JP7363316B2 - ヘアピン型一本鎖rna分子の製造方法 - Google Patents

ヘアピン型一本鎖rna分子の製造方法 Download PDF

Info

Publication number
JP7363316B2
JP7363316B2 JP2019181613A JP2019181613A JP7363316B2 JP 7363316 B2 JP7363316 B2 JP 7363316B2 JP 2019181613 A JP2019181613 A JP 2019181613A JP 2019181613 A JP2019181613 A JP 2019181613A JP 7363316 B2 JP7363316 B2 JP 7363316B2
Authority
JP
Japan
Prior art keywords
rna molecule
oligo rna
stranded oligo
linker
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019181613A
Other languages
English (en)
Other versions
JP2019213567A (ja
JP2019213567A5 (ja
Inventor
英朗 稲田
克彦 伊関
慶一 沖村
真人 佐野坂
あゆみ ▲高▼科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019213567A publication Critical patent/JP2019213567A/ja
Publication of JP2019213567A5 publication Critical patent/JP2019213567A5/ja
Application granted granted Critical
Publication of JP7363316B2 publication Critical patent/JP7363316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y605/00Ligases forming phosphoric ester bonds (6.5)
    • C12Y605/01Ligases forming phosphoric ester bonds (6.5) forming phosphoric ester bonds (6.5.1)
    • C12Y605/01003RNA ligase (ATP) (6.5.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/122Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、ヘアピン型一本鎖RNA分子の製造方法に関する。
遺伝子発現を抑制する技術として、例えば、RNA干渉(RNAi)が知られている(非特許文献1)。RNA干渉による遺伝子発現抑制には、siRNA(small interfering RNA)と呼ばれる短い二本鎖のRNA分子を用いる方法が多く利用されている。また、分子内アニールにより、部分的に二重鎖を形成した環状RNA分子を用いた遺伝子発現抑制技術も報告されている(特許文献1)。
しかし、siRNAはin vivoでの安定性が低く、一本鎖RNAに解離しやすいため、遺伝子発現を安定的に抑制するのが困難である。特許文献2は、siRNAのセンス鎖とアンチセンス鎖を、環状アミン誘導体を用いて形成される1つ又は2つのリンカーを用いて一本鎖に連結したヘアピン型一本鎖長鎖RNA分子が、siRNAを安定化できることを報告している。しかしこの一本鎖長鎖RNA分子は、TBDMSアミダイトなどの汎用型アミダイトを使用したホスホロアミダイト法では効率的に合成できないため、その合成には特別なRNAアミダイト(例えば、特許文献2及び3)を用いる必要がある。
特許文献4は、第三の核酸鎖としての補助核酸とT4 RNAリガーゼ2とを用いて、第一の核酸鎖と第二の核酸鎖をライゲーションする方法を開示しているが、補助核酸が長いほど反応が遅いことを示しており、その方法において良好なライゲーション効率をもたらす補助核酸は限定されている。
米国特許出願公開第2004/058886号 国際公開WO2013/027843 国際公開WO2016/159374 国際公開WO2011/052013
Fire et al., Nature, (1998) Feb 19; 391(6669):806-811
本発明は、標記遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の効率的な製造方法を提供することを課題とする。
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、標的遺伝子に対する発現抑制配列を含むヘアピン型一本鎖RNA分子を、非ヌクレオチド性リンカーやヌクレオチド性リンカーなどのリンカーを有する2つの一本鎖オリゴRNA分子に分割して合成し、それらをアニーリングし、ライゲーションすることによって、特別なRNAアミダイトや補助核酸を必要とせず、当該ヘアピン型一本鎖RNA分子を効率的に製造できること、また、ライゲーション条件を調節することにより、酵素使用量に対するヘアピン型一本鎖RNA分子の生産効率をさらに増加させることができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下を包含する。
[1]標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法であって、
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とをアニーリングするアニーリング工程と、
前記第1の一本鎖オリゴRNA分子の3’末端と前記第2の一本鎖オリゴRNA分子の5’末端とをRnl2ファミリーのリガーゼによりライゲーションするライゲーション工程とを含み、
前記第1の一本鎖オリゴRNA分子は、第1のリンカーを介して連結された第1のRNA部分と第2のRNA部分を含み、第1のRNA部分と第2のRNA部分の一方は他方に対して相補的に結合可能であり、
前記第2の一本鎖オリゴRNA分子は、第2のリンカーを介して連結された第3のRNA部分と第4のRNA部分を含み、第3のRNA部分と第4のRNA部分の一方は他方に対して相補的に結合可能であり、
前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とは5’末端又は3’末端の相補的な配列間で分子間二重鎖を形成可能であり、
アニーリング工程において前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子が二重鎖を形成するとき、前記第1の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基はニックを生成し、また前記第1の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の間には1個以上のリボヌクレオチド残基のギャップが存在し、
前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
ヘアピン型一本鎖RNA分子の製造方法。
[2]前記第1の一本鎖オリゴRNA分子は、下記式(I)で表され、前記第2の一本鎖オリゴRNA分子は、下記式(II)で表され、
5’-Xs-Lx-Xa-3’ ・・・式(I)
5’-Ya-Ya-Ya-Lx-Ys-3’ ・・・式(II)
式(I)及び式(II)中、Xs、Xa、Ya、Ya、Ya及びYsは、1個又はそれ以上のリボヌクレオチド残基を表し、
Lx及びLxは、それぞれ、第1のリンカー及び第2のリンカーを表し、
Yaは、Ysと相補的であり、
ライゲーション工程で生じるXa-Yaは、Xsと相補的であり、
ライゲーション工程で生じるXa-Ya-Ya-Yaは、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
上記[1]に記載の製造方法。
[3]前記第1の一本鎖オリゴRNA分子が3’末端にウラシル(U)又はアデニン(A)を有し、前記第2の一本鎖オリゴRNA分子が5’末端にウラシル(U)又はアデニン(A)を有する、上記[1]又は[2]に記載の製造方法。
[4]第1のリンカー及び第2のリンカーは、それぞれ独立して、(i)ピロリジン骨格及びピペリジン骨格の少なくとも一方を含む非ヌクレオチド性リンカー、又は(ii)ヌクレオチド性リンカーである、上記[1]~[3]のいずれかに記載の製造方法。
[5]Rnl2ファミリーのリガーゼが、T4 RNAリガーゼ2である、上記[1]~[4]のいずれかに記載の製造方法。
[6]pH7.4~8.6の反応液中で前記ライゲーションが行われる、上記[1]~[5]のいずれかに記載の製造方法。
[7]2~10mMの二価金属イオンを含む反応液中で前記ライゲーションが行われる、上記[1]~[6]のいずれかに記載の製造方法。
[8]第1のリンカー及び第2のリンカーは、それぞれ独立して、下記式(VI)で表される非ヌクレオチド性リンカーである、上記[1]~[7]のいずれかに記載の製造方法。
Figure 0007363316000001
[9]前記標的遺伝子は、TGF-β1遺伝子、GAPDH遺伝子、LAMA1遺伝子又はLMNA遺伝子である、上記[1]~[8]のいずれかに記載の製造方法。
[10]前記ヘアピン型一本鎖RNA分子は、配列番号1で表される塩基配列からなり、24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結され、50番目と51番目のリボヌクレオチド残基が第2のリンカーを介して連結されている、上記[1]~[9]のいずれかに記載の製造方法。
[11]前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子は、以下の(1)~(6)のいずれかである、上記[1]~[10]のいずれかに記載の製造方法。
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
[12]以下の(a)~(l)のいずれかである、一本鎖オリゴRNA分子。
(a)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号7で表される塩基配列からなる一本鎖オリゴRNA分子
(b)10番目と11番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号6で表される塩基配列からなる一本鎖オリゴRNA分子
(c)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号19で表される塩基配列からなる一本鎖オリゴRNA分子
(d)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号18で表される塩基配列からなる一本鎖オリゴRNA分子
(e)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号27で表される塩基配列からなる一本鎖オリゴRNA分子
(f)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号26で表される塩基配列からなる一本鎖オリゴRNA分子
(g)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号29で表される塩基配列からなる一本鎖オリゴRNA分子
(h)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号28で表される塩基配列からなる一本鎖オリゴRNA分子
(i)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号31で表される塩基配列からなる一本鎖オリゴRNA分子
(j)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号30で表される塩基配列からなる一本鎖オリゴRNA分子
(k)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号33で表される塩基配列からなる一本鎖オリゴRNA分子
(l)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号32で表される塩基配列からなる一本鎖オリゴRNA分子
[13]以下の(1)~(6)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、TGF-β1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキット。
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
本明細書は本願の優先権の基礎となる日本国特許出願番号2018-070423号の開示内容を包含する。
本発明によれば、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子を、効率的に製造することができる。
図1は、本発明の一実施形態のライゲーション法の概略図である。 図2は、ssTbRNA分子(配列番号1)の模式図である。Pはプロリン誘導体を表す。配列番号1の29番目(U)~47番目(C)は活性配列(TGF-β1遺伝子に対する遺伝子発現抑制配列;アンチセンス配列)に相当する。 図3は、表1に示す004~019の一本鎖オリゴRNA分子(ストランド1及び2)のセット(ペア)のT4 RNAリガーゼ2を用いたアニーリング及びライゲーション反応後のライゲーション効率を示す。 図4は、011、016、及び018の一本鎖オリゴRNA分子(ストランド1及び2)の構造を示す。それぞれのペアの右側がストランド1、左側がストランド2である。 図5は、016のオリゴ核酸を、異なるオリゴRNA濃度及び異なる反応温度でライゲーションしたときのライゲーション効率の経時的変化を示す。 図6は、011、016、及び018のオリゴRNA(100μM)を用い、異なる反応温度でライゲーションしたときのライゲーション効率の経時的変化を示す。Aは25℃、Bは37℃でのライゲーションの結果を示す。 図7は、011のオリゴRNAを異なるATP濃度下でライゲーションしたときの変性PAGE解析の結果を示す。 図8は、011のオリゴRNAを異なるATP濃度下でライゲーションしたときのライゲーション効率を示す。 図9は、016のオリゴRNAを、異なるオリゴRNA濃度、異なるpH条件下でライゲーションしたときのライゲーション効率の経時的変化を示す。 図10は、016のオリゴRNAを異なるpH条件下でライゲーションしたときのライゲーション効率を示す。 図11は、016のオリゴRNAを、異なるオリゴRNA濃度、異なるMgCl濃度下でライゲーションしたときのライゲーション効率を示す。Aは10μM又は100μM オリゴRNA、Bは10μM又は200μM オリゴRNAの存在下でのライゲーションの結果を示す。 図12は、016のオリゴRNAを、異なるMgCl濃度、異なるpH条件下でライゲーションしたときのライゲーション効率を示す。AはpH7.5、BはpH8.0でのライゲーションの結果を示す。 図13は、異なる酵素量を用い、PEGを添加してライゲーションしたときのライゲーション効率を示す。 図14は、異なるオリゴRNA濃度を使用したライゲーション反応のタイムコースを示す。 図15は、初期オリゴRNA濃度を100μMとし、オリゴRNAを順次追加しながら行ったライゲーション反応における、目的産物ssTbRNA分子の生成量を示す。ssTbRNA分子の生成量(nmol)=(一本鎖オリゴRNA分子の添加量)×(FLP(Full Length Product,完全長の生成物)(%))/100。グラフの横軸のhはライゲーション開始後の時間を表す。ライゲーション開始時のオリゴRNA濃度100μM(10nmol)、酵素濃度4ユニット/nmolオリゴRNAは、最終添加後にはオリゴRNA濃度300μM(40nmol)、酵素濃度1ユニット/nmolオリゴRNAとなった。 図16は、初期オリゴRNA濃度を200μMとし、オリゴRNAを順次追加しながら行ったライゲーション反応における、目的産物ssTbRNA分子の生成量を示す。ssTbRNA分子の生成量(nmol)=(一本鎖オリゴRNA分子の添加量)×(FLP(%))/100。グラフの横軸のhはライゲーション開始後の時間を表す。ライゲーション開始時のオリゴRNA濃度200μM(20nmol)、酵素濃度4ユニット/nmolオリゴRNAは、最終添加後にはオリゴRNA濃度480μM(80nmol)、酵素濃度0.5ユニット/nmolオリゴRNAとなった。 図17は、GAPDH遺伝子、LAMA1遺伝子、又はLMNA遺伝子に対する遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子と、その分割位置を示す。(1)~(7)は分割位置を示す。各遺伝子に対する遺伝子発現抑制配列(活性配列/アンチセンス配列)を枠で示した。 図18は、GAPDH遺伝子、LAMA1遺伝子、又はLMNA遺伝子に対する遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子の分割フラグメントである一本鎖オリゴRNA分子のペア(ストランド1及び2)を用いたアニーリング及びライゲーション反応後のライゲーション効率を示す。 図19は、表1に示すストランド1及びストランド2のセット(ペア)のT4 RNAリガーゼを用いたアニーリング及びライゲーション反応後のライゲーション効率を示す。
以下、本発明を詳細に説明する。
本発明は、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法に関する。本発明の方法により製造されるヘアピン型一本鎖RNA分子は、遺伝子発現抑制配列を含む二本鎖RNAのセンス鎖の3’末端及びアンチセンス鎖の5’末端が、非ヌクレオチド性リンカー又はヌクレオチド性リンカーなどのリンカーを含む配列を介して連結され、そのアンチセンス鎖の3’末端に非ヌクレオチド性リンカー又はヌクレオチド性リンカーなどのリンカーを含む配列を介して1個以上のリボヌクレオチド残基がさらに連結された一本鎖構造を有する。本発明の方法により製造されるヘアピン型一本鎖RNA分子の5’末端と3’末端は、結合されていない。本明細書において「ヘアピン型」とは、一本鎖RNA分子が分子内アニーリング(自己アニーリング)により1つ以上の二重鎖構造を形成することを意味する。本発明の方法により製造されるヘアピン型一本鎖RNA分子は、典型的には、その5’末端を含む5’側領域と3’末端を含む3’側領域がそれぞれ別個に分子内アニーリングすることにより、2つの二重鎖構造を形成する。本明細書において「RNA」、「RNA分子」、「核酸分子」及び「核酸」は、ヌクレオチドのみから構成されていてもよいが、ヌクレオチドと非ヌクレオチド物質(例えば、プロリン誘導体などの環状アミン誘導体)から構成されていてもよい。
本発明では、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子を、2つのリンカー(例えば、非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらを組み合わせたリンカー)に挟まれた配列中で2つに分割したフラグメントとして合成し、それらをアニーリングし、ライゲーションすることにより、製造することができる。ライゲーションとは、2つの核酸(本発明においては、典型的にはRNA)を、その末端の5’リン酸基と3’水酸基を結合(ホスホジエステル結合)させることにより連結することを意味する。本発明の方法では、比較的長鎖のヘアピン型一本鎖RNA分子を、より短鎖の一本鎖RNA分子のペアのライゲーションによって製造し、それにより当該ヘアピン型一本鎖RNA分子の高収量な製造を実現することができる。
より具体的には、本発明は、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法であって、
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とをアニーリングするアニーリング工程と、
前記第1の一本鎖オリゴRNA分子の3’末端と前記第2の一本鎖オリゴRNA分子の5’末端とをRnl2ファミリーのリガーゼによりライゲーションするライゲーション工程とを含み、
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、ヘアピン型一本鎖RNA分子の製造方法に関する。
本発明の方法において、第1の一本鎖オリゴRNA分子は、第1のリンカーを介して連結された第1のRNA部分と第2のRNA部分を含み、第1のRNA部分と第2のRNA部分の一方は他方に対して相補的に結合可能である。その相補的な結合により、第1のリンカーはループを形成し、第1のRNA部分と第2のRNA部分は当該ループに隣接してステムを形成し得る。第1の一本鎖オリゴRNA分子において、第1のRNA部分は5’末端側に、第2のRNA部分は3’末端側に配置される。また、第2の一本鎖オリゴRNA分子は、第2のリンカーを介して連結された第3のRNA部分と第4のRNA部分を含み、第3のRNA部分と第4のRNA部分の一方は他方に対して相補的に結合可能である。その相補的な結合により、第2のリンカーはループを形成し、第3のRNA部分と第4のRNA部分は当該ループに隣接してステムを形成し得る。第2の一本鎖オリゴRNA分子において、第3のRNA部分は5’末端側に、第4のRNA部分は3’末端側に配置される。第1~第4のRNA部分は、それぞれ、1個又は2個以上のリボヌクレオチド残基を含む。このように第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子は、自己相補配列を含み、それぞれ、分子内アニーリング(自己アニーリング)により、ヘアピン構造を形成することができる。第1のRNA部分と第2のRNA部分は一方が他方よりも長い塩基長を有することが好ましい。また第3のRNA部分と第4のRNA部分は一方が他方よりも長い塩基長を有することが好ましい。第1のRNA部分が第2のRNA部分よりも長い塩基長を有する場合、第3のRNA部分は第4のRNA部分よりも長い塩基長を有することが好ましい。第2のRNA部分が第1のRNA部分よりも長い塩基長を有する場合、第4のRNA部分は第1のRNA部分よりも長い塩基長を有することが好ましい。第1のRNA部分と第2のRNA部分のうち、より長い塩基長を有する方のRNA部分は、より短い塩基長を有する方のRNA部分に相補的なリボヌクレオチド残基又はその配列を、第1のリンカーに隣接して含むことが好ましい。第3のRNA部分と第4のRNA部分のうち、より長い塩基長を有する方のRNA部分は、より短い塩基長を有する方のRNA部分に相補的なリボヌクレオチド残基又はその配列を、第2のリンカーに隣接して含むことが好ましい。
本発明において、一本鎖オリゴRNA分子に含まれる2つのRNA部分(第1及び第2のRNA部分、又は第3及び第4のRNA部分)の一方が他方に対して「相補的に結合可能である」とは、2つのRNA部分のうちいずれか一方(通常は、より短い塩基長を有する方のRNA部分)の全長が他方のRNA部分(通常は、より長い塩基長を有する方のRNA部分)に対し、安定な塩基対合を形成して結合できることを意味し、この場合、前者のRNA部分の全長は後者のRNA部分内の対応するリボヌクレオチド残基又はその配列に対して相補的である。一本鎖オリゴRNA分子に含まれる2つのRNA部分の一方は、他方のRNA部分中の対応するリボヌクレオチド残基又はその配列に対して完全に相補的(すなわち、一方のRNA部分の全てのリボヌクレオチド残基が、他方のRNA部分中の対応するリボヌクレオチド残基に対してミスマッチを有さない)であることがより好ましい。あるいは、一本鎖オリゴRNA分子に含まれる2つのRNA部分の一方は、他方のRNA部分に対して、安定な塩基対合を形成できる限り、1個以上、例えば1個又は2個のリボヌクレオチド残基のミスマッチを含んでもよく、その場合も「相補的に結合可能」である。但しそのミスマッチは、本発明の方法においてライゲーションされる分子末端のリボヌクレオチド残基には存在しないことが好ましい。
一実施形態では、第1のRNA部分及び第4のRNA部分の一方は、他方より短く、好ましくは1~7塩基長であり、例えば、1~6塩基長、1~4塩基長、1~3塩基長、1塩基長又は2塩基長である。その場合、第1のRNA部分及び第4のRNA部分のうち長い方(他方)は、19~28塩基長であってよく、例えば、19~27塩基長、19~25塩基長、19~23塩基長、20~28塩基長、21~27塩基長、20~25塩基長、22~27塩基長、23~26塩基長、24~28塩基長、26~28塩基長であってよい。
第1のRNA部分が第4のRNA部分よりも長い場合、第2のRNA部分は、以下に限定するものではないが、1~20塩基長であってよく、例えば2~20塩基長、2~15塩基長、3~10塩基長、3~6塩基長、5~12塩基長、又は9~12塩基長であってよい。第1のRNA部分が第4のRNA部分よりも短い場合、第2のRNA部分は、以下に限定するものではないが、8~38塩基長であってよく、例えば8~36塩基長、12~36塩基長、14~34塩基長、14~33塩基長、14~36塩基長、又は20~34塩基長であってよい。
第1のRNA部分の塩基配列は、リンカーと隣接してCC(シトシン-シトシン)を含んでもよく、この場合、第2のRNA部分の塩基配列は、その配列と相補的になるように、リンカーと隣接してGG(グアニン-グアニン)を含むことが好ましい。一実施形態では、第1のRNA部分の塩基配列は、リンカーと隣接してACC(アデニン-シトシン-シトシン)、GCC(グアニン-シトシン-シトシン)、又はUCC(ウラシル-シトシン-シトシン)を含んでもよく、この場合、第2のRNA部分の塩基配列は、その配列と相補的になるように、リンカーと隣接してそれぞれGGU(グアニン-グアニン-ウラシル)、GGC(グアニン-グアニン-シトシン)、又はGGA(グアニン-グアニン-アデニン)を含むことが好ましい。第3のRNA部分の塩基配列は、リンカーと隣接してC(シトシン)を含んでもよく、この場合、第4のRNA部分の塩基配列は、その残基と相補的になるように、リンカーと隣接してG(グアニン)を含むことが好ましい。
第1又は第2の一本鎖オリゴRNA分子の塩基長、すなわち2つのRNA部分の合計塩基長(リンカー部分は含まない)は、以下に限定されないが、好ましくは13~48塩基長である。第1のRNA部分が第4のRNA部分よりも長い場合、第1の一本鎖オリゴRNA分子の塩基長、すなわち第1のRNA部分及び第2のRNA部分の合計塩基長(リンカー部分は含まない)は、好ましくは21~48塩基長であり、例えば、21~45塩基長、25~45塩基長、26~35塩基長、26~30塩基長、26~28塩基長、又は33~36塩基長である。第1のRNA部分が第4のRNA部分よりも短い場合、第1の一本鎖オリゴRNA分子の塩基長、すなわち第1のRNA部分及び第2のRNA部分の合計塩基長(リンカー部分は含まない)は、好ましくは13~45塩基長であり、例えば、13~43塩基長、15~41塩基長、15~30塩基長、17~25塩基長、又は20~25塩基長である。
本発明の方法において、第1の一本鎖オリゴRNA分子と、第2の一本鎖オリゴRNA分子は、5’末端又は3’末端の配列において互いに相補的である。第1の一本鎖オリゴRNA分子と、第2の一本鎖オリゴRNA分子とは、5’末端又は3’末端の相補的な配列間(好ましくは、完全に相補的な配列間)で分子間二重鎖を形成可能である。より具体的には、一実施形態では、ヘアピン構造を形成した第1の一本鎖オリゴRNA分子の5’末端の配列(第1のRNA部分の5’末端の、ヘアピン構造のステム・ループに含まれない配列)と、ヘアピン構造を形成した第2の一本鎖オリゴRNA分子の5’末端の配列(第3のRNA部分の5’末端の、ヘアピン構造のステム・ループに含まれない配列)が、互いに相補的であり、分子間二重鎖を形成可能である。別の実施形態では、ヘアピン構造を形成した第1の一本鎖オリゴRNA分子の3’末端の配列(第2のRNA部分の3’末端の、ヘアピン構造のステム・ループに含まれない配列)と、ヘアピン構造を形成した第2の一本鎖オリゴRNA分子の3’末端の配列(第4のRNA部分の3’末端の、ヘアピン構造のステム・ループに含まれない配列)が、互いに相補的であり、分子間二重鎖を形成可能である。本発明の方法のアニーリング工程では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とが5’末端又は3’末端の相補的な配列間で分子間二重鎖を形成することにより、二本鎖オリゴRNAが生成される。
一実施形態では、第1及び第2の一本鎖オリゴRNA分子間で相補的な配列の長さ(後述のギャップ部分を含まない)は、以下に限定されないが、通常は6塩基長以上、例えば7塩基以上、10塩基長以上、12塩基長以上、14塩基長以上、又は18塩基以上であり、例えば6~27塩基長、7~25塩基長、10~25塩基長、12~23塩基長、12~22塩基長、12~15塩基長、又は18~23塩基長であってよい。
本発明の方法のアニーリング工程において、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子が二重鎖を形成するとき、第1の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基はニックを生成する。より具体的には、アニーリング工程において第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子は、第1及び第2の一本鎖オリゴRNA分子間で相補的な配列の分子間アニーリングにより二重鎖(分子間二重鎖)を形成することに加えて、第1のRNA部分と第2のRNA部分、及び第3のRNA部分と第4のRNA部分において、それぞれ、分子内アニーリングによる二重鎖(分子内二重鎖、すなわちヘアピン構造)を形成し、第2のRNA部分と第3のRNA部分の間にはニックが生じる。本発明において「ニック」とは、核酸二重鎖の一方のヌクレオチド鎖において2つのヌクレオチド残基間のホスホジエステル結合が切れて3’水酸基と5’リン酸基が遊離している状態を指す。ニックは、ライゲーション反応により連結可能である。
本発明の方法のアニーリング工程において、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子が二重鎖を形成するとき、第1の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基と第2の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の間には1個以上のリボヌクレオチド残基のギャップが存在する。このギャップはライゲーション反応により連結されないため、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子は、ライゲーション反応後、一本鎖RNA分子を形成する。1個以上のリボヌクレオチド残基のギャップは、1~4残基(1、2、3、又は4残基)のギャップであってもよい。このギャップ部分では塩基対合は形成されない。
第1の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基と第2の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の間のギャップは、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子がアニーリングした二重鎖中、第1のリンカーにより近い位置にあってもよいし、あるいは第2のリンカーにより近い位置にあってもよい。
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、標的遺伝子に対する遺伝子発現抑制配列を含む。第1のRNA部分又は第4のRNA部分は、標的遺伝子に対する遺伝子発現抑制配列(センス配列又はアンチセンス配列;例えばセンス配列)を含み得る。ライゲーションにより第2のRNA部分と第3のRNA部分が連結された配列は、標的遺伝子に対する遺伝子発現抑制配列(アンチセンス配列又はセンス配列;例えばアンチセンス配列)を含み得る。一実施形態では、第2のRNA部分又は第3のRNA部分が標的遺伝子に対する遺伝子発現抑制配列(アンチセンス配列又はセンス配列;例えばアンチセンス配列)を含んでもよい。
本発明の方法において、リンカー、例えば、第1のリンカー及び第2のリンカーは、非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせであってよい。
一実施形態では、第1の一本鎖オリゴRNA分子は3’末端にウラシル(U)又はアデニン(A)を有し、かつ、第2の一本鎖オリゴRNA分子は5’末端にウラシル(U)又はアデニン(A)を有する。ここで一本鎖オリゴRNA分子が3’末端又は5’末端にウラシル(U)又はアデニン(A)を有するとは、一本鎖オリゴRNA分子の3’末端又は5’末端のリボヌクレオチド残基が塩基としてウラシル(U)又はアデニン(A)を含むことを意味する。具体的には、第1の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の塩基と第2の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基の塩基の好ましい組み合わせは、U-A、U-U、A-U、又はA-Aであり得る。
本発明の方法の一実施形態の概略図を図1に示す。図1中、Lx及びLxはリンカー(例えば、非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせ)である。本発明の方法では、比較的長鎖のヘアピン型一本鎖RNA分子を、より短鎖の一本鎖RNA分子のペアをライゲーションすることによって製造し、それにより高収量を実現することができる。
一実施形態において、本発明に係る、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法は、
下記式(I)で表される第1の一本鎖オリゴRNA分子(図1中、ストランド1):
5’-Xs-Lx-Xa-3’ ・・・式(I)
と、下記式(II)で表される第2の一本鎖オリゴRNA分子(図1中、ストランド2):
5’-Ya-Ya-Ya-Lx-Ys-3’ ・・・式(II)
をアニーリングするアニーリング工程と、第1の一本鎖オリゴRNA分子の3’末端と第2の一本鎖オリゴRNA分子の5’末端とをライゲーションするライゲ-ション工程とを含む。このライゲーションはRnl2ファミリーのリガーゼにより行うことができる。
別の実施形態において、本発明に係る、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法は、
下記式(A)で表される第1の一本鎖オリゴRNA分子:
5’-XXs-Lx-XXa-XXa-XXa-3’ ・・・式(A)
と、下記式(B)で表される第2の一本鎖オリゴRNA分子:
5’-YYa-Lx-YYs-3’ ・・・式(B)
をアニーリングするアニーリング工程と、第1の一本鎖オリゴRNA分子の3’末端と第2の一本鎖オリゴRNA分子の5’末端とをライゲーションするライゲ-ション工程とを含む。このライゲーションはRnl2ファミリーのリガーゼにより行うことができる。
本発明において「オリゴRNA」及び「オリゴRNA分子」とは、49塩基長以下(非ヌクレオチド性リンカー及びヌクレオチド性リンカーなどのリンカー部分の残基数は不算入)の塩基配列を有するRNA分子を指す。本発明において用語「オリゴRNA」と「オリゴRNA分子」は通常、互換的に使用される。本発明に係る一本鎖オリゴRNA分子は、一本鎖オリゴRNA、オリゴ核酸、一本鎖核酸分子、オリゴRNA、又はオリゴRNA分子と称されることもある。
式(I)及び式(II)中、Xs、Xa、Ya、Ya、Ya、及びYsは、1個又はそれ以上のリボヌクレオチド残基を表す。式(I)及び式(II)中、Lx及びLxは、それぞれ独立して、リンカー、例えば、非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせを表す。
式(I)は、領域XsとXaが、Lxを介して連結された構造を表している。式(II)は、領域Ya、Ya、及びYaがこの順番で連結されたリボヌクレオチド配列(Ya-Ya-Ya)と領域Ysが、Lxを介して連結された構造を表している。
式(A)及び式(B)中、XXs、XXa、XXa、XXa、YYa、及びYYsは、1個又はそれ以上のリボヌクレオチド残基を表す。式(A)及び式(B)中、Lx及びLxは、それぞれ独立して、リンカー、例えば、非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせを表す。
式(A)は、領域XXa、XXa、及びXXaがこの順番で連結されたリボヌクレオチド配列(XXa-XXa-XXa)と領域XXsが、Lxを介して連結された構造を表している。式(B)は、領域YYaとYYsが、Lxを介して連結された構造を表している。
Xs、Xa、Ya、Ya、Ya、Ys、XXs、XXa、XXa、XXa、YYa、及びYYsはリボヌクレオチド残基からなる。リボヌクレオチド残基は、アデニン、ウラシル、グアニン、又はシトシンから選択されるいずれかの核酸塩基を有するものであってよい。リボヌクレオチド残基はまた、修飾リボヌクレオチド残基であってもよく、例えば、修飾された核酸塩基(修飾塩基)を有していてもよい。修飾としては、蛍光色素標識、メチル化、ハロゲン化、シュードウリジン化、アミノ化、脱アミノ化、チオ化、ジヒドロ化などが挙げられるが、これらに限定されない。Xs、Xa、Ya、Ya、Ya、及びYsは、それぞれ独立に、非修飾リボヌクレオチド残基のみからなるものであってもよいし、非修飾リボヌクレオチド残基に加えて修飾リボヌクレオチド残基を含むものであってもよいし、修飾リボヌクレオチド残基のみからなるものであってもよい。Xsが5’末端に修飾リボヌクレオチド残基を含んでいてもよい。Ysが3’末端に修飾リボヌクレオチド残基を含んでいてもよい。同様に、XXs、XXa、XXa、XXa、YYa、及びYYsは、それぞれ独立に、非修飾リボヌクレオチド残基のみからなるものであってもよいし、非修飾リボヌクレオチド残基に加えて修飾リボヌクレオチド残基を含むものであってもよいし、修飾リボヌクレオチド残基のみからなるものであってもよい。XXsが5’末端に修飾リボヌクレオチド残基を含んでいてもよい。YYsが3’末端に修飾リボヌクレオチド残基を含んでいてもよい。
本発明において、ライゲーション工程で生じるXa-Ya(ライゲーションによりXaとYaが連結されたヌクレオチド配列)は、Xsと相補的である。一実施形態では、Xsは、19~28塩基長であってよく、例えば19~27塩基長、19~25塩基長、19~23塩基長、20~28塩基長、21塩基~27塩基、21塩基~25塩基、22~27塩基長、23~26塩基長、24~28塩基長、又は26~28塩基長であってよい。
本発明において、ライゲーション工程で生じるXXa-YYa(ライゲーションによりXXaとYYaが連結されたヌクレオチド配列)は、YYsと相補的である。一実施形態では、YYsは、19~28塩基長であってよく、例えば19~27塩基長、19~25塩基長、19~23塩基長、20~28塩基長、21塩基~27塩基、21塩基~25塩基、22~27塩基長、23~26塩基長、24~28塩基長、又は26~28塩基長であってよい。
本発明において、Xaは、Xs内の対応する残基又は配列と相補的である。一実施形態では、式(I)中、Xsの塩基配列が、リンカーと隣接してC(シトシン)を含んでもよい。この場合、Xaの塩基配列は、Xsと相補的になるように、リンカーと隣接してG(グアニン)を含む。一実施形態では、式(I)中、Xsの塩基配列が、リンカーと隣接してCC(シトシン-シトシン)を含んでもよい。この場合、Xaの塩基配列は、Xsと相補的になるように、リンカーと隣接してGG(グアニン-グアニン)を含む。一実施形態では、式(I)中、Xsの塩基配列は、リンカーと隣接してACC(アデニン-シトシン-シトシン)を含んでもよい。この場合、Xaの塩基配列は、Xsと相補的になるように、リンカーと隣接してGGU(グアニン-グアニン-ウラシル)を含む。一実施形態では、Xaは、3’末端に塩基ウラシル(U)又はアデニン(A)を含んでもよい。Xaは、1~20塩基長であってよく、例えば2~20塩基長、2~15塩基長、3~10塩基長、3~6塩基長、5~12塩基長又は9~12塩基長であってよい。
本発明において、XXaはXXsと相補的である。一実施形態では、式(A)中、XXsの塩基配列が、リンカーと隣接してC(シトシン)を含んでもよい。この場合、XXaの塩基配列は、XXsと相補的になるように、リンカーと隣接してG(グアニン)を含む。一実施形態では、式(A)中、XXsの塩基配列が、リンカーと隣接してCC(シトシン-シトシン)を含んでもよい。この場合、XXaの塩基配列は、XXsと相補的になるように、リンカーと隣接してGG(グアニン-グアニン)を含む。一実施形態では、式(A)中、XXsの塩基配列は、リンカーと隣接してACC(アデニン-シトシン-シトシン;5’から3’の方向で)を含んでもよい。この場合、XXaの塩基配列は、XXsと相補的になるように、リンカーと隣接してGGU(グアニン-グアニン-ウラシル;5’から3’の方向で)を含む。一実施形態では、XXaの塩基配列は、3’末端に塩基ウラシル(U)又はアデニン(A)を含んでもよい。XXa及びXXsは、好ましくは1~7塩基長であり、例えば、1~4塩基長、1塩基長又は2塩基長である。一実施形態では、YYsが26~28塩基長の場合、XXa及びXXsは1塩基長であってよい。
本発明において、YaはYsと相補的である。一実施形態では、Yaの塩基配列は、リンカーと隣接してC(シトシン)を含んでもよい。この場合、Ysの塩基配列は、Yaと相補的になるように、リンカーと隣接してG(グアニン)を含む。Ya及びYsは、好ましくは1~7塩基長であり、例えば、1~4塩基長、1塩基長又は2塩基長である。一実施形態では、Xsが26~28塩基長の場合、Ya及びYsは1塩基長であってよい。
本発明において、YYaは、YYs内の対応する残基又は配列と相補的である。一実施形態では、YYaの塩基配列は、リンカーと隣接してC(シトシン)を含んでもよい。この場合、YYsの塩基配列は、YYaと相補的になるように、リンカーと隣接してG(グアニン)を含む。YYaは、2~20塩基長であってよく、例えば2~15塩基長、3~10塩基長、3~6塩基長、5~12塩基長又は9~12塩基長であってよい。
本発明において、「相補的」とは、2つの核酸又はヌクレオチドがその間で安定な塩基対合を形成できることを意味する。相補的な2つの核酸は、同じ塩基長を有する。相補的な2つの核酸は、典型的には、互いの相補配列(相補鎖)からなり、すなわち、完全に相補的である。あるいは、相補的な2つの核酸は、修飾塩基と、それと塩基対を形成できる核酸塩基を、アニーリング時に対応する位置にそれぞれ含有してもよい。
Yaは、ライゲーション後の本発明に係るヘアピン型一本鎖RNA分子が分子内アニーリング(自己アニーリング)を生じる際に、Xs及びYsのいずれとも塩基対合を形成しない。Yaは、好ましくは1~4塩基長であり、例えば1、2、又は3塩基長である。同様に、XXaは、ライゲーション後の本発明に係るヘアピン型一本鎖RNA分子が分子内アニーリング(自己アニーリング)を生じる際に、XXs及びYYsのいずれとも塩基対合を形成しない。XXaは、好ましくは1~4塩基長であり、例えば1、2、又は3塩基長である。
第1の一本鎖オリゴRNA分子(ストランド1)において、式(I)中のXsとXaの合計塩基長(非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせなどのリンカー部分は含まない)は好ましくは21~48塩基長であり、例えば、21~45塩基長、25~45塩基長、26~35塩基長、26~30塩基長、26~28塩基長、又は33~36塩基長である。
第2の一本鎖オリゴRNA分子(ストランド2)において、式(II)中のYaは、好ましくは6~27塩基長であり、例えば7~25塩基長、10~25塩基長、12~23塩基長、12~22塩基長、12~15塩基長、又は18~23塩基長である。
第2の一本鎖オリゴRNA分子(ストランド2)において、式(II)中のYa、Ya、Ya、及びYsの合計塩基長(非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせなどのリンカー部分は含まない)は好ましくは13~45塩基長であり、例えば、13~43塩基長、15~41塩基長、15~30塩基長、17~25塩基長、又は20~25塩基長である。
第1の一本鎖オリゴRNA分子(ストランド1)において、式(A)中のXXs、XXa、XXa、及びXXaの合計塩基長(非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせなどのリンカー部分は含まない)は好ましくは13~45塩基長であり、例えば、13~43塩基長、15~41塩基長、15~30塩基長、17~25塩基長、又は20~25塩基長である。
XXaは、好ましくは6~27塩基長であり、例えば7~25塩基長、10~25塩基長、12~23塩基長、12~22塩基長、12~15塩基長、又は18~23塩基長である。
第2の一本鎖オリゴRNA分子(ストランド2)において、式(B)中のYYaとYYsとの合計塩基長(非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせなどのリンカー部分は含まない)は好ましくは21~48塩基長であり、例えば、21~45塩基長、25~45塩基長、26~35塩基長、26~30塩基長、26~28塩基長、又は33~36塩基長である。
本発明において、リンカー、例えば、第1のリンカー及び第2のリンカーは、特に限定されないが、それぞれ独立に、例えば、非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせであってよい。ヌクレオチド性リンカーは、1個以上のヌクレオチド残基(リボヌクレオチド残基又はデオキシリボヌクレオチド残基、好ましくはリボヌクレオチド残基)からなる。非ヌクレオチド性リンカーはヌクレオチド残基を含まない。本発明において用いるリンカーの構成単位は、特に限定されず、ヌクレオチド残基及び/又は非ヌクレオチド残基であってよい。非ヌクレオチド性リンカーとヌクレオチド性リンカーの組み合わせであるリンカーは、ヌクレオチド残基と非ヌクレオチド残基の両方を含む。本発明のリンカーは、例えば、以下の(1)~(7)のいずれかの残基で構成され得る。
(1)非修飾ヌクレオチド残基
(2)修飾ヌクレオチド残基
(3)非修飾ヌクレオチド残基と修飾ヌクレオチド残基の組み合わせ
(4)非ヌクレオチド残基
(5)非ヌクレオチド残基と非修飾ヌクレオチド残基の組み合わせ
(6)非ヌクレオチド残基と修飾ヌクレオチド残基の組み合わせ
(7)非ヌクレオチド残基、非修飾ヌクレオチド残基及び修飾ヌクレオチド残基の組み合わせ
一実施形態では、第1のリンカー及び第2のリンカーの両方が、ヌクレオチド残基からなるもの(ヌクレオチド性リンカー)であってもよいし、又は非ヌクレオチド残基からなるもの(非ヌクレオチド性リンカー)であってもよい。あるいは、第1のリンカー及び第2のリンカーの一方がヌクレオチド残基からなり、他方が非ヌクレオチド残基からからなるものであってもよい。第1のリンカー及び第2のリンカー(上記式中、Lx及びLxのリンカー)は、同じ構造であってもよいし、異なる構造であってもよい。
本発明において用いるリンカー、例えば、第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)が、非ヌクレオチド残基を含む場合、非ヌクレオチド残基の個数は、特に限定されず、例えば、1~8個、1~6個、1~4個、1、2又は3個であってよい。「非ヌクレオチド残基」は、非ヌクレオチド性リンカーの構成単位を指す。非ヌクレオチド残基は、以下に限定するものではないが、例えば、ピロリジン骨格又はピペリジン骨格を有する環状アミン誘導体等であってよい。非ヌクレオチド残基は、例えば、後述の式(III)で表される構造を単位(1個)とするものであってよい。
本発明の一実施形態において、リンカー、例えば、第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)は、ピロリジン骨格及びピペリジン骨格の少なくとも一方を1個以上含む非ヌクレオチド性リンカーであってよい。第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)は、同じ構造であってもよいし、異なる構造であってもよい。第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)は、それぞれ独立して、ピロリジン骨格を含む非ヌクレオチド構造を有してもよいし、ピペリジン骨格を含む非ヌクレオチド構造を有してもよいし、上記ピロリジン骨格を含む非ヌクレオチド構造と、上記ピペリジン骨格を含む非ヌクレオチド構造との両方を有してもよい。本発明の方法により製造されるヘアピン型一本鎖RNA分子は、このようなリンカーでセンス鎖とアンチセンス鎖が連結されていることにより、ヌクレアーゼ耐性に優れる。
本発明のヘアピン型一本鎖RNA分子において、ピロリジン骨格は、例えば、ピロリジンの5員環を構成する炭素原子が、1個以上、置換されたピロリジン誘導体の骨格でもよく、置換される場合、例えば、2位の炭素原子(C-2)以外の炭素原子であることが好ましい。上記炭素原子は、例えば、窒素原子、酸素原子又は硫黄原子で置換されてもよい。ピロリジン骨格は、例えば、ピロリジンの5員環内に、例えば、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよい。上記ピロリジン骨格において、ピロリジンの5員環を構成する炭素原子及び窒素原子は、例えば、水素原子が結合してもよいし、後述するような置換基が結合してもよい。リンカーLxは、例えば、上記ピロリジン骨格のいずれかの基を介して、式(I)におけるXsとXa、及び式(A)におけるXXsとXXaを連結してもよい。リンカーLxは、例えば、上記ピロリジン骨格のいずれかの基を介して、式(II)におけるYaとYs、及び式(B)におけるYYaとYYsを連結してもよい。それらは、上記5員環のいずれか1個の炭素原子と窒素原子、好ましくは、上記5員環の2位の炭素原子(C-2)と窒素原子を介して連結されうる。上記ピロリジン骨格としては、例えば、プロリン骨格、プロリノール骨格等が挙げられる。
上記ピペリジン骨格は、例えば、ピペリジンの6員環を構成する炭素が、1個以上置換されたピペリジン誘導体の骨格でもよく、置換される場合、例えば、C-2の炭素原子以外の炭素原子であることが好ましい。上記炭素原子は、例えば、窒素原子、酸素原子又は硫黄原子で置換されてもよい。上記ピペリジン骨格は、例えば、ピペリジンの6員環内に、例えば、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよい。上記ピペリジン骨格において、ピペリジンの6員環を構成する炭素原子及び窒素原子は、例えば、水素原子が結合してもよいし、後述するような置換基が結合してもよい。リンカーLxは、例えば、上記ピペリジン骨格のいずれかの基を介して、式(I)におけるXsとXa、及び式(A)におけるXXsとXXaを連結してもよい。リンカーLxは、例えば、上記ピペリジン骨格のいずれかの基を介して、式(II)におけるYaとYs、及び式(B)におけるYYaとYYsを連結してもよい。それらは、上記6員環のいずれか1個の炭素原子と窒素原子、好ましくは、上記6員環の2位の炭素原子(C-2)と窒素原子を介して連結されうる。
上記リンカーは、例えば、上記の非ヌクレオチド構造からなる非ヌクレオチド残基のみを含むものでありうる。
上記リンカー領域は、例えば、下記式(III)で表されるか、又は下記式(III)で表される非ヌクレオチド残基を1個又は2個以上含むものであってよい。
Figure 0007363316000002
上記式(III)中、
及びXは、それぞれ独立して、H、O、S又はNHであり;
及びYは、それぞれ独立して、単結合、CH、NH、O又はSであり;
は、環A上のC-3、C-4、C-5又はC-6に結合する水素原子又は置換基であり、
は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、OR、NH、NHR、NR、SH、もしくはSRで置換されても置換されていなくてもよく、又は、
は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Yが、NH、O又はSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接せず;
は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、OR、NH、NHR、NR、SHもしくはSRで置換されても置換されていなくてもよく、又は、
は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Yが、NH、O又はSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接せず;
、R、R及びRは、それぞれ独立して、置換基又は保護基であり;
lは、1又は2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、環A上のC-2以外の1個の炭素原子が、窒素原子、酸素原子、硫黄原子で置換されてもよく、
環A内に、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよく、
ここで、R及びRは、存在しても存在しなくてもよく、存在する場合、R及びRは、それぞれ独立して、R及びRが存在しない式(III)で表される非ヌクレオチド残基である。
式(I)におけるXsとXa、式(A)におけるXXsとXXaは、式(III)中の-OR-又は-OR-を介して、リンカーLxと連結し得る。一実施形態では、Xsが-OR-を介して、Xaが-OR-を介して、リンカーLxと連結してもよい。別の実施形態では、Xsが-OR-を介して、Xaが-OR-を介して、リンカーLxと連結してもよい。別の実施形態では、XXsが-OR-を介して、XXaが-OR-を介して、リンカーLxと連結してもよい。別の実施形態では、XXsが-OR-を介して、XXaが-OR-を介して、リンカーLxと連結してもよい。
式(II)におけるYaとYs、式(B)におけるYYaとYYsは、式(III)中の-OR-又は-OR-を介して、リンカーLxと連結し得る。一実施形態では、Yaが-OR-を介して、Ysが-OR-を介して、リンカーLxと連結してもよい。別の実施形態では、Yaが-OR-を介して、Ysが-OR-を介して、リンカーLxと連結してもよい。別の実施形態では、YYaが-OR-を介して、YYsが-OR-を介して、リンカーLxと連結してもよい。別の実施形態では、YYaが-OR-を介して、YYsが-OR-を介して、リンカーLxと連結してもよい。
好ましい一実施形態では、Xsが-OR-を介して、Xaが-OR-を介して、リンカーLxと連結し、さらにYaが-OR-を介して、Ysが-OR-を介して、リンカーLxと連結してもよい。好ましい別の実施形態では、XXsが-OR-を介して、XXaが-OR-を介して、リンカーLxと連結し、さらにYYaが-OR-を介して、YYsが-OR-を介して、リンカーLxと連結してもよい。
上記式(III)中、X及びXは、例えば、それぞれ独立して、H、O、S又はNHである。上記式(III)中において、XがHであるとは、Xが、Xの結合する炭素原子とともに、CH(メチレン基)を形成することを意味する。Xについても同様である。
上記式(III)中、Y及びYは、それぞれ独立して、単結合、CH、NH、O又はSである。
上記式(III)中、環Aにおいて、lは、1又は2である。l=1の場合、環Aは、5員環であり、例えば、上記ピロリジン骨格である。上記ピロリジン骨格は、例えば、プロリン骨格、プロリノール骨格等があげられ、これらの二価の構造が例示できる。l=2の場合、環Aは、6員環であり、例えば、上記ピペリジン骨格である。環Aは、環A上のC-2以外の1個の炭素原子が、窒素原子、酸素原子又は硫黄原子で置換されてもよい。また、環Aは、環A内に、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよい。環Aは、例えば、L型及びD型のいずれでもよい。
上記式(III)中、Rは、環A上のC-3、C-4、C-5又はC-6に結合する水素原子又は置換基である。Rが上記置換基の場合、置換基Rは、1でも複数でも、存在しなくてもよく、複数の場合、同一でも異なってもよい。
置換基Rは、例えば、ハロゲン、OH、OR、NH、NHR、NR、SH、SR又はオキソ基(=O)等である。
及びRは、例えば、それぞれ独立して、置換基又は保護基であり、同一でも異なってもよい。上記置換基は、例えば、ハロゲン、アルキル、アルケニル、アルキニル、ハロアルキル、アリール、ヘテロアリール、アリールアルキル、シクロアルキル、シクロアルケニル、シクロアルキルアルキル、シクリルアルキル、ヒドロキシアルキル、アルコキシアルキル、アミノアルキル、ヘテロシクリルアルケニル、ヘテロシクリルアルキル、ヘテロアリールアルキル、シリル、シリルオキシアルキル等が挙げられる。以下、同様である。置換基Rは、これらの列挙する置換基であってもよい。
上記保護基は、例えば、反応性の高い官能基を不活性に変換する官能基であり、公知の保護基等が挙げられる。上記保護基は、例えば、文献(J. F. W. McOmie, 「Protecting Groups in Organic Chemistry」 Plenum Press, London and New York, 1973)の記載を援用できる。上記保護基は、特に制限されず、例えば、tert-ブチルジメチルシリル基(TBDMS)、ビス(2-アセトキシエチルオキシ)メチル基(ACE)、トリイソプロピルシリルオキシメチル基(TOM)、1-(2-シアノエトキシ)エチル基(CEE)、2-シアノエトキシメチル基(CEM)及びトリルスルフォニルエトキシメチル基(TEM)、ジメトキシトリチル基(DMTr)等が挙げられる。RがORの場合、上記保護基は、特に制限されず、例えば、TBDMS基、ACE基、TOM基、CEE基、CEM基及びTEM基等が挙げられる。この他にも、シリル含有基も挙げられる。以下、同様である。
上記式(III)中、Lは、n個の原子からなるアルキレン鎖である。上記アルキレン炭素原子上の水素原子は、例えば、OH、OR、NH、NHR、NR、SH、もしくはSRで置換されてもよいし、置換されていなくてもよい。又は、Lは、上記アルキレン鎖の1つ以上の炭素原子が酸素原子で置換されたポリエーテル鎖でもよい。上記ポリエーテル鎖は、例えば、ポリエチレングリコールである。なお、Yが、NH、O又はSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接しない。つまり、例えば、YがOの場合、その酸素原子とLの酸素原子は隣接せず、ORの酸素原子とLの酸素原子は隣接しない。
上記式(III)中、Lは、m個の原子からなるアルキレン鎖である。上記アルキレン炭素原子上の水素原子は、例えば、OH、OR、NH、NHR、NR、SHもしくはSRで置換されてもよいし、置換されていなくてもよい。又は、Lは、上記アルキレン鎖の1つ以上の炭素原子が酸素原子で置換されたポリエーテル鎖でもよい。なお、Yが、NH、O又はSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接しない。つまり、例えば、YがOの場合、その酸素原子とLの酸素原子は隣接せず、ORの酸素原子とLの酸素原子は隣接しない。
のn及びLのmは、特に制限されず、それぞれ、下限は、例えば、0であり、上限も、特に制限されない。n及びmは、例えば、リンカーLx及びLxの所望の長さに応じて、適宜設定できる。n及びmは、例えば、製造コスト及び収率等の点から、それぞれ、0~30が好ましく、より好ましくは0~20であり、さらに好ましくは0~15である。nとmは、同じでもよいし(n=m)、異なってもよい。n+mは、例えば、0~30であり、好ましくは0~20であり、より好ましくは0~15である。
、R、R及びRは、例えば、それぞれ独立して、置換基又は保護基である。上記置換基及び上記保護基は、例えば、前述と同様である。
上記式(III)において、水素原子は、例えば、それぞれ独立して、Cl、Br、F及びI等のハロゲンに置換されてもよい。
好ましい実施形態では、上記リンカーは、下記式(IV-1)~(IV-9)のいずれかで表されるものであるか、又は下記式(IV-1)~(IV-9)で表される非ヌクレオチド残基を1個又は2個以上含むものであってよい。下記式において、qは、0~10の整数である。下記式において、n及びmは、上記式(III)と同じである。具体例としては、式(IV-1)においてn=8、式(IV-2)においてn=3、式(IV-3)においてn=4又は8、式(IV-4)においてn=7又は8、式(IV-5)においてn=3及びm=4、式(IV-6)においてn=8及びm=4、式(IV-7)においてn=8及びm=4、式(IV-8)においてn=5及びm=4、式(IV-9)においてq=1及びm=4が挙げられる。
Figure 0007363316000003
一実施形態では、上記リンカーは、下記式(V)又は(VI)で表されるものであるか、又は下記式(V)又は(VI)で表される非ヌクレオチド残基を1個又は2個以上含むものであってよい。
Figure 0007363316000004
Figure 0007363316000005
一実施形態では、第1のRNA部分(Xs、XXs)は式(VI)中の2位炭素原子側で、第2のRNA部分(Xa、XXa)は式(VI)中の1位窒素原子側で、リンカーLxと連結し、第3のRNA部分(Ya、YYa)は2位炭素原子側で、第4のRNA部分(Ys、YYs)は式(VI)中の1位窒素原子側で、リンカーLxと連結していてもよい。
式(VI)で表されるリンカーは、下記式(VI-1)又は(VI-2)で表される光学活性体であってよい。
Figure 0007363316000006
Figure 0007363316000007
第1及び第2の一本鎖オリゴRNA分子において、XaはXsの3’側領域と相補的であり、YaはYsと相補的である。このため、第1の一本鎖オリゴRNA分子において、XaはXsに向かって折り返し、XaはXsと自己アニーリングによって、二重鎖を形成する。同様に第2の一本鎖オリゴRNA分子において、YsはYaに向かって折り返し、YsはYaと自己アニーリングによって、二重鎖を形成する。
第1及び第2の一本鎖オリゴRNA分子において、YYaはYYsの5’側領域と相補的であり、XXaはXXsと相補的である。このため、第1の一本鎖オリゴRNA分子において、XXaはXXsに向かって折り返し、XXaはXXsと自己アニーリングによって、二重鎖を形成する。同様に第2の一本鎖オリゴRNA分子において、YYaはYYsに向かって折り返し、YYaはYYsと自己アニーリングによって、二重鎖を形成する。
上記のようなリンカーはβターン構造を形成しやすい。そのため、式(I)の第1の一本鎖オリゴRNA分子は、リンカーLxによりβターン側で折り返し構造を取り、それによって、XaがXsと自己アニーリングする際にXaの3’末端が式(II)の第2の一本鎖オリゴRNA分子の5’末端(Yaの5’末端)に接近しやすい構造を取ると考えられる。式(A)及び(B)の第1及び第2の一本鎖オリゴRNA分子についても同様である。
別の実施形態において、リンカー、例えば、第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)は、1つ以上のヌクレオチド残基からなるヌクレオチド性リンカーであってよい。リンカーがヌクレオチド性リンカーである場合、その長さは、特に限定されないが、リンカーの前後の配列、例えば、第1のRNA部分と第2のRNA部分、又は第3のRNA部分と第4のRNA部分による二重鎖形成を妨げない長さであることが好ましい。ヌクレオチド性リンカーである第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)の長さ(塩基数)及び塩基配列は、同じであっても異なっていてもよい。そのヌクレオチド性リンカーの長さは、例えば1塩基以上、2塩基以上、又は3塩基以上であってよく、かつ、例えば100塩基以下、80塩基以下、又は50塩基以下であってよい。そのようなヌクレオチド性リンカーの長さは、例えば、1~50塩基、1~30塩基、3~20塩基、3~10塩基、又は3~7塩基であってよく、例えば、1、2、3、4、5、6、7、8、9又は10塩基であってよい。ヌクレオチド性リンカーは、自己相補的ではなく、配列内部において自己アニーリングを生じない構造であることが好ましい。
本発明において用いるリンカー、例えば、第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)が、非修飾ヌクレオチド残基と修飾ヌクレオチド残基(例えば、修飾リボヌクレオチド残基)を含む場合、修飾ヌクレオチド残基の個数は、特に限定されないが、例えば、1~5個、1~4個、1~3個、例えば1個又は2個であってよい。
本発明において用いるヌクレオチド性リンカーの例として、5’-C-A-C-A-C-C-3’、5’-C-C-A-C-A-C-C-3’、又は5’-U-U-C-G-3’のRNA配列からなるリンカーが挙げられる。一実施形態では、第1のリンカー及び第2のリンカー(上記式中、Lx及びLx)は、それぞれ独立して、5’-C-A-C-A-C-C-3’、5’-C-C-A-C-A-C-C-3’、及び5’-U-U-C-G-3’から選択される。一実施形態では、第1のリンカーは5’-C-A-C-A-C-C-3’のRNA配列からなり、第2のリンカーは5’-U-U-C-G-3’のRNA配列からなる。
第1及び第2の一本鎖オリゴRNA分子は、当業者に公知のRNA合成法を用いて作製することができる。当業者に公知のRNA合成法としては、例えば、ホスホロアミダイト法やH-ホスホネート法等が挙げられる。ホスホロアミダイト法では、担体の疎水性基に結合したリボヌクレオシドをRNAアミダイト(リボヌクレオシドホスホロアミダイト)との縮合反応により伸長し、酸化と脱保護を経て、RNAアミダイトとの縮合反応を繰り返し行うことにより、RNA合成を行うことができる。式(I)及び(II)の第1及び第2の一本鎖オリゴRNA分子を例にとって説明すると、本発明に係る第1及び第2の一本鎖オリゴRNA分子は、RNA合成法、例えばホスホロアミダイト法により、3’末端側からリンカーの手前までの配列(Xa、Ys)の合成を行った後、ピロリジン骨格又はピペリジン骨格を有する環状アミン誘導体のような非ヌクレオチド残基を結合してリンカーを形成し、その末端にさらにリンカーから5’末端までの配列(Xs;又はYa、Ya、及びYa)の合成を順次行うことにより、作製することができる。あるいは、本発明に係る第1及び第2の一本鎖オリゴRNA分子は、RNA合成法、例えばホスホロアミダイト法により、3’末端側からヌクレオチド性リンカーの手前までの配列(Xa、Ys)の合成を行い、引き続きヌクレオチド性リンカーの配列を合成し、さらにヌクレオチド性リンカーの後ろから5’末端までの配列(Xs;又はYa、Ya、及びYa)の合成を順次行うことにより、作製することができる。非ヌクレオチド性リンカーとヌクレオチド性リンカーの組み合わせを用いる場合、及び式(A)及び(B)の第1及び第2の一本鎖オリゴRNA分子を用いる場合も、上記の方法に準じて作製することができる。本発明では、任意のRNAアミダイトを使用することができ、例えば、2位の水酸基にt-ブチルジメチルシリル(TBDMS)、トリイソプロピルシリルオキシメチル(TOM)、ビス(2-アセトキシエトキシ)メチル(ACE)1-(2-シアノエトキシ)エチル基(CEE)、2-シアノエトキシメチル基(CEM)、トリルスルフォニルエトキシメチル基(TEM)、ジメトキシトリチル基(DMTr)等の様々な保護基を有する汎用型RNAアミダイトも使用することができる。また本発明では、RNA合成において、ポリスチレン系担体、アクリルアミド系担体、又はガラス担体などの任意の固相担体を使用することができる。担体は、ビーズ、プレート、チップ、チューブ等の任意の形態であってよい。担体の例として、ポリスチレンビーズ、例えばNittoPhase(R) HL rG(ibu)、又はrU(KINOVATE)が挙げられるが、これらに限定されない。
上記リンカーのうち、非ヌクレオチド性リンカーを形成するための環状アミン誘導体は、RNA合成用のモノマーであって、例えば、下記式(VII)の構造を有する。この環状アミン誘導体は、基本的に上記の各リンカー構造と対応しており、リンカー構造についての説明はこの環状アミン誘導体にも援用される。リンカーを形成する環状アミン誘導体は、例えば、自動核酸合成用のアミダイトとして使用でき、例えば、一般的な核酸自動合成装置に適用可能である。
Figure 0007363316000008
上記式(VII)中、
及びXは、それぞれ独立して、H、O、S又はNHであり;
及びYは、それぞれ独立して、単結合、CH、NH、O又はSであり;
及びRは、それぞれ独立して、H、保護基又はリン酸保護基であり;
は、環A上のC-3、C-4、C-5又はC-6に結合する水素原子又は置換基であり;
は、n個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、OR、NH、NHR、NR、SH、もしくはSRで置換されても置換されていなくてもよく、又は、
は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Yが、NH、O又はSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接せず;
は、m個の原子からなるアルキレン鎖であり、ここで、アルキレン炭素原子上の水素原子は、OH、OR、NH、NHR、NR、SHもしくはSRで置換されても置換されていなくてもよく、又は、
は、上記アルキレン鎖の一つ以上の炭素原子が、酸素原子で置換されたポリエーテル鎖であり、
ここで、Yが、NH、O又はSの場合、Yに結合するLの原子は炭素であり、ORに結合するLの原子は炭素であり、酸素原子同士は隣接せず;
、R、R及びRは、それぞれ独立して、置換基又は保護基であり;
lは、1又は2であり;
mは、0~30の範囲の整数であり;
nは、0~30の範囲の整数であり;
環Aは、環A上のC-2以外の1個の炭素原子が、窒素原子、酸素原子又は硫黄原子で置換されてもよく、
環A内に、炭素-炭素二重結合又は炭素-窒素二重結合を含んでもよい。
上記式(VII)において、上記式(III)と同一箇所については、上記式(III)の説明を援用できる。具体的に、上記式(VII)において、例えば、X、X、Y、Y、R、L、L、l、m、n及び環Aは、上記式(III)の説明を全て援用できる。
上記式(VII)において、R及びRは、前述のように、それぞれ独立して、H、保護基又はリン酸保護基である。
上記保護基は、例えば、上記式(III)における説明と同様であり、具体例として、例えば、群Iから選択できる。上記群Iは、例えば、ジメトキシトリチル(DMTr)基、TBDMS基、ACE基、TOM基、CEE基、CEM基、TEM基、及び、下記式に示すシリル含有基があげられ、中でも、DMTr基及び上記シリル含有基のいずれかであることが好ましい。
Figure 0007363316000009
上記リン酸保護基は、例えば、下記式で表すことができる。
-P(OR)(NR
上記式において、Rは、水素原子又は任意の置換基である。Rは、例えば、炭化水素基が好ましく、上記炭化水素基は、電子吸引基で置換されていてもよいし、置換されていなくてもよい。Rは、例えば、ハロゲン、ハロアルキル、ヘテロアリール、ヒドロキシアルキル、アルコキシアルキル、アミノアルキル、シリル、シリルオキシアルキル、ヘテロシクリルアルケニル、ヘテロシクリルアルキル、ヘテロアリールアルキル、及び、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、シクロアルキル、シクロアルケニル、シクロアルキルアルキル、シクリルアルキル等の炭化水素等があげられ、さらに、電子吸引基で置換されていてもよいし、置換されていなくてもよい。Rは、具体的には、例えば、β-シアノエチル基、ニトロフェニルエチル基、メチル基等が挙げられる。
及びRは、それぞれ、水素原子又は任意の置換基であり、同一でも異なっていてもよい。R及びRは、例えば、炭化水素基が好ましく、上記炭化水素基は、さらに任意の置換基で置換されていてもよいし、置換されていなくてもよい。上記炭化水素基は、例えば、前述した上記Rでの列挙と同様であり、好ましくは、メチル基、エチル基、イソプロピル基である。この場合、-NRは、具体的には、例えば、ジイソプロピルアミノ基、ジエチルアミノ基、エチルメチルアミノ基等が挙げられる。又は、置換基R及びRが一体となって、それらが結合する窒素原子とともに(すなわち、-NRが一体となって)、窒素含有環(例えば、ピペリジル基、モルホリノ基等)を形成してもよい。
上記リン酸保護基の具体例としては、例えば、下記群IIから選択できる。群IIは、例えば、-P(OCHCHCN)(N(i-Pr))、-P(OCH)(N(i-Pr))等が挙げられる。上記式において、i-Prは、イソプロピルを示す。
上記式(VII)において、例えば、R及びRは、いずれか一方が、H又は保護基であり、他方が、H又はリン酸保護基である。好ましくは、例えば、Rが、上記保護基の場合、Rは、H又は上記リン酸保護基が好ましく、具体的には、Rが、上記群Iから選択される場合、Rは、H又は上記群IIから選択されることが好ましい。また、好ましくは、例えば、Rが、上記リン酸保護基の場合、Rは、H又は上記保護基が好ましく、具体的には、Rが、上記群IIから選択される場合、Rは、H又は上記群Iから選択されることが好ましい。
上記環状アミン誘導体は、下記式(VII-1)~(VII-9)のいずれかで表されるものであってよい。下記式において、n及びmは、上記式(VII)と同じである。下記式において、qは、0~10の整数である。具体例としては、式(VII-1)においてn=8、式(VII-2)においてn=3、式(VII-3)においてn=4又は8、式(VII-4)においてn=7又は8、式(VII-5)においてn=3及びm=4、式(VII-6)においてn=8及びm=4、式(VII-7)においてn=8及びm=4、式(VII-8)においてn=5及びm=4、式(VII-9)においてq=1及びm=4が挙げられる。
Figure 0007363316000010
一実施形態では、上記環状アミン誘導体は、下記式(VIII)で表されるプロリノール誘導体又は下記式(IX)で表されるプロリン誘導体で表されるものであってよい。
Figure 0007363316000011
上記環状アミン誘導体は、例えば、標識物質、例えば安定同位体を含んでもよい。
上記環状アミン誘導体は、例えば、国際公開WO2013/027843又は国際公開WO2016/159374に記載された、核酸分子合成用モノマーの製造方法に従って合成することができる。
本発明の方法では、上記の第1の一本鎖オリゴRNA分子(例えば、図1中、ストランド1)と第2の一本鎖オリゴRNA分子(例えば、図1中、ストランド2)をアニーリングし、ライゲーションすることにより、本発明に係る標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子を製造することができる。
本発明の方法により製造されるヘアピン型一本鎖RNA分子において、ライゲーション工程で生じるXa-Ya-Ya-Yaは、標的遺伝子に対する遺伝子発現抑制配列を含む。遺伝子発現抑制配列は、Xa、Xa-Ya、Xa-Ya-Ya、又はXa-Ya-Ya-Yaに含まれていてもよい。同様に、ライゲーション工程で生じるXXa-XXa-XXa-YYaは、標的遺伝子に対する遺伝子発現抑制配列を含む。遺伝子発現抑制配列は、YYa、XXa-YYa、XXa-XXa-YYa、又はXXa-XXa-XXa-YYaに含まれていてもよい。遺伝子発現抑制配列は、好ましくは、標的遺伝子から転写されるmRNAの全体又は一部のセンス配列又はアンチセンス配列である。なお、ライゲーション工程で生じるXa-Yaは、Xsと相補的であることから、Xsも標的遺伝子に対する遺伝子発現抑制配列を含んでいてもよい。同様に、XXa-YYaは、YYsと相補的であることから、YYsも標的遺伝子に対する遺伝子発現抑制配列を含んでいてよい。
上記ヘアピン型一本鎖RNA分子は、遺伝子発現抑制配列を1つ含んでもよいし、2つ以上含んでもよい。上記ヘアピン型一本鎖RNA分子は、例えば、同じ標的遺伝子に対する同じ遺伝子発現抑制配列を2つ以上有してもよいし、同じ標的に対する異なる遺伝子発現抑制配列を2つ以上有してもよいし、異なる標的遺伝子に対する異なる遺伝子発現抑制配列を2つ以上有してもよい。異なる標的遺伝子に対する遺伝子発現抑制配列を2つ以上有するヘアピン型一本鎖RNA分子は、2種類以上の異なる標的遺伝子の発現抑制に有用である。本発明において「遺伝子」とは、mRNAに転写されるゲノム領域を指し、タンパク質コード領域であってよいが、RNAコード領域であってもよい。
本発明に係るヘアピン型一本鎖RNA分子は、遺伝子発現抑制配列を介して標的遺伝子の発現を抑制する能力を有する。本発明に係るヘアピン型一本鎖RNA分子による標的遺伝子の発現抑制は、RNA干渉によるものであることが好ましいが、それに限定されない。RNA干渉は、一般に、長い二本鎖RNA(dsRNA)が、細胞内において、Dicerにより、3’末端が突出した19~21塩基対程度の短い二本鎖RNA(siRNA:small interfering RNA)に切断され、その一方の一本鎖RNAが標的mRNAに結合して、標的mRNAを分解することにより、標的mRNAの翻訳を抑制し、それにより標的mRNAが由来する標的遺伝子の発現を抑制する現象である。標的mRNAに結合するsiRNAに含まれる一本鎖RNAの配列は、例えば、標的遺伝子の種類に応じて様々な種類が報告されている。本発明は、例えば、siRNAに含まれる一本鎖RNAの配列(好ましくは、アンチセンス配列)を、遺伝子発現抑制配列として使用できる。本発明の方法により製造されるヘアピン型一本鎖RNA分子は、in vivoで切断されてsiRNAを生成することにより標的遺伝子の発現を抑制することができる。本発明に係るヘアピン型一本鎖RNA分子は、標的遺伝子の発現又は発現増加と関連する疾患又は障害の治療又は予防のために用いることができる。
遺伝子発現抑制配列は、好ましくは19~30塩基長であり、より好ましくは19~27塩基長であり、例えば、19、20、21、22、又は23塩基長であってよい。遺伝子発現抑制配列は、標的遺伝子のmRNAの少なくとも一部の配列と完全に同一又は完全に相補的なRNA配列からなることが好ましい。遺伝子発現抑制配列は、標的遺伝子の塩基配列に対し、常法により設計することができる。
標的遺伝子は、任意の遺伝子であってよく、例えば任意の疾患関連遺伝子であってよい。標的遺伝子は、ヘアピン型一本鎖RNA分子により生体、細胞、組織又は器官等において遺伝子発現抑制をもたらす対象と同じ生物種に由来するものであることが好ましく、例えば、ヒト、チンパンジー、ゴリラなどの霊長類、ウマ、ウシ、ブタ、ヒツジ、ヤギ、ラクダ、ロバ等の家畜、イヌ、ネコ、ウサギ等の愛玩動物、マウス、ラット、モルモット等のげっ歯類などを含む哺乳動物、魚類、昆虫等の動物、植物、真菌等に由来するものであってよい。標的遺伝子としては、特に限定されないが、例えばTGF-β1遺伝子、GAPDH遺伝子、LAMA1遺伝子、LMNA遺伝子が挙げられる。ヒトTGF-β1(トランスフォーミング増殖因子-β1)遺伝子のmRNA配列は、例えばGenBank(NCBI)アクセッション番号NM_000660に基づいて入手することができる(NCBI Gene ID: 7040)。ヒトGAPDH(グリセルアルデヒド-3-リン酸デヒドロゲナーゼ)遺伝子のmRNA配列は、例えばGenBank(NCBI)アクセッション番号NM_002046に基づいて入手することができる(NCBI Gene ID: 2597)。ヒトLAMA1遺伝子のmRNA配列は、例えばGenBankアクセッション番号NM_005559に基づいて入手することができる(NCBI Gene ID: 284217)。ヒトLMNA遺伝子のmRNA配列は、例えばGenBankアクセッション番号NM_170707に基づいて入手することができる(NCBI Gene ID: 4000)。標的遺伝子がTGF-β1遺伝子である場合、本発明の方法により製造されるヘアピン型一本鎖RNA分子は、in vivoでTGF-β1遺伝子の発現を抑制する。そのようなヘアピン型一本鎖RNA分子は、TGF-β1遺伝子の遺伝子発現抑制を通じて、TGF-β1遺伝子の発現又は発現増加と関連する疾患又は障害、例えば肺線維症や急性肺疾患の治療又は予防のために用いることができる。同様に、GAPDH遺伝子、LAMA1遺伝子、LMNA遺伝子等の他の標的遺伝子の発現を抑制する本発明に係るへアピン型一本鎖RNA分子も、当該標的遺伝子の発現抑制を通じて、当該標的遺伝子の発現又は発現増加と関連する疾患又は障害の治療又は予防のために用いることができる。
本発明の方法により製造される、標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の1つの例は、配列番号1で表される塩基配列からなり、かつ24番目と25番目のヌクレオチド(リボヌクレオチド残基)がリンカー(Lx)を介して連結され、50番目と51番目のヌクレオチド(リボヌクレオチド残基)がリンカー(Lx)を介して連結されているRNA分子である(例えば、図2)。配列番号1で表される塩基配列からなるそのようなヘアピン型一本鎖RNA分子は、5’末端から3’末端の方向に、配列番号2で表される塩基配列からなるRNA配列と、上記のリンカー(非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせ;図1のLx)と、配列番号3で表される塩基配列からなるRNA配列と、上記のリンカー(非ヌクレオチド性リンカー、ヌクレオチド性リンカー、又はそれらの組み合わせ;図1のLx)と、塩基G(グアニン)を含む。配列番号1で表される塩基配列からなる上記ヘアピン型一本鎖RNA分子は、標的遺伝子であるTGF-β1遺伝子に対する遺伝子発現抑制配列を含む。配列番号1で表される塩基配列の29番目~47番目の配列が遺伝子発現抑制配列(活性配列;配列番号50)に相当する。本発明は、この遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子の製造方法を提供する。
そのようなRNA分子を製造するための、第1の一本鎖オリゴRNA分子(ストランド1)と第2の一本鎖オリゴRNA分子(ストランド2)の例は、後述の表1に挙げられている。表1に挙げられている第1の一本鎖オリゴRNA分子(ストランド1)と第2の一本鎖オリゴRNA分子(ストランド2)の配列において、P(プロリン誘導体)を含むリンカーは、上記の他の非ヌクレオチド性リンカー又はヌクレオチド性リンカーなどの任意のリンカーに置換されたものであってもよい。一実施形態では、第1の一本鎖オリゴRNA分子は、3’末端にウラシル(U)又はアデニン(A)を有することが好ましく、かつ第2の一本鎖オリゴRNA分子は5’末端にウラシル(U)又はアデニン(A)を有することが好ましい。
配列番号1で表される塩基配列からなるヘアピン型一本鎖RNA分子を製造するための特に好ましい第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子のペアとしては、以下:
(1)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカー(Lx)を介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(2)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカー(Lx)を介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子の組み合わせ、
(3)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカー(Lx)を介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
(4)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカー(Lx)を介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子の組み合わせ
(5)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカー(Lx)を介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、及び
(6)24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカー(Lx)を介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子の組み合わせ、
が挙げられる。これらの第1の一本鎖オリゴRNA分子は、3’末端(Xaの3’末端)にU又はAを含む。これらの第2の一本鎖オリゴRNA分子は、5’末端(Yaの5’末端)にU又はAを含む。
ここで、例えば(1)の第1の一本鎖オリゴRNA分子について、「24番目と25番目のリボヌクレオチド残基が第1のリンカー(Lx)を介して連結されている」とは、第1の一本鎖オリゴRNA分子において配列番号19で表される塩基配列の24番目のリボヌクレオチド残基(塩基:C)と25番目のリボヌクレオチド残基(塩基:G)が第1のリンカーLxを介して結合していることを意味する。なお、本発明における一本鎖オリゴRNA分子及びヘアピン型一本鎖RNA分子に関する「X番目とY番目のリボヌクレオチド残基がZを介して連結されている」という表現も、これに準じて解釈される。
(1)~(6)の第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子において、リンカーLx及びLxは、好ましくは、式(VI)、例えば式(VI-1)又は式(VI-2)で表されるものである。
好ましい実施形態では、(1)~(6)の第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子は、Lx及びLxとして式(VI)で示されるリンカーを有しており、式(I)のXaは式(VI)中の1位窒素原子側で、Xsは2位炭素原子側でリンカーLxと連結し、Ysは式(VI)中の1位窒素原子側で、Yaは2位炭素原子側でリンカーLxと連結していてもよい。
本発明は、本発明の方法に従ってヘアピン型一本鎖RNA分子の製造のために第1の一本鎖オリゴRNA分子又は第2の一本鎖オリゴRNA分子として用いることができる、一本鎖オリゴRNA分子を提供する。
一実施形態では、標的遺伝子であるTGF-β1遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造に用いる一本鎖オリゴRNA分子の例として、下記(a)~(l)が挙げられるが、これらに限定されない:
(a)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号7で表される塩基配列からなる一本鎖オリゴRNA分子、
(b)10番目と11番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号6で表される塩基配列からなる一本鎖オリゴRNA分子、
(c)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号19で表される塩基配列からなる一本鎖オリゴRNA分子、
(d)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号18で表される塩基配列からなる一本鎖オリゴRNA分子、
(e)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号27で表される塩基配列からなる一本鎖オリゴRNA分子、
(f)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号26で表される塩基配列からなる一本鎖オリゴRNA分子、
(g)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号29で表される塩基配列からなる一本鎖オリゴRNA分子、
(h)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号28で表される塩基配列からなる一本鎖オリゴRNA分子、
(i)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号31で表される塩基配列からなる一本鎖オリゴRNA分子、
(j)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号30で表される塩基配列からなる一本鎖オリゴRNA分子、
(k)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号33で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(l)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号32で表される塩基配列からなる一本鎖オリゴRNA分子。
好ましい実施形態では、一本鎖オリゴRNA分子(a)及び(b);(c)及び(d);(e)及び(f);(g)及び(h);(i)及び(j);又は(k)及び(l)を組み合わせて、本発明に係るヘアピン型一本鎖RNA分子の製造方法に使用することができる。
別の実施形態として、本発明の方法により製造される、GAPDH遺伝子、LAMA1遺伝子、又はLMNA遺伝子である標的遺伝子に対するヘアピン型一本鎖RNA分子の例が、図17に示されている。GAPDH遺伝子に対するヘアピン型一本鎖RNA分子の例は、配列番号51で表される塩基配列からなり、かつ22番目と23番目のヌクレオチド(リボヌクレオチド残基)が第1のリンカー(Lx)を介して連結され、48番目と49番目のヌクレオチド(リボヌクレオチド残基)が第2のリンカー(Lx)を介して連結されているRNA分子である。LAMA1遺伝子に対するヘアピン型一本鎖RNA分子の例は、配列番号52で表される塩基配列からなり、かつ24番目と25番目のヌクレオチド(リボヌクレオチド残基)が第1のリンカー(Lx)を介して連結され、50番目と51番目のヌクレオチド(リボヌクレオチド残基)が第2のリンカー(Lx)を介して連結されているRNA分子である。LAMA1遺伝子に対するヘアピン型一本鎖RNA分子の別の例は、配列番号53で表される塩基配列からなり、かつ24番目と31番目のヌクレオチド(リボヌクレオチド残基)がヌクレオチド性の第1のリンカー(Lx)を介して連結され、56番目と61番目のヌクレオチド(リボヌクレオチド残基)がヌクレオチド性の第2のリンカー(Lx)を介して連結されているRNA分子である。LMNA遺伝子に対するヘアピン型一本鎖RNA分子の例は、配列番号54で表される塩基配列からなり、かつ24番目と25番目のヌクレオチド(リボヌクレオチド残基)が第1のリンカー(Lx)を介して連結され、50番目と51番目のヌクレオチド(リボヌクレオチド残基)が第2のリンカー(Lx)を介して連結されているRNA分子である。標的遺伝子としてのGAPDH遺伝子、LAMA1遺伝子、又はLMNA遺伝子に対する遺伝子発現抑制配列(アンチセンス配列;それぞれ、配列番号55、56、57)の例も、図17に示されている。本発明は、これらの遺伝子発現抑制配列のいずれかを含むヘアピン型一本鎖RNA分子の製造方法も提供する。
標的遺伝子であるGAPDH遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造に用いる一本鎖オリゴRNA分子の例として、下記(m)及び(n)が挙げられるが、これに限定されない:
(m)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号37で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(n)20番目と21番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号36で表される塩基配列からなる一本鎖オリゴRNA分子
好ましい実施形態では、(m)及び(n)の一本鎖オリゴRNA分子を組み合わせて、本発明に係るヘアピン型一本鎖RNA分子の製造方法に使用することができる。
標的遺伝子であるLAMA1遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造に用いる一本鎖オリゴRNA分子の例として、下記(o)~(v)が挙げられるが、これに限定されない:
(o)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号39で表される塩基配列からなる一本鎖オリゴRNA分子、
(p)16番目と17番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号38で表される塩基配列からなる一本鎖オリゴRNA分子、
(q)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号41で表される塩基配列からなる一本鎖オリゴRNA分子、
(r)22番目と23番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号40で表される塩基配列からなる一本鎖オリゴRNA分子、
(s)24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号43で表される塩基配列からなる一本鎖オリゴRNA分子、
(t)21番目と26番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号42で表される塩基配列からなる一本鎖オリゴRNA分子、
(u)24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号45で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(v)22番目と27番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている配列番号44で表される塩基配列からなる一本鎖オリゴRNA分子。
好ましい実施形態では、一本鎖オリゴRNA分子(o)及び(p);(q)及び(r);(s)及び(t);又は(u)及び(v)を組み合わせて、本発明に係るヘアピン型一本鎖RNA分子の製造方法に使用することができる。
標的遺伝子であるLMNA遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造に用いる一本鎖オリゴRNA分子の例として、下記(w)~(z)が挙げられるが、これに限定されない:
(w)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号47で表される塩基配列からなる一本鎖オリゴRNA分子、
(x)21番目と22番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号46で表される塩基配列からなる一本鎖オリゴRNA分子、
(y)24番目と25番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号49で表される塩基配列からなる一本鎖オリゴRNA分子、及び
(z)23番目と24番目のリボヌクレオチド残基がリンカーを介して連結されている配列番号48で表される塩基配列からなる一本鎖オリゴRNA分子。
好ましい実施形態では、一本鎖オリゴRNA分子(w)及び(x);又は(y)及び(z)を組み合わせて、本発明に係るヘアピン型一本鎖RNA分子の製造方法に使用することができる。
一本鎖オリゴRNA分子(a)~(z)における「リンカー」は、上記第1のリンカー又は第2のリンカーに相当し、また上述のリンカーを用いることができる。一本鎖オリゴRNA分子(s)~(v)中のヌクレオチド性リンカーは、上述のリンカー(例えば、他のヌクレオチド性リンカー)に置換されてもよい。
本発明では、上記の第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子をライゲーションで連結することにより、ヘアピン型一本鎖RNA分子を製造することができる。上記の第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子は、ライゲーションの前にアニーリングされる。アニーリング反応は、水性媒体中で第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を混合することにより、引き起こすことができる。本発明の方法において、アニーリング工程は、水性媒体(通常は、水又はバッファー)中で第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を混合し、一定時間(例えば、1~15分間)にわたり静置することにより行ってもよいし、静置することなくライゲーション反応に用いてもよい。アニーリング工程では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子の熱変性(例えば、90℃以上の温度での加熱)を行ってもよいが、行わなくてもよい。熱変性を行う場合、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を含む反応液を、例えば、熱変性温度(例えば、90℃以上)で加熱し、次いでアニーリング温度(典型的には、一本鎖オリゴRNA分子のYa配列に基づくTm値±5℃の範囲の温度、例えば、55~60℃)で一定時間反応させてアニーリングさせた後、降温(例えば4℃まで)させればよい。熱変性を行わずにアニーリングする場合、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を室温(15~35℃)で混合し、一定時間(例えば、1分間~1時間、又は5~15分間)にわたり静置することによりアニーリング工程を実施してもよい。
一実施形態では、本発明のアニーリング工程において、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子は、反応液中、等モル量で混合してもよい。本発明において「等モル量で混合する」とは、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を、1:1.1~1.1:1のモル比で混合することを意味する。
アニーリング工程後、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子がアニーリングした二本鎖オリゴRNAを含むアニーリング反応液を、ライゲーションに供する。アニーリング反応液の一部を、ライゲーション反応液に添加してもよいし、アニーリング反応液全量を用いてライゲーション反応液を調製してもよい。ライゲーションは、酵素的なライゲーションであってよい。酵素的なライゲーションは、RNAリガーゼ、特に、Rnl2ファミリーのリガーゼによるライゲーションであってよい。
Rnl2ファミリーのリガーゼ(Rnl2ファミリーメンバー)は、RNAニックシーリング活性、すなわち、RNAのニック(RNA二重鎖又はRNA-DNA二重鎖中のニック)をその3’水酸基(3’-OH)及び5’リン酸基(5’-PO)を連結することによって埋める(シーリングする)リガーゼ活性を有する酵素である(例えば、Nandakumar J. et al., Cell 127, p.71-84 (2006)を参照のこと)。Rnl2ファミリーのリガーゼとしては、T4 RNAリガーゼ2、トリパノソーマ属(例えば、Trypanosoma brucei)及びリーシュマニア属(例えば、Leishmania tarenotolae)のRNA編集リガーゼ(REL)、ビブリオファージKVP40Rnl2、ポックスウイルスAmEPVリガーゼ、バキュロウイルスAcNPVリガーゼ、及びバキュロウイルスXcGVリガーゼ、並びにそれらの変異体又は修飾体等が挙げられるが、これらに限定されない。これらのリガーゼは当業者にはよく知られており、市販されているか又は論文等の教示に従って入手できる。例えば、T4 RNAリガーゼ2は、New England Biolabsから市販されている。T4 RNAリガーゼ2タンパク質は、バクテリオファージT4の遺伝子gp24.1によってコードされている。T4 RNAリガーゼ2の単離は、例えば、Nandakumar J. and Shuman S., (2005) J. Biol. Chem., 280: 23484-23489; Nandakumar J., et al., (2004) J. Biol. Chem., 279: 31337-31347; Nandakumar J. and Shuman S., (2004) Mol. Cell, 16: 211-221等の記載に従って行うことができる。本発明において、「Rnl2ファミリーのリガーゼ」は、単離された天然リガーゼに限定されず、RNAニックシーリング活性を有する限り、組換えタンパク質、突然変異体、欠損体(末端切断形態など)、ペプチド(例えば、His、HA、c-Myc、V5,DDDDKなどのタグ)又は他のタンパク質との融合体、糖鎖付加(グリコシル化)又は脂質付加タンパク質などの修飾タンパク質等を包含する。
ライゲーション反応液は、ライゲーションに通常用いる成分又はそれを含むバッファーを用いて調製することができる。ライゲーション反応液は、上記第1の一本鎖オリゴRNA分子及び上記第2の一本鎖オリゴRNA分子に加えて、RNAのライゲーション反応に用いることができる成分、例えば、Tris(トリス)-HCl、二価金属イオン、ジチオトレイトール(DTT)、及びアデノシン三リン酸(ATP)等を含んでもよい。二価金属イオンとしては、Mg2+、Mn2+等が挙げられるが、これらに限定されない。ライゲーション反応液は、二価金属イオンを、通常、塩の形態で含み、例えば、金属塩化物(MgCl、MnClなど)を含む。
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子のライゲーションは、RNAリガーゼ、又はRNA同士の末端又はdsRNAのニックを連結する活性を有する他の酵素、特にRnl2ファミリーのリガーゼを用いて行うことができる。RNAリガーゼとしては、dsRNAリガーゼを用いることができる。dsRNAリガーゼは、二本鎖RNA(dsRNA)のニックを連結する活性を主として有する酵素である。dsRNAリガーゼとしては、T4 RNAリガーゼ2が挙げられるが、これに限定されない。T4 RNAリガーゼ2は、3’→5’ホスホジエステル結合の形成を触媒する。
ライゲーション反応液にRnl2ファミリーのリガーゼを添加し、アニーリングした第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子の二本鎖オリゴRNA分子を、Rnl2ファミリーのリガーゼと共に、ライゲーションが可能な条件下でインキュベートすることにより、二本鎖オリゴRNA分子を構成する第1の一本鎖オリゴRNA分子の3’末端と第2の一本鎖オリゴRNA分子の5’末端(アンチセンス鎖内)を一本鎖にライゲーションすることができる。
第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子のライゲーションは、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を等モル量で含むライゲーション反応液中で行ってもよい。本発明において「等モル量で含む」とは、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を、1:1.1~1.1:1のモル比で含むことを意味する。
本発明の方法では、ライゲーションを、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を、それぞれ、10μM以上、40μM以上、100μM以上、150μM以上、200μM以上、300μM以上、又は500μM以上の濃度で含むライゲーション反応液中で行ってもよい。一実施形態では、ライゲーション反応液は、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を、それぞれ、10,000μM以下で含んでもよく、例えば1,000μM以下、500μM以下、又は300μM以下の濃度で含んでもよい。一実施形態では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子は、ライゲーション反応液中で、例えば、50~500μM、100~300μM、又は100~250μMの濃度で使用してもよい。一実施形態では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を等モル量で含むライゲーション反応液が、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子をこのような濃度で含む。本発明の方法では、反応液中のRnl2ファミリーのリガーゼの濃度(又は量)に対して第1及び第2の一本鎖オリゴRNA分子をより多い濃度(又は量)で用いて、ヘアピン型一本鎖RNA分子の製造効率を増加させることができる。
一実施形態では、ライゲーション反応液は、Rnl2ファミリーのリガーゼを0.01U/μL以上含んでもよく、例えば、0.01U/μL以上、0.08U/μL以上、0.2U/μL以上、又は0.35U/μL以上の濃度で含んでもよい。ライゲーション反応液は、Rnl2ファミリーのリガーゼを、例えば、10U/μL以下、1U/μL以下、又は0.5U/μL以下の濃度で含んでもよい。一実施形態では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を等モル量で含むライゲーション反応液が、Rnl2ファミリーのリガーゼをこのような濃度で含む。
一実施形態では、ライゲーション反応液は、pH6.5以上であってよく、例えばpH7.0~9.0、pH7.4以上、pH7.4~8.6、pH7.5~8.5、又はpH7.5~8.0であってよい。第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を等モル量で含むライゲーション反応液が、このようなpHを有していてもよい。
一実施形態では、ライゲーション反応液は、1mM以上、例えば1~20mM、2~10mM、3~6mM、又は5mMの二価金属イオンを含む。一実施形態では、ライゲーション反応液は、1mM以上、例えば1~20mM、2~10mM、3~6mM、又は5mMのMg2+又はMn2+を含み、例えば、当該濃度のMgClを含んでもよい。一実施形態では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を等モル量で含むライゲーション反応液が、二価金属イオンをこのような濃度で含む。
ライゲーション反応液は、ポリエチレングリコール(PEG)などの他の添加物質を含んでもよい。ポリエチレングリコールとしては、例えば、PEG6000、PEG8000、PEG20000などの、PEG6000~20000を使用することができる。ライゲーション反応液は、ポリエチレングリコールを、例えば3~30w/v%、5~20w/v%、5~15w/v%又は10~30w/v%の量で含んでもよい。一実施形態では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を等モル量で含むライゲーション反応液が、ポリエチレングリコールをこのような濃度で含む。一実施形態では、そのようなポリエチレングリコールの添加を、0.4U/μL以下、例えば0.01~0.4U/μL、0.08~0.4U/μL、又は0.1U/μL以上0.3U/μL未満のRNAリガーゼを含むライゲーション反応液において用いてもよい。
ライゲーション反応液は、通常はATPを含む。本発明において、ライゲーション反応液は、ATPを、例えば5mM以下、2mM以下、1mM以下、及び/若しくは0.1mM以上、又は0.1~1.5mMの濃度で含む。
一実施形態では、ライゲーション反応液は、Tris-HClを含んでもよく、例えば、10~70mM Tris-HClを含んでもよいが、この濃度に限定されない。ライゲーション反応液は、ジチオトレイトール(DTT)を含んでもよく、例えば、0.1~5mM DTTを含んでもよいが、この濃度に限定されない。
本発明において、ライゲーションの反応時間は、本発明に係る第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子の二本鎖オリゴRNAのライゲーション反応に適した時間であればよい。ライゲーション反応は、例えば20分以上又は30分以上、1時間以上、2時間以上、又は3時間以上の反応時間にわたって行ってもよい。本発明におけるライゲーションの反応時間は、4時間以上、6時間以上、8時間以上、10時間以上、12時間以上、24時間以上、又は48時間以上であってもよい。本発明において、とりわけ高濃度(例えば、100μM又は200μM以上)の第1及び第2の一本鎖オリゴRNA分子を含むライゲーション反応液を用いる場合、より長時間にわたってライゲーション反応を行ってもよい。例えば、ライゲーション反応液が、pH7.4以上、pH7.4~8.6、pH7.5~8.5、又はpH7.5~pH8.0を示す場合に、より長時間(例えば、4時間以上、12時間以上、又は24時間以上)の反応時間を用いてもよい。特に高濃度の一本鎖オリゴRNA分子を用いる場合に、そのようなより長時間の反応時間を用いてもよい。
本発明の方法では、ライゲーション工程を、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子を段階的に添加しながら行ってもよい。第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子について「段階的に添加する」とは、ライゲーション工程において、第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子を、複数回にわたり、時間的間隔を空けて反応液に添加することを意味する。例えば、第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子をライゲーション反応に適した時間にわたってRNAリガーゼと共にインキュベートした後、第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子を追加的に添加してさらにライゲーション反応を行う追加反応工程を1回行うか又はそれ以上反復して行うことにより、当該一本鎖RNA分子を反応系に段階的に添加しながらライゲーションを行うことができる。追加反応工程は、2回、3回、4回、又はそれ以上繰り返して行ってもよい。この場合、第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子のライゲーションのための最初のインキュベーション時間(初期反応時間)は、上記のライゲーション反応時間に従えばよく、例えば、4時間以上、8時間以上、12時間以上、又は24時間以上であってよい。第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子を追加後のインキュベーション時間(追加反応時間)は、例えば、4時間以上、8時間以上、12時間以上、又は24時間以上であってよい。ライゲーションの追加反応工程において、サイクル毎の追加反応時間は、互いに同一であっても異なっていてもよい。ライゲーションの初期反応時間とサイクル毎の追加反応時間は、同一であっても異なっていてもよい。第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子を段階的に添加する場合、ライゲーション反応液に最初に添加する一本鎖RNA分子の濃度は、上記と同様であってよく、例えば、40μM以上、100μM以上、150μM以上、又は200μM以上の濃度であってよい。それぞれの追加反応工程においてライゲーション反応液に添加する一本鎖RNA分子の量は、最初の反応液中に含まれる一本鎖RNA分子の量(モル数)と同じであっても異なっていてもよく、例えば、4nmol以上、10nmol以上、15nmol以上、又は20nmol以上であってよい。
第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子を段階的に添加しながらライゲーションを行うことにより、高濃度の一本鎖RNA分子による反応阻害(ライゲーション効率低下)を軽減しながら、反応液中の第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子の含量を増加させ、それにより上記ヘアピン型一本鎖RNA分子の収量を増大させることができる。
以上のような反応条件は、任意に組み合わせて用いることができる。例えば、アニーリング工程の温度、アニーリング工程の時間、アニーリングさせる第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子の混合比、ライゲーション反応液中の第1及び第2の一本鎖オリゴRNA分子の量(濃度)、酵素(例えば、Rnl2ファミリーのリガーゼ)の種類及び使用量、二価金属イオンの種類及び濃度、pH、ATP濃度、PEG等の添加成分及び濃度、反応液中の他のバッファー成分、ライゲーション反応時間、ライゲーション反応中の第1及び第2の一本鎖オリゴRNA分子の段階的添加(追加添加)などの上記条件から選択される複数の条件を任意に組み合わせることができる。例えば、上記のライゲーション反応液中の第1及び第2の一本鎖オリゴRNA分子の比較的高い濃度(例えば、100μM~300μM)を、他のそれぞれの条件と組み合わせてもよい。あるいは、酵素(例えば、Rnl2ファミリーのリガーゼ)の使用量(例えば、0.01U/μL~1U/μL)を、他のそれぞれの条件と組み合わせてもよい。
本発明の方法では、上記のようにライゲーション反応条件を調節することにより、第1の一本鎖オリゴRNA分子及び第2の一本鎖オリゴRNA分子の使用量に対してより少ない量のRNAリガーゼ、特にRnl2ファミリーのリガーゼを使用して、ライゲーション産物の収量を相対的に又は絶対的に増加させることができる。本発明の方法では、ライゲーションに使用する、第1の一本鎖オリゴRNA分子及び/又は第2の一本鎖オリゴRNA分子のモル数(nmol)当たり、10ユニット(U)以下、5ユニット以下、4ユニット以下、2ユニット以下、1ユニット以下、0.7ユニット以下、0.5ユニット以下、又は0.3ユニット以下、又は0.1ユニット以下の量のRNAリガーゼ、特にRnl2ファミリーのリガーゼを使用してもよい。一実施形態では、RNAリガーゼ、特にRnl2ファミリーのリガーゼの使用量は、第1の一本鎖オリゴRNA分子及び/又は第2の一本鎖オリゴRNA分子の量(nmol)当たり、0.001ユニット(U)以上、0.01ユニット以上、0.1ユニット以上、0.2ユニット以上、又は1ユニット以上であってもよい。なお、「第1の一本鎖オリゴRNA分子及び/又は第2の一本鎖オリゴRNA分子のモル数(nmol)当たり”X”ユニット以下の量のRNAリガーゼ」とは、第1の一本鎖オリゴRNA分子のモル数又は第2の一本鎖オリゴRNA分子のモル数(nmol)のいずれか、又はその両方と比較して、RNAリガーゼ、特にRnl2ファミリーのリガーゼの活性量が”X”ユニット以下であることを意味する。一実施形態では、第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子の少ない方のモル数(nmol)を基準としてRNAリガーゼの使用量を定めてもよい。第1の一本鎖オリゴRNA分子のモル数(nmol)は、ライゲーション反応系に添加した第1の一本鎖オリゴRNA分子の合計量として算出すればよく、例えば、一本鎖オリゴRNA分子を段階的に添加する場合には、ライゲーションの初期反応液中の第1の一本鎖オリゴRNA分子のモル数と、追加反応工程で反応系に添加した第1の一本鎖オリゴRNA分子のモル数の合計モル数として算出する。
ライゲーション反応の温度は、用いる酵素(Rnl2ファミリーのリガーゼ)によって変動し得るが、例えば、10~50℃、15~45℃、20~40℃、20~30℃、又は23~28℃であってよい。例えばT4 RNAリガーゼ2を用いる場合、10~50℃、15~45℃、20~40℃、20~30℃、又は23~28℃であってよい。
ライゲーション工程の完了後、ライゲーション反応液中には、本発明に係る遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子が高い割合で含まれる。
ライゲーション反応液中の本発明に係る遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子は、当業者に公知の方法により、精製することができる。精製技術としては、逆相クロマトグラフィー、逆相高速液体クロマトグラフィー(RP-HPLC)、超高速液体クロマトグラフィー(UHPLC)、イオン交換クロマトグラフィーなどのクロマトグラフィー法、ゲル濾過、カラム精製、ポリアクリルアミドゲル電気泳動(PAGE)など、又はそれらの任意の組み合わせが挙げられるが、これらに限定されない。
国際公開WO2013/027843記載の方法では、ごく短鎖のうちに伸長反応が停止したことによる短鎖核酸不純物や欠損体などの核酸不純物の生成により、反応液中の目的産物の純度の低下が起こる。一方、本発明の方法の好ましい実施形態では、本発明に係るヘアピン型一本鎖RNA分子の製造後のライゲーション反応液中の核酸不純物を低減できる点で、有利である。本発明の方法の好ましい実施形態では、核酸不純物の生成を低減しつつ、汎用型RNAアミダイトを使用して安定性の高い遺伝子発現抑制性一本鎖RNA分子を製造することができる。
本発明の方法により製造されたヘアピン型一本鎖RNA分子は、常法により、生体内又は細胞内に投与することにより、標的遺伝子の発現を抑制するために用いることができる。
さらに本発明は、本発明に係る一本鎖オリゴRNA分子の組み合わせ(ペア)を含む、標的遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキットにも関する。そのようなキットは、本発明に係る標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法を実施するために、好適に用いることができる。
一実施形態では、キットの例として、以下の(i)~(vi)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、TGF-β1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキットが挙げられるが、これらに限定されない:
(i)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(ii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(iii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(iv)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、
(v)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ、及び
(vi)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ。
別の実施形態では、キットの例として、以下の(vii)の一本鎖オリゴRNA分子の組み合わせを含む、GAPDH遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキットが挙げられるが、これに限定されない:
(vii)22番目と23番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号37で表される塩基配列からなる一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号36で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ。
別の実施形態では、キットの例として、以下の(viii)~(xi)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、LAMA1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキットが挙げられるが、これに限定されない:
(viii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号39で表される塩基配列からなる一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号38で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ、
(ix)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号41で表される塩基配列からなる一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号40で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ、
(x)配列番号43で表される塩基配列からなる一本鎖オリゴRNA分子(24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)と、配列番号42で表される塩基配列からなる一本鎖オリゴRNA分子(21番目と26番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)との組み合わせ、
(xi)配列番号45で表される塩基配列からなる一本鎖オリゴRNA分子(24番目と31番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)と、配列番号44で表される塩基配列からなる一本鎖オリゴRNA分子(22番目と27番目のリボヌクレオチド残基がヌクレオチド性リンカーを介して連結されている)との組み合わせ。
別の実施形態では、キットの例として、以下の(xii)~(xiii)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、LMNA遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の製造用のキットが挙げられるが、これに限定されない:
(xii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号47で表される塩基配列からなる一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号46で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ、
(xiii)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号49で表される塩基配列からなる一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号48で表される塩基配列からなる一本鎖オリゴRNA分子との組み合わせ。
以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
[参考例1]プロリンジアミドアミダイトの合成
プロリン誘導体リンカーを含む本発明のヘアピン型一本鎖RNA分子を生成するために用いるプロリンジアミドアミダイトは、例えば、国際公開WO2013/027843の記載に従って合成することができる。具体的な合成例を以下に示すが、合成方法はそれにより限定されない。
(1)Fmoc-ヒドロキシアミド-L-プロリン
Fmoc-L-プロリンを開始原料とする。Fmocは、9-フルオレニルメチルオキシカルボニル基である。Fmoc-L-プロリン(10.00g、29.64mmol)、4-アミノ-1-ブタノール(3.18g、35.56mmol)及び1-ヒドロキシベンゾトリアゾール(10.90g、70.72mmol)を混合し、その混合物に対し、減圧下で脱気し、アルゴンガスを充填する。得られた混合物に、無水アセトニトリル(140mL)を室温で加え、さらに、ジシクロヘキシルカルボジイミド(7.34g、35.56mmol)の無水アセトニトリル溶液(70mL)を添加した後、アルゴン雰囲気下、室温で15時間撹拌する。反応終了後、生成した沈殿をろ別し、回収したろ液について、減圧下で溶媒を留去する。得られた残渣にジクロロメタン(200mL)を加え、飽和重曹水(200mL)で洗浄する。そして、有機層を回収し、硫酸マグネシウムで乾燥した後、ろ過する。得られたろ液について、減圧下で溶媒を留去し、その残渣にジエチルエーテル(200mL)を加え、粉末化する。生じた粉末を濾取することにより、無色粉末状物質としてFmoc-ヒドロキシアミド-L-プロリンが得られる。
(2)DMTr-アミド-L-プロリン
Fmoc-ヒドロキシアミド-L-プロリン(7.80g、19.09mmol)を無水ピリジン(5mL)と混合し、室温で2回共沸乾燥する。得られた残留物に、4,4’-ジメトキシトリチルクロリド(8.20g、24.20mmol)、4-ジメチルアミノピリジン(DMAP)(23mg、0.19mmol)及び無水ピリジン(39mL)を加える。この混合物を、室温で1時間撹拌した後、メタノール(7.8mL)を加え、室温で30分撹拌する。この混合物を、ジクロロメタン(100mL)で希釈し、飽和重曹水(150mL)で洗浄後、有機層を分離する。この有機層を、硫酸ナトリウムで乾燥した後、ろ過する。得られたろ液について、減圧下で溶媒を留去する。得られた未精製の残渣に、無水ジメチルホルムアミド(39mL)及びピペリジン(18.7mL、189mmol)を加え、室温で1時間撹拌する。反応終了後、その混合液から、減圧下、室温で、溶媒を留去する。得られた残渣をシリカゲルカラムクロマトグラフィー(商品名Wakogel C-300、展開溶媒CHCl:CHOH=9:1、0.05%ピリジン含有)に供することにより、淡黄色油状物質としてDMTr-アミド-L-プロリンが得られる。DMTrは、ジメトキシトリチル基である。
(3)DMTr-ヒドロキシジアミド-L-プロリン
得られたDMTr-アミド-L-プロリン(6.01g、12.28mmol)、N-(3’-ジメチルアミノプロピル)-N’-エチルカルボジイミド(EDC)(2.83g、14.74mmol)、1-ヒドロキシベンゾトリアゾール(3.98g、29.47mmol)及びトリエチルアミン(4.47g、44.21mmol)の無水ジクロロメタン溶液(120mL)を混合する。この混合液に、さらに、アルゴン雰囲気下、室温で、6-ヒドロキシヘキサン酸(1.95g、14.47mmol)を加え、その後、アルゴン雰囲気下、室温で、1時間撹拌する。得られた混合液をジクロロメタン(600mL)で希釈し、飽和食塩水(800mL)で3回洗浄する。有機層を回収し、硫酸ナトリウムで乾燥した後、ろ過する。得られたろ液について、減圧下で溶媒を留去する。これにより、淡黄色泡状物質としてDMTr-ヒドロキシジアミド-L-プロリンが得られる。
(4)DMTr-ジアミド-L-プロリンアミダイト
得られたDMTr-ヒドロキシジアミド-L-プロリン(8.55g、14.18mmol)を無水アセトニトリルと混合し、室温で3回共沸乾燥する。得られた残留物に、ジイソプロピルアンモニウムテトラゾリド(2.91g、17.02mmol)を加え、減圧下で脱気し、アルゴンガスを充填する。その混合物に対し、無水アセトニトリル(10mL)を加え、さらに、2-シアノエトキシ-N,N,N’,N’-テトライソプロピルホスホロジアミダイト(5.13g、17.02mmol)の無水アセトニトリル溶液(7mL)を加える。この混合物を、アルゴン雰囲気下、室温で2時間撹拌する。得られた混合物をジクロロメタンで希釈し、飽和重曹水(200mL)で3回洗浄した後、飽和食塩水(200mL)で洗浄する。有機層を回収し、硫酸ナトリウムで乾燥した後、ろ過する。得られたろ液について、減圧下に溶媒を留去する。得られた残渣を、充填剤としてアミノシリカゲルを用いたカラムクロマトグラフィー(展開溶媒ヘキサン:酢酸エチル=1:3、0.05%ピリジン含有)に供することにより、無色シロップ状物質としてDMTr-ジアミド-L-プロリンアミダイトが得られる。
[実施例1]一本鎖オリゴRNA分子の合成
以下の実施例では、プロリン誘導体を用いたリンカーとヒトTGF-β1遺伝子発現抑制配列とを有するヘアピン型一本鎖RNA分子(以下、「ssTbRNA分子」とも称する。;図2)を、その2つの分割フラグメントである一本鎖オリゴRNA分子(ストランド1及びストランド2)をRNAリガーゼ(T4 RNAリガーゼ2)を用いてライゲーションすることにより、作製する(ライゲーション法;図1)。
分割位置の検討のため、ssTbRNA分子中の分割位置を1塩基ずつシフトさせたペアの一本鎖オリゴRNA分子(ストランド1及びストランド2;表1)を下記のようにして作製した。
Figure 0007363316000012
具体的には、それぞれの一本鎖オリゴRNA分子(ストランド1及びストランド2)を、ホスホロアミダイト法に基づき、核酸合成機(商品名AKTA oligopilot-100;GE Healthcare Life Sciences又は商品名nS-8及びnS-8II;ジーンデザイン社製)を使用して、3’側から5’側に向かって合成した。ホスホロアミダイト法に基づくRNA合成には、RNAアミダイトとして、5’-O-DMT-2’-O-TBDMSi-RNAホスホロアミダイト(ThermoFisher Scientific)又は5’-O-DMT-2’-O-TBDMS-RNAホスホロアミダイト(シグマ―アルドリッチ)を用いた。担体としてはポリスチレンビーズ(NittoPhase(R) HL rG(ibu)、又はrU;KINOVATE)又は多孔質ガラス(CPG)ビーズ(Universal UnyLinker Support 1000Å;Chemgenes)を用いた。5’-リン酸化試薬としては3-(4,4'-ジメトキシトリチルオキシ)-2,2-(N-メチルアミド)]プロピル-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホルアミダイト(Solid Chemical Phosphorylation Reagent;LINK)を用いた。
3’末端からリンカー直前までのRNA配列(図1中、Xa、Ys)が合成された後、その5’末端に、リンカー形成用のDMTr-ジアミド-L-プロリンアミダイトを連結し、さらにその5’側に、リンカー直後から5’末端までのRNA配列(図1中、Xs;又はYa、Ya、及びYa)を合成することにより、ストランド1及びストランド2の一本鎖オリゴRNA分子を作製した。これらの一本鎖オリゴRNA分子は、Lx及びLxとして式(VI-1)で示されるリンカーを有しており、Xaは式(VI-1)中の1位窒素原子側で、Xsは2位炭素原子側でリンカーLxと連結し、Ysは式(VI-1)中の1位窒素原子側で、Yaは2位炭素原子側でリンカーLxと連結している。
ストランド2(アンチセンス側)については、DMTr-OFFの状態で合成を終了し、常法により一本鎖オリゴRNA分子の切り出しと塩基部及び2’位の脱保護を行った。ストランド1(センス側)については、DMTr-ONの状態で合成を終了した。
[実施例2]ライゲーション法の検討(分割位置)
ssTbRNA分子の2つの分割フラグメントへの分割位置を検討するため、ペアのストランド1及びストランド2(表1)をRNAリガーゼ(T4 RNAリガーゼ2)を用いてライゲーションし、そのライゲーション効率を決定した。
具体的には、まず、各ペアのストランド1及びストランド2を注射用水(DW)に溶解し、等モル量を混合した。この等モル混合液を、93℃で1分間加熱して熱変性し、次いでアニーリングのため55℃で15分静置し、4℃まで降温させた。降温後、反応液を逆相高速液体クロマトグラフィー(RP-HPLC)(20℃)と未変性ポリアクリルアミドゲル電気泳動(Native PAGE)で分析し、ストランド1及びストランド2のアニーリング状態を調べた。
アニーリング状態の確認のために用いたRP-HPLCの条件は以下のとおりである。
・カラム:ACQUITY UPLC Oligonucleotide BEH C18 Column, 130A, 1.7μm, 2.1mm x 100mm
・移動相:A) 0.1M 酢酸トリエチルアンモニウム(TEAA)、B) アセトニトリル(MeCN)
・分析条件:B5-30%、10分、20℃、0.4ml/min
用いたNative PAGE(未変性PAGE)の条件は以下のとおりである。
未変性PAGE;19%アクリルアミド、150V、90分間の泳動
このようにして、ストランド1及びストランド2がアニーリングした二本鎖オリゴRNAを得た。ストランド1及びストランド2のほぼ全てがアニーリングすることが示されたペアと、より低い割合でアニーリングしたペアが存在した。
得られた二本鎖オリゴRNA(ストランド1、ストランド2のそれぞれの最終濃度10μM)を、バッファー(50mM Tris-HCl、2mM MgCl、1mM ジチオトレイトール(DTT)、400μM アデノシン三リン酸(ATP))中に含む反応液(pH7.5)を調製し、2μLの10U/μL T4 RNAリガーゼ2(New England Biolabs;以下同じ)(40U/nmolオリゴRNA)を添加して反応液量50μLとした。この反応液を37℃で30分インキュベートした。
酵素反応後、反応液中のライゲーション効率を、超高速液体クロマトグラフィー(UHPLC)及び変性ポリアクリルアミドゲル電気泳動(Denatured PAGE)により確認した。
ライゲーション後UHPLCの条件は以下のとおりである。
・カラム:ACQUITY UPLC Oligonucleotide BEH C18 Column, 130A, 1.7μm, 2.1mm x 100mm
・移動相:A) 100mM ヘキサフルオロ-2-プロパノール(HFIP)-8mM トリエチルアミン(TEA)、B) メタノール(MeOH)
・分析条件:B5-40%、10分、80℃、0.4ml/min
Denatured PAGE(変性PAGE)の条件は以下のとおりである。
変性PAGE;19%アクリルアミド、7.5M尿素、200V、90分間の泳動後、エチジウムブロマイド(EtBr)にて染色
ライゲーション効率(FLP(%))は、UHPLC解析結果に基づき、面積百分率法により、以下の式で算出した。
FLP(Full Length Product)(%)
=(目的のライゲーション生成物のピーク面積)/(クロマトグラム中の総ピーク面積)×100
結果を図3に示す。分割位置により、ライゲーション効率に大きな差が生じた。ストランド1の3’末端がUになる分割位置ではライゲーション効率が高くなる傾向が示された。またストランド1の3’末端又はストランド2の5’末端がAになる分割位置を採用した場合にもライゲーション効率が高くなる傾向が示された。またストランド1の3’末端の塩基とストランド2の5’末端の塩基がそれぞれU又はAになる分割位置を採用した場合、特に優れたライゲーション効率が示された。
なお、それぞれのライゲーション生成物について、LC-MS分析を行い、予測される分子量を有することを確認した。LC-MS分析には、以下の機器を用いた。
・LC装置:UHPLC UltiMate3000(ThermoFisher Scientific社製)
・MS装置:Q-Exactive(ThermoFisher Scientific社製)
この結果に基づき、ライゲーション法に適したペア011、016、及び018を選抜した。
上記のようにしてペア011、016、及び018のストランド1及びストランド2をアニーリングさせ、ライゲーションにより連結した後の反応液を、上記条件でRP-HPLCにより解析したところ、目的物であるssTbRNA分子と遊離ストランド1及びストランド2以外の反応液中の核酸不純物の量はわずかであり、ssTbRNA分子のピーク付近に現れる欠損体(ssTbRNA分子の配列の一部が欠けたもの)の量も少なかった(表2)。一方、ssTbRNA分子の全長をホスホロアミダイト法により固相合成する方法(特許文献2)では、合成後の反応液にssTbRNA分子以外の短鎖核酸不純物(合成が短鎖のうちに停止したRNA分子など)が比較的多く含まれており、ssTbRNA分子のピーク付近に現れる欠損体も多かった(表2)。本発明の方法では、目的のヘアピン型一本鎖RNA分子を高純度で製造できることが示された。
表2中、ストランド1、ストランド2、及びssTbRNA分子の値は、クロマトグラムに基づくそれぞれのピーク面積比率を表す。また、ssTbRNA分子のピーク付近の核酸(主としてssTbRNA分子とその欠損体を含む)の相対量として、ssTbRNA分子のピークを含む、RRT(relative retention time;ここではssTbRNA分子のピークの保持時間を1とした場合の相対保持時間)=0.98~1.07の範囲についてピーク面積%の合計値を算出した。なおストランド1とストランド2のピーク保持時間はssTbRNA分子のピークとは十分に離れており、RRT=0.98~1.07の範囲には含まれない。
Figure 0007363316000013
[実施例3]ライゲーション法の検討(アニーリング温度)
ペア011、016、及び018のストランド1及びストランド2の一本鎖オリゴRNA分子を用い、2つの条件でアニーリングテストを行った。
まず、熱変性条件では、ストランド1及びストランド2を注射用水に溶解し、それぞれ40μMで等モル量を混合した。混合液を93℃で1分間加熱して熱変性し、次いでアニーリングのため55℃で15分静置し、4℃まで降温させた。降温後、反応液を逆相高速液体クロマトグラフィー(RP-HPLC)(20℃)と未変性ポリアクリルアミドゲル電気泳動(Native PAGE)で分析し、ストランド1及びストランド2のアニーリング状態を調べた。
一方、室温条件では、ストランド1及びストランド2を注射用水に溶解し、それぞれ200~400μMで等モル量を混合した。混合液を、室温で10分間静置した。静置後の反応液を、RP-HPLC(20℃)と未変性ポリアクリルアミドゲル電気泳動で分析し、ストランド1及びストランド2のアニーリング状態を調べた。
その結果、熱変性条件と室温条件のいずれにおいても、RP-HPLCではストランド単独のピークは確認されず、アニーリングにより生じた二本鎖のピークが観察された。また未変性ポリアクリルアミドゲル電気泳動でも、熱変性条件と室温条件の両方で、ストランド1及びストランド2のほぼ全ての分子のアニーリングが確認された。
熱変性条件と室温条件で同等の結果が得られたことから、以後、ライゲーション法におけるアニーリングは室温条件で実施した。
なお、以下の実施例では、ストランド1及びストランド2の一本鎖オリゴRNA分子のアニーリング状態を、RP-HPLCと未変性ポリアクリルアミドゲル電気泳動(Native PAGE)で確認し、RP-HPLCにより二本鎖RNAの純度(FLP)が95%以上であることを確認した上で、ライゲーション反応に使用した。
アニーリング状態の確認のために用いたRP-HPLCの条件は以下のとおりである。
・カラム:ACQUITY UPLC Oligonucleotide BEH C18 Column, 130Å, 1.7μm, 2.1mm x 100mm
・移動相:A) 0.1M 酢酸トリエチルアンモニウム(TEAA)、B) アセトニトリル(MeCN)
・分析条件:B5-30%、10分、20℃、0.4ml/min
用いたNative PAGE(未変性PAGE)の条件は以下のとおりである。
未変性PAGE;19%アクリルアミド、150V、90分間の泳動
[実施例4]ライゲーション法の検討(反応温度及び反応時間)
3種類のペア011、016、及び018(表1;以下、各ペアを単に011、016、及び018とも称する)をそれぞれ用いて、ライゲーション反応の温度と時間について検討を行った。なお011、016、及び018のストランド1及びストランド2の構造を図4に示す。
実施例2と同様に、各ペアのストランド1及びストランド2を注射用水に溶解し、それぞれ等モル量で混合した。この等モル混合液を、室温で10分間静置し、アニーリングにより二本鎖オリゴRNAを調製した。
得られた二本鎖オリゴRNA(ストランド1とストランド2の等モル混合液;各ストランドの最終濃度10μM、40μM、又は100μM)を、T4 RNAリガーゼ2(New England Biolabs)の添付バッファー(50mM Tris-HCl、2mM MgCl、1mM DTT、400μM ATP、pH7.5(25℃))中、0.4U/μLのT4 RNAリガーゼ2と共に含む反応液100μLを、25℃又は37℃にてインキュベートし、ライゲーションした。このライゲーション反応に使用した酵素(T4 RNAリガーゼ2)の量は、40U/nmolオリゴRNA、10U/nmolオリゴRNA、又は4U/nmolオリゴRNAである。ライゲーション反応中、0.5時間、2時間、4時間、又は24時間経過後に20~25μLのサンプルを採取し、85℃で20分加熱して酵素を失活させた。熱失活後の反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
その結果、10μM又は40μMのオリゴRNA濃度を用いた場合、ライゲーション効率は反応温度や反応時間で大きく変わることはなく、いずれも非常に高かった。100μMのオリゴRNA濃度を用いた場合、10μM又は40μMの場合と比較してライゲーション効率は低下したが、反応時間が長くなるにつれてライゲーション効率は上昇した。また100μMのオリゴRNA濃度では、37℃よりも25℃でインキュベートした場合の方が4時間以降のライゲーション効率は高かった。
016についての結果を図5に示す。また、100μMのオリゴRNA濃度でのライゲーション反応の結果を図6に示す(A:25℃、B:37℃)。011、016におけるライゲーション効率が特に高かった。
[実施例5]ライゲーション法の検討(ATP濃度)
実施例4と同様に調製した011の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液中のATP濃度の検討を行った。T4 RNAリガーゼ2(New England Biolabs)の添付バッファー(50mM Tris-HCl、2mM MgCl、1mM DTT、400μM ATP、pH7.5(25℃))に、ATPを添加してATP濃度0.4mM(添加なし)、1mM、2mM、5mM、又は10mMとした。このように調製したバッファー中、二本鎖オリゴRNA(各ストランドの最終濃度10μM、20μM、又は40μM)とT4 RNAリガーゼ2を含む反応液25μLを、37℃で30分インキュベートし、ライゲーションした。ライゲーション反応後、85℃で20分加熱して酵素を失活させ、その反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
変性PAGEの結果を図7に、オリゴRNA濃度40μMで示されたFLP(%)を図8に示す。ATP濃度を増加させると、ライゲーション反応は阻害された。
[実施例6]ライゲーション法の検討(pH)
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液のpH条件の検討を行った。以下の3種類のバッファーを用いた。
(1) 50mM Tris-HCl(pH 7.0)、2mM MgCl、1mM ジチオトレイトール(DTT)、400μM ATP
(2) 50mM Tris-HCl(pH 7.5)、2mM MgCl、1mM DTT、400μM ATP
(3) 50mM Tris酢酸(pH 6.5)、2mM MgCl、1mM DTT、400μM ATP
016の二本鎖オリゴRNA(各ストランドの最終濃度10μM、100μM、又は200μM)、及びT4 RNAリガーゼ2(最終濃度0.4U/μL)を上記のいずれかのバッファー中に含む反応液30μLを、25℃で30分、4時間、又は24時間にわたりインキュベートし、ライゲーションした。ライゲーション反応後、85℃で20分加熱して酵素を失活させ、その反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
結果を図9に示す。pH7.5の反応液では、高濃度のオリゴRNAを含む場合でも、24時間反応させたときに95%以上のライゲーション効率を示した。
[実施例7]ライゲーション法の検討(pH8.0以上)
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液のpH条件をさらに検討した。以下の4種類のバッファーを用いた。
(1) 50mM Tris-HCl(pH 7.0)、2mM MgCl、1mM DTT、400μM ATP
(2) 50mM Tris-HCl(pH 7.5)、2mM MgCl、1mM DTT、400μM ATP
(3) 50mM Tris-HCl(pH 8.0)、2mM MgCl、1mM DTT、400μM ATP、
(4) 50mM Tris-HCl(pH 8.5)、2mM MgCl、1mM DTT、400μM ATP
016の二本鎖オリゴRNA(各ストランドの最終濃度10μM又は200μM)、及びT4 RNAリガーゼ2(最終濃度0.4U/μL)を、上記のいずれかのバッファー中に含む反応液30μLを、25℃で30分、4時間、又は24時間にわたりインキュベートし、ライゲーションした。ライゲーション反応後、85℃で20分加熱して酵素を失活させ、その反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。結果を図10に示す。pH7.5以上の反応液は高いライゲーション効率を示した。
[実施例8]ライゲーション法の検討(2価イオン濃度)
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液中のMgCl濃度の検討を行った。以下の5種類のバッファーを用いた。
(1) 0.5mM MgCl、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(2) 1mM MgCl、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(3) 2mM MgCl、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(4) 5mM MgCl、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
(5) 10mM MgCl、50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP
016の二本鎖オリゴRNA(各ストランドの最終濃度10μM、100μM、又は200μM)、及びT4 RNAリガーゼ2(最終濃度0.4U/μL)を、上記のいずれかのバッファー中に含む反応液30μLを、25℃で30分、4時間、又は24時間にわたりインキュベートし、ライゲーションした。ライゲーション反応後、85℃で20分加熱して酵素を失活させ、その反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
結果を図11に示す(A:10μM又は100μM オリゴRNA、B:10μM又は200μM オリゴRNA)。二本鎖オリゴRNA濃度が100μMの場合は2mM以上のMgCl濃度で、4時間以上の反応により95%以上のライゲーション効率が示された。オリゴRNA濃度が200μMの場合も、2mM以上のMgCl濃度で、24時間以上の反応により95%以上のライゲーション効率が示され、さらに、5mMのMgCl濃度では4時間後にライゲーション効率の特に急激な上昇が認められた。この結果から、より高濃度のオリゴRNAを用いる場合には、MgCl濃度を適度に増加させることにより、ライゲーション反応の進行を早めることができることが示された。
[実施例9]酵素ライゲーション法の検討(2価イオン濃度及びpH)
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応液中の2価イオン濃度の検討を行った。以下の6種類のバッファーを用いた。
(1) 50mM Tris-HCl(pH 7.5)、1mM DTT、400μM ATP、2mM、5mM、又は10mM MgCl
(2) 50mM Tris-HCl(pH 8.0)、1mM DTT、400μM ATP、2mM、5mM、又は10mM MgCl
016の二本鎖オリゴRNA(各ストランドの最終濃度10μM又は200μM)、及びT4 RNAリガーゼ2(最終濃度0.4U/μL)を、上記のいずれかのバッファー中に含む反応液30μLを、25℃で30分、4時間、又は24時間にわたりインキュベートし、ライゲーションした。ライゲーション反応後、85℃で20分加熱して酵素を失活させ、その反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
結果を図12に示す(A:pH7.5、B:pH8.0)。pH7.5とpH8.0のいずれにおいても、4時間後の時点で、5mM MgClの場合にライゲーション効率の最も急激な上昇が認められた。
[実施例10]酵素ライゲーション法の検討(PEG添加)
実施例4と同様に調製した018の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応溶液へのPEGの添加によるライゲーション効率への影響を調べた。
バッファー(5、10、又は15%(w/v)のPEG8000、50mM Tris-HCl(pH8.0)、2mM MgCl、1mM DTT、400μM ATP)中に、二本鎖オリゴRNA(各ストランドの最終濃度200μM)と、0.4U/μL、又は0.2U/μLのT4 RNAリガーゼ2を含む反応液30μLを、25℃で30分、4時間、又は24時間にわたりインキュベートし、ライゲーションした。このライゲーション反応に使用した酵素(T4 RNAリガーゼ2)の量は、2U/nmolオリゴRNA、又は1U/nmolオリゴRNAであり、実施例4での酵素量と比較すると、それぞれ1/20、及び1/40である。ライゲーション反応後、85℃で20分加熱して酵素を失活させた。熱失活後の反応液を、変性PAGE、及びUHPLCにより解析し、ライゲーション効率(FLP(%))を算出した。変性PAGE及びUHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
結果を図13に示す。PEGの添加によりライゲーション効率が増加したことが示された。
[実施例11]酵素ライゲーション法における反応タイムコースの解析
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応のタイムコースの検討を行った。
二本鎖オリゴRNA(各ストランドの最終濃度100μM又は200μM)、0.4U/μLのT4 RNAリガーゼ2を、バッファー(50mM Tris-HCl(pH8.0)、5mM MgCl、1mM DTT、400μM ATP)中に含む反応液80μLを、25℃でインキュベートし、ライゲーションした。ライゲーション反応中、開始から1、2、3、4、6、9、12、15、18、及び24時間後にサンプリングし、85℃で20分加熱して酵素を失活させた後、UHPLC解析を行い、FLP%を算出した。UHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。
結果を図14に示す。オリゴRNA濃度が100μMの場合は反応開始後6時間、200μMの場合は反応開始後9時間でライゲーション反応がほぼプラトーに達した。
[実施例12]酵素ライゲーション法におけるオリゴRNAの追加添加
実施例4と同様に調製した016の二本鎖オリゴRNA(等モル混合液)を用いて、ライゲーション反応相にストランド1及びストランド2の一本鎖オリゴRNA分子を順次添加することによりssTbRNA分子の収量を増加させる方法を検討した。
まず、二本鎖オリゴRNAを各ストランドの最終濃度100μMで含むライゲーション反応液を用いて検討を行った。二本鎖オリゴRNA(最終濃度100μM; 100μLの反応液中のトータルのオリゴRNA量は、ストランド1及びストランド2のそれぞれについて10nmol)、及びT4 RNAリガーゼ2(0.4U/μL; 4U/nmolオリゴRNA)を、バッファー(50mM Tris-HCl(pH8.0)、5mM MgCl、1mM DTT、400μM ATP)中に含む反応液100μLを、4本のチューブに分注し、25℃でインキュベートすることによりライゲーション反応を開始した。
ライゲーション反応開始から12時間後、3本のチューブに、016の二本鎖オリゴRNA(反応バッファー(50mM Tris-HCl、5mM MgCl、1mM DTT、400μM ATP(pH8.0))中、016のストランド1とストランド2の等モル混合液)を各ストランド10nmolとなる量(11.1μL)で添加し、引き続きインキュベートした。オリゴRNA追加後の反応液中のオリゴRNA濃度は180μM(各ストランドの濃度)、酵素(T4 RNAリガーゼ2)の量は0.36U/μL(2U/nmolオリゴRNA)である。
オリゴRNA追加の12時間後、オリゴRNAを追加した3本のうち2本のチューブに、016の二本鎖オリゴRNA(上記と同じ等モル混合液)を各ストランド10nmolとなる量(11.1μL)でさらに添加し、引き続きインキュベートした。2回目のオリゴRNA追加後の反応液中のオリゴRNA濃度は245μM(各ストランドの濃度)、酵素(T4 RNAリガーゼ2)の量は0.33U/μL(1.33U/nmolオリゴRNA)である。
その12時間後、オリゴRNAを2回追加した2本のうち1本のチューブに、016の二本鎖オリゴRNA(上記と同じ等モル混合液)を各ストランド10 nmolとなる量(11.1μL)で添加し、さらに12時間インキュベートした。3回目のオリゴRNA追加後の反応液中のオリゴRNA濃度は300μM(各ストランドの濃度)、酵素(T4 RNAリガーゼ2)の量は0.3U/μL(1U/nmolオリゴRNA)である。
それらのチューブから、12時間毎に反応液をサンプリングし、85℃で20分加熱して酵素を失活させた。得られた反応後のサンプルは以下のとおりである。反応時間はライゲーション反応開始時からの時間を指す。
チューブ1)100μM オリゴRNA(各ストランドについてトータル10nmol;追加なし)、酵素量0.4U/μL、反応温度25℃、反応時間12、24、36、又は48時間
チューブ2)180μM オリゴRNA(各ストランドについてトータル20nmol;1回追加)、酵素量0.36U/μL、反応温度25℃、反応時間24、36、又は48時間
チューブ3)245μM オリゴRNA(各ストランドについてトータル30nmol;2回追加)、酵素量0.33U/μL、反応温度25℃、反応時間36、又は48時間
チューブ4)300μM オリゴRNA(各ストランドについてトータル40nmol;3回追加)、酵素量0.3U/μL、反応温度25℃、反応時間48時間
各サンプルについてUHPLC解析を行い、FLP%を算出した。UHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。結果を表3に示す。
Figure 0007363316000014
さらに、各サンプルについて、FLP%と一本鎖オリゴRNA分子の添加量から目的産物(ssTbRNA分子)の生成量(nmol)を算出した。その結果を図15に示す。
同様の方法で、二本鎖オリゴRNAを各ストランドの最終濃度200μMで含むライゲーション反応液を用いて検討を行った。
二本鎖オリゴRNA(最終濃度200μM; 100μLの反応液中のトータルのオリゴRNA量は、ストランド1及びストランド2のそれぞれについて20nmol)、及びT4 RNAリガーゼ2(0.4U/μL; 4U/nmolオリゴRNA)を、バッファー(50mM Tris-HCl、5mM MgCl、1mM DTT、400μM ATP(pH8.0))中に含む反応液100μLを、4本のチューブに分注し、25℃でインキュベートすることによりライゲーション反応を開始した。12時間後、3本のチューブに、016の二本鎖オリゴRNA(反応バッファー(50mM Tris-HCl、5mM MgCl、1mM DTT、400μM ATP(pH8.0))中、016のストランド1とストランド2の等モル混合液)を各ストランド20 nmolとなる量(22.2μL)で添加し、引き続きインキュベートした。その後、オリゴRNAを最終濃度100μMで用いた場合と同様に、12時間毎に3回目までオリゴRNAを追加し、ライゲーション反応を継続した。
それらのチューブから、12時間毎に反応液をサンプリングし、85℃で20分加熱して酵素を失活させた。得られた反応後のサンプルは以下のとおりである。反応時間はライゲーション反応開始時からの時間を指す。
チューブ1)200μM オリゴRNA(各ストランドについてトータル20nmol;追加なし)、酵素量0.4U/μL、反応温度25℃、反応時間12、24、36、又は48時間
チューブ2)327μM オリゴRNA(各ストランドについてトータル40nmol;1回追加)、酵素量0.36U/μL、反応温度25℃、反応時間24、36、又は48時間
チューブ3)415μM オリゴRNA(各ストランドについてトータル60nmol;2回追加)、酵素量0.33U/μL、反応温度25℃、反応時間36、又は48時間
チューブ4)480μM オリゴRNA(各ストランドについてトータル80nmol;3回追加)、酵素量0.3U/μL、反応温度25℃、反応時間48時間
各サンプルについてUHPLC解析を行い、FLP%を算出した。UHPLCの条件、並びにFLP(%)の算出方法は、実施例2と同じである。結果を表4に示す。
Figure 0007363316000015
さらに、各サンプルについて、FLP%と一本鎖オリゴRNA分子の添加量から目的産物(ssTbRNA分子)の生成量(nmol)を算出した。その結果を図16に示す。
以上の結果から、本発明の方法では、ライゲーション反応相にオリゴRNAを順次追加することにより、ヘアピン型一本鎖RNA分子(ここでは、ssTbRNA分子)の生成量を増加させることができることが示された。
一般的なRNAリガーゼ使用量(出発オリゴRNA量10μMに対し、酵素量0.4U/μL)では、上記と同様のライゲーション反応条件でFLP 90%超のライゲーション効率が得られるものの、100μL反応液当たりのssTbRNA分子の生成量は1nmol未満である。そのような一般的な場合と比較して、本発明の方法では、90%以上のFLPを示した効率的な反応条件下で、オリゴRNA量当たりの酵素使用量を1/30~1/40に削減できることが示された。
[実施例13]他の標的遺伝子に対するヘアピン型一本鎖RNA分子の製造
ヒトTGF-β1遺伝子の代わりにヒトGAPDH遺伝子、ヒトLAMA1遺伝子、又はヒトLMNA遺伝子に対する遺伝子発現抑制配列を含むヘアピン型一本鎖RNA分子を、実施例1及び2と同様に2つの分割フラグメントであるストランド1及びストランド2をライゲーションする方法により作製した。リンカーとしては、実施例1及び2と同様のプロリン誘導体、又はヌクレオチド性リンカーを用いた。
ヘアピン型一本鎖RNA分子、及びその分子中の分割位置を図17に示す。図17中、ヘアピン型一本鎖RNA分子に含まれる各遺伝子に対する遺伝子発現抑制配列(アンチセンス配列)を枠で示した。また、それぞれのヘアピン型一本鎖RNA分子の2つの分割フラグメントであるストランド1及びストランド2のペアを表5に示す。表5のストランド1及びストランド2のペアは、ライゲーションする末端の塩基の組み合わせとして、U-U、A-A、A-U、又はU-Aを有するものである。
Figure 0007363316000016
プロリン誘導体を含むストランド1及びストランド2の一本鎖オリゴRNA分子の合成は、実施例1と同様の方法により行った。プロリン誘導体の代わりにヌクレオチド性リンカーを含むストランド1及びストランド2の一本鎖オリゴRNA分子の合成は、ホスホロアミダイト法を用いた固相合成法により行った。
実施例2に記載のようにして、各ペアのストランド1及びストランド2(表5)をアニーリングし、二本鎖オリゴRNAを得た。得られた二本鎖オリゴRNA(ストランド1、ストランド2のそれぞれの最終濃度10μM)を、バッファー(50mM Tris-HCl、2mM MgCl、1mM ジチオトレイトール(DTT)、400μM アデノシン三リン酸(ATP))中に含む反応液(pH7.5[25℃])を調製し、2μLの10U/μL T4 RNAリガーゼ2(New England Biolabs)(40U/nmolオリゴRNA)を添加して反応液量50μLとした。この反応液を37℃で30分インキュベートした。
酵素反応後、反応液中のライゲーション効率を、超高速液体クロマトグラフィー(UHPLC)及び変性ポリアクリルアミドゲル電気泳動(Denatured PAGE)により確認した。ライゲーション後UHPLCの条件、及びライゲーション効率(FLP(%))の算出方法は、実施例2と同じである。
なお、それぞれのライゲーション生成物について、LC-MS分析を行い、予測される分子量を有することを確認した。LC-MS分析に用いたLC装置及びMS装置は実施例2で用いたものと同じである。
結果を図18に示す。表5のストランド1及び2のペアは、いずれも高いライゲーション効率を示した。
[比較例]
実施例2の実験と並行して、T4 RNAリガーゼ2の代わりにT4 RNAリガーゼを用いて、表1に示したストランド1及びストランド2がアニーリングした二本鎖オリゴRNAをライゲーションし、そのライゲーション効率を決定した。
実施例2に記載のようにして、それぞれのペアのストランド1及びストランド2(表1)をアニーリングし、二本鎖オリゴRNAを得た。得られた二本鎖オリゴRNA(ストランド1、ストランド2のそれぞれの最終濃度10μM)を、バッファー(50mM Tris-HCl、10mM MgCl、5mM ジチオトレイトール(DTT)、1mM アデノシン三リン酸(ATP))中に含む反応液(pH7.8)を調製し、0.5μLの10U/μL T4 RNAリガーゼ(Promega)(10U/nmolオリゴRNA)を添加して反応液量50μLとした。この反応液を37℃で30分インキュベートした。
酵素反応後、反応液中のライゲーション効率を、超高速液体クロマトグラフィー(UHPLC)及び変性ポリアクリルアミドゲル電気泳動(Denatured PAGE)により確認した。ライゲーション後UHPLCの条件、及びライゲーション効率(FLP(%))の算出方法は、実施例2と同じである。
結果を図19に示す。T4 RNAリガーゼを用いた場合のライゲーション効率は、T4 RNAリガーゼ2(図3)と比較して顕著に低かった。
本発明は、汎用型アミダイトを使用し、酵素使用量を低減しながら、標的遺伝子に対する発現抑制配列を含むヘアピン型一本鎖RNA分子の効率的な製造を可能にすることができる。
配列番号1~57:合成RNA
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (18)

  1. 標的遺伝子の発現を抑制するヘアピン型一本鎖RNA分子の製造方法であって、
    第1の一本鎖オリゴRNA分子と第2の一本鎖オリゴRNA分子とをアニーリングするアニーリング工程と、
    前記第1の一本鎖オリゴRNA分子の3’末端と前記第2の一本鎖オリゴRNA分子の5’末端とをRnl2ファミリーのリガーゼによりライゲーションするライゲーション工程とを含み、
    前記ライゲーション工程における前記Rnl2ファミリーのリガーゼの使用量は、前記第1の一本鎖オリゴRNA分子及び/又は前記第2の一本鎖オリゴRNA分子のモル数(nmol)当たり、10ユニット以下であり、
    前記第1の一本鎖オリゴRNA分子は、第1のリンカーを介して連結された第1のRNA部分と第2のRNA部分を含み、第1のRNA部分と第2のRNA部分の一方は他方に対して相補的に結合可能であり、
    前記第2の一本鎖オリゴRNA分子は、第2のリンカーを介して連結された第3のRNA部分と第4のRNA部分を含み、第3のRNA部分と第4のRNA部分の一方は他方に対して相補的に結合可能であり、
    第1のリンカー及び第2のリンカーは、非ヌクレオチド性リンカーであり、
    前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とは5’末端又は3’末端の相補的な配列間で分子間二重鎖を形成可能であり、
    アニーリング工程において前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子が二重鎖を形成するとき、前記第1の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基はニックを生成し、また前記第1の一本鎖オリゴRNA分子の5’末端のリボヌクレオチド残基と前記第2の一本鎖オリゴRNA分子の3’末端のリボヌクレオチド残基の間には1個以上のリボヌクレオチド残基のギャップが存在し、
    前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子とのライゲーションにより生成される配列は、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
    ヘアピン型一本鎖RNA分子の製造方法。
  2. 前記第1の一本鎖オリゴRNA分子が3’末端にウラシル(U)又はアデニン(A)を有し、前記第2の一本鎖オリゴRNA分子が5’末端にウラシル(U)又はアデニン(A)を有する、請求項に記載の製造方法。
  3. 前記第1の一本鎖オリゴRNA分子は、下記式(I)で表され、前記第2の一本鎖オリゴRNA分子は、下記式(II)で表され、
    5’-Xs-Lx-Xa-3’ ・・・式(I)
    5’-Ya-Ya-Ya-Lx-Ys-3’ ・・・式(II)
    式(I)及び式(II)中、Xs、Xa、Ya、Ya、Ya及びYsは、1個又はそれ以上のリボヌクレオチド残基を表し、
    Lx及びLxは、それぞれ、第1のリンカー及び第2のリンカーを表し、
    Xaは、2~20個のリボヌクレオチド残基であり、
    Yaは、Ysと相補的であり、
    ライゲーション工程で生じるXa-Yaは、Xsと相補的であり、
    ライゲーション工程で生じるXa-Ya-Ya-Yaは、前記標的遺伝子に対する遺伝子発現抑制配列を含む、
    請求項1又は2に記載の製造方法。
  4. 第1のリンカー及び第2のリンカーは、それぞれ独立して、ピロリジン骨格及びピペリジン骨格の少なくとも一方を含む非ヌクレオチド性リンカーである、請求項1~3のいずれか一項に記載の製造方法。
  5. Rnl2ファミリーのリガーゼが、T4 RNAリガーゼ2である、請求項1~4のいずれか一項に記載の製造方法。
  6. pH7.4~8.6の反応液中で前記ライゲーションが行われる、請求項1~5のいずれか一項に記載の製造方法。
  7. 2~10mMの二価金属イオンを含む反応液中で前記ライゲーションが行われる、請求項1~6のいずれか一項に記載の製造方法。
  8. 第1のリンカー及び第2のリンカーは、それぞれ独立して、下記式(VI)で表される非ヌクレオチド性リンカーである、請求項1~7のいずれか一項に記載の製造方法。
    Figure 0007363316000017
  9. 前記標的遺伝子は、TGF-β1遺伝子、GAPDH遺伝子、LAMA1遺伝子又はLMNA遺伝子である、請求項1~8のいずれか一項に記載の製造方法。
  10. 前記ヘアピン型一本鎖RNA分子は、配列番号1で表される塩基配列からなり、24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結され、50番目と51番目のリボヌクレオチド残基が第2のリンカーを介して連結されている、請求項1~9のいずれか一項に記載の製造方法。
  11. 前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子は、以下の(1)~(13)のいずれかである、請求項1~10のいずれか一項に記載の製造方法。
    (1)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号7で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、10番目と11番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号6で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号19で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号18で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号27で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号26で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号29で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号28で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号31で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号30で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (6)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号33で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号32で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (7)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号5で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、9番目と10番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号4で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (8)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号9で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、11番目と12番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号8で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (9)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号11で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、12番目と13番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号10で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (10)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号13で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、13番目と14番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号12で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (11)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号17で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、15番目と16番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号16で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (12)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号21で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、17番目と18番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号20で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (13)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号25で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、19番目と20番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号24で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
  12. 前記第1の一本鎖オリゴRNA分子と前記第2の一本鎖オリゴRNA分子は、以下の(1)~(5)のいずれかである、請求項1~9のいずれか一項に記載の製造方法。
    (1)22番目と23番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号37で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号36で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (2)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号39で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号38で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (3)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号41で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号40で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (4)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号47で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号46で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (5)24番目と25番目のリボヌクレオチド残基が第1のリンカーを介して連結されている配列番号49で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2のリンカーを介して連結されている配列番号48で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
  13. 以下の(a)~(n)のいずれかである、一本鎖オリゴRNA分子。
    (a)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号5で表される塩基配列からなる一本鎖オリゴRNA分子
    (b)9番目と10番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号4で表される塩基配列からなる一本鎖オリゴRNA分子
    (c)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号9で表される塩基配列からなる一本鎖オリゴRNA分子
    (d)11番目と12番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号8で表される塩基配列からなる一本鎖オリゴRNA分子
    (e)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号11で表される塩基配列からなる一本鎖オリゴRNA分子
    (f)12番目と13番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号10で表される塩基配列からなる一本鎖オリゴRNA分子
    (g)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号13で表される塩基配列からなる一本鎖オリゴRNA分子
    (h)13番目と14番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号12で表される塩基配列からなる一本鎖オリゴRNA分子
    (i)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号17で表される塩基配列からなる一本鎖オリゴRNA分子
    (j)15番目と16番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号16で表される塩基配列からなる一本鎖オリゴRNA分子
    (k)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号21で表される塩基配列からなる一本鎖オリゴRNA分子
    (l)17番目と18番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号20で表される塩基配列からなる一本鎖オリゴRNA分子
    (m)24番目と25番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号25で表される塩基配列からなる一本鎖オリゴRNA分子
    (n)19番目と20番目のリボヌクレオチド残基が非ヌクレオチド性リンカーを介して連結されている配列番号24で表される塩基配列からなる一本鎖オリゴRNA分子
  14. 以下の(a)~(j)のいずれかである、一本鎖オリゴRNA分子。
    (a)22番目と23番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号37で表される塩基配列からなる第1の一本鎖オリゴRNA分子
    (b)20番目と21番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号36で表される塩基配列からなる第2の一本鎖オリゴRNA分子
    (c)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号39で表される塩基配列からなる第1の一本鎖オリゴRNA分子
    (d)16番目と17番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号38で表される塩基配列からなる第2の一本鎖オリゴRNA分子
    (e)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号41で表される塩基配列からなる第1の一本鎖オリゴRNA分子
    (f)22番目と23番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号40で表される塩基配列からなる第2の一本鎖オリゴRNA分子
    (g)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号47で表される塩基配列からなる第1の一本鎖オリゴRNA分子
    (h)21番目と22番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号46で表される塩基配列からなる第2の一本鎖オリゴRNA分子
    (i)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号49で表される塩基配列からなる第1の一本鎖オリゴRNA分子
    (j)23番目と24番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号48で表される塩基配列からなる第2の一本鎖オリゴRNA分子
  15. 以下の(1)~(7)のいずれかの一本鎖オリゴRNA分子の組み合わせを含む、TGF-β1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の請求項1~11のいずれか1項に記載の方法による製造用のキット。
    (1)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号5で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、9番目と10番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号4で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (2)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号9で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、11番目と12番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号8で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (3)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号11で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、12番目と13番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号10で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (4)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号13で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、13番目と14番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号12で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (5)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号17で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、15番目と16番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号16で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (6)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号21で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、17番目と18番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号20で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (7)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号25で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、19番目と20番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号24で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
  16. 22番目と23番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号37で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、20番目と21番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号36で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせを含む、GAPDH遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の請求項1~9のいずれか1項に記載の方法による製造用のキット。
  17. 以下の(1)又は(2)の一本鎖オリゴRNA分子の組み合わせを含む、LAMA1遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の請求項1~9のいずれか1項に記載の方法による製造用のキット。
    (1)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号39で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、16番目と17番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号38で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (2)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号41で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、22番目と23番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号40で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
  18. 以下の(1)又は(2)の一本鎖オリゴRNA分子の組み合わせを含む、LMNA遺伝子の発現を抑制するためのヘアピン型一本鎖RNA分子の請求項1~9のいずれか1項に記載の方法による製造用のキット。
    (1)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号47で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、21番目と22番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号46で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
    (2)24番目と25番目のリボヌクレオチド残基が第1の非ヌクレオチド性リンカーを介して連結されている配列番号49で表される塩基配列からなる第1の一本鎖オリゴRNA分子と、23番目と24番目のリボヌクレオチド残基が第2の非ヌクレオチド性リンカーを介して連結されている配列番号48で表される塩基配列からなる第2の一本鎖オリゴRNA分子との組み合わせ
JP2019181613A 2018-03-30 2019-10-01 ヘアピン型一本鎖rna分子の製造方法 Active JP7363316B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018070423 2018-03-30
JP2018070423 2018-03-30
JP2019520762A JP6631751B1 (ja) 2018-03-30 2019-03-29 ヘアピン型一本鎖rna分子の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019520762A Division JP6631751B1 (ja) 2018-03-30 2019-03-29 ヘアピン型一本鎖rna分子の製造方法

Publications (3)

Publication Number Publication Date
JP2019213567A JP2019213567A (ja) 2019-12-19
JP2019213567A5 JP2019213567A5 (ja) 2022-03-29
JP7363316B2 true JP7363316B2 (ja) 2023-10-18

Family

ID=68061953

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019520762A Active JP6631751B1 (ja) 2018-03-30 2019-03-29 ヘアピン型一本鎖rna分子の製造方法
JP2019181613A Active JP7363316B2 (ja) 2018-03-30 2019-10-01 ヘアピン型一本鎖rna分子の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019520762A Active JP6631751B1 (ja) 2018-03-30 2019-03-29 ヘアピン型一本鎖rna分子の製造方法

Country Status (15)

Country Link
US (2) US11920131B2 (ja)
EP (1) EP3778886A4 (ja)
JP (2) JP6631751B1 (ja)
KR (1) KR20200136363A (ja)
CN (1) CN111819280A (ja)
AU (1) AU2019242331A1 (ja)
BR (1) BR112020017769A2 (ja)
CA (1) CA3094160A1 (ja)
IL (1) IL277346A (ja)
MX (1) MX2020009556A (ja)
PH (1) PH12020551487A1 (ja)
RU (1) RU2020130258A (ja)
TW (1) TWI772632B (ja)
WO (1) WO2019189722A1 (ja)
ZA (1) ZA202005149B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405086B2 (ja) * 2018-10-02 2023-12-26 東レ株式会社 ヘアピン型一本鎖rna分子の製造方法
CN114981426A (zh) * 2019-12-03 2022-08-30 比姆医疗股份有限公司 合成向导rna、其组合物、方法和用途
KR20220160010A (ko) * 2020-03-27 2022-12-05 스미또모 가가꾸 가부시끼가이샤 핵산 올리고머의 제조 방법
CA3229816A1 (en) * 2021-08-27 2023-03-02 Wensheng Wei Constructs and methods for preparing circular rna
CN117660374A (zh) * 2022-09-08 2024-03-08 凯莱英医药集团(天津)股份有限公司 Rna连接酶在寡核苷酸制备上的应用
CN115774075B (zh) * 2023-02-15 2023-06-06 江苏耀海生物制药有限公司 一种基于RP-HPLC分析体外转录产物成分circRNA的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103146A1 (ja) 2012-01-07 2013-07-11 株式会社ボナック アミノ酸骨格を有する一本鎖核酸分子
WO2017035090A1 (en) 2015-08-21 2017-03-02 Thomas Jefferson University Dumbbell-pcr: a method to quantify specific small rna variants with a single nucleotide resolution at terminal sequences
WO2017073767A1 (ja) 2015-10-30 2017-05-04 株式会社ボナック TGF-β1遺伝子の発現を抑制する一本鎖核酸分子を安定に含有する組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532380A (ja) * 1999-12-02 2003-11-05 モレキュラー ステージング,インコーポレイテッド 線状自己アニーリングセグメントからの一本鎖環状dnaの産出
US20040058886A1 (en) 2002-08-08 2004-03-25 Dharmacon, Inc. Short interfering RNAs having a hairpin structure containing a non-nucleotide loop
JP5296328B2 (ja) 2007-05-09 2013-09-25 独立行政法人理化学研究所 1本鎖環状rnaおよびその製造方法
JP5540312B2 (ja) * 2008-02-15 2014-07-02 独立行政法人理化学研究所 環状1本鎖核酸複合体およびその製造方法
WO2011052013A1 (ja) * 2009-10-29 2011-05-05 株式会社バイオダイナミクス研究所 核酸鎖の結合および修飾方法
SG196779A1 (en) 2010-07-08 2014-02-13 Bonac Corp Single-strand nucleic acid molecule for controlling gene expression
KR101849801B1 (ko) 2010-08-03 2018-04-17 가부시키가이샤 보낙 함질소 지환식 골격을 갖는 일본쇄 핵산 분자
WO2013027843A1 (ja) 2011-08-25 2013-02-28 株式会社ボナック 配糖体化合物、チオエーテルの製造方法、エーテル、エーテルの製造方法、配糖体化合物の製造方法、核酸の製造方法
WO2013077446A1 (ja) 2011-11-26 2013-05-30 株式会社ボナック 遺伝子発現制御のための一本鎖核酸分子
US9816120B2 (en) 2013-01-09 2017-11-14 The Penn State Research Foundation Low sequence bias single-stranded DNA ligation
US10377788B2 (en) 2015-04-02 2019-08-13 Bonac Corporation Method for producing glycoside compounds
GB201612011D0 (en) 2016-07-11 2016-08-24 Glaxosmithkline Ip Dev Ltd Novel processes for the production of oligonucleotides
JP6815601B2 (ja) 2016-11-01 2021-01-20 スタンレー電気株式会社 ウルツ鉱構造のZnOS混晶粒子の製造方法
EP3604528A4 (en) * 2017-03-31 2021-01-13 Bonac Corporation CYCLIC NUCLEIC ACID MOLECULE HAVING A GENE EXPRESSION CONTROL FUNCTION
TWI830718B (zh) * 2018-02-09 2024-02-01 日商住友化學股份有限公司 核酸分子之製造方法
JP6817493B2 (ja) * 2018-03-30 2021-01-20 住友化学株式会社 一本鎖rnaの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103146A1 (ja) 2012-01-07 2013-07-11 株式会社ボナック アミノ酸骨格を有する一本鎖核酸分子
WO2017035090A1 (en) 2015-08-21 2017-03-02 Thomas Jefferson University Dumbbell-pcr: a method to quantify specific small rna variants with a single nucleotide resolution at terminal sequences
WO2017073767A1 (ja) 2015-10-30 2017-05-04 株式会社ボナック TGF-β1遺伝子の発現を抑制する一本鎖核酸分子を安定に含有する組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nucleic Acids Res.,2015年,vol.43, no.12, e77

Also Published As

Publication number Publication date
TWI772632B (zh) 2022-08-01
US20240167033A1 (en) 2024-05-23
EP3778886A1 (en) 2021-02-17
JP6631751B1 (ja) 2020-01-15
JPWO2019189722A1 (ja) 2020-04-30
IL277346A (en) 2020-10-29
TW202003842A (zh) 2020-01-16
JP2019213567A (ja) 2019-12-19
ZA202005149B (en) 2022-01-26
EP3778886A4 (en) 2022-11-02
US20210024930A1 (en) 2021-01-28
MX2020009556A (es) 2020-10-05
KR20200136363A (ko) 2020-12-07
AU2019242331A1 (en) 2020-09-10
RU2020130258A (ru) 2022-05-04
CN111819280A (zh) 2020-10-23
BR112020017769A2 (pt) 2021-01-05
US11920131B2 (en) 2024-03-05
CA3094160A1 (en) 2019-10-03
WO2019189722A1 (ja) 2019-10-03
PH12020551487A1 (en) 2021-08-23

Similar Documents

Publication Publication Date Title
JP7363316B2 (ja) ヘアピン型一本鎖rna分子の製造方法
JP6817493B2 (ja) 一本鎖rnaの製造方法
JP7308309B2 (ja) オリゴヌクレオチド組成物及びその作製方法
MXPA06002660A (es) Oligonucleotidos modificados para inhibicion de telomerasa.
JP6864767B2 (ja) 核酸分子の製造方法
IL300283A (en) Systemic administration of oligonucleotides
WO2020071407A1 (ja) ヘアピン型一本鎖rna分子の製造方法
US11110114B2 (en) Dinucleotides
WO2021024467A1 (ja) 一本鎖rnaの製造方法
JP6491233B2 (ja) ハイブリダイゼーション安定化用核酸複合体、核酸ハイブリダイゼーションの安定化方法、アンチセンス核酸医薬品及びmicroRNA抑制剤
JP6429264B2 (ja) ボラノホスフェート化合物、及び核酸オリゴマー
KR102677783B1 (ko) 올리고뉴클레오티드 유도체 또는 그 염
Beck et al. Double-Headed 2′-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson–Crick Base Pairs
JP2023127483A (ja) 2’位にアミノスルホニルアルコキシ基を有する新規人工核酸
Mutisya Synthesis, biophysical properties and biological activities of non-ionic RNA analogues having triazole and amide internucleoside linkages
JP2022521510A (ja) ホスホノアセテートギャップマー型オリゴヌクレオチド
JPWO2011052715A1 (ja) 修飾2本鎖ポリヌクレオチド

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7363316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151