユーザスキル等を示す情報をユーザ管理部22に送信する。また、予約制御部21は、予約情報に含まれる、ユーザの出発地を示す出発地情報、及び、ユーザの目的地を示す目的地情報をルート算出部24に送信する。また、予約制御部21は、予約情報に含まれる、出発地情報、目的地情報、出発地を出発する時刻を示す出発時刻情報、目的地に到着する到着時刻を示す到着時刻情報をマッチング部26に出力する。なお、出発時刻及び到着時刻の出力は、任意である。
予約制御部21は、ユーザによる自動運転車5の予約に際して、ユーザに適した自動運転車5とユーザとを結びつけるように、ユーザ管理部22、マッチング部26、ルート算出部24等を制御する処理部である。予約制御部21は、通信部28を介して端末装置3から、ユーザの予約情報を取得すると、予約情報に含まれるユーザの要望、ユーザスキル等を示す情報をユーザ管理部22に送信する。また、予約制御部21は、予約情報に含まれる、ユーザの出発地を示す出発地情報、及び、ユーザの目的地を示す目的地情報をルート算出部24に送信する。また、予約制御部21は、予約情報に含まれる、出発地情報、目的地情報、出発地を出発する時刻を示す出発時刻情報、目的地に到着する到着時刻を示す到着時刻情報をマッチング部26に出力する。なお、出発時刻及び到着時刻の出力は、任意である。
ここで、予約情報は、自動運転車5に乗る予定のユーザにおいて、出発地情報、目的地情報、出発時刻情報、到着時刻情報、ユーザの要望情報、運転スキルを示すスキル情報等を含む。要望情報は、例えば、ユーザの運転要求に対するユーザの許容性、自動運転車5の車種、最大乗車人数、ボディサイズ等、禁煙車両の有無等を示す情報である。許容性は、許容の有無又は許容度がある。具体的には、許容性は、運転スキルを有するユーザが手動運転状態の自動運転車5を運転する意思があるか否か、又はどの程度の手動運転を許容するかを示す。スキル情報は、自動運転車5が手動運転状態に移行時に、自動運転車5を運転することができるかどうか(例えば運転免許を有しているかどうか)を示す情報、総運転時間等の情報である。運転スキルにおける運転は、ハンドル及びペダル等の手動運転における一般的な操作機器を介した運転であってもよく、緊急停止ボタン又はタッチパネル等の操作機器を介した簡略的な運転であってもよい。
また、予約制御部21は、ユーザの予約に際して1以上の自動運転車5が選択されれば、ユーザの予約情報に応じた自動運転車5の候補を示す候補情報を、通信部28を介して端末装置3に出力する。
[ユーザ管理部22]
ユーザ管理部22は、予約情報から、自動運転車5に乗るユーザが手動運転可能な自動運転車5を運転できるか否か及び運転できる度合いの、少なくとも1つである運転スキルであるスキル情報並びに要望情報を、運転スキル取得部として取得して管理する。
ユーザ管理部22は、予約情報から、自動運転車5に乗るユーザが手動運転可能な自動運転車5を運転できるか否か及び運転できる度合いの、少なくとも1つである運転スキルであるスキル情報並びに要望情報を、運転スキル取得部として取得して管理する。
また、ユーザ管理部22は、要望情報に含まれるユーザの許容性を記憶する。
なお、ユーザ管理部22は、ユーザの体調を示す体調情報を取得して管理してもよい。体調は、健康状態、酒酔いの状態の有無又は程度等である。体調情報は、例えば、ユーザに予約時において入力して貰ってもよく、ユーザの顔の撮像画像から推定されてもよい。
また、ユーザ管理部22は、取得したスキル情報及び要望情報をユーザごとに記憶する。ユーザ管理部22は、予約制御部21から、スキル情報及び要望情報を取得する度に、取得した情報を更新する。ユーザ管理部22は、スキル情報及び要望情報をマッチング部26に出力する。
[車両管理部23]
車両管理部23は、複数の自動運転車5の自動運転に関する仕様を仕様取得部として取得し、それぞれ管理する。ここで、自動運転に関する仕様とは、自動運転車5の車両タイプ、走行能力、センシング能力、処理能力である。車両タイプとしては、セダン、ワゴン等の車両カテゴリ、大きさ、形状等がある。走行能力としては、加速力、最高速度、制動力、最小回転半径等の旋回能力等がある。センシング能力としては、センシング距離、センシング角度、解像度、センシング対象等がある。なお、センシングは、物体又はシーン等の検出を含んでもよい。処理能力としては、処理速度、同時処理タスク数、記憶容量等がある。なお、その他の仕様としては、自動運転車5の、車種、最大乗車人数、座席シートの種類、所有者、排気量、禁煙の有無、燃費、燃料タンク容量、バッテリ容量等がある。なお、「仕様」は、断りがない限り基本的には自動運転に関する仕様を指す。車両管理部23は、マッチング部26の要求に応じて、自動運転車5の仕様を示す車両スペック情報を出力する。
車両管理部23は、複数の自動運転車5の自動運転に関する仕様を仕様取得部として取得し、それぞれ管理する。ここで、自動運転に関する仕様とは、自動運転車5の車両タイプ、走行能力、センシング能力、処理能力である。車両タイプとしては、セダン、ワゴン等の車両カテゴリ、大きさ、形状等がある。走行能力としては、加速力、最高速度、制動力、最小回転半径等の旋回能力等がある。センシング能力としては、センシング距離、センシング角度、解像度、センシング対象等がある。なお、センシングは、物体又はシーン等の検出を含んでもよい。処理能力としては、処理速度、同時処理タスク数、記憶容量等がある。なお、その他の仕様としては、自動運転車5の、車種、最大乗車人数、座席シートの種類、所有者、排気量、禁煙の有無、燃費、燃料タンク容量、バッテリ容量等がある。なお、「仕様」は、断りがない限り基本的には自動運転に関する仕様を指す。車両管理部23は、マッチング部26の要求に応じて、自動運転車5の仕様を示す車両スペック情報を出力する。
[ルート算出部24]
ルート算出部24は、予約制御部21から出発地情報、及び、目的地情報を取得すると、ユーザを配送するためのルートの候補を算出することで取得する。ルート算出部24は、例えば図示しない記憶装置等に格納される地図情報に基づいて、ユーザの出発地から目的地までの1以上のルートを算出する。例えば、ルート算出部24は、ユーザの出発地から目的地までの最短距離となるルート、道路の状況に応じて算出した代替ルート等をマッピングした地図上のルートを算出する。ルート算出部24は、算出したルートの候補(結果)であるルート情報をマッチング部26に出力する。
ルート算出部24は、予約制御部21から出発地情報、及び、目的地情報を取得すると、ユーザを配送するためのルートの候補を算出することで取得する。ルート算出部24は、例えば図示しない記憶装置等に格納される地図情報に基づいて、ユーザの出発地から目的地までの1以上のルートを算出する。例えば、ルート算出部24は、ユーザの出発地から目的地までの最短距離となるルート、道路の状況に応じて算出した代替ルート等をマッピングした地図上のルートを算出する。ルート算出部24は、算出したルートの候補(結果)であるルート情報をマッチング部26に出力する。
[リスク推定部25]
リスク推定部25は、リスク判定部として、仕様のそれぞれとルート情報が示すルートとに基づいて、自動運転車5を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ推定(言い換えると判定)する。
リスク推定部25は、リスク判定部として、仕様のそれぞれとルート情報が示すルートとに基づいて、自動運転車5を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ推定(言い換えると判定)する。
ここで逸脱リスクは、ある仕様の自動運転車5がルートに従って走行した場合に、ルートに設定される運行設計領域から逸脱する可能性を示す指標である。運行設計領域は、自動運転システムが機能すべく設計されている条件である。条件としては、地理、道路、環境、交通状況、速度、一時的な限界、及び運転モードに関する条件がある。ODDは、全ての条件を満たす場合に自動運転システムが正常に作動するように設定される。言い換えると、自動運転システムは、ODDを逸脱しないように設計されるともいえる。なお、いずれかの条件が満たされない場合、自動運転に支障をきたす恐れがあるため、手動運転状態の切換え又は走行停止等が求められる。
リスク推定部25は、マッチング部26を介して取得したルート情報及び車両スペック情報を取得すると、ルート情報ごとに、それぞれの自動運転車5の逸脱リスクを推定する。ルート情報は、道路の幅、曲がり具合、車線数等の静的な情報と、工事有無、天候、混雑度、事故発生度等の動的な(又は準静的な)情報と、を含む。車両スペック情報が示すスペックが高い自動運転車5は、走行性能又は安全性能が高いため相対的に逸脱リスクが低く推定され易くなる。また、車両スペック情報が示すスペックが低い自動運転車5は、スペックが高い自動運転車5よりも、走行性能又は安全性能が低いため相対的に逸脱リスクが高く推定され易くなる。
リスク推定部25は、ルートごとにそれぞれの自動運転車5の逸脱リスクを推定した判定結果であるリスク情報をマッチング部26に出力する。
[マッチング部26]
マッチング部26は、選択部として、自動運転車5の配送を予約するユーザに対して、ルートごとのそれぞれの自動運転車5の逸脱リスク及び運転スキルにしたがって、複数の自動運転車5からユーザの配送に割り当てる1以上の自動運転車5を選択する。つまり、マッチング部26は、ユーザの要望及びユーザの運転スキルに応じた1以上の自動運転車5を選択し、選択した1以上の自動運転車5の候補を予約制御部21に出力する。
マッチング部26は、選択部として、自動運転車5の配送を予約するユーザに対して、ルートごとのそれぞれの自動運転車5の逸脱リスク及び運転スキルにしたがって、複数の自動運転車5からユーザの配送に割り当てる1以上の自動運転車5を選択する。つまり、マッチング部26は、ユーザの要望及びユーザの運転スキルに応じた1以上の自動運転車5を選択し、選択した1以上の自動運転車5の候補を予約制御部21に出力する。
具体的には、マッチング部26は、予約制御部21から出発時刻情報及び到着時刻情報を取得し、ユーザ管理部22からスキル情報及び要望情報を取得し、車両管理部23から車両スペック情報を取得し、ルート算出部24からルート情報を取得する。また、マッチング部26は、リスク推定部25に車両スペック情報及びルート情報等を出力することで、リスク推定部25からリスク情報を取得する。マッチング部26は、取得したこれらの情報を満たす1以上の自動運転車5を複数の自動運転車5から選択する。
より具体的には、マッチング部26は、ユーザの配送に割り当てる自動運転車5の選択で、運転スキルがある又は運転スキルが閾値以上の場合、逸脱リスクがある又は逸脱リスクが閾値以上の1以上の自動運転車5を複数の自動運転車5から選択する。例えば、マッチング部26は、運転スキルが閾値以上のユーザでは、逸脱リスクが高い1以上の自動運転車5を選択する。逸脱リスクが高い自動運転車5は、ODD逸脱が発生しやすいため、手動運転が要求される可能性が高い自動運転車5である。つまり、運転スキルが高いユーザに対しては、手動運転状態に遷移しても、自動運転車5を走行させることができるため、マッチング部26は、逸脱リスクが高い1以上の自動運転車5を選択する。なお、マッチング部26は、運転スキルが閾値以上のユーザに対して、逸脱リスクが低い自動運転車5に空きがある場合、当該自動運転車5を選択してもよい。
また、例えば、マッチング部26は、ユーザの配送に割り当てる自動運転車5の選択で、運転スキルがない又は運転スキルが閾値より低い場合、逸脱リスクがない又は逸脱リスクが閾値より低い1以上の自動運転車5を複数の自動運転車5から選択する。例えば、マッチング部26は、運転スキルが閾値より低いユーザでは、逸脱リスクが低い1以上の自動運転車5を選択する。逸脱リスクが低い自動運転車5は、運転自体又は高い運転スキルが要求されない自動運転車5である。ここで、逸脱リスクがない又は逸脱リスクが閾値より低い自動運転車5は、複数の自動運転車5のうちの他の自動運転車5よりも、逸脱リスクが低い自動運転車5である。運転スキルが低いユーザに対しては、手動運転状態に遷移してしまうと、自動運転車5を走行させることができなくなるおそれがあるため、マッチング部26は、逸脱リスクが低い1以上の自動運転車5を複数の自動運転車5から選択する。ここで、運転スキルが閾値より低いユーザは、手動運転状態の自動運転車5両を運転することができない、又は、限定的な条件で手動運転状態の自動運転車5両を運転できることを意味する。限定的な条件としては、例えば時間的な条件又は操作内容の条件などがある。
さらに、マッチング部26は、ユーザの配送に割り当てる自動運転車5の選択で、要望情報に含まれる許容性にも応じて、ユーザの配送に割り当てる1以上の自動運転車5を複数の自動運転車5から選択してもよい。例えば、マッチング部26は、運転スキルが閾値以上であっても許容性がなければ、逸脱リスクが低い1以上の自動運転車5を選択する。つまり、運転スキルが高くても許容性がないユーザに対しては、手動運転状態に遷移しても、自動運転車5を運転しないため、マッチング部26は、逸脱リスクが低い1以上の自動運転車5を選択する。
さらに、マッチング部26は、ユーザの体調にも応じて、ユーザの配送に割り当てる自動運転車5を複数の自動運転車5から選択してもよい。例えば、マッチング部26は、運転スキルが閾値以上であっても体調不良のユーザに対しては、逸脱リスクが低い1以上の自動運転車5を選択する。これは、体調不良のユーザは正常に運転することが困難であるおそれがあるためである。
このように、マッチング部26は、選択した1以上の自動運転車5のうち、運転スキルに応じて、ルート情報に示すルートを、ユーザが希望する出発時刻から到着時刻までの間に走行可能な1以上の自動運転車5を選択する。
マッチング部26は、候補となる自動運転車5、候補となるルートを含む候補情報を生成する。具体的には、候補情報は、選択した結果である1以上の自動運転車5の候補、1以上の自動運転車5の候補ごとに走行するルート、に加えて、1以上の自動運転車5のそれぞれの仕様、1以上の自動運転車5の候補ごとのメリット(すなわち利得)を含んでもよい。マッチング部26は、予約制御部21及び通信部28を介して、候補情報を端末装置3に送信する。ここで、メリットは、ルートを走行する自動運転車5の走行時間等の時間的コスト、車両の性能、設備及び金銭的コスト等の観点のメリットである。メリットの観点として、例えば、乗車時間、要望時間帯に対する適応度、静粛性、座席の品質、利用料金等がある。なお、メリットの代わりに又はそれと共にデメリットが候補情報に含まれてもよい。また、候補情報は、他にも、出発地情報、目的地情報、出発時刻情報、到着時刻情報といった予約情報、及びユーザの許容性等を含んでいてもよい。
マッチング部26は、逸脱リスクがある又は逸脱リスクが閾値以上の自動運転車5は、複数の自動運転車5のうちの他の自動運転車5よりも、逸脱リスクが高くかつユーザの受ける利得が高い自動運転車5である。つまり、逸脱リスクの高い自動運転車5には、逸脱リスクの低い自動運転車5(すなわち他の自動運転車5)よりも、座席が高品質、利用料金が安い等の利得(言い換えると特典)がある。
また、マッチング部26は、通信部28及び予約制御部21を介して端末装置3から、候補情報に対する応答として、ユーザが希望する自動運転車5及びルート等を示す決定情報を取得する。マッチング部26は、配車制御部27に決定情報を出力して通知する。ここで決定情報は、ユーザが希望した自動運転車5を特定する車両情報、自動運転車5が走行する予定のルート情報、出発地情報、目的地情報、出発時刻情報、到着時刻情報、要望情報、スキル情報等を含む。
[配車制御部27]
配車制御部27は、マッチング部26から決定情報を取得すると、取得した決定情報の車両情報に示される自動運転車5を配車するために、通信部28等を介して、自動運転車5に配車指示コマンドを送信する。つまり、配車制御部27は、出発時刻情報に示される時刻及び出発地情報に示される出発地に、車両情報に示される自動運転車5を配車する。ここで配車指示コマンドは、車両情報、自動運転車5が走行する予定のルート情報、出発地情報、目的地情報、出発時刻情報、到着時刻情報等を含む。
配車制御部27は、マッチング部26から決定情報を取得すると、取得した決定情報の車両情報に示される自動運転車5を配車するために、通信部28等を介して、自動運転車5に配車指示コマンドを送信する。つまり、配車制御部27は、出発時刻情報に示される時刻及び出発地情報に示される出発地に、車両情報に示される自動運転車5を配車する。ここで配車指示コマンドは、車両情報、自動運転車5が走行する予定のルート情報、出発地情報、目的地情報、出発時刻情報、到着時刻情報等を含む。
また、配車制御部27は、自動運転車5に配車指示コマンドを送信するとともに、予約結果情報を、通信部28等を介して端末装置3に送信する。予約結果情報は、ユーザが希望した、所望の自動運転車5、ルート情報、出発地情報、目的地情報、出発時刻情報、到着時刻情報及び要望情報等の条件を満たす配車の予約が決定された結果を示す情報である。
[通信部28]
通信部28は、図示しないネットワークを介して、端末装置3及び自動運転車5と、無線又は有線通信可能な通信モジュールである。通信部28は、端末装置3から予約情報を受信したり、端末装置3に候補情報を送信したり、ユーザが決定した自動運転車5等を示す決定情報を受信したりする。また、通信部28は、配車制御部27が配車する自動運転車5を決定すれば、配車指示コマンドを当該自動運転車5に送信したり、予約結果情報を端末装置3に送信したりする。通信部28は、出力部の一例である。
通信部28は、図示しないネットワークを介して、端末装置3及び自動運転車5と、無線又は有線通信可能な通信モジュールである。通信部28は、端末装置3から予約情報を受信したり、端末装置3に候補情報を送信したり、ユーザが決定した自動運転車5等を示す決定情報を受信したりする。また、通信部28は、配車制御部27が配車する自動運転車5を決定すれば、配車指示コマンドを当該自動運転車5に送信したり、予約結果情報を端末装置3に送信したりする。通信部28は、出力部の一例である。
[端末装置3]
端末装置3は、ネットワーク等を介して、情報処理システム1と通信可能に接続されるパーソナルコンピュータ、スマートフォン又はタブレット端末等である。端末装置3は、ユーザからの自動運転車5の配車の予約入力を受付けることで、予約情報を情報処理システム1に送信したり、マッチング部26が生成した候補情報を受信したりする。また、端末装置3は、通知した候補情報に対して、1以上の自動運転車5の候補から、ユーザが希望する自動運転車5等を示す決定情報を情報処理システム1に送信する。
端末装置3は、ネットワーク等を介して、情報処理システム1と通信可能に接続されるパーソナルコンピュータ、スマートフォン又はタブレット端末等である。端末装置3は、ユーザからの自動運転車5の配車の予約入力を受付けることで、予約情報を情報処理システム1に送信したり、マッチング部26が生成した候補情報を受信したりする。また、端末装置3は、通知した候補情報に対して、1以上の自動運転車5の候補から、ユーザが希望する自動運転車5等を示す決定情報を情報処理システム1に送信する。
また、端末装置3は、予約結果情報を取得すると、ユーザが希望する、所望の自動運転車5、ルート情報、出発地情報、目的地情報、出発時刻情報、到着時刻情報及び要望情報等の条件を受信して通知する。通知は、表示、音声出力等で実現されてもよい。
[自動運転車5]
自動運転車5は、ネットワーク等を介して、情報処理システム1と通信可能に接続される車両である。自動運転車5は、走行する環境に応じて、自動運転状態から手動運転状態に遷移したり、手動運転状態から自動運転状態に遷移したりする。例えば、自動運転車5は、自動運転が困難な環境では、手動運転に切換えるために、ユーザに対して手動運転をするように促したりする。例えば、自動運転車5は、ユーザの運転スキルに応じて、自動運転が困難な環境で、ユーザに対して手動運転するように促す。
自動運転車5は、ネットワーク等を介して、情報処理システム1と通信可能に接続される車両である。自動運転車5は、走行する環境に応じて、自動運転状態から手動運転状態に遷移したり、手動運転状態から自動運転状態に遷移したりする。例えば、自動運転車5は、自動運転が困難な環境では、手動運転に切換えるために、ユーザに対して手動運転をするように促したりする。例えば、自動運転車5は、ユーザの運転スキルに応じて、自動運転が困難な環境で、ユーザに対して手動運転するように促す。
なお、自動運転車5は、ODDを逸脱したことで、ユーザによる手動運転状態に切換えたとしても、ODD逸脱が解消されれば、手動運転状態から自動運転状態に切換える。この場合、ユーザは、自動運転車5の運転を終了する。
<動作>
以上のように構成される情報処理システム1が行う動作について、図2を用いて説明する。
以上のように構成される情報処理システム1が行う動作について、図2を用いて説明する。
図2は、実施の形態1における情報処理システム1の動作を示すフローチャートである。
まず、ユーザが端末装置3を操作することで、ユーザの出発地、ユーザの目的地、ユーザの要望、ユーザの運転スキル等の予約情報を入力する。端末装置3は、情報処理システム1に予約情報を送信する。端末装置3には、任意で、出発地での出発時刻、及び、目的地に到着する到着時刻の少なくともいずれか一方が入力される。
情報処理システム1の予約制御部21は、予約情報を取得したかどうかを判定する(S11)。予約制御部21がユーザの予約情報を取得しない場合(S11でNO)、情報処理システム1は処理を終了する。
予約制御部21がユーザの予約情報を取得すると(S11でYES)、ユーザ管理部22は、予約制御部21から予約情報に含まれる要望情報及びスキル情報等を取得する(S12)。
ユーザ管理部22は、スキル情報及び要望情報をマッチング部26に出力する。
また、ルート算出部24は、予約制御部21から出発地情報及び目的地情報等を取得すると、ユーザを配送するためのルートの候補を算出する(S13)。ルート算出部24は、算出したルートの候補であるルート情報をマッチング部26に出力する。
また、車両管理部23は、マッチング部26からの要求に応じて、要求に対応する自動運転車5の車両スペック情報をマッチング部26に出力する。マッチング部26は、車両スペック情報を取得する(S14)。
また、リスク推定部25は、マッチング部26を介して取得したルート情報及び車両スペック情報を取得すると、ルート情報に示されるルートごとに、それぞれの自動運転車5の逸脱リスクを推定する(S15)。リスク推定部25は、車両スペック情報に示される自動運転車5の仕様と、ルート情報に示されるルート上における道幅等の静的な情報と、道路工事の有無、道路の混雑状況、道路を歩行する人の多寡、事故多発地点の有無等のような動的な情報と、によって自動運転車5の逸脱リスクを推定する。リスク推定部25は、自動運転車5ごと、及び、ルートごとに逸脱リスクを推定する。
例えば、リスク推定部25は、ルート情報に示されるルートにおいて人の密集レベルが高い地点が存在する場合、性能の低い自動運転車5では性能の高い自動運転車5よりも逸脱リスクが高く推定される。
逸脱リスクが高ければ、自動運転車5が手動運転状態に切換り易いため、ユーザには、高い運転スキルが求められる。また、逸脱リスクが低ければ、自動運転車5が手動運転状態に切換り難いため、ユーザは、運転スキルの高低はさほど問題とならない。
なお、ステップS13及びS14の処理については、並列して行ってもよい。
マッチング部26は、スキル情報及びリスク情報に基づいてルート及び自動運転車5の候補を選択する(S16)。具体的には、マッチング部26は、ユーザ管理部22からスキル情報及び要望情報を取得し、リスク推定部25からリスク情報を取得し、リスクが推定されたルート及び車両のリストを取得する。そして、マッチング部26は、当該リストにあるルートごとに以下の処理を行う。マッチング部26は、運転スキルがある又は運転スキルが閾値以上の場合すなわち運転可の場合、逸脱リスクがある又は逸脱リスクが閾値以上の1以上の自動運転車5をリストにある複数の自動運転車5から選択する。また、マッチング部26は、運転スキルがある又は運転スキルが閾値以上でも、ユーザの許容性が閾値より低い場合、逸脱リスクが低い又は逸脱リスクが閾値より低い1以上の自動運転車5をリストにある複数の自動運転車5から選択する。また、マッチング部26は、運転スキルがない又は運転スキルが閾値より低い場合、逸脱リスクがない又は逸脱リスクが閾値より低い1以上の自動運転車5をリストにある複数の自動運転車5から選択する。
マッチング部26は、選択した自動運転車5及びルートを含む候補情報を、通信部28等を介して端末装置3に送信する(S17)。具体的には、マッチング部26は、予約制御部21から出発時刻情報及び到着時刻情報等を取得する。そして、マッチング部26は、リストにあるルートごとに、出発時刻情報及び到着時刻情報等に基づいて、リストから選択した1以上の自動運転車5のうち、当該ルートを、ユーザが希望する出発時刻から到着時刻までの間に走行可能な1以上の自動運転車5を候補として選択する。マッチング部26は、候補として選択された自動運転車5及びルートを含む候補情報を生成し、通信部28を介して端末装置3に送信する。
図示されていないが、端末装置3は、候補情報を取得すると、取得した候補情報を表示する。ユーザは、表示された候補情報から、所望の自動運転車5、ルート等を決定する。端末装置3は、自動運転車5及びルート等が決定された決定情報を情報処理システム1に送信する。
情報処理システム1は、決定情報を取得したかどうかを判定する(S18)。
情報処理システム1が決定情報を取得しない場合(S18でNO)、情報処理システム1は、処理をステップS18に戻す。なお、情報処理システム1は、規定期間が経過しても決定情報を取得しない場合、処理を終了してもよい。
また、情報処理システム1が決定情報を取得した場合(S18でYES)、情報処理システム1のマッチング部26は、配車制御部27に決定情報を出力する。配車制御部27は、マッチング部26から決定情報を取得すると、取得した決定情報に示される自動運転車5を配車するために、通信部28等を介して、自動運転車5に配車指示コマンドを送信する。つまり、配車制御部27は、決定情報の車両情報に示される自動運転車5を、出発地に配車するように制御する(S19)。これにより、配車指示コマンドを受信した自動運転車5は、出発時刻に出発地に到着するように、移動する。
また、配車制御部27は、自動運転車5に配車指示コマンドを送信するとともに、予約結果情報を、通信部28等を介して端末装置3に送信する(S20)。これにより、端末装置3には、ユーザの所望の自動運転車5の配車の予約結果を示す予約結果情報が表示される。そして、情報処理システム1は、処理を終了する。
<作用効果>
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
以上のように、本実施の形態における情報処理方法及び情報処理システム1によれば、人の運転スキルに応じた逸脱リスクの自動運転車5を人に割り当てることができる。このため、自動運転システムが運行設計領域を逸脱することを抑制したり、逸脱しても人の配送の運行が滞ることを抑制したりすることができる。したがって、自動運転車5の運行効率の低下を抑制することができる。
例えば、運転スキルが低いユーザには、逸脱リスクの低い自動運転車5が割り当てられる。また、運転スキルが高いユーザには、逸脱リスクの高い自動運転車5が割り当てられる。逸脱リスクの高い自動運転車5がルートの運行設計領域から逸脱したとしても、運転スキルが高いユーザは、自動運転車5を走行させることができるためである。このように、逸脱リスクの高い自動運転車5も、逸脱リスクの低い自動運転車5も稼働することとなり、自動運転車5の運行効率を向上させることができる。
(実施の形態2)
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を、図3を用いて説明する。
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を、図3を用いて説明する。
図3は、実施の形態2における情報処理システム1を示すブロック図である。
本実施の形態における他の構成は、特に明記しない場合は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
本実施の形態の自動運転システムには、自動運転車5を遠隔監視又は遠隔操作するオペレータが存在している。オペレータが遠隔監視又は遠隔操作をするための遠隔システムは、遠隔地から自動運転車5に関する車両情報を自動運転車5から取得し、自動運転車5の遠隔監視又は遠隔操作を可能にする。
[マッチング部26]
マッチング部26は、候補情報の生成の際に、選択された1以上の自動運転車5についての逸脱リスク及び運転スキルにしたがって、選択された1以上の自動運転車5を監視するためのリソースである監視リソースを、それぞれ算出する。監視リソースは、オペレータのリソース(例えば時間、工数)であってもよく、監視処理にかかる計算量又は通信量等の計算リソースであってもよい。
マッチング部26は、候補情報の生成の際に、選択された1以上の自動運転車5についての逸脱リスク及び運転スキルにしたがって、選択された1以上の自動運転車5を監視するためのリソースである監視リソースを、それぞれ算出する。監視リソースは、オペレータのリソース(例えば時間、工数)であってもよく、監視処理にかかる計算量又は通信量等の計算リソースであってもよい。
マッチング部26は、算出された監視リソース、選択された1以上の自動運転車5の仕様及びルートにしたがって、選択された1以上の自動運転車5によるユーザの配送に関するコストを算出し、算出したコストを、通信部28を介してユーザに通知する。具体的には、マッチング部26は、監視リソースの大きさ、ルートの走行時間、自動運転車5の使用料等に応じて、時間的コスト又は金銭的コストを算出し、算出した結果を示すコスト情報と候補情報とを、通信部28等を介して端末装置3に送信する。金銭的コストは、価格で表現されてもよくポイントで表現されてもよい。
<動作>
以上のように構成される情報処理システム1が行う動作について、図4を用いて説明する。
以上のように構成される情報処理システム1が行う動作について、図4を用いて説明する。
図4は、実施の形態2における情報処理システム1の動作を示すフローチャートである。
図2と同様の処理については、同一の符号を付し、説明を適宜省略する。
情報処理システム1の処理において、ステップS11~S16の処理を経たのちに、マッチング部26は、選択した1以上の自動運転車5についての逸脱リスク及び運転スキルにしたがって、選択された1以上の自動運転車5を監視するためのリソースである監視リソースを、それぞれ算出する(S21)。
次に、マッチング部26は、算出された監視リソース、選択された1以上の自動運転車5の仕様及びルートにしたがって、選択された1以上の自動運転車5によるユーザの配送に関するコストを算出する(S22)。
次に、マッチング部26は、選択した1以上の自動運転車5の候補、ルート情報に示されるルートの候補等を含む候補情報とコスト情報とを、通信部28等を介して端末装置3に送信する(S23)。
そして、情報処理システム1は、ステップS18に進み、図2と同様の処理を行う。
<作用効果>
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
以上のように、本実施の形態における情報処理方法及び情報処理システム1では、自動運転車5に乗る予定のユーザに対して、選択された自動運転車5の監視を含めた自動運転にかかるトータルのコストを提示することができる。このため、このユーザは、提示されたそれぞれのコストを把握した上で、所望の自動運転車5を予約して決定することができる。
本実施の形態における情報処理方法及び情報処理システム1においても、実施の形態1と同様の作用効果を奏する。
(実施の形態3)
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を説明する。
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を説明する。
本実施の形態における他の構成は、特に明記しない場合は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
[マッチング部26]
マッチング部26は、選択された1以上の自動運転車5の仕様及びルートに対する逸脱リスクにしたがって、選択された1以上の自動運転車5がルート上で停止する可能性である停止リスクを算出し、算出した停止リスクを通知する。例えば、候補情報として、運転スキルに応じたルート及び自動運転車5の候補がユーザ提示される一方で、各候補の逸脱リスクは必ずしも同一とは限らない。逸脱リスクの高い自動運転車5は、ルート上で手動運転状態に切換えられたり、走行停止又は走行中止となったりする可能性がある。他方で、逸脱リスクがそのままユーザに提示されても、ユーザは理解することが困難であるおそれもある。このため、マッチング部26は、候補情報だけでなく、算出した停止リスクを、通信部28等を介して端末装置3に送信する。
マッチング部26は、選択された1以上の自動運転車5の仕様及びルートに対する逸脱リスクにしたがって、選択された1以上の自動運転車5がルート上で停止する可能性である停止リスクを算出し、算出した停止リスクを通知する。例えば、候補情報として、運転スキルに応じたルート及び自動運転車5の候補がユーザ提示される一方で、各候補の逸脱リスクは必ずしも同一とは限らない。逸脱リスクの高い自動運転車5は、ルート上で手動運転状態に切換えられたり、走行停止又は走行中止となったりする可能性がある。他方で、逸脱リスクがそのままユーザに提示されても、ユーザは理解することが困難であるおそれもある。このため、マッチング部26は、候補情報だけでなく、算出した停止リスクを、通信部28等を介して端末装置3に送信する。
<動作>
以上のように構成される情報処理システム1が行う動作について、図5を用いて説明する。
以上のように構成される情報処理システム1が行う動作について、図5を用いて説明する。
図5は、実施の形態3における情報処理システム1の動作を示すフローチャートである。
図2と同様の処理については、同一の符号を付し、説明を適宜省略する。
情報処理システム1の処理において、ステップS11~S16の処理を経たのちに、マッチング部26は、選択された1以上の自動運転車5の仕様及びルートに対する逸脱リスクにしたがって、選択された1以上の自動運転車5がルート上で停止する可能性である停止リスクを算出する(S31)。
次に、マッチング部26は、選択した1以上の自動運転車5の候補、ルート情報に示されるルートの候補を含む候補情報、及び停止リスクを、通信部28等を介して端末装置3に送信する(S32)。
そして、情報処理システム1は、ステップS18に進み、図2と同様の処理を行う。
<作用効果>
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
以上のように、本実施の形態における情報処理方法及び情報処理システム1では、自動運転車5に乗る予定のユーザに対して、予め停止リスクを提示することができる。例えば、このユーザは、停止リスクを理解したうえで、自動運転車5の配車を予約して決定することができる。目的地の途中又は近くまで移動できればよいと考えるユーザも存在するため、このような場合に好適である。
本実施の形態における情報処理方法及び情報処理システム1においても、実施の形態1等と同様の作用効果を奏する。
(実施の形態4)
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を説明する。
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を説明する。
本実施の形態における他の構成は、特に明記しない場合は、実施の形態1等と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
[マッチング部26]
マッチング部26は、選択された1以上の自動運転車5の仕様及びルートに対する逸脱リスクにしたがって、選択されたそれぞれの自動運転車5が走行するための走行制御を決定し、決定された走行制御に基づき走行計画を生成する。予め走行計画が用意されている場合は、用意されている走行計画が変更されることで走行計画が生成されてもよい。生成された走行計画は、通信部28を介して自動運転車5に通知される。具体的には、マッチング部26は、逸脱リスクに応じて、走行計画に含まれる速度、加速度、減速度、操舵角等を変更する。例えば、逸脱リスクが閾値より低い場合、速度、加速度、減速度、操舵角等の許容範囲が相対的に大きく設定されてもよい。また、逸脱リスクが閾値以上である場合、当該許容範囲が相対的に小さく設定されてもよい。
マッチング部26は、選択された1以上の自動運転車5の仕様及びルートに対する逸脱リスクにしたがって、選択されたそれぞれの自動運転車5が走行するための走行制御を決定し、決定された走行制御に基づき走行計画を生成する。予め走行計画が用意されている場合は、用意されている走行計画が変更されることで走行計画が生成されてもよい。生成された走行計画は、通信部28を介して自動運転車5に通知される。具体的には、マッチング部26は、逸脱リスクに応じて、走行計画に含まれる速度、加速度、減速度、操舵角等を変更する。例えば、逸脱リスクが閾値より低い場合、速度、加速度、減速度、操舵角等の許容範囲が相対的に大きく設定されてもよい。また、逸脱リスクが閾値以上である場合、当該許容範囲が相対的に小さく設定されてもよい。
また、マッチング部26は、生成された走行計画から予約情報を更新してもよい。予約情報が更新された場合、マッチング部26は、更新された予約情報を、通信部28等を介して端末装置3に通知する。ここで走行計画は、ルートを走行する自動運転車5の走行制御を示す情報であり、ルート上の自動運転車5の速度、加速度、減速度、操舵角等の走行制御を示す情報である。
ここで、同一のルートでも、自動運転車5の性能によって走行計画の示す速度、加速度、減速度等が異なる場合がある。例えば、ルート上の所定区間において、性能の高い自動運転車5では、時速30kmで走行することができても、性能の低い自動運転車5では、時速10kmでしか走行することができない場合がある。これでは、選択された自動運転車5及びルートの候補によっては、例えば、予定の到着時刻を超えてしまう恐れがある。
そこで、マッチング部26は、生成された走行計画にしたがって予約情報を更新するか否かを判定する。具体的には、マッチング部26は、選択されたそれぞれの自動運転車5に応じて、走行計画にしたがって、出発時刻及び到着時刻の少なくともいずれかを変更すると判定した場合、予約制御部21を介して取得した出発時刻情報及び到着時刻情報を変更した新しい予約情報と候補情報とを、通信部28等を介して端末装置3に送信する。
<動作>
以上のように構成される情報処理システム1が行う動作について、図6を用いて説明する。
以上のように構成される情報処理システム1が行う動作について、図6を用いて説明する。
図6は、実施の形態4における情報処理システム1の動作を示すフローチャートである。
図2と同様の処理については、同一の符号を付し、説明を適宜省略する。
情報処理システム1の処理において、ステップS11~S16の処理を経たのちに、マッチング部26は、選択された1以上の自動運転車5の仕様及びルートに対する逸脱リスクにしたがって、選択されたそれぞれの自動運転車5が走行するための走行計画を決定する(S41)。つまり、マッチング部26は、ルート上における自動運転車5の速度、加速度、減速度、操舵角等の走行制御を示す情報を逸脱リスクに応じて決定する。
マッチング部26は、決定された走行計画にしたがって、出発時刻及び到着時刻の少なくともいずれかを変更するかどうかを判定する(S42)。
マッチング部26は、出発時刻及び到着時刻のいずれも、変更しない場合(S42でNO)、ステップS18に進み、図2と同様の処理を行う。
また、マッチング部26は、出発時刻及び到着時刻の少なくともいずれかを変更する場合(S42でYES)、走行計画及び元の予約情報にしたがって出発時刻情報及び到着時刻情報を更新する(S43)。
マッチング部26は、更新した予約情報と候補情報とを、通信部28等を介して端末装置3に送信する(S44)。
そして、情報処理システム1は、ステップS18に進み、図2と同様の処理を行う。
<作用効果>
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
以上のように、本実施の形態における情報処理方法及び情報処理システム1では、自動運転車5に乗る予定のユーザに対して、走行計画を提示することができる。このため、このユーザは、走行計画に示される移動時間、ルート等が自身の要望に適合しているかを判断する材料として用いることができる。例えば、ユーザに対して複数の走行計画が提示された場合、このユーザは、所望の走行計画を選択することができる。
本実施の形態における情報処理方法及び情報処理システム1においても、実施の形態1等と同様の作用効果を奏する。
(実施の形態5)
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を説明する。
<構成>
本実施の形態の情報処理方法及び情報処理システム1の構成を説明する。
本実施の形態における他の構成は、特に明記しない場合は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
[マッチング部26]
マッチング部26は、運転スキルがない又は運転スキルが閾値よりも低いユーザに対して、逸脱リスクがない又は逸脱リスクが閾値よりも低い1以上の自動運転車5が選択されない場合、取得したルートを別のルートに変更する。別のルートは、取得したルートよりも逸脱リスクが低いルートである。
マッチング部26は、運転スキルがない又は運転スキルが閾値よりも低いユーザに対して、逸脱リスクがない又は逸脱リスクが閾値よりも低い1以上の自動運転車5が選択されない場合、取得したルートを別のルートに変更する。別のルートは、取得したルートよりも逸脱リスクが低いルートである。
例えば、運転スキルがない又は運転スキルが閾値よりも低いユーザに対して、逸脱リスクがない又は逸脱リスクが閾値よりも低い1以上の自動運転車5が選択されなかったせいで、条件に該当しない自動運転車5がユーザに提示され予約された場合、当該自動運転車5がルート上で手動運転状態に切り替えられてもユーザは運転することができない。そのため、自動運転車5が走行停止又は走行中止となる可能性がある。
そこで、マッチング部26は、上記の場合には、ルート算出部24から取得したルート情報に示されるルートを、別のルートに変更する。つまり、マッチング部26は、元のルートに比べて逸脱リスクを下げる又は逸脱リスクを無くした代替ルートに変更する。マッチング部26は、代替ルートの条件をルート算出部24に提供し、ルート算出部24に代替ルートを探索させる。
マッチング部26は、代替ルートを取得すると、代替の候補情報を生成し、生成した代替の候補情報を、通信部28等を介して端末装置3に送信する。具体的には、マッチング部26は、代替ルートにおける逸脱リスクにしたがって自動運転車5の候補を選択し直す。選択し直された自動運転車5の候補とルートの候補とを含む代替の候補情報が生成される。
また、マッチング部26は、代替の候補情報に基づいて予約情報を更新してもよい。例えば、マッチング部26は、予約情報を、代替の候補情報の示すルート及び自動運転車5により予約可能な出発時刻、到着時刻などの予約情報に更新する。そして、マッチング部26は、通信部28を介して更新した予約情報を端末装置3に送信する。
また、マッチング部26は、運転スキルがない又は運転スキルが閾値よりも低いユーザに対して、逸脱リスクがない又は逸脱リスクが閾値よりも低い1以上の自動運転車5が選択されない場合、ユーザの運転スキルが向上するための提案を通知してもよい。具体的には、マッチング部26は、運転スキルを上げると候補となるルート及び自動運転車5を選択することができる場合、上記提案を示す提案情報を生成する。生成された提案情報は、通信部28を介して端末装置3に送信される。ユーザに提示する自動運転車5の候補がない原因は、ユーザの運転スキルが低いことに原因がある場合がある。この場合、運転スキルを向上させるための講習を受講すること等をユーザに提案することで、ユーザに候補情報が提示できるようにしたり、提示できる候補情報を増やしたりすることができる。
<動作>
以上のように構成される情報処理システム1が行う動作について、図7を用いて説明する。
以上のように構成される情報処理システム1が行う動作について、図7を用いて説明する。
図7は、実施の形態5における情報処理システム1の動作を示すフローチャートである。
図2と同様の処理については、同一の符号を付し、説明を適宜省略する。
情報処理システム1の処理において、ステップS11~S16の処理を経たのちに、マッチング部26は、1以上の自動運転車5の候補があるかどうかを判定する(S51)。
1以上の自動運転車5の候補がある場合(S51でYES)、ステップS17に進み、図2と同様の処理を行う。
一方、マッチング部26は、1以上の自動運転車5の候補がない場合(S51でNO)、ステップS16の元のルートに比べて逸脱リスクを下げる又は逸脱リスクを無くした、代替ルートをルート算出部24に探索させる(S52)。
マッチング部26は、探索により発見された代替ルートにしたがって代替の候補情報を生成する(S53)。具体的には、マッチング部26は、代替ルートにおける逸脱リスクにしたがって自動運転車5の候補を選択し直す。
マッチング部26は、生成した代替の候補情報を、通信部28を介して端末装置3に送信する(S54)。
また、マッチング部26は、ユーザの運転スキルが向上するための提案を通知する(S55)。
そして、情報処理システム1は、ステップS18に進み、図2と同様の処理を行う。
<作用効果>
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
次に、本実施の形態における情報処理方法及び情報処理システム1の作用効果について説明する。
以上のように、本実施の形態における情報処理方法及び情報処理システム1では、運転スキルの低い人に対して運転スキルを向上させるように促すことができる。
また、運転スキルがない又は運転スキルの低いユーザには、取得したルートよりも逸脱リスクの低いルートを提示することができる。このため、運転スキルがない又は運転スキルの低いユーザを乗せた自動運転車がODDを逸脱することなく移動させやすくすることができる。
本実施の形態における情報処理方法及び情報処理システム1においても、実施の形態1等と同様の作用効果を奏する。
(その他変形例等)
以上、本開示について、実施の形態1~5に基づいて説明したが、本開示は、これら実施の形態1~5等に限定されるものではない。
以上、本開示について、実施の形態1~5に基づいて説明したが、本開示は、これら実施の形態1~5等に限定されるものではない。
例えば、上記各実施の形態1~5に係る情報処理方法及び情報処理システムは、コンピュータを用いたプログラムによって実現され、このようなプログラムは、記憶装置に記憶されてもよい。
また、上記各実施の形態1~5に係る情報処理方法及び情報処理システムに含まれる各処理部は、典型的に集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
なお、上記各実施の形態1~5において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示の実施の形態1~5は例示された数字に制限されない。
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
その他、実施の形態1~5に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で実施の形態1~5における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
本開示は、自動運転車、自動運転車を遠隔操作する装置、自動運転車両の状態を提示する端末装置、或いはこれらを含むシステムに適用できる。
1 情報処理システム
5 自動運転車
22 ユーザ管理部(運転スキル取得部)
23 車両管理部(仕様取得部)
24 ルート算出部
25 リスク推定部(リスク判定部)
26 マッチング部(選択部)
28 通信部(出力部)
5 自動運転車
22 ユーザ管理部(運転スキル取得部)
23 車両管理部(仕様取得部)
24 ルート算出部
25 リスク推定部(リスク判定部)
26 マッチング部(選択部)
28 通信部(出力部)
Claims (13)
- コンピュータにより実行される情報処理方法であって、
自動運転車に乗る人が手動運転可能な自動運転車を運転できるか否か及び運転できる度合いの少なくとも1つである運転スキルを取得し、
複数の自動運転車の自動運転に関する仕様をそれぞれ取得し、
前記人を配送するためのルートを取得し、
前記仕様のそれぞれと前記ルートとに基づいて、自動運転車を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ判定し、
前記逸脱リスクのそれぞれ及び前記運転スキルにしたがって、前記複数の自動運転車から前記人の配送に割り当てる自動運転車を選択し、
選択した自動運転車を通知する
情報処理方法。 - 運転要求に対する前記人の許容性を取得し、
前記人の配送に割り当てる自動運転車の選択では、前記許容性にも応じて、前記人の配送に割り当てる自動運転車を前記複数の自動運転車から選択する
請求項1に記載の情報処理方法。 - 前記人の体調を取得し、
前記人の配送に割り当てる自動運転車の選択では、前記体調にも応じて、前記人の配送に割り当てる自動運転車を前記複数の自動運転車から選択する
請求項1又は2に記載の情報処理方法。 - 前記人の配送に割り当てる自動運転車の選択では、前記運転スキルがある又は前記運転スキルが閾値以上の場合、前記逸脱リスクがある又は前記逸脱リスクが閾値以上の自動運転車を前記複数の自動運転車から選択する
請求項1~3のいずれか1項に記載の情報処理方法。 - 前記逸脱リスクがある又は前記逸脱リスクが閾値以上の自動運転車は、前記複数の自動運転車のうちの他の自動運転車よりも、前記逸脱リスクが高く、かつ、前記人の受ける利得が高い自動運転車である
請求項4に記載の情報処理方法。 - 前記人の配送に割り当てる自動運転車の選択では、前記運転スキルがない又は前記運転スキルが閾値より低い場合、前記逸脱リスクがない又は前記逸脱リスクが閾値より低い自動運転車を前記複数の自動運転車から選択する
請求項1~5のいずれか1項に記載の情報処理方法。 - 前記逸脱リスクがない又は前記逸脱リスクが閾値より低い自動運転車は、前記複数の自動運転車のうちの他の自動運転車よりも、前記逸脱リスクが低い自動運転車である
請求項6に記載の情報処理方法。 - 前記逸脱リスクがない又は前記逸脱リスクが前記閾値よりも低い自動運転車が選択されない場合、取得した前記ルートを別のルートに変更し、
前記別のルートは、取得した前記ルートよりも前記逸脱リスクが低いルートである
請求項6又は7に記載の情報処理方法。 - 前記逸脱リスクがない又は前記逸脱リスクが前記閾値よりも低い自動運転車が選択されない場合、前記人の前記運転スキルが向上するための提案を通知する
請求項6~8のいずれか1項に記載の情報処理方法。 - 前記選択された自動運転車についての前記逸脱リスク及び前記運転スキルにしたがって、前記選択された自動運転車を監視するためのリソースである監視リソースを算出し、
算出された前記監視リソース、前記選択された自動運転車の前記仕様及び前記ルートにしたがって、前記選択された自動運転車による前記人の配送に関するコストを算出し、
算出された前記コストを通知する
請求項1~9のいずれか1項に記載の情報処理方法。 - 前記選択された自動運転車の前記仕様及び前記ルートに対する前記逸脱リスクにしたがって、前記選択された自動運転車が前記ルート上で停止する可能性である停止リスクを算出し、
算出された前記停止リスクを通知する
請求項1~10のいずれか1項に記載の情報処理方法。 - 前記選択された自動運転車の前記仕様及び前記ルートに対する前記逸脱リスクにしたがって、前記選択された自動運転車の走行制御を決定し、
決定された走行制御に基づき走行計画を生成し、
生成された走行計画を通知する
請求項1~11のいずれか1項に記載の情報処理方法。 - 自動運転車に乗る人が手動運転可能な自動運転車を運転できるか否か及び運転できる度合いの少なくとも1つである運転スキルを取得する運転スキル取得部と、
複数の自動運転車の自動運転に関する仕様をそれぞれ取得する仕様取得部と、
前記人を配送するためのルートを算出するルート算出部と、
前記仕様取得部が取得する前記仕様のそれぞれと前記ルート算出部が算出する前記ルートとに基づいて、前記複数の自動運転車を含む自動運転システムが運行設計領域を逸脱する可能性及び逸脱する度合いの少なくとも1つを含む逸脱リスクをそれぞれ判定するリスク判定部と、
前記リスク判定部が判定する前記逸脱リスクのそれぞれ及び前記運転スキル取得部が取得する前記運転スキルにしたがって、前記複数の自動運転車から前記人の配送に割り当てる自動運転車を選択する選択部と、
前記選択部が選択した自動運転車を通知する出力部と、を備える
情報処理システム。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962825368P | 2019-03-28 | 2019-03-28 | |
US62/825,368 | 2019-03-28 | ||
JP2019215353 | 2019-11-28 | ||
JP2019215353 | 2019-11-28 | ||
PCT/JP2020/011663 WO2020196084A1 (ja) | 2019-03-28 | 2020-03-17 | 情報処理方法及び情報処理システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020196084A1 JPWO2020196084A1 (ja) | 2020-10-01 |
JP7402861B2 true JP7402861B2 (ja) | 2023-12-21 |
Family
ID=72608715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021509118A Active JP7402861B2 (ja) | 2019-03-28 | 2020-03-17 | 情報処理方法及び情報処理システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US11970172B2 (ja) |
JP (1) | JP7402861B2 (ja) |
CN (1) | CN113196354B (ja) |
WO (1) | WO2020196084A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11907815B1 (en) * | 2019-09-26 | 2024-02-20 | Hrl Laboratories, Llc | System and method for improved generalization from concept constrained dreams |
US11420655B2 (en) * | 2019-09-26 | 2022-08-23 | Hrl Laboratories, Llc | System and method for safety and efficacy override of an autonomous system |
JP7479271B2 (ja) | 2020-10-16 | 2024-05-08 | 株式会社日立製作所 | 自律走行制御システム |
KR20240087146A (ko) * | 2022-12-12 | 2024-06-19 | 주식회사 카카오모빌리티 | 경로 안내와 연동된 자율주행 소프트웨어의 검색과 학습에 의한 자율주행 제어 방법 및 장치 |
WO2024142299A1 (ja) * | 2022-12-27 | 2024-07-04 | 日産自動車株式会社 | 配車管理装置及び配車管理方法 |
CN116777560A (zh) * | 2023-07-05 | 2023-09-19 | 深圳友浩车联网股份有限公司 | 一种基于大数据的出租车派单系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017102664A (ja) | 2015-12-01 | 2017-06-08 | 株式会社デンソー | 情報伝達装置及びプログラム |
JP2018169270A (ja) | 2017-03-29 | 2018-11-01 | パナソニックIpマネジメント株式会社 | ナビゲーション方法およびそれを利用したナビゲーション装置 |
JP2018185229A (ja) | 2017-04-26 | 2018-11-22 | 三菱自動車工業株式会社 | 経路検索システム,経路検索プログラム及び経路検索方法 |
JP2019032664A (ja) | 2017-08-07 | 2019-02-28 | トヨタ自動車株式会社 | 配車システム、配車方法、サーバ、ユーザ端末、サーバプログラム、ユーザ端末プログラム、及び、記憶媒体。 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3683198B2 (ja) | 2001-09-20 | 2005-08-17 | Necソフト株式会社 | 営業車配車システムおよび営業車配車サーバー |
JP4400645B2 (ja) * | 2002-02-26 | 2010-01-20 | 日産自動車株式会社 | 車両用運転操作補助装置 |
JP4216050B2 (ja) * | 2002-11-22 | 2009-01-28 | 三井住友海上火災保険株式会社 | テレマティクスシステム、リスクサーバ、及びプログラム |
DE102013002533A1 (de) * | 2013-02-13 | 2014-08-14 | Audi Ag | Verfahren und Vorrichtung zur Darstellung von Informationen eines Systems |
AT514754B1 (de) * | 2013-09-05 | 2018-06-15 | Avl List Gmbh | Verfahren und Vorrichtung zur Optimierung von Fahrassistenzsystemen |
KR101491622B1 (ko) * | 2014-02-17 | 2015-02-11 | 연세대학교 산학협력단 | 자율 주행형 차량의 주행 제어 장치 및 방법 |
JP6537780B2 (ja) * | 2014-04-09 | 2019-07-03 | 日立オートモティブシステムズ株式会社 | 走行制御装置、車載用表示装置、及び走行制御システム |
US9547985B2 (en) * | 2014-11-05 | 2017-01-17 | Here Global B.V. | Method and apparatus for providing access to autonomous vehicles based on user context |
US20210118249A1 (en) * | 2014-11-13 | 2021-04-22 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle salvage and repair |
WO2016151750A1 (ja) * | 2015-03-24 | 2016-09-29 | パイオニア株式会社 | 地図情報記憶装置、自動運転制御装置、制御方法、プログラム及び記憶媒体 |
US20200317216A1 (en) * | 2015-04-10 | 2020-10-08 | State Farm Mutual Automobile Insurance Company | Operator-specific configuration of autonomous vehicle operation |
CN107531245B (zh) * | 2015-04-21 | 2020-01-24 | 松下知识产权经营株式会社 | 信息处理系统、信息处理方法、以及程序 |
JP6558735B2 (ja) * | 2015-04-21 | 2019-08-14 | パナソニックIpマネジメント株式会社 | 運転支援方法およびそれを利用した運転支援装置、運転制御装置、車両、運転支援プログラム |
JP6603045B2 (ja) * | 2015-05-28 | 2019-11-06 | アイシン・エィ・ダブリュ株式会社 | 走行態様検出システム、走行態様検出方法及びコンピュータプログラム |
JP6237725B2 (ja) * | 2015-07-27 | 2017-11-29 | トヨタ自動車株式会社 | 乗員情報取得装置及び車両制御システム |
US11441916B1 (en) * | 2016-01-22 | 2022-09-13 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle trip routing |
US10308246B1 (en) * | 2016-01-22 | 2019-06-04 | State Farm Mutual Automobile Insurance Company | Autonomous vehicle signal control |
JP6589713B2 (ja) * | 2016-03-24 | 2019-10-16 | トヨタ自動車株式会社 | 自動運転車両を用いたタクシーサービスシステム |
CN107298021B (zh) * | 2016-04-15 | 2022-03-08 | 松下电器(美国)知识产权公司 | 信息提示控制装置、自动驾驶车及其驾驶辅助系统 |
JP6720732B2 (ja) * | 2016-06-30 | 2020-07-08 | トヨタ自動車株式会社 | 車両の制御装置 |
US10146222B2 (en) * | 2016-07-12 | 2018-12-04 | Elwha Llc | Driver training in an autonomous vehicle |
JP6717723B2 (ja) | 2016-10-12 | 2020-07-01 | 矢崎総業株式会社 | 車両システム |
JP6768077B2 (ja) | 2016-10-21 | 2020-10-14 | 三菱電機株式会社 | 自動運転支援装置、自動運転車、自動運転支援方法および自動運転支援プログラム |
JP6602345B2 (ja) * | 2017-06-21 | 2019-11-06 | 本田技研工業株式会社 | 同乗システム |
JP6988211B2 (ja) * | 2017-07-11 | 2022-01-05 | 日産自動車株式会社 | 運転支援車両の走行ルート表示方法及び走行ルート表示装置 |
US10551835B2 (en) * | 2018-03-12 | 2020-02-04 | Toyota Research Institute | Systems and methods for operator skill mitigation |
US11620592B2 (en) * | 2018-04-09 | 2023-04-04 | Via Transportation, Inc. | Systems and methods for planning transportation routes |
US10807605B2 (en) * | 2018-12-19 | 2020-10-20 | Waymo Llc | Systems and methods for detecting and dynamically mitigating driver fatigue |
JP7402001B2 (ja) * | 2019-09-18 | 2023-12-20 | 株式会社Subaru | 車両の自動運転制御装置 |
KR20220080473A (ko) * | 2020-12-07 | 2022-06-14 | 현대자동차주식회사 | 차량 및 그 제어 방법 |
JP2022178814A (ja) * | 2021-05-21 | 2022-12-02 | マツダ株式会社 | 車両運転支援システム及び車両運転支援方法 |
US20230075193A1 (en) * | 2021-09-08 | 2023-03-09 | GM Global Technology Operations LLC | Methods and systems for dynamic fleet prioritization management |
-
2020
- 2020-03-17 CN CN202080006938.8A patent/CN113196354B/zh active Active
- 2020-03-17 WO PCT/JP2020/011663 patent/WO2020196084A1/ja active Application Filing
- 2020-03-17 JP JP2021509118A patent/JP7402861B2/ja active Active
-
2021
- 2021-06-02 US US17/336,907 patent/US11970172B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017102664A (ja) | 2015-12-01 | 2017-06-08 | 株式会社デンソー | 情報伝達装置及びプログラム |
JP2018169270A (ja) | 2017-03-29 | 2018-11-01 | パナソニックIpマネジメント株式会社 | ナビゲーション方法およびそれを利用したナビゲーション装置 |
JP2018185229A (ja) | 2017-04-26 | 2018-11-22 | 三菱自動車工業株式会社 | 経路検索システム,経路検索プログラム及び経路検索方法 |
JP2019032664A (ja) | 2017-08-07 | 2019-02-28 | トヨタ自動車株式会社 | 配車システム、配車方法、サーバ、ユーザ端末、サーバプログラム、ユーザ端末プログラム、及び、記憶媒体。 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020196084A1 (ja) | 2020-10-01 |
CN113196354B (zh) | 2023-10-20 |
WO2020196084A1 (ja) | 2020-10-01 |
US11970172B2 (en) | 2024-04-30 |
CN113196354A (zh) | 2021-07-30 |
US20210284173A1 (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7402861B2 (ja) | 情報処理方法及び情報処理システム | |
US11062415B2 (en) | Systems and methods for allocating networked vehicle resources in priority environments | |
JP6948935B2 (ja) | 情報管理方法及び情報管理装置 | |
JP7037762B2 (ja) | 情報処理装置及びプログラム | |
WO2020196086A1 (ja) | 情報処理方法及び情報処理システム | |
JP2010204708A (ja) | 配車管理装置、配車システム、配車方法及びプログラム | |
JP6979158B2 (ja) | 情報処理装置、相乗りユーザ選択方法及びプログラム | |
JP2019175390A (ja) | 搭乗管理システム、搭乗管理方法、プログラム、及び移動体 | |
JP2023096084A (ja) | 運行管理装置 | |
KR20200112630A (ko) | 자율주행 차량을 이용한 운송 서비스 제공 방법 | |
JP2022510788A (ja) | 自律型車両のための複数の目的地への移動 | |
JP2019028862A (ja) | 管理方法、管理装置、及び管理システム | |
US20220309926A1 (en) | Information processing method and information processing system | |
JP7062543B2 (ja) | 車両メンテナンス管理システム及び車両メンテナンス管理方法 | |
JP2022003458A (ja) | 配車管理装置及び配車管理方法 | |
JP7103261B2 (ja) | 配車装置および配車方法 | |
US11790474B2 (en) | Autonomous chauffeur | |
US20220164720A1 (en) | Resource allocation for an autonomous vehicle transportation service | |
US11619505B2 (en) | Autonomous vehicle intermediate stops | |
JP2019175389A (ja) | 相乗り支援システム、相乗り支援方法、プログラム、及び移動体 | |
JP2021015379A (ja) | 配車処理装置 | |
KR102524949B1 (ko) | 서비스 사용자용 인터페이스 제공 방법 및 장치 | |
JPWO2020039530A1 (ja) | 運転者選定装置および運転者選定方法 | |
JP7356822B2 (ja) | 遅延交渉の要否判断方法、遅延交渉の要否判断装置、及び遅延交渉の要否判断システム | |
JP7427548B2 (ja) | 配車制御装置、配車制御システム及び配車制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7402861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |