JP7353449B2 - ポリマー製品を成型する方法および装置 - Google Patents

ポリマー製品を成型する方法および装置 Download PDF

Info

Publication number
JP7353449B2
JP7353449B2 JP2022145179A JP2022145179A JP7353449B2 JP 7353449 B2 JP7353449 B2 JP 7353449B2 JP 2022145179 A JP2022145179 A JP 2022145179A JP 2022145179 A JP2022145179 A JP 2022145179A JP 7353449 B2 JP7353449 B2 JP 7353449B2
Authority
JP
Japan
Prior art keywords
mold
photocurable material
mold structure
structures
cases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022145179A
Other languages
English (en)
Other versions
JP2022184937A (ja
Inventor
チャン チエ
ペロズ クリストフ
ディー. バガト シャラド
マシュー パターソン ロイ
アンソニー クルグ マイケル
スコット カーデン チャールズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of JP2022184937A publication Critical patent/JP2022184937A/ja
Priority to JP2023151025A priority Critical patent/JP2024001894A/ja
Application granted granted Critical
Publication of JP7353449B2 publication Critical patent/JP7353449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/044Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds
    • B29C31/045Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds moving along predetermined circuits or distributing the material according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/005Compensating volume or shape change during moulding, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/026Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • B29C39/265Moulds or cores comprising two large plates positioned at a small distance from each other, e.g. for making panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/38Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/44Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Robotics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

(関連出願の相互参照)
本願は、それらの全体として参照することによって本明細書に組み込まれる2017年10月17日に出願された米国仮出願第62/573,479号、および2018年10月16日に出願された米国仮出願第62/746,426号から優先権を主張する。
(技術分野)
本開示は、光学ポリマーフィルムおよび同フィルムを生産する方法に関する。
ウェアラブル撮像ヘッドセット等の光学撮像システムは、投影された画像をユーザに提示する、1つ以上のアイピースを含むことができる。アイピースは、1つ以上の高屈折性材料の薄い層を使用して、構築されることができる。例として、アイピースは、高屈折性ガラス、シリコン、金属、またはポリマー基板の1つ以上の層から構築されることができる。
ある場合、アイピースは、特定の焦点深度に従って画像を投影するように、(例えば、1つ以上の光回折ナノ構造を伴って)パターン化されることができる。例えば、パターン化されたアイピースを視認するユーザに対して、投影された画像は、ユーザから離れた特定の距離にあるように見えることができる。
さらに、複数のアイピースが、シミュレートされた3次元画像を投影するように、併せて使用されることができる。例えば、各々が異なるパターンを有する複数のアイピースが、互いに上に層にされることができ、各アイピースが、体積画像の異なる深度層を投影することができる。したがって、アイピースは、3次元にわたって体積画像をユーザに集合的に提示することができる。これは、例えば、「仮想現実」環境をユーザに提示することにおいて有用であり得る。
投影された画像の品質を改良するために、アイピースは、アイピースの意図的ではない変動が排除されるように、または別様に低減させられるように、構築されることができる。例えば、アイピースは、アイピースの性能に悪影響を及ぼし得るどんな皺、不均等な厚さ、または他の物理的歪みも示さないように、構築されることができる。
ポリマーフィルムを生産するためのシステムおよび技法が、本明細書に説明される。説明される実装のうちの1つ以上のものは、高度に精密で制御された再現可能な様式で、ポリマーフィルムを生産するために使用されることができる。結果として生じるポリマーフィルムは、フィルム寸法への極めて厳密な公差が所望される種々の変動に敏感な用途で使用されることができる。例えば、ポリマーフィルムは、材料均質性および寸法制約が、およそ光学波長またはそれよりも小さい、光学用途で(例えば、光学撮像システム内のアイピースの一部として)使用されることができる。
ある場合、ポリマーフィルムが、2つのモールドの間に光硬化性材料(例えば、光にさらされたときに硬質化するフォトポリマーまたは光活性化樹脂)を囲い込み、(例えば、材料を光および/または熱にさらすことによって)材料を硬化させることによって、生産されることができる。
しかしながら、成型および硬化プロセス中、種々の要因が、結果として生じるフィルムの形状に干渉し、それをその意図された形状から歪ませ得る。例えば、成型プロセス中、特定の物質が、非意図的に2つのモールド表面の間に閉じ込められ、それらの間の相互作用に干渉し得る。結果として、これは、(例えば、モールド表面がもはや互いに平行ではなくなるように)モールド表面の相対的な向きを意図された向きから外れさせ、その意図された形状から外れるフィルムをもたらし得る。例えば、結果として生じるフィルムは、その範囲を横断して不均等な厚さを有し得る。別の例として、硬化プロセス中、材料は、モールド内で膨張または収縮し得る。結果として、フィルムは、歪ませられ得る(例えば、皺になる、引き伸ばされる、または圧縮される)。故に、フィルムは、変動に敏感な用途で使用するためにはあまり好適ではないこともある。
フィルムの品質および一貫性を改良するために、2つのモールドの位置は、モールドが、材料の硬化の直前および/または間に互いに平行に保たれるように、精密に制御されることができる。ある場合、これは、少なくとも部分的にモールドのうちの1つ以上のものの上に位置付けられる物理的位置合わせ特徴の使用を通して、達成されることができる。例として、モールドは、モールドの1つ以上の表面から、対向するモールドに向かって突出する1つ以上のスペーサ構造(例えば、突出部もしくはガスケット)を含むことができる。別の例として、モールドは、対向するモールドから1つ以上のスペーサ構造を受け取るモールドの1つ以上の表面に沿って画定された1つ以上の陥凹(例えば、スロットもしくは溝)を含むことができる。スペーサ構造および/または陥凹は、モールド表面の相対的な向きが、意図された向きから外れる可能性が低いように、モールドを物理的に整列させるために使用されることができる。例えば、スペーサ構造および/または陥凹は、2つのモールドの間で平行な向きを維持するために使用されることができる。結果として、光硬化性材料は、より均等な厚さを有し、硬化プロセス中に歪ませられる可能性が低い。
ある場合、「分離」プロセスが、(例えば、1回以上ポリマーフィルムを切断し、特定のサイズおよび形状を有する別個の製品を取得することによって)ポリマーフィルムを異なる製品に分離するように実施されることができる。
しかしながら、分離プロセスは、ポリマーフィルム内に望ましくない変動を導入し、結果として生じる製品を変動に敏感な環境内で使用するためにあまり好適ではなくし得る。例えば、高出力レーザが、多くの場合、(例えば、ガラスベースのアイピースの生産中に)、ガラスベースの基板等のあるタイプの光学材料を切断するために使用される。しかしながら、レーザの使用は、ポリマーフィルム等のより低い融点を伴う比較的により軟質の材料を切断するためにあまり好適ではないこともある。例えば、レーザは、ポリマーフィルム上に局所的に高温を生成し、(例えば、ポリマーフィルムの中への噴霧および/または残渣の恒久的堆積に起因して)ポリマーフィルムへの局所的な物理的および/または化学的損傷をもたらし得る。さらに、レーザの使用は、(例えば、ポリマーフィルム内の硫黄/チオール基の酸化に起因して)ポリマーフィルム内に望ましくない臭気を授け得る。
代替として、ポリマー製品が、分離プロセスを実施することなく、生産されることができる。例えば、2つのモールドは、モールドが一緒にされると、単一のポリマー製品のサイズおよび形状に対応する囲い込まれた領域を画定するように構成されることができる。生産プロセス中、光硬化性材料が、2つのモールドの間に囲い込まれ、材料が、ポリマーフィルムを形成するように硬化させられる。硬化後、ポリマーフィルムは、モールドから抽出され、特定の事前定義されたサイズおよび形状を有する単一のポリマー製品をもたらす。このポリマー製品は、続いて、追加の分離ステップを必要とすることなく、他の製造プロセスで使用されることができる(例えば、ヘッドセット等の装置に組み込まれる)。故に、ポリマー製品は、(例えば、より大きいポリマーフィルムの分離を通して形成されるポリマー製品と比較して)物理的および/または化学損傷を有する可能性が低く、変動に敏感な環境における使用のためにより好適であり得る。
さらに、ある場合、フィルムが、重合プロセス中に内側の内部応力の蓄積に起因して、歪ませられ得る。例えば、光硬化性材料が硬化させられると、光硬化性材料のモノマーが、より長く重い鎖に重合する。対応して、光硬化性材料は、ポリマー鎖が一緒に物理的に移動すると、体積が減る(例えば、「収縮」を経験する)。これは、光硬化性材料の内側の内部応力の蓄積(例えば、ポリマー鎖運動性へのインピーダンスに起因する応力)および光硬化性材料内の歪みエネルギーの貯蔵をもたらす。硬化させられたフィルムがモールドから抽出されるとき、歪みエネルギーが放出され、フィルムの薄化をもたらす。フィルムは、内部応力の空間分布に応じて、異なるように薄化し得る。したがって、フィルムは、重合プロセス中に導入された内部応力の特定の空間分布に応じて、フィルム間の変動を示し得る。故に、フィルムの一貫性は、成型プロセス中にフィルム内の応力の分布を調整することによって、改良されることができる。フィルム内の応力を調整するための例示的システムおよび技法が、本明細書に説明される。
ある側面では、光硬化性材料を平面状の物体に成形するためのシステムは、第1のモールド表面を含む第1のモールド構造を含む。第1のモールド表面は、第1の平面内に延びている平面状のエリアを含む。システムは、第2の平面内に延びている平面状のエリアを含む第2のモールド表面を含む第2のモールド構造も含む。対応する平面状のエリアにおいて、第1のモールド構造または第2のモールド構造のうちの少なくとも1つは、光硬化性材料を光硬化させるために好適な1つ以上の波長における放射に対して実質的に透過的である。システムはまた、第1のモールド表面または第2のモールド表面のうちの少なくとも1つに沿って配置される1つ以上の突出部も含む。動作中、システムは、第1および第2のモールド表面が、1つ以上の突出部が反対側のモールド表面に接触する状態で互いに面し、第1の平面が、第2の平面と平行であり、500nm以下の全厚さ変動(TTV)を有する体積が、対応する平面状のエリアに隣接して第1のモールド表面と第2のモールド表面との間に画定されるように、第1および第2のモールド構造を位置付けるように構成される。動作中、システムは、体積内で光硬化性材料を受け取り、1つ以上の波長における放射を体積の中に向けるように構成される。
本側面の実装は、以下の特徴のうちの1つ以上のものを含むことができる。
いくつかの実装では、第1のモールド構造および第2のモールド構造の各々は、1mmより大きい厚さを有することができる。
いくつかの実装では、第1のモールド構造および第2のモールド構造の各々は、1mm~50mmの厚さを有することができる。
いくつかの実装では、第1のモールド構造および第2のモールド構造の各々は、3インチより大きい直径を有することができる。
いくつかの実装では、システムは、第1のモールド表面または第2のモールド表面のうちの少なくとも1つに沿って画定された1つ以上の陥凹をさらに含むことができる。
いくつかの実装では、動作中、第1および第2のモールド表面が、1つ以上の突出部が反対側の表面に接触する状態で互いに面するように、システムが第1および第2のモールド構造を位置付けるとき、1つ以上の突出部のうちの少なくともいくつかが、少なくとも部分的に陥凹のうちの少なくともいくつかの中に挿入されるように、1つ以上の突出部のうちの少なくともいくつかは、1つ以上の陥凹のうちの少なくともいくつかと整列することができる。
いくつかの実装では、1つ以上の突出部のうちの少なくともいくつかは、第1のモールド表面の周辺に沿って配置されることができる。
いくつかの実装では、1つ以上の突出部のうちの少なくともいくつかは、第1のモールド表面の内部に沿って配置されることができる。
いくつかの実装では、1つ以上の陥凹の突出部のうちの少なくともいくつかは、第2のモールド表面の周辺に沿って配置されることができる。
いくつかの実装では、1つ以上の陥凹の突出部のうちの少なくともいくつかは、第2のモールド表面の内部に沿って配置されることができる。
いくつかの実装では、1つ以上の突出部のうちの少なくともいくつかは、実質的に長方形の断面を有することができる。
いくつかの実装では、実質的に長方形の断面を有する1つ以上の突出部のうちの少なくともいくつかは、それぞれの実質的に半球形の遠位端をさらに含むことができる。
いくつかの実装では、実質的に長方形の断面を有する1つ以上の突出部のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに含むことができる。
いくつかの実装では、1つ以上の突出部のうちの少なくともいくつかは、実質的に三角形の断面を有することができる。
いくつかの実装では、実質的に三角形の断面を有する1つ以上の突出部のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに含むことができる。
いくつかの実装では、1つ以上の陥凹のうちの少なくともいくつかは、実質的に長方形の断面を有することができる。
いくつかの実装では、実質的に長方形の断面を有する1つ以上の陥凹のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに含むことができる。
いくつかの実装では、1つ以上の陥凹のうちの少なくともいくつかは、実質的に三角形の断面を有することができる。
いくつかの実装では、実質的に三角形の断面を有する1つ以上の陥凹のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに含むことができる。
いくつかの実装では、1つ以上の突出部のうちの少なくともいくつかは、第1のモールド表面または第2のモールド表面のうちの少なくとも1つと一体であり得る。
いくつかの実装では、1つ以上の突出部のうちの少なくともいくつかは、第1のモールド表面または第2のモールド表面から取り外し可能であり得る。
いくつかの実装では、システムは、光硬化性材料を光硬化させるために好適な放射の1つ以上の波長を放射するように構成された光アセンブリをさらに含むことができる。
いくつかの実装では、第1および第2のモールド表面は、研磨表面であり得る。
いくつかの実装では、動作中、システムは、対応する平面状のエリアに隣接して第1モールド表面と第2のモールド表面との間に画定される体積が、100nm以下の全厚さ変動(TTV)を有するように、第1および第2のモールド構造を位置付けるように構成されることができる。
いくつかの実装では、1つ以上の突出部の各々は、100nm以下の全厚さ変動を有することができる。
いくつかの実装では、1つ以上の陥凹の各々は、100nm以下の全厚さ変動を有することができる。
いくつかの実装では、動作中、システムは、対応する平面状のエリアに隣接して第1モールド表面と第2のモールド表面との間に画定される体積が、20μm~2mmの厚さを有するように、第1および第2のモールド構造を位置付けるように構成されることができる。
いくつかの実装では、動作中、システムは、熱を体積の中に向けるように構成されることができる。システムは、第1のモールド表面を通して熱を体積の中に向けるように構成されることができる。システムは、第2のモールド表面を通して熱を体積の中に向けるように構成されることができる。
いくつかの実装では、動作中、システムは、第1のモールド表面を通して放射の1つ以上の波長を体積の中に向けるように構成されることができる。
いくつかの実装では、動作中、システムは、第2のモールド表面を通して放射の1つ以上の波長を体積の中に向けるように構成されることができる。
別の側面では、所定の形状を有する導波管部分を形成する方法は、導波管部分の所定の形状に対応する別々の連続した第1のエリアを含む第1の表面を有する第1のモールド部分を提供することを含む。第1のエリアは、第1のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られる。方法は、導波管部分の所定の形状に対応する別々の連続した第2のエリアを含む第2の表面を有する第2のモールド部分を提供することも含む。第2のエリアは、第2のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られる。方法は、計量された量の光硬化性材料を第1のモールド部分の第1のエリアに隣接した空間の中に分注することと、第1のエリアと第2のエリアとが互いに対して位置合わせされている状態で、第1の表面と第2の表面とを向かい合って配置することとを含む。方法は、光硬化性材料が、所定の形状を有する第1の表面の第1のエリアと第2の表面の第2のエリアとの間の空間を充填するように、第1の表面と第2の表面との間の相対的な分離を調節することも含む。第1および第2のエリアとそれらの対応する縁領域との間の異なる表面化学および/または表面構造は、縁領域を越えた光硬化性材料の流動を防止する。方法は、光硬化性材料を光硬化させるために好適な放射で空間内の光硬化性材料を照射し、硬化させられたフィルムを導波管部分の形状で形成することと、第1および第2のモールド部分から硬化させられたフィルムを分離し、導波管部分を提供することとも含む。
本側面の実装は、以下の特徴のうちの1つ以上のものを含むことができる。
いくつかの実装では、計量された量の光硬化性材料は、第1のモールド部分の第1のエリアに隣接した空間内の複数の別々の場所において分注されることができる。
いくつかの実装では、計量された量の光硬化性材料は、第1のモールド部分の第1のエリアに隣接した空間内で非対称パターンに従って分注されることができる。
いくつかの実装では、計量された量の光硬化性材料は、第1のモールド部分の第1の表面の周辺において分注されることができる。
いくつかの実装では、第1および第2の表面は、光硬化性材料を分注することに先立って、向かい合って配置されることができる。
いくつかの実装では、第1および第2の表面は、光硬化性材料を分注した後、向かい合って配置されることができる。
いくつかの実装では、第1および第2のエリアは、第1および/または第2の表面上の1つ以上の基準マーキングに基づいて、互いに対して位置合わせされることができる。基準マーキングは、第1および第2のエリアの外側に位置することができる。
いくつかの実装では、第1の表面と第2の表面との間の相対的な分離は、第1および/または第2の表面上に位置する1つ以上のスペーサに基づいて制御されることができる。1つ以上のスペーサは、第1および第2のエリアの外側に位置することができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、光硬化性材料をはじく材料を含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、光硬化性材料の液滴を留めるように構成されたパターン化された表面を含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、光硬化性材料の液滴を転がすように構成されたパターン化された表面を含むことができる。
いくつかの実装では、導波管部分は、1,000μm以下の厚さと、少なくとも1cmの面積とを有することができる。
別の側面では、方法は、本明細書に説明される方法のうちの1つ以上のものを使用して形成される導波管部分を含む頭部搭載型ディスプレイを組み立てることを含む。
別の側面では、所定の形状を有する導波管部分を形成するためのモールドシステムは、第1のモールド部分と、第2のモールド部分とを含む。第1のモールド部分は、導波管部分の所定の形状に対応する別々の連続した第1のエリアを含む第1の表面を有する。第1のエリアは、縁領域によって境を限られる。第2のモールド部分は、導波管部分の所定の形状に対応する別々の連続した第2のエリアを含む第2の表面を有する。第2のエリアは、第2のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られる。システムは、それぞれの第1および第2のエリアの外側に位置している第1および/または第2の表面上の1つ以上のスペーサも含む。システムは、それぞれの第1および第2のエリアの外側に位置している第1および/または第2の表面上の1つ以上の基準マーキングも含む。第1および第2の表面の縁領域の各々は、導波管部分を形成するための光硬化性材料の表面エネルギーが、それぞれの第1および第2のエリアと比較して、縁領域において異なるように、それぞれの第1のエリアおよび第2のエリアと異なる表面化学および/または表面構造を有する。
本側面の実装は、以下の特徴のうちの1つ以上のものを含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、光硬化性材料の液滴を留めるように構成されたパターン化された表面を含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、光硬化性材料の液滴を転がすように構成されたパターン化された表面を含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、1μm~10μmの範囲内の高さを有する構造を備えているパターン化された表面を含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、50μm~200μmの範囲内の側方間隔を有する構造を備えているパターン化された表面を含むことができる。
いくつかの実装では、第1および/または第2のモールド部分の縁領域は、光硬化性材料をはじく材料を含むことができる。
いくつかの実装では、第1の表面および第2の表面の両方は、各々が対応する縁領域によって境を限られている導波管部分の所定の形状に対応する複数の別々の連続エリアを含むことができる。
いくつかの実装では、システムは、計量された量の光硬化性材料を第1のモールド部分の第1のエリアに隣接した空間の中に分注するように構成された分注ステーションをさらに含むことができる。
いくつかの実装では、システムは、第1および第2の表面の第1のエリアと第2のエリアとの間の空間内の光硬化性材料を照射するように構成された照射ステーションをさらに含むことができる。
いくつかの実装では、導波管部分は、1,000μm以下の厚さと、少なくとも1cmの面積とを有することができる。
別の側面では、導波管フィルムを形成する方法は、光硬化性材料を第1のモールド部分と第1のモールド部分の反対側の第2のモールド部分との間の空間の中に分注することと、第1のモールド部分の表面に対向している第2のモールド部分の表面に対する第1のモールド部分の表面の相対的な分離を調節することと、光硬化性材料を光硬化させるために好適な放射で空間内の光硬化性材料を照射し、硬化させられた導波管フィルムを形成することとを含む。さらに、方法は、光硬化性材料を照射することと同時に、第1のモールド部分の表面と第2のモールド部分の表面との間の相対的な分離を変動させること、および光硬化性材料を照射する放射の強度を変動させることのうちの少なくとも1つを実施することを含む。
本側面の実装は、以下の特徴のうちの1つ以上のものを含むことができる。
いくつかの実装では、相対的な分離は、第1のモールド部分の表面と第2のモールド部分の表面との間に延びている軸に沿って第1のモールド部分によって経験される力を調整するように変動させられることができる。相対的な分離は、力を調整する閉ループ制御システムに基づいて変動させられることができる。
いくつかの実装では、相対的な分離は、光硬化性材料内のゲル点に到達するために十分な時間にわたって光硬化性材料を照射した後、変動させられることができる。相対的な分離は、光硬化性材料内のゲル点に到達するために十分な時間にわたって光硬化性材料を照射した後、低減させられることができる。
いくつかの実装では、相対的な分離を変動させることは、第2のモールド部分に向かって第1のモールド部分を移動させ、第1のモールド部分と第2のモールド部分との間に配置される1つ以上のスペーサ構造を圧縮することを含むことができる。スペーサ構造は、開ループ制御システムに従って圧縮されることができる。
いくつかの実装では、相対的な分離を変動させることは、第2のモールド部分に対して第1のモールド部分の位置を振動させることを含むことができる。
いくつかの実装では、放射の強度を変動させることは、光硬化性材料を照射する空間強度パターンを変動させることを含むことができる。
いくつかの実装では、放射の強度を変動させることは、放射の出力を変動させることを含むことができる。出力を変動させることは、放射をパルスにすることを含むことができる。放射の各パルスは、同一の出力を有することができる。放射のパルスは、異なる出力を有することができる。放射の各パルスは、同一の持続時間を有することができる。放射のパルスは、異なる持続時間を有することができる。パルス周波数は、一定であり得る。パルス周波数は、変動させられることができる。
いくつかの実装では、放射の強度を変動させることは、空間の異なるエリアを連続的に照射することを含むことができる。
いくつかの実装では、光硬化性材料で充填される空間の厚さは、変動し、放射の強度は、高い相対的厚さの領域が、低い相対的厚さの領域と比較して、より高い放射線量を受け取るように、変動させられることができる。
いくつかの実装では、方法は、第1のモールド部分および第2のモールド部分から硬化させられた導波管フィルムを分離することをさらに含むことができる。
別の例では、方法は、本明細書に説明される方法のうちの1つ以上のものを使用して形成される導波管フィルムを備えている頭部搭載型ディスプレイを組み立てることを含む。
1つ以上の実施形態の詳細は、付随する図面および下記の説明に記載される。他の特徴および利点が、説明および図面から、ならびに請求項から明白であろう。
本発明は、例えば、以下の項目を提供する。
(項目1)
光硬化性材料を平面状の物体に成形するためのシステムであって、前記システムは、
第1のモールド表面を備えている第1のモールド構造であって、前記第1のモールド表面は、第1の平面内に延びている平面状のエリアを備えている、第1のモールド構造と、
第2のモールド表面を備えている第2のモールド構造であって、前記第2のモールド表面は、第2の平面内に延びている平面状のエリアを備え、前記対応する平面状のエリアにおいて、前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも1つは、前記光硬化性材料を光硬化させるために好適な1つ以上の波長における放射に対して実質的に透過的である、第2のモールド構造と、
前記第1のモールド表面または前記第2のモールド表面のうちの少なくとも1つに沿って配置された1つ以上の突出部と
を備え、
動作中、前記システムは、
前記1つ以上の突出部が前記反対側のモールド表面に接触する状態で前記第1のモールド表面と第2のモールド表面とが互いに面するように、前記第1および第2のモールド構造を位置付けることであって、前記第1の平面は、前記第2の平面と平行であり、500nm以下の全厚さ変動(TTV)を有する体積が、前記対応する平面状のエリアに隣接して前記第1のモールド表面と第2のモールド表面との間に画定されている、ことと、
前記体積において前記光硬化性材料を受け取ることと、
前記1つ以上の波長における放射を前記体積の中に向けることと
を行うように構成されている、システム。
(項目2)
前記第1のモールド構造および前記第2のモールド構造の各々は、1mmより大きい厚さを有する、項目1に記載のシステム。
(項目3)
前記第1のモールド構造および前記第2のモールド構造の各々は、1mm~50mmの厚さを有する、項目1に記載のシステム。
(項目4)
前記第1のモールド構造および前記第2のモールド構造の各々は、3インチより大きい直径を有する、項目1に記載のシステム。
(項目5)
前記システムは、前記第1のモールド表面または前記第2のモールド表面のうちの少なくとも1つに沿って画定された1つ以上の陥凹をさらに備えている、項目1に記載のシステム。
(項目6)
動作中、前記1つ以上の突出部のうちの少なくともいくつかは、前記1つ以上の陥凹のうちの少なくともいくつかと整列しており、それによって、前記1つ以上の突出部が前記反対側の表面に接触する状態で前記第1および第2のモールド表面が互いに面するように、前記システムが前記第1および第2のモールド構造を位置付けると、前記1つ以上の突出部のうちの少なくともいくつかが、少なくとも部分的に前記陥凹のうちの少なくともいくつかの中に挿入される、項目5に記載のシステム。
(項目7)
前記1つ以上の突出部のうちの少なくともいくつかは、前記第1のモールド表面の周辺に沿って配置されている、項目6に記載のシステム。
(項目8)
前記1つ以上の突出部のうちの少なくともいくつかは、前記第1のモールド表面の内部に沿って配置されている、項目6に記載のシステム。
(項目9)
前記1つ以上の陥凹突出部のうちの少なくともいくつかは、前記第2のモールド表面の周辺に沿って配置されている、項目7に記載のシステム。
(項目10)
前記1つ以上の陥凹突出部のうちの少なくともいくつかは、前記第2のモールド表面の内部に沿って配置されている、項目7に記載のシステム。
(項目11)
前記1つ以上の突出部のうちの少なくともいくつかは、実質的に長方形の断面を有する、項目1に記載のシステム。
(項目12)
前記実質的に長方形の断面を有する前記1つ以上の突出部のうちの少なくともいくつかは、それぞれの実質的に半球形の遠位端をさらに備えている、項目11に記載のシステム。
(項目13)
前記実質的に長方形の断面を有する前記1つ以上の突出部のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに備えている、項目11に記載のシステム。
(項目14)
前記1つ以上の突出部のうちの少なくともいくつかは、実質的に三角形の断面を有する、項目1に記載のシステム。
(項目15)
前記実質的に三角形の断面を有する前記1つ以上の突出部のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに備えている、項目14に記載のシステム。
(項目16)
前記1つ以上の陥凹のうちの少なくともいくつかは、実質的に長方形の断面を有する、項目5に記載のシステム。
(項目17)
前記実質的に長方形の断面を有する前記1つ以上の陥凹のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに備えている、項目16に記載のシステム。
(項目18)
前記1つ以上の陥凹のうちの少なくともいくつかは、実質的に三角形の断面を有する、項目5に記載のシステム。
(項目19)
前記実質的に三角形の断面を有する前記1つ以上の陥凹のうちの少なくともいくつかは、1つ以上の丸みを帯びた角をさらに備えている、項目18に記載のシステム。
(項目20)
前記1つ以上の突出部のうちの少なくともいくつかは、前記第1のモールド表面または前記第2のモールド表面のうちの少なくとも1つと一体である、項目1に記載のシステム。
(項目21)
前記1つ以上の突出部のうちの少なくともいくつかは、前記第1のモールド表面または前記第2のモールド表面から取り外し可能である、項目1に記載のシステム。
(項目22)
前記光硬化性材料を光硬化させるために好適な放射の1つ以上の波長を放射するように構成された光アセンブリをさらに備えている、項目1に記載のシステム。
(項目23)
前記第1および第2のモールド表面は、研磨表面である、項目1に記載のシステム。
(項目24)
動作中、前記システムは、前記対応する平面状のエリアに隣接して前記第1のモールド表面と第2のモールド表面との間に画定された前記体積が100nm以下の全厚さ変動(TTV)を有するように、前記第1および第2のモールド構造を位置付けるように構成されている、項目1に記載のシステム。
(項目25)
前記1つ以上の突出部の各々は、100nm以下の全厚さ変動を有する、項目1に記載のシステム。
(項目26)
前記1つ以上の陥凹の各々は、100nm以下の全厚さ変動を有する、項目5に記載のシステム。
(項目27)
動作中、前記システムは、前記対応する平面状のエリアに隣接して前記第1のモールド表面と第2のモールド表面との間に画定された前記体積が20μm~2mmの厚さを有するように、前記第1および第2のモールド構造を位置付けるように構成されている、項目1に記載のシステム。
(項目28)
動作中、前記システムは、熱を前記体積の中に向けるように構成されている、項目1に記載のシステム。
(項目29)
動作中、前記システムは、前記第1のモールド表面を通して熱を前記体積の中に向けるように構成されている、項目28に記載のシステム。
(項目30)
動作中、前記システムは、前記第2のモールド表面を通して熱を前記体積の中に向けるように構成されている、項目29に記載のシステム。
(項目31)
動作中、前記システムは、前記第1のモールド表面を通して前記放射の1つ以上の波長を前記体積の中に向けるように構成されている、項目1に記載のシステム。
(項目32)
動作中、前記システムは、前記第2のモールド表面を通して前記放射の1つ以上の波長を前記体積の中に向けるように構成されている、項目1に記載のシステム。
(項目33)
所定の形状を有する導波管部分を形成する方法であって、前記方法は、
第1の表面を有する第1のモールド部分を提供することであって、前記第1の表面は、前記導波管部分の所定の形状に対応する別々の連続した第1のエリアを備え、前記第1のエリアは、前記第1のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られている、ことと、
第2の表面を有する第2のモールド部分を提供することであって、前記第2の表面は、前記導波管部分の所定の形状に対応する別々の連続した第2のエリアを備え、前記第2のエリアは、前記第2のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られている、ことと、
計量された量の光硬化性材料を前記第1のモールド部分の前記第1のエリアに隣接した空間の中に分注することと、
前記第1のエリアと第2のエリアとが互いに対して位置合わせされている状態で、前記第1の表面と第2の表面とを向かい合って配置することと、
前記光硬化性材料が前記所定の形状を有する前記第1の表面の前記第1のエリアと前記第2の表面の前記第2のエリアとの間の空間を充填するように、前記第1の表面と前記第2の表面との間の相対的な分離を調節することであって、前記第1および第2のエリアとそれらの対応する縁領域との間の前記異なる表面化学および/または表面構造は、前記縁領域を越えた前記光硬化性材料の流動を防止する、ことと、
前記光硬化性材料を光硬化させるために好適な放射で前記空間内の前記光硬化性材料を照射し、前記導波管部分の形状における硬化させられたフィルムを形成することと、
前記第1および第2のモールド部分から前記硬化させられたフィルムを分離し、前記導波管部分を提供することと
を含む、方法。
(項目34)
前記計量された量の光硬化性材料は、前記第1のモールド部分の第1のエリアに隣接した前記空間内の複数の別々の場所において分注される、項目33に記載の方法。
(項目35)
前記計量された量の光硬化性材料は、前記第1のモールド部分の第1のエリアに隣接した前記空間内で非対称パターンに従って分注される、項目33に記載の方法。
(項目36)
前記計量された量の光硬化性材料は、前記第1のモールド部分の第1の表面の周辺において分注される、項目33に記載の方法。
(項目37)
前記第1および第2の表面は、前記光硬化性材料を分注することに先立って、向かい合って配置される、項目33に記載の方法。
(項目38)
前記第1および第2の表面は、前記光硬化性材料を分注した後、向かい合って配置される、項目33に記載の方法。
(項目39)
前記第1および第2のエリアは、前記第1および/または第2の表面上の1つ以上の基準マーキングに基づいて、互いに対して位置合わせされる、項目33に記載の方法。
(項目40)
前記基準マーキングは、前記第1および第2のエリアの外側に位置している、項目39に記載の方法。
(項目41)
前記第1の表面と第2の表面との間の相対的な分離は、前記第1および/または第2の表面上に位置する1つ以上のスペーサに基づいて制御される、項目33に記載の方法。
(項目42)
前記1つ以上のスペーサは、前記第1および第2のエリアの外側に位置している、項目41に記載の方法。
(項目43)
前記第1および/または第2のモールド部分の前記縁領域は、前記光硬化性材料をはじく材料を備えている、項目33に記載の方法。
(項目44)
前記第1および/または第2のモールド部分の前記縁領域は、前記光硬化性材料の液滴を留めるように構成されたパターン化された表面を備えている、項目33に記載の方法。(項目45)
前記第1および/または第2のモールド部分の前記縁領域は、前記光硬化性材料の液滴を転がすように構成されたパターン化された表面を備えている、項目33に記載の方法。(項目46)
前記導波管部分は、1,000μm以下の厚さと、少なくとも1cmの面積とを有する、項目33に記載の方法。
(項目47)
項目33に記載の方法を使用して形成される導波管部分を備えている頭部搭載型ディスプレイを組み立てることを含む、方法。
(項目48)
所定の形状を有する導波管部分を形成するためのモールドシステムであって、前記モールドシステムは、
第1の表面を有する第1のモールド部分であって、前記第1の表面は、前記導波管部分の前記所定の形状に対応する別々の連続した第1のエリアを備え、前記第1のエリアは、縁領域によって境を限られている、第1のモールド部分と、
第2の表面を有する第2のモールド部分であって、前記第2の表面は、前記導波管部分の前記所定の形状に対応する別々の連続した第2のエリアを備え、前記第2のエリアは、前記第2のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られている、第2のモールド部分と、
それぞれの前記第1および第2のエリアの外側に位置している前記第1および/または第2の表面上の1つ以上のスペーサと、
それぞれの前記第1および第2のエリアの外側に位置している前記第1および/または第2の表面上の1つ以上の基準マーキングと
を備え、
前記第1および第2の表面の前記縁領域の各々は、それぞれの前記第1のエリアおよび第2のエリアと異なる表面化学および/または表面構造を有し、それによって、前記導波管部分を形成するための光硬化性材料の表面エネルギーは、それぞれの前記第1および第2のエリアと比較して、前記縁領域において異なる、モールドシステム。
(項目49)
前記第1および/または第2のモールド部分の前記縁領域は、前記光硬化性材料の液滴を留めるように構成されたパターン化された表面を備えている、項目48に記載のモールドシステム。
(項目50)
前記第1および/または第2のモールド部分の前記縁領域は、前記光硬化性材料の液滴を転がすように構成されたパターン化された表面を備えている、項目48に記載のモールドシステム。
(項目51)
前記第1および/または第2のモールド部分の前記縁領域は、1μm~10μmの範囲内の高さを有する構造を備えているパターン化された表面を備えている、項目48に記載のモールドシステム。
(項目52)
前記第1および/または第2のモールド部分の前記縁領域は、50μm~200μmの範囲内の側方間隔を有する構造を備えているパターン化された表面を備えている、項目48に記載のモールドシステム。
(項目53)
前記第1および/または第2のモールド部分の前記縁領域は、前記光硬化性材料をはじく材料を備えている、項目48に記載のモールドシステム。
(項目54)
前記第1の表面および前記第2の表面の両方は、前記導波管部分の前記所定の形状に対応する複数の別々の連続エリアを備え、前記複数の別々の連続エリアの各々は、対応する縁領域によって境を限られている、項目48に記載のモールドシステム。
(項目55)
計量された量の光硬化性材料を前記第1のモールド部分の前記第1のエリアに隣接した空間の中に分注するように構成された分注ステーションをさらに備えている、項目48に記載のモールドシステム。
(項目56)
前記第1の表面の第1のエリアと前記第2の表面の第2のエリアとの間の空間内の光硬化性材料を照射するように構成された照射ステーションをさらに備えている、項目48に記載のモールドシステム。
(項目57)
前記導波管部分は、1,000μm以下の厚さと、少なくとも1cmの面積とを有する、項目48に記載のモールドシステム。
(項目58)
導波管フィルムを形成する方法であって、前記方法は、
光硬化性材料を第1のモールド部分と前記第1のモールド部分と反対側の第2のモールド部分との間の空間の中に分注することと、
前記第1のモールド部分の表面に対向している前記第2のモールド部分の表面に対する前記第1のモールド部分の表面の相対的な分離を調節することと、
前記光硬化性材料を光硬化させるために好適な放射で前記空間内の前記光硬化性材料を照射し、硬化させられた導波管フィルムを形成することと、
前記光硬化性材料を照射することと同時に、
前記第1のモールド部分の前記表面と前記第2のモールド部分の前記表面との間の前記相対的な分離を変動させること、および、
前記光硬化性材料を照射する前記放射の強度を変動させること
のうちの少なくとも1つを実施することと
を含む、方法。
(項目59)
前記相対的な分離は、前記第1のモールド部分の前記表面と前記第2のモールド部分の前記表面との間に延びている軸に沿って、前記第1のモールド部分によって経験される力を調整するように変動させられる、項目58に記載の方法。
(項目60)
前記相対的な分離は、前記力を調整する閉ループ制御システムに基づいて変動させられる、項目59に記載の方法。
(項目61)
前記相対的な分離は、前記光硬化性材料内のゲル点に到達するために十分な時間にわたって前記光硬化性材料を照射した後、変動させられる、項目58に記載の方法。
(項目62)
前記相対的な分離は、前記光硬化性材料内のゲル点に到達するために十分な時間にわたって前記光硬化性材料を照射した後、低減させられる、項目61に記載の方法。
(項目63)
前記相対的な分離を変動させることは、前記第2のモールド部分に向かって前記第1のモールド部分を移動させ、前記第1のモールド部分と前記第2のモールド部分との間に配置された1つ以上のスペーサ構造を圧縮することを含む、項目58に記載の方法。
(項目64)
前記スペーサ構造は、開ループ制御システムに従って圧縮される、項目63に記載の方法。
(項目65)
前記相対的な分離を変動させることは、前記第2のモールド部分に対して前記第1のモールド部分の位置を振動させることを含む、項目58に記載の方法。
(項目66)
前記放射の強度を変動させることは、前記光硬化性材料を照射する空間強度パターンを変動させることを含む、項目58に記載の方法。
(項目67)
前記放射の強度を変動させることは、前記放射の出力を変動させることを含む、項目58に記載の方法。
(項目68)
前記出力を変動させることは、前記放射をパルスにすることを含む、項目67に記載の方法。
(項目69)
前記放射の各パルスは、同一の出力を有する、項目68に記載の方法。
(項目70)
前記放射のパルスは、異なる出力を有する、項目68に記載の方法。
(項目71)
前記放射の各パルスは、同一の持続時間を有する、項目68に記載の方法。
(項目72)
前記放射のパルスは、異なる持続時間を有する、項目68に記載の方法。
(項目73)
パルス周波数は、一定である、項目68に記載の方法。
(項目74)
パルス周波数は、変動させられる、項目68に記載の方法。
(項目75)
前記放射の強度を変動させることは、前記空間の異なるエリアを連続的に照射することを含む、項目58に記載の方法。
(項目76)
光硬化性材料で充填される前記空間の厚さは、変動し、前記放射の強度は、高い相対的厚さの領域が、低い相対的厚さの領域と比較して、より高い放射線量を受け取るように、変動させられる、項目58に記載の方法。
(項目77)
前記第1のモールド部分および前記第2のモールド部分から前記硬化させられた導波管フィルムを分離することをさらに含む、項目58に記載の方法。
(項目78)
項目58に記載の方法を使用して形成される導波管フィルムを備えている頭部搭載型ディスプレイを組み立てることを含む、方法。
図1は、ポリマーを生産するための例示的システムの略図である。
図2は、間隔を空ける構造を伴う例示的モールド構造の略図である。
図3Aおよび3Bは、例示的モールド構造および例示的な間隔を空ける構造の略図である。
図4Aおよび4Bは、例示的モールド構造および例示的な間隔を空ける構造の略図である。 図4Aおよび4Bは、例示的モールド構造および例示的な間隔を空ける構造の略図である。
図5Aおよび5Bは、例示的モールド構造、例示的な間隔を空ける構造、および例示的陥凹の略図である。
図5Cは、例示的モールド構造および例示的な間隔を空ける構造の略図である。
図5Dは、例示的モールド構造および例示的陥凹の略図である。
図6Aおよび6Bは、例示的モールド構造、例示的な間隔を空ける構造、および例示的陥凹の略図である。
図7Aおよび7Bは、例示的モールド構造、例示的な間隔を空ける構造、および例示的陥凹の略図である。
図8は、例示的モールド構造、例示的な間隔を空ける構造、および例示的陥凹の略図である。
図9は、ポリマーを生産するための例示的システムの略図である。
図10は、例示的光学フィルムの断面の略図である。
図11は、ポリマー製品を生産するための例示的プロセスのフローチャート図である。
図12は、単一のポリマー製品を生産するための例示的プロセスの概略図である。
図13A-13Eは、光硬化性材料を分注するための例示的パターンの略図である。 図13A-13Eは、光硬化性材料を分注するための例示的パターンの略図である。
図14は、例示的モールド構造の略図である。
図15は、別の例示的モールド構造の略図である。
図16Aは、別の例示的モールド構造の略図である。
図16Bは、例示的なエッチングされた格子パターンの略図である。
図17は、別の例示的モールド構造の略図である。
図18は、ポリマー製品を生産するための例示的プロセスのフローチャート図である。
図19Aは、成型および硬化プロセス中の例示的ポリマーフィルムの略図である。
図19Bは、硬化および抽出後の例示的ポリマーフィルムの略図である。
図20は、光硬化性材料を硬化させるための光の例示的分布の略図である。
図21Aおよび21Bは、例示的ポリマーフィルムの画像である。
図22Aは、硬化中に光硬化性材料内の応力を調整するための例示的システムの略図である。
図22Bは、硬化中に光硬化性材料内の応力を調整するための別の例示的システムの略図である。
図23は、硬化中に光硬化性材料内の応力を調整するための別の例示的システムの略図である。
図24A-24Cは、光硬化性材料を硬化させるための例示的照明パターンの略図である。
図25は、光硬化性材料を硬化させるための追加の例示的照明パターンの略図である。
図26は、光硬化性材料を硬化させるための追加の例示的照明パターンの略図である。
図27Aは、光硬化性材料を硬化させるための追加の例示的照明パターンの略図である。
図27Bは、光硬化性材料を硬化させるための追加の例示的照明パターンの略図である。
図28Aおよび28Bは、例示的ポリマー製品の略図である。
図29は、ポリマー製品を生産するための例示的プロセスのフローチャート図である。
図30は、例示的コンピュータシステムの略図である。
ポリマーフィルムを生産するためのシステムおよび技法が、本明細書に説明される。説明される実装のうちの1つ以上のものは、高度に精密で制御された再現可能な様式で、ポリマーフィルムを生産するために使用されることができる。結果として生じるポリマーフィルムは、種々の変動に敏感な用途で(例えば、光学撮像システム内のアイピースの一部として)使用されることができる。
いくつかの実装では、ポリマーフィルムは、皺、不均等な厚さ、または他の意図的ではない物理的歪みが排除され、または別様に低減させられるように、生産されることができる。これは、例えば、結果として生じるポリマーフィルムが、より予測可能な物理的および/または光学特性を示すので、有用であり得る。例えば、このようにして生産されるポリマーフィルムは、より予測可能な一貫した様式で光を回折させることができ、したがって、高解像度光学撮像システムを使用するためにより好適であり得る。ある場合、これらのポリマーフィルムを使用する光学撮像システムは、他のポリマーフィルムを用いて別様に可能であり得るよりも鮮明な、および/または高解像度の画像を生成することができる。
ポリマーフィルムを生産するための例示的システム100が、図1に示される。システム100は、2つの作動可能ステージ102aおよび102bと、2つのモールド構造104aおよび104bと、2つの光源106aおよび106bと、支持フレーム108と、制御モジュール110とを含む。
システム100の動作中、2つのモールド構造104aおよび104b(「光学平坦部」とも称される)は、それぞれ、(クランプ112aおよび112bを通して)作動可能ステージ102aおよび102bに固定される。ある場合、クランプ112aおよび112bは、モールド構造104aおよび104bが作動可能ステージ102aおよび102bに可逆的に搭載され、そこから除去されることを可能にする磁気(例えば、電磁石)および/または空気圧式クランプであり得る。ある場合、クランプ112aおよび112bは、スイッチによって、および/または制御モジュール110によって(例えば、電気をクランプ112aおよび112bの電磁石に選択的に印加すること、および/または空気圧式機構を選択的に作動させ、モールド構造に係合すること、または係合を解くことによって)、制御されることができる。
光硬化性材料114(光にさらされたときに硬質化するフォトポリマーまたは光活性化樹脂)が、モールド構造104bの中に堆積させられる。モールド構造104aおよび104bは、光硬化性材料114が、モールド構造104aおよび104bによって囲い込まれるように、(例えば、作動可能ステージ102aおよび/または102bを支持フレーム108に沿って垂直に移動させることによって)互いに近接するように移動させられる。光硬化性材料114は、次いで、(例えば、光硬化性材料114を光源106aおよび/または106bからの光にさらすことによって)硬化させられ、モールド構造104aおよび104bによって画定される1つ以上の特徴を有する薄いフィルムを形成する。光硬化性材料114が硬化させられた後、モールド構造104aおよび104bは、(例えば、作動可能ステージ102aおよび/または102bを支持フレーム108に沿って垂直に移動させることによって)互いから離れるように移動させられ、フィルムは、抽出される。
作動可能ステージ102aおよび102bは、それぞれ、モールド構造104aおよび104bを支持するように構成される。さらに、作動可能ステージ102aおよび102bは、それぞれ、1つ以上の次元でモールド構造104aおよび104bを操作し、モールド構造104aと104bとの間の間隙体積116を制御するように構成される。
例えば、ある場合、作動可能ステージ102aは、1つ以上の軸に沿ってモールド構造104aを平行移動させることができる。例として、作動可能ステージ102aは、デカルト座標系(すなわち、3つの直交配置された軸を有する座標系)内のx軸、y軸、および/またはz軸に沿ってモールド構造104aを平行移動させることができる。ある場合、作動可能ステージ102aは、1つ以上の軸の周りにモールド構造104aを回転させること、または傾けることができる。例として、作動可能ステージ102aは、デカルト座標系内のx軸(例えば、モールド構造104aを「ロール」させるために)、y軸(例えば、モールド構造104aを「ピッチ」させるために)、および/またはz軸(例えば、モールド構造104aを「ヨー」させるために)に沿って、モールド構造104aを回転させることができる。1つ以上の他の軸に対する平行移動および/または回転も、上で説明されるものに加えて、またはその代わりに可能である。同様に、作動可能ステージ102bは、1つ以上の軸に沿ってモールド構造104bを平行移動させること、および/または1つ以上の軸の周りにモールド構造104bを回転させることができる。
ある場合、作動可能ステージ102aは、1つ以上の自由度(例えば、1、2、3、4以上自由度)に従って、モールド構造104aを操作することができる。例えば、作動可能ステージ102aは、6自由度(例えば、x軸、y軸、およびz軸に沿った平行移動、ならびにx軸、y軸、およびz軸周りの回転)に従って、モールド構造104aを操作することができる。1つ以上の他の自由度による操作も、上で説明されるものに加えて、またはその代わりに可能である。同様に、作動可能ステージ102bは、1つ以上の自由度に従って、モールド構造104bを操作することもできる。
ある場合、作動可能ステージ102aおよび102bは、モールド構造104aおよび104bを操作し、間隙体積116を制御するように構成された1つ以上のモータアセンブリを含むことができる。例えば、作動可能ステージ102aおよび102bは、作動可能ステージ102aおよび102bを操作し、それによって、作動可能ステージ102aおよび102bを再配置および/または向け直しするように構成されたモータアセンブリ118を含むことができる。
図1に示される例では、作動可能ステージ102aおよび102bの両方は、間隙体積116を制御するように支持フレーム108に対して移動させられることができる。しかしながら、ある場合、作動可能ステージのうちの一方が、支持フレーム108に対して移動させられることができるが、他方は、支持フレーム108に対して静止したままであることができる。例えば、ある場合、作動可能ステージ102aは、モータアセンブリ118を通して支持フレーム108に対して1つ以上の次元で平行移動するように構成されることができる一方で、作動可能ステージ102bは、支持フレーム108に対して静止したままで保たれることができる。
モールド構造104aおよび104bは、光硬化性材料114のためのエンクロージャを集合的に画定する。例えば、モールド構造104aおよび104bは、一緒に整列させられたとき、中空モールド領域(例えば、間隙体積116)を画定することができ、その内側で、光硬化性材料114は、堆積させられ、フィルムに硬化させられることができる。モールド構造104aおよび104bは、結果として生じるフィルム内に1つ以上の構造を画定することもできる。例えば、モールド構造104aおよび104bは、結果として生じるフィルム内に対応するチャネルを授ける表面120aおよび/または120bからの1つ以上の突出構造(例えば、格子)を含むことができる。別の例として、モールド構造104aおよび104bは、結果として生じるフィルム内に対応する突出構造を授ける表面120aおよび/または120b内に画定される1つ以上のチャネルを含むことができる。ある場合、モールド構造104aおよび104bは、結果として生じるフィルムの片側または両側に特定のパターンを授けることができる。ある場合、モールド構造104aおよび104bは、結果として生じるフィルム上に突出部および/またはチャネルのいずれのパターンも全く授ける必要がない。ある場合、モールド構造104aおよび104bは、結果として生じるフィルムが、光学撮像システム内のアイピースとして使用するために好適であるように(例えば、フィルムが、特定の光学特性をフィルムに授ける1つ以上の光回折微細構造もしくはナノ構造を有するように)特定の形状およびパターンを画定することができる。
ある場合、互いに面するモールド構造104aおよび104bの表面の各々は、それらの間に画定される間隙体積116が、500nm以下のTTVを示すように、実質的に平坦であり得る。例えば、モールド構造104aは、実質的に平坦な表面120aを含むことができ、モールド構造104bは、実質的に平坦な表面120bを有することができる。実質的に平坦な表面は、例えば、100nm以下(例えば、100nm以下、75nm以下、50nm以下等)だけ理想的平面(例えば、完全平面)の平坦性から外れる表面であり得る。実質的に平坦な表面は、2nm以下(例えば、2nm以下、1.5nm以下、1nm以下等)の局所粗度、および/または500以下(例えば、500nm以下、400nm以下、300nm以下、50nm以下等)の縁間平坦性を有することができる。ある場合、モールド構造104aおよび104bの表面の一方または両方は、(例えば、表面の平坦性をさらに増加させるように)研磨されることができる。実質的に平坦な表面は、例えば、モールド構造104aおよび104bがモールド構造104aおよび104bの範囲に沿って厚さが実質的に一貫している(例えば、500nm以下のTTVを有する)間隙体積116を画定することを可能にするので、有益であり得る。したがって、結果として生じる光学フィルムは、平坦であり得る(例えば、特定の閾値以下、例えば、500nm未満、400nm未満、300nm未満の全厚さ変動[TTV]および/または局所厚さ変動[LTV]を有する)。さらに、研磨されたモールド構造104aおよび104bは、例えば、光学撮像用途のためのより平滑な光学フィルムを提供することに有益であり得る。例として、より平滑な光学フィルムから構築されるアイピースは、改良された画像コントラストを示し得る。
例示的光学フィルム1000のTTVおよびLTVが、図10に示される。光学フィルム1000のTTVは、光学フィルム1000の全体に対する光学フィルム1000の最小厚さ(Tmin)を差し引いた、光学フィルム1000の全体に対する光学フィルム1000の最大厚さ(Tmax)を指す(例えば、TTV=Tmax-Tmin)。光学フィルム1000のLTVは、光学フィルム1000の局所的部分に対する光学フィルム1000の最小厚さ(Tlocal min)を差し引いた、光学フィルム1000の局所的部分に対する光学フィルム1000の最大厚さ(Tlocal max)を指す(例えば、LTV=Tlocal max-Tlocal min)。局所的部分のサイズは、用途に応じて異なり得る。例えば、ある場合、局所的部分は、特定の表面積を有する光学フィルムの一部として画定されることができる。例えば、光学撮像システム内のアイピースとして使用するために意図される光学フィルムに関して、局所的部分の表面積は、2.5インチの直径を有する面積であり得る。ある場合、局所的部分の表面積は、アイピース設計に応じて異なり得る。ある場合、局所的部分の表面積は、光学フィルムの寸法および/または特徴に応じて異なり得る。
モールド構造104aおよび104bはまた、フィルム生産プロセス中に屈曲しない、または曲がらないように剛体である。モールド構造104aおよび104bの剛性は、モールド構造の弾性係数(E)およびモールド構造の断面二次モーメント(I)の関数であるその曲げ剛性の観点から表されることができる。ある場合、モールド構造の各々は、1.5Nm以上の曲げ剛性を有することができる。
さらに依然として、モールド構造104aおよび104bは、光硬化性材料を光硬化させるために好適な1つ以上の波長における放射(例えば、315nm~430nm)に対して部分的または完全に透過的であり得る。さらに依然として、モールド構造104aおよび104bは、特定の閾値温度まで(例えば、少なくとも200℃まで)熱的に安定している(例えば、サイズまたは形状が変化しない)材料から作製されることができる。例えば、モールド構造104aおよび104bは、いくつかある材料の中でも特に、ガラス、シリコン、石英、テフロン(登録商標)、および/またはポリジメチルシロキサン(PDMS)から作製されることができる。
ある場合、モールド構造104aおよび104bは、特定の閾値より大きい(例えば、1mmよりも厚い、2mmよりも厚い等)厚さを有することができる。これは、例えば、十分に厚いモールド構造がより曲がりにくいので、有益であり得る。したがって、結果として生じるフィルムは、厚さの不規則性を示す可能性が低い。ある場合、モールド構造104aおよび104bの厚さは、特定の範囲内であり得る。例えば、モールド構造104aおよび104bの各々は、厚さ1mm~50mmであり得る。範囲の上限は、例えば、モールド構造104aおよび104bをパターン化するために使用されるエッチングツールの限定に対応し得る。実践では、他の範囲も、実装に応じて可能である。
同様に、ある場合、モールド構造104aおよび104bは、特定の閾値より大きい(例えば、3インチより大きい)直径を有することができる。これは、例えば、比較的により大きいフィルムおよび/または複数の個々のフィルムが同時に生産されることを可能にするので、有益であり得る。さらに、意図的ではない粒子状物質が、モールド構造間に(例えば、位置126等においてスペーサ構造124と対向するモールド構造104aまたは104bとの間に)閉じ込められる場合、結果として生じるフィルムの平坦性へのその影響は、減少させられる。
例えば、比較的に小さい直径を有するモールド構造104aおよび104bに関して、(例えば、位置126等におけるスペーサ構造124のうちの1つの上の閉じ込められた粒子状物質に起因する)モールド構造104aおよび104bの片側の不整合は、モールド構造104aおよび104bの範囲に沿って間隙体積116内で厚さの比較的により急激な変化をもたらし得る。したがって、1つまたは複数の結果として生じるフィルムは、厚さのより突然の変化(例えば、フィルムの長さに沿った厚さのより急勾配の傾斜)を示す。
しかしながら、比較的により大きい直径を有するモールド構造104aおよび104bに関して、モールド構造104aおよび104bの片側の不整合は、モールド構造104aおよび104bの範囲に沿って間隙体積116内で厚さの段階的なり緩やかな変化をもたらすであろう。したがって、1つまたは複数の結果として生じるフィルムは、厚さのあまり突然ではない変化(例えば、フィルムの長さに沿った厚さの比較的により緩やかな傾斜)を示す。故に、十分に大きい直径を有するモールド構造104aおよび104bは、閉じ込められた粒子状物質に対してより「寛容」であり、したがって、より一貫した、および/またはより平坦なフィルムを生産するために使用されることができる。
例として、5μm以下の粒子が、(例えば、位置126において)モールド構造104aおよび104bの周辺における点に沿って閉じ込められ、モールド構造104aおよび104bの各々が、8インチの直径を有する場合、モールド構造104aおよび104bの範囲内で2平方インチの水平表面積を有する間隙体積は、依然として、500nm以下のTTVを有するであろう。したがって、光硬化性材料が間隙体積内に堆積させられる場合、結果として生じるフィルムは、同様に、500nm以下のTTVを示すであろう。
光源106aおよび106bは、光硬化性材料114を光硬化させるために好適な1つ以上の波長における放射を発生させるように構成される。1つ以上の波長は、使用される光硬化性材料のタイプに応じて異なり得る。例えば、ある場合、光硬化性材料(例えば、ポリ(メチルメタクリレート)またはポリ(ジメチルシロキサン)等の紫外線硬化性液体シリコーンエラストマ)が、使用されことができ、対応して、光源は、315nm~430nmの範囲内の波長を有する放射を発生させ、光硬化性材料を光硬化させるように構成されることができる。ある場合、モールド構造104aおよび104bのうちの1つ以上のものは、光源106aおよび/または106bからの放射が、モールド構造104aおよび/または104bを通過し、光硬化性材料114に影響を及ぼし得るように、光硬化性材料114を光硬化させるために好適な放射に対して透過性または実質的に透過的であり得る。
制御モジュール110は、作動可能ステージ102aおよび102bに通信可能に結合され、間隙体積116を制御するように構成される。例えば、制御モジュール110は、センサアセンブリ122(例えば、1つ以上の容量および/または感圧センサ要素を有するデバイス)からの間隙体積116(例えば、1つ以上の場所におけるモールド構造104aと104bとの間の距離)に関する測定を受信し、応答して(例えば、コマンドを作動可能ステージ102aおよび102bに伝送することによって)モールド構造104aおよび104bの一方または両方を再配置すること、および/または向け直すことができる。
本明細書に説明されるように、フィルムの品質および一貫性を改良するために、2つのモールドの位置は、モールドが、材料の硬化の直前および/または間に互いに平行に保たれるように、精密に制御されることができる。ある場合、これは、少なくとも部分的にモールドのうちの1つ以上のものの上に位置付けられる物理的位置合わせ特徴の使用を通して、達成されることができる。
図1に示されるような例として、システム100は、モールド構造(例えば、モールド構造104b)の1つ以上の表面から、対向するモールド構造(例えば、モールド構造104a)に向かって突出する1つ以上のスペーサ構造124(例えば、突出部もしくはガスケット)を含むことができる。スペーサ構造124の各々は、モールド構造104aおよび104bが一緒にされる(例えば、一緒に押し付けられる)とき、スペーサ構造124がモールド構造104aおよび104bに接触し、実質的に平坦な間隙体積116がそれらの間に画定されるように、実質的に等しい垂直高さを有することができる。
さらに、スペーサ構造124は、光硬化性材料114を受け取り、硬化させるためのモールド構造104aおよび104bのエリアに近接し、それを少なくとも部分的に囲い込むように位置付けられることができる。これは、例えば、低いTTVおよび/またはLTVがモールド構造104aおよび104bの範囲の全体にわたって維持されることを必ずしも要求することがない、低いTTVおよび/またはLTVを有するポリマーフィルムをシステム100が生産することを可能にするので、有益であり得る。例えば、複数の異なるポリマーフィルムが、モールド構造104aと104bとの間の体積全体にわたって低いTTVを達成する必要なく、生産されることができる。故に、生産プロセスのスループットは、増加させられることができる。
例えば、図2は、スペーサ構造124がそれらの間に配置された、例示的モールド構造104aと104bを示す。モールド構造104aおよび104bが、一緒にされると、スペーサ構造124は、モールド構造104aおよび104bに接触し、モールド構造104aおよび104bが、スペーサ構造124の垂直高さよりも互いにそれ以上近づくことを物理的に妨害する。スペーサ構造124のそれぞれの垂直高さ202が実質的に等しいので、実質的に平坦な間隙体積116が、モールド構造104aと104bとの間に画定される。ある場合、スペーサ構造124の垂直高さは、結果として生じるフィルムの所望の厚さに実質的に等しくあり得る。
スペーサ構造124は、種々の材料から構築されることができる。ある場合、スペーサ構造124は、特定の閾値温度まで(例えば、少なくとも200℃まで)熱的に安定している(例えば、サイズまたは形状が変化しない)材料から構築されることができる。例えば、スペーサ構造124は、いくつかある材料の中でも特に、ガラス、シリコン、石英、および/またはテフロン(登録商標)から作製されることができる。ある場合、スペーサ構造124は、モールド構造104aおよび/または104bと同一の材料から構築されることができる。ある場合、スペーサ構造124は、モールド構造104aおよび/または104bと異なる材料から構築されることができる。ある場合、スペーサ構造124のうちの1つ以上のものは、モールド構造104aおよび/または104bと一体的に形成される(例えば、モールド構造104aおよび/または104bからエッチングされるリソグラフィ製造プロセスを通してモールド構造104aおよび/または104b上に刷り込まれるか、または、付加製造プロセス等を通してモールド構造104aおよび/または104b上に付加的に形成される)ことができる。ある場合、スペーサ構造124のうちの1つ以上のものは、モールド構造104aおよび/または104bと別個であり得、(例えば、糊または他の接着剤を使用して)モールド構造104aおよび/または104bに固定もしくは取り付けられることができる。
2つのスペーサ構造124が、図2に示されるが、これは、例証的例にすぎない。実践では、モールド構造104a、モールド構造104b、または両方から突出する任意の数のスペーサ構造124(例えば、1つ、2つ、3つ、4つ以上の)が存在し得る。さらに依然として、図2は、モールド構造104aおよび104bの周辺に沿って位置付けられるスペーサ構造124を示すが、実践では、各スペーサ構造124は、モールド構造104aおよび104bの範囲に沿っていずれかの場所に位置付けられることができる。
例えば、図3Aは、表面120bの周辺に沿って位置付けられた複数のスペーサ構造124を有する例示的モールド構造104bを示す。さらに、スペーサ構造124は、光硬化性材料114を受け取るための表面120bのエリア302を包囲する。故に、光硬化性材料114の一部が、表面302に沿って堆積させられ、モールド構造104bが、別のモールド構造104aと一緒にされると、スペーサ構造124は、モールド構造104aおよび104bに接触し、モールド構造104aおよび104bが、スペーサ構造124の垂直高さよりも互いにそれ以上近づくことを物理的に妨害する。したがって、光硬化性材料114が、硬化させられると、結果として生じるフィルムは、スペーサ構造124の垂直高さによって画定される一定の高さを有するであろう。
図3Bは、複数のスペーサ構造124を有する別の例示的モールド構造104bを示す。この例では、スペーサ構造124は、表面120bの周辺に沿って位置付けられるとともに、表面120bの内部に沿って分散される。さらに、スペーサ構造124は、光硬化性材料114を受け取るための表面120bの複数の異なるエリア304を包囲する。故に、光硬化性材料114の一部が、表面304の各々に沿って堆積させられ、モールド構造104bが、別のモールド構造104aと一緒にされると、スペーサ構造124は、モールド構造104aおよび104bに接触し、モールド構造104aおよび104bが、スペーサ構造124の垂直高さよりも互いにそれ以上近づくことを物理的に妨害する。したがって、光硬化性材料114が硬化させられると、結果として生じるフィルムの各々は、スペーサ構造124の垂直高さによって画定される一定の高さを有するであろう。
ある場合、スペーサ構造は、光硬化性材料を受け取るためのモールド構造のエリアの周囲に連続した周辺(例えば、エリアを包囲する連続したガスケット)を画定することができる。ある場合、スペーサ構造は、光硬化性材料を受け取るためのモールド構造のエリアの周囲に不連続な周辺(例えば、エリアを包囲する突出部と間隙との交互する一続き)を画定することができる。ある場合、スペーサ構造は、エリアの周囲に1つ以上の連続した周辺および/または1つ以上の不連続な周辺を画定することができる。
例として、図4Aは、例示的モールド構造104bの上から見下ろした図を示す。モールド構造104bは、スペーサ構造の複数の組124a-dを有する。この例では、スペーサ構造の第1の組124aが、表面120bの周辺に沿って位置付けられる。さらに、スペーサ構造の第2の組は、光硬化性材料114を受け取るための第1のエリア402aの周囲に連続した周辺(例えば、長方形周辺)を画定する。さらに、スペーサ構造の第3の組124cは、光硬化性材料114を受け取るための第2のエリア402bの周囲に不連続な周辺(例えば、円形周辺)を画定する。さらに、スペーサ構造の第4の組124dは、光硬化性材料114を受け取るための第3のエリア402cの周囲に別の不連続な周辺(例えば、多角形周辺)を画定する。このようにして、複数の異なるスペーサ構造が、これらのエリアの各々からの結果として生じるフィルムの各々が、一定の高さを有するであろうように、光硬化性材料を受け取るための異なるエリアに沿って位置付けられることができる。例示的周辺形状が、図4Aに示されるが、これらは、例証的例にすぎない。実践では、スペーサ構造の組は、円形、楕円形、長方形、多角形、または任意の他の形状等の任意の形状を有する周辺を画定することができる。
ある場合、スペーサ構造は、モールド構造の縁に沿って周辺を画定することができる。例として、図4Bは、別の例示的モールド構造104bの上から見下ろした図を示す。図4Bに示されるモールド構造104bは、いくつかの点で図4Aに示されるものに類似する。例えば、図4Bでは、モールド構造104bは、表面120bの周辺に沿って位置付けられるスペーサ構造の第1の組124aと、光硬化性材料114を受け取るための第1のエリア402aの周囲に連続した周辺(例えば、長方形周辺)を画定するスペーサ構造の第2の組と、光硬化性材料114を受け取るための第2のエリア402bの周囲に不連続な周辺(例えば、円形周辺)を画定するスペーサ構造第3の組124cのと、光硬化性材料114を受け取るための第3のエリア402cの周囲に別の不連続な周辺(例えば、多角形周辺)を画定するスペーサ構造の第4の組124dと有する。しかしながら、この例では、モールド構造104bは、モールド構造104bの縁400に沿って不連続な周辺(例えば、4つの円弧様部分によって画定される円形周辺)を画定するスペーサ構造の第5の組124eをさらに含む。スペーサ構造124eによって画定される周辺は、モールド構造104bの他のスペーサ構造(例えば、スペーサ構造124a-d)の各々を囲い込む。囲い込むスペーサ構造124eのこの組は、例えば、互いに対して2つのモールドの位置をさらに制御することに有用であり得る。したがって、結果として生じるフィルムの品質および一貫性は、さらに改良されることができる。
図4Bに示されるように、囲い込むスペーサ構造の組(例えば、スペーサ構造の組124e)は、不連続な周辺を画定することができる。しかしながら、これは、そうである必要はない。例えば、ある場合、囲い込むスペーサ構造の組は、モールド構造の他のスペーサ構造の周囲に連続した周辺を画定することができる。さらに、図4Bに示されるように、囲い込むスペーサ構造の組は、円形周辺を画定することができる。しかしながら、これも、そうである必要はない。例えば、ある場合、囲い込むスペーサ構造の組は、他の形状(例えば、円形、楕円形、長方形、多角形、または任意の他の形状)を画定することができる。さらに依然として、ある場合、囲い込むスペーサ構造の組によって画定される周辺の形状は、縁400によって画定される形状に類似するか、または、それと同じであり得る。例えば、図4Bに示されるように、両方は、形状が円形であり得る。ある場合、囲い込むスペーサ構造の組によって画定される周辺の形状は、縁400によって画定される形状と異なり得る。例えば、一方は、形状が円形であり得、他方は、形状が多角形であり得る。
本明細書に説明されるように、ある場合、モールド構造は、対向するモールド構造から1つ以上のスペーサ構造を受け取るモールド構造の1つ以上の表面に沿って画定された1つ以上の陥凹(例えば、溝)を含むことができる。スペーサ構造および/または陥凹は、モールド表面の相対的な向きが、意図された向きから外れる可能性が低いように、モールドを物理的に整列させるために使用されることができる。例えば、スペーサ構造および/または陥凹は、2つのモールドの間に平行な向きを維持するために使用されることができる。結果として、光硬化性材料は、より均等な厚さを有し、歪ませられる可能性が低い。
例として、図5Aは、例示的モールド構造104aおよび104bを示す。モールド構造104bは、表面120bの周辺に沿って位置付けられるスペーサ構造502aおよび502bを含む。この例では、スペーサ構造502aが、対向するモールド構造104aの表面120a上に画定される対応する陥凹504aを有する一方で、スペーサ構造504bは、有していない。光硬化性材料114の一部が、エリア506に沿って堆積させられ、モールド構造104aおよび104bが一緒にされると、スペーサ構造502aおよび504aは、モールド構造104aおよび104bに接触し、モールド構造104aおよび104bがスペーサ構造502bの垂直高さ、または陥凹構造504aの垂直深度を差し引いたスペーサ構造502aの垂直高さのいずれかよりも互いにそれ以上近づくことを物理的に妨害する。
例えば、スペーサ構造502aは、陥凹504aの中に入り、または挿入され、モールド構造104aおよび104bが互いにそれ以上近づくことを防止する。さらに、陥凹504aの壁に起因して、スペーサ構造502aは、陥凹504a内で水平に固定される。故に、モールド構造104aおよび104bは、互いに対して水平に移動することができない。別の例として、スペーサ構造502bは、対応する陥凹を有しておらず、代わりに、モールド構造104aの表面120aに直接接触する。したがって、スペーサ構造502bも、モールド構造104aおよび104bが互いにそれ以上近づくことを防止するが、スペーサ構造502bは、モールド構造104aおよび104bを互いに対して水平に固定しない。
さらに、図5Aに示されるように、モールド構造104aおよび104bは、エリア506に沿って格子のパターン508を画定する。したがって、光硬化性材料114が硬化させられると、結果として生じるフィルムは、その長さに沿って画定される格子の特定のパターンを有するであろう。
例示的スペーサ構造および陥凹形状が、図5Aに示されるが、これらは、例証的例にすぎない。実践では、各スペーサ構造および/または陥凹の形状は、実装に応じて変動し得る。例として、図5Bは、別の例示的モールド構造104aおよび別の例示的モールド構造104bを示す。この例では、モールド構造104bは、表面120bの周辺に沿って位置付けられるスペーサ構造502cおよび502dを含み、各々は、対向するモールド構造104aの表面120a上に画定されるそれぞれの対応する陥凹504bおよび504cを有する。
スペーサ構造502cおよび陥凹504bは、対応する三角形断面を有する。故に、モールド構造104aおよび104bが一緒にされると、スペーサ構造502cは、陥凹504bの中に入り、または挿入され、モールド構造104aおよび104bが距離dよりも互いにそれ以上近づくことを防止する。さらに、陥凹504bの壁に起因して、スペーサ構造502bは、陥凹504b内で水平に固定される。故に、モールド構造104aおよび104bは、互いに対して水平に移動することができない。
しかしながら、スペーサ構造および陥凹は、同じ断面形状を有する必要はない。例えば、図5Bに示されるように、スペーサ構造502dは、三角形断面を有し、陥凹504cは、長方形断面を有する。スペーサ構造502dと陥凹504cとは、異なる断面形状であるが、陥凹504cは、スペーサ構造502dの少なくとも一部を受け取るように構成される。故に、モールド構造104aおよび104bが、一緒にされると、スペーサ構造502dは、陥凹504cの中に入り、または挿入され、モールド構造104aおよび104bが、距離dよりも互いにそれ以上近づくことを防止する。さらに、陥凹504cの壁に起因して、スペーサ構造502dは、同様に、陥凹504c内で水平に固定される。故に、モールド構造104aおよび104bは、互いに対して水平に移動することができない。
同様に、図5Bに示されるように、モールド構造104aおよび104bは、エリア512に沿って格子510のパターンを画定する。したがって、光硬化性材料114が、エリア512の中に堆積させられ、硬化させられると、結果として生じるフィルムは、その長さに沿って画定される格子の特定のパターンを有するであろう。
これらの特徴の各々の寸法は、実装に応じて変動し得る。いくつかの実装では、スペーサ構造の幅は、0.01cm~1cmであり得る。いくつかの実装では、スペーサ構造の高さは、100μm~900μmであり得る。スペーサ構造の幾何学形状は、長方形の角柱、円柱、および他の3次元形状(例えば、複雑な3次元形状)であり得る。
さらに、各スペーサ構造および/または陥凹は、実質的に平坦であり得る。例えば、各スペーサ構造および/または陥凹は、スペーサ構造および陥凹が一緒にされると、それらのそれぞれのモールド構造間の距離が、100nm以下だけ期待または指定距離から外れるように、100nm以下の全厚さ変動を有することができる。例として、各々が長方形断面を有するスペーサ構造および陥凹に関して、スペーサ構造および陥凹の表面は、それらが一緒にされると、それらの対応するモールド構造間の距離が100nm以下だけ期待または指定距離から外れるように、十分に平坦であり、正確に形成されることができる。別の例として、(例えば、図5Bに示されるように)三角形断面を有するスペーサ構造および長方形断面を有する陥凹に関して、三角形スペーサ構造の斜面および陥凹の表面は、スペーサ構造および陥凹が一緒にされると、それらの対応するモールド構造間の距離が100nm以下だけ期待または指定距離から外れるように、十分に平坦であり、正確に形成されることができる。
さらに、異なるスペーサ構造および陥凹が図5Aおよび5Bに示されるが、これらは、例証的例にすぎない。実践では、異なる物理的構成を有するスペーサ構造および/または陥凹も、示されるものの代わりに、またはそれに加えて使用されることができる。例として、図5Cに示されるように、スペーサ構造502eは、長方形断面を有する部分514と、実質的に半球の形状を有する遠位端516とを有することができる。別の例として、図5Cに示されるように、スペーサ構造502fは、長方形断面を有する部分518と、その遠位端522におけるいくつかの丸みを帯びた角520とを有することができる。別の例として、図5Cに示されるように、スペーサ構造502gは、台形断面(例えば、1つの角が除去された三角形)を有する部分524と、丸みを帯びた遠位端526とを有することができる。別の例として、スペーサ構造は、鋭い角の代わりに1つ以上の丸みを帯びた角を伴う実質的に多角形の断面(例えば、三角形、四角形、五角形、六角形等)を有することができる。
同様に、陥凹も、1つ以上の丸みを帯びた特徴を含むこともできる。例として、図5Dに示されるように、陥凹504eは、長方形断面を有する部分528と、実質的に半球の形状を有する内部端530とを有することができる。別の例として、図5Dに示されるように、陥凹504fは、長方形断面を有する部分532と、その内部端536におけるいくつかの丸みを帯びた角534とを有することができる。別の例として、図5Dに示されるように、陥凹504gは、台形断面(例えば、1つの角が除去された三角形)を有する部分538と、丸みを帯びた内部端540とを有することができる。別の例として、陥凹は、鋭い角の代わりに1つ以上の丸みを帯びた角を伴う実質的に多角形の断面(例えば、三角形、四角形、五角形、六角形等)を有することができる。
これらの構成は、例えば、スペーサ構造がそれらの対応する陥凹と界面接触する領域内の鋭い縁または角の存在をスペーサ構造が低減または排除するので、有用であり得る。したがって、これは、スペーサ構造および/または陥凹における磨耗もしくは引き裂きを低減させることができる。さらに、これは、(例えば、それらの間の点接触を低減させることによって)モールド構造が反復使用にわたってそれらの平坦性をより良好に維持することを可能にすることができる。
ある場合、システム100は、(モールド構造上のスペーサ構造および対応する陥凹の配置を介して)間隙体積116の厚さ(例えば、モールド構造間の距離)が、20μm~2mmであるように、モールド構造を位置付けることができる。ある場合、光硬化性材料114は、システム100が、この距離において互いに対してモールド構造104aおよび104bを位置付けることに先立って、モールド構造104aおよび104bのうちの少なくとも1つの中に堆積させられることができる。これは、例えば、モールド構造が一緒に接近して位置付けられるときではなく、それらがさらに離れている間に光硬化性材料114を導入することがより容易であり、または、より便宜的であり得るので、有益であり得る。それでもなお、ある場合、光硬化性材料114は、(例えば、モールド構造のうちの1つ以上のものを通して位置付けられる注射管または針を通して)モールド構造が一緒にされた後、それらの中に堆積させられることができる。
図5Aおよび5Bに示される例では、スペーサ構造(例えば、スペーサ構造502a、502c、および502d)のうちのいくつかは、スペーサ構造が陥凹内で水平に固定されるように、少なくとも部分的に対応する陥凹(例えば、それぞれ、陥凹504a、504b、および504c)の中に入るように、または挿入されるように構成される。この構成では、スペーサ構造は、対応する陥凹内に「係止」され、任意の水平方向に沿って陥凹に対して移動することができない。
しかしながら、ある場合、スペーサ構造および陥凹は、スロット式構成であるとき、スペーサ構造が陥凹に対して1つ以上の水平自由度を保持するように構成されることができる。例えば、ある場合、スペーサ構造および陥凹は、スペーサ構造が陥凹の中に入れられると、スペーサ構造が1つ以上の第1の水平方向に沿って陥凹に対して移動することを陥凹が防止するが、スペーサ構造が1つ以上の第2の水平方向に沿って陥凹に対して移動することを可能にするように構成されることができる。
例として、図6Aは、別の例示的モールド構造104b(影付き形状を使用して示される)の上に置かれた別の例示的モールド構造104a(輪郭で示される)の上から見下ろした図を示す。モールド構造104bは、モールド構造104aと104bとの間のエリア606の周囲に位置付けられるスペーサ構造602a-cを含む。さらに、スペーサ構造602a-cの各々は、モールド構造104aの表面に沿って画定される対応する陥凹604a-cを有する。光硬化性材料114の一部が、エリア606に沿って堆積させられ、モールド構造104aおよび104bが一緒にされると、スペーサ構造602a-cは、陥凹604a-cの中に入り、モールド構造104aおよび104bが互いにそれ以上近づくことを物理的に妨害する。
さらに、各陥凹604a-cは、その対応するスペーサ構造602a-cより大きい断面積を有し、それに沿ってスペーサ構造602a-cがその内側で水平に平行移動し得るスロットまたは経路を画定する。例えば、陥凹604aは、スペーサ構造602aが、方向608aに沿ってその内側でスライドすることを可能にするスロットまたは経路を画定する。陥凹604aとスペーサ構造602aとの間の相互作用の断面図が、図6Bに示される。さらに、陥凹604bは、スペーサ構造602bが方向608bに沿ってその内側でスライドすることを可能にするスロットまたは経路を画定する。さらに依然として、陥凹604cは、スペーサ構造602cが方向608cに沿ってその内側でスライドすることを可能にするスロットまたは経路を画定する。しかしながら、方向608a-cが、互いに平行ではないので、スペーサ構造602a-cの全てが、それらの対応する陥凹604a-c内に入れられると、モールド構造102aおよび102bは、互いに水平に係止される。したがって、スペーサ構造および陥凹の複数の異なる組は、「自己係止」様式で1つのモールド構の位置を別のものに対して位置合わせするために、使用されることができる。
それでもなお、ある場合、スペーサ構造および陥凹は、スペーサ構造が陥凹の中に入れられると、スペーサ構造が対応する陥凹内で係止され、いずれの水平方向に沿っても陥凹に対して移動することができないように構成されることができる。
例として、図7Aは、別の例示的モールド構造104b(影付き形状を使用して示される)の上に置かれた別の例示的モールド構造104a(輪郭で示される)の上から見下ろした図を示す。モールド構造104bは、モールド構造104aと104bとの間のエリア706の周囲に位置付けられるスペーサ構造702aおよび702bを含む。さらに、スペーサ構造702aおよび702bの各々は、モールド構造104aの表面に沿って画定される対応する陥凹704aおよび704bを有する。光硬化性材料114の一部が、エリア706に沿って堆積させられ、モールド構造104aおよび104bが一緒にされると、スペーサ構造702aおよび702bは、陥凹704aおよび704bの中に入り、モールド構造104aおよび104bが互いにそれ以上近づくことを物理的に妨害する。さらに、各陥凹704aおよび704bは、その対応するスペーサ構造702aおよび704bのそれらに類似する断面積および形状を有する。陥凹704aとスペーサ構造702aとの間の相互作用の断面図が、図7Bに示される。したがって、各スペーサ構造702aおよび702bがその対応する陥凹704aおよび704bに入れられるとき、それは、陥凹内で密着して保持され、いずれの水平方向に沿っても陥凹に対して移動することができない。
本明細書に説明されるように、種々の例示的スペーサ構造および陥凹が、示され、説明されるが、スペーサ構造および陥凹の任意の組み合わせが、任意の特定の実施形態で使用され得ることを理解されたい。例として、図8は、別の例示的モールド構造104b(影付き形状を使用して示される)の上に置かれた別の例示的モールド構造104a(輪郭で示される)の上から見下ろした図を示す。モールド構造104aは、モールド構造104aと104bとの間のエリア806の周囲に位置付けられるいくつかの異なるスペーサ構造802a-hを含む。さらに、スペーサ構造802a-hの各々は、モールド構造104bの表面に沿って画定される異なる対応する陥凹804a-hを有する。図8に示されるように、スペーサ構造および陥凹の組のうちのいくつかは、1つ以上の方向に対する相対的水平移動を可能にする(例えば、スペーサ構造802dおよび陥凹804d、ならびにスペーサ構造802fおよび陥凹804f)。さらに、スペーサ構造および陥凹の組のうちのいくつかは、相対的水平移動を可能にしない(例えば、図8に示されるスペーサ構造および陥凹の残りの組)。実践では、他の組み合わせも、実装に応じて可能である。
さらに、本明細書に示される例は、共通したモールド構造から突出するスペーサ構造を含むが、これは、そうである必要はない。実践では、単一のモールド構造から、または両方のモールド構造から突出する任意の数のスペーサ構造(例えば、1つ、2つ、3つ、4つ以上の)が存在し得る。さらに、本明細書に示される例は、共通したモールド構造に沿って画定される陥凹を含むが、これも、そうである必要はない。実践では、単一のモールド構造に沿って、または両方のモールド構造に沿って画定される任意の数の陥凹(例えば、1つ、2つ、3つ、4つ以上の)が存在し得る。
ある場合、スペーサ構造および/または陥凹は、リソグラフィ技法を通して形成されることができる。例えば、スペーサ構造および/または陥凹は、リソグラフィを通してパターン化され、反応性イオンエッチング(RIE)、誘導結合プラズマ(ICP)、および/またはスパッタエッチング技法等のドライエッチング技法を使用して、エッチングされることができる。ある場合、スペーサ構造および/または陥凹は、ガラス、シリコン、および/または金属基板においてエッチングされることができる。
さらに、ある場合、スペーサ構造および/または陥凹(例えば、角度付き表面を有するもの)は、グレースケールリソグラフィを使用して、ガラス、溶融石英、シリコン、金属、または他の材料において実装されることができる。例えば、グレースケールリソグラフィは、マスクとして3次元レジスト層をパターン化し、RIE、ICP、および/またはスパッタエッチング等のドライエッチング技法によって、幾何学形状を基板の中に転写するために使用されることができる。シリコン基板に関して、角度付き側壁表面も、(例えば、使用されるシリコンウエハの結晶配向に応じて、x-y平面上等で線形上面図形状を画定するように)湿式化学エッチングを使用して、製作されることができる。例えば、(100)シリコンウエハでは、スペーサ構造および/または陥凹の上面図形状/幾何学形状は、<110>方向に整列し、側壁は、水平から54.7°角度を有するであろう。上面図形状/幾何学形状は、リソグラフィを通してパターン化され、(例えば、硬質マスクのために)ドライエッチング技法を使用して、次いで、(例えば、KOHおよびTMAH等のシリコンのために)ウェットエッチング技法を使用して、z方向にエッチングされることができる。
ある場合、スペーサ構造は、付加製造技法(例えば、3D印刷および2光子レーザ印刷)を通して、形成されることができる。ある場合、印刷されたポリマー構造は、スペーサ構造として直接使用されることができる。ある場合、プリンタポリマー構造は、3次元マスク層として使用され、RIE、ICP、および/またはスパッタエッチング等のドライエッチング技法によって、幾何学形状を基板の中に転写することができる。
ある場合、システム100は、硬化プロセス中に熱を光硬化性材料に印加するための1つ以上の加熱要素を含むこともできる。これは、例えば、硬化プロセスを促進することにおいて有益であり得る。例えば、ある場合、熱および光の両方が、光硬化性材料を硬化させるために使用されることができる。例えば、熱の印加は、硬化プロセスを加速させるために、硬化プロセスをより効率的にするために、および/または、硬化プロセスをより一貫させるために、使用されることができる。ある場合、硬化プロセスは、光の代わりに熱を使用して、実施されることができる。例えば、熱の印加は、光硬化性材料を硬化させるために使用されることができ、光源は、使用される必要がない。
ポリマーフィルムを生産するための例示的システム900が、図9に示される。一般に、システム900は、図1に示されるシステム100に類似し得る。例えば、システム900は、2つの作動可能ステージ102aおよび102bと、2つのモールド構造104aおよび104bと、支持フレーム108と、制御モジュール110とを含むことができる。例証を容易にするために、制御モジュール110は、図9に示されていない。
しかしながら、この例では、システム900は、2つの光源106aおよび106bを含まない。代わりに、それは、モールド構造104aおよび104bに隣接してそれぞれ位置付けられる2つの加熱要素902aおよび902bを含む。加熱要素902aおよび902bは、(例えば、作動可能ステージ102aおよび102bを通して)モールド構造104aおよび104bとともに移動するように構成され、硬化プロセス中に熱をモールド構造104aと104bとの間の光硬化性材料114に印加するように構成される。
加熱要素902aおよび902bの動作は、制御モジュール110によって制御されることができる。例えば、制御モジュール110は、加熱要素902aおよび902bに通信可能に結合されることができ、(例えば、コマンドを加熱要素902aおよび902bに伝送することによって)熱を光硬化性材料114に選択的に印加することができる。
例示的加熱要素902aおよび902bは、金属加熱要素(例えば、ニクロムまたは抵抗ワイヤ)、セラミック加熱要素(例えば、二珪化モリブデンまたはPTCセラミック要素)、ポリマーPTC加熱要素、複合加熱要素、またはそれらの組み合わせである。ある場合、加熱要素902aおよび902bは、モールド構造104aおよび104bへの一様な熱伝達を促進するための金属板を含むことができる。
2つの加熱要素902aおよび902bが、図9に示されるが、ある場合、システムは、任意の数の加熱要素(例えば、1つ、2つ、3つ、4つ以上)を含むことも、全く含まないこともできる。さらに、システム900は、光源106aおよび106bを伴わずに示されるが、ある場合、システムは、1つ以上の光源と、1つ以上の加熱要素とを併せて含むことができる。
図11は、ポリマー製品を生産するための例示的プロセス1100を示す。プロセス1100は、例えば、システム100または900を使用して、実施されることができる。ある場合、プロセス1100は、(例えば、光学撮像システム内のアイピースの一部として)光学用途で使用するために好適なポリマーフィルムを生産するために使用されることができる。
プロセス1100では、モールド構造は、作動可能ステージに搭載される(ステップ1102)。例えば、図1および9に示されるように、モールド構造104aおよび104bは、それぞれ、作動可能ステージ102aおよび102bに搭載されることができる。モールド構造は、クランプ(例えば、クランプ112aおよび112b)または他の取り付け機構を使用して、搭載されることができる。ある場合、モールド構造は、スイッチおよび/または制御モジュールによって選択的に制御される電磁または空気圧式クランプを使用して、搭載されることができる。
1つ以上のスペーサ構造が、モールド構造間に導入される(ステップ1104)。本明細書に説明されるように、スペーサ構造は、(例えば、図1-9に関して示され、説明されるように)モールド構造間の種々の位置に配置されることができる。ある場合、スペーサ構造は、モールド構造と一体的に形成されることができる(例えば、モールド構造からエッチングされるリソグラフィ製造プロセスを通してモールド構造上に刷り込まれる、または付加製造プロセス等を通してモールド構造上に付加的に形成される)ことができる。ある場合、スペーサ構造は、モールド構造とは別個であり、それらとは異なり得、モールド構造間に個々に位置付けられることができる。
光硬化性材料が、モールド構造間に分注される(ステップ1106)。例示的光硬化性材料が、(例えば、図1に関して)本明細書に説明される。ある場合、光硬化性材料は、(例えば、図3Aおよび3Bに関して示され、説明されるように)スペーサ構造によって少なくとも部分的に囲い込まれるように、モールド位置間の間隙体積内の1つ以上の特定の位置に沿って分注されることができる。
ある場合、光硬化性材料は、材料に応じて、異なって分注されることができる。例えば、重合プロセス中に比較的に少量(例えば、10%未満)収縮し、成型表面積に依存しない機械的特性を示す光硬化性材料に関して、光硬化性材料は、(例えば、図3Aに示されるように)光硬化性材料とスペーサ構造との間の接触を回避しながら、モールド構造上の広いエリアを被覆するように一度に全て実施されることができる。
別の例として、比較的により大量(例えば、10%より大きい)収縮し、成型表面積に依存する機械的特性を示す光硬化性材料に関して、光硬化性材料は、(例えば、図3Bに示されるように)材料の個々の分注された「たまり」が、互いに、またはスペーサ構造に触れないように、複数の異なる場所において計量された量で底部モールド上に分注されることができる。これは、例えば、それが各個々の成型ポリマー材料の表面積を低減させ、それによって、各々が自由に収縮し、より効率的に硬化するために十分に小さいので、有益であり得る。これは、より低いTTVおよび/またはLTVをもたらし得、より高い製造スループットを可能にすることができる。
ある場合、光硬化性材料は、モールド構造間に分注することに先立って、「予備重合される」ことができる(例えば、収縮させられるが、依然として、モールド構造間に効果的に分注されるために十分に流動性を持つように)。予備重合プロセスは、例えば、材料を粘性であるが依然として流動可能にするエネルギーレベルにおいて、(例えば、紫外線および/または熱を使用して)光硬化性材料を硬化させることによって、実施されることができる。
モールド構造が、互いに近接して位置付けられる(ステップ1108)。例えば、図1および9に関して説明されるように、作動可能ステージ102aおよび/または102bは、光硬化性材料114が、間隙体積を伴わずにそれらの間に囲い込まれるように、互いに向かってモールド構造104aおよび/または104bを移動させることができる。ある場合、モールド構造104aおよび104bは、モールド構造が対向するモールド構造上に位置付けられるスペーサ構造を特定の量の正の力(例えば、10N~200N)と接触させるように位置付けられ、定位置に係止されることができる。
光硬化性材料が、硬化させられる(ステップ1110)。ある場合、光硬化性材料は、(例えば、図1に関して示され、説明されるように)光を使用して硬化させられることができる。例えば、光硬化性材料の上部および/または底部は、光(例えば、紫外線)で照射されることができる。ある場合、光硬化性材料の両側を照射することが、より一様でより高速の硬化を可能にすることができる。ある場合、光強度は、非一様な収縮と、結果として生じるポリマー製品のTTVおよび/またはLTVへのその潜在的な悪影響とを低減させるように、光硬化性材料のエリアにわたって一様に保たれることができる。ある場合、拡散器が、光の一様性を改良するために、光源と光硬化性材料との間に位置付けられることができる。
ある場合、光硬化性材料は、(例えば、図9に関して示され、説明されるように)熱を使用して硬化させられることができる。ある場合、熱が、光硬化性材料の上部および/または底部に沿って印加されることができる。ある場合、光硬化性材料の両側を加熱することが、より一様でより高速の硬化を可能にすることができる。ある場合、金属板が、モールド構造および光硬化性材料にわたる熱の一様な分布を促進するように、加熱要素とモールド構造との間に位置付けられることができる。
さらに、ある場合、光硬化性材料は、光および熱の両方を使用して、硬化させられることができる。例として、熱的硬化は、赤外光にさらすことによって開始されることができる。例えば、光硬化性材料は、それが比較的に少ない赤外線放射を吸収するということに基づいて、選定されることができる。さらに、光硬化性材料の熱による加熱は、光硬化性材料自体に限られることができる。この配置は、例えば、各硬化プロセスが実施された後にモールド構造から除去されるべき熱がより少ないので、より少ない成形サイクル時間を可能にすることにおいて有益であり得る。さらに、光硬化性材料が、熱および光エネルギーの両方が最適な特性を伴って迅速に硬化することを要求する場合、両方の源が、モールド構造の片側または両側から印加され得る。
光硬化性材料が硬化させられた後、結果として生じる製品が、モールド構造間から除去される(ステップ1112)。例えば、モールド構造は、(例えば、作動可能ステージを使用して)より遠くに互いから位置付けられることができ、製品は、それらの間から抽出されることができる。ある場合、抽出された製品は、別個の分離プロセス(例えば、所望の形状に従って、硬化させられるポリマー製品の一部を別個に切り取ること)を要求することなく、(例えば、モールド構造によって画定されるような)特定の用途で使用するために好適な特定の形状を有することができる。本明細書に説明されるように、ある場合、製品は、(例えば、光学撮像システム内のアイピースの一部として)光学用途で使用するために好適なポリマーフィルムであり得る。ある場合、スペーサ構造内の小さい開口部が、モールド構造間から余分な光硬化性材料を排出するために使用されることができる。
本明細書に説明されるように、ある場合、個々のポリマー製品が、分離プロセスを実施することなく生産されることができる。例えば、2つのモールドは、モールドが一緒にされると、単一のポリマー製品のサイズおよび形状に対応する囲い込まれた領域を画定するように構成されることができる。生産プロセス中、光硬化性材料が、2つのモールド間に囲い込まれ、材料が、ポリマーフィルムを形成するように硬化させられる。硬化後、ポリマーフィルムは、モールドから抽出され、特定の事前定義されたサイズおよび形状を有する単一のポリマー製品をもたらす。このポリマー製品は、続いて、追加の分離ステップを必要とすることなく、他の製造プロセスで使用されることができる。故に、ポリマー製品は、(例えば、より大きいポリマーフィルムの分離を通して形成されるポリマー製品と比較して)物理的および/または化学損傷を有する可能性が低く、変動に敏感な環境内で使用するためにより好適であり得る。
図12は、別個の分離プロセスを実施することなく、システム100を使用して単一のポリマー製品1200を生産するための例示的プロセスの簡略化された概略図である。図12に示されるプロセスは、例えば、ウェアラブル撮像ヘッドセットを使用するための導波管またはアイピース等の光学構成要素を生産するために使用されることができる。例証を容易にするために、システム100の一部は、省略されている。
ある場合、このプロセスは、ヘッドセットで使用するために好適な導波管またはアイピースを生産するために特に有用であり得る。例えば、このプロセスは、光を誘導し、ヘッドセット着用者の視野を覆う光を投影するために十分である厚さおよび/または断面積を有する導波管またはアイピースを生産するために使用されることができる。例として、このプロセスは、800μm以下、600μm以下、400μm以下、200μm以下、100μm以下、もしくは50μm以下等の(例えば、デカルト座標系のz軸に沿って測定されるような)1,000μm以下の厚さと、最大約100cm以下等の5cm以上、10cm以上等の(例えば、デカルト座標系のx-y平面に対して測定されるような)少なくとも1cmの面積とを有し、所定の形状を有するポリマー製品を生産するために使用されることができる。ある場合、ポリマーフィルムは、x-y平面内で少なくとも1つの方向に少なくとも1cm(例えば、約30cm以下等の2cm以上、5cm以上、8cm以上、10cm以上)の寸法を有することができる。
図12の左部分に示されるように、モールド構造104aは、表面120aを有し、モールド構造104bは、モールド構造104aの表面120aに面する表面120bを有する。モールド構造104aおよび104bは、モールドが一緒にされると、単一のポリマー製品(例えば、単一の導波管またはアイピース)のサイズおよび形状に対応する囲い込まれた領域を画定するように構成される。例えば、表面120aは、ポリマー製品1200の所定のサイズおよび形状に対応する別々の連続した第1のエリア1202aを含むことができる。同様に、表面120bは、ポリマー製品1200の所定のサイズおよび形状に対応する別々の連続した第2のエリア1202bを含むことができる。モールド構造104aおよび104bが、一緒に整列させられると、それらは、ポリマー製品1200の所定のサイズおよび形状に対応するエリア1202aおよび1202bに沿って、中空モールド領域(例えば、間隙体積116)を画定することができ、その内側で、光硬化性材料114は、堆積させられ、フィルムに硬化させられることができる。ある場合、エリア1202aおよび1202bは、それぞれ、表面120aおよび120bの実質的に全体を包囲することができる。ある場合、エリア1202aおよび1202bは、それぞれ、表面120aおよび120b一部を包囲することができる。
上で説明されるように、モールド構造104aおよび104bはまた、結果として生じるフィルム内に1つ以上の構造を画定することもできる。例えば、モールド構造104aおよび104bは、結果として生じるフィルム内に対応するチャネルを授けるモールド構造の表面120aおよび/または120bからの1つ以上の突出構造を含むことができる。別の例として、モールド構造104aおよび104bは、結果として生じるフィルム内に対応する突出構造を授ける表面120aおよび/または120b内に画定される1つ以上のチャネルを含むことができる。ある場合、モールド構造104aおよび104bは、結果として生じるフィルムが、光学撮像システム内の導波管またはアイピースとして使用するために好適であるように(例えば、フィルムが、特定の光学特性をフィルムに授ける1つ以上の光回折微細構造もしくはナノ構造を有するように)特定の形状およびパターンを画定することができる。
図12の左部分に示されるように、光硬化性材料114は、モールド構造104aおよび/または104b上に分注される(例えば、第1のエリア1202aおよび/または第2のエリア1202b上またはそれに隣接した空間の中に分注される)。ある場合、光硬化性材料114は、計量された量の光硬化性材料を選択的に分注する1つ以上のポンプ、ピペット、注入器、シリンジ等によって等、分注ステーションまたは機構によって分注されることができる。光硬化性材料114は、異なるパターンに従って分注されることができる。例として、光硬化性材料114は、第1のエリア1202aおよび/または第2のエリア1202bに沿って複数の異なる別々の場所で分注されることができる。別の例として、光硬化性材料114は、第1のエリア1202aおよび/または第2のエリア1202bに沿って単一の別々の場所で分注されることができる。ある場合、光硬化性材料114は、対称パターンに従って分注されることができる。ある場合、光硬化性材料114は、非対称パターンに従って分注されることができる。さらに、各別々の場所において、分注された光硬化性材料114は、特定のサイズ、体積、および形状を有することができる。例示的パターンが、図13A-13Eに関してより詳細に示され、説明される。ある場合、光硬化性材料114は、単一のモールド構造(例えば、底部モールド構造104b)に沿って分注されることができる。ある場合、光硬化性材料114は、両方のモールド構造に沿って分注されることができる。
図12の上中央部分に示されるように、モールド構造104aおよび104bは、光硬化性材料114が、モールド構造104aおよび104bによって囲い込まれるように、(例えば、図1に関して説明される作動可能ステージ102aおよび/または102bを移動させることによって)互いに近接するように移動させられる。光硬化性材料114は、光硬化性材料114の表面張力および/または光硬化性材料114とモールド構造104aおよび104bとの間の接着力によって、定位置で保持されることができる。さらに、モールド構造104aと104bとの間の光硬化性材料114の閉じ込めは、(例えば、第1のエリア1202aと第2のエリア1202bとの間の体積に対応する)計量された体積の光硬化性材料114の計量された体積を分注することによって、制御されることができる。光硬化性材料114は、次いで、(例えば、光硬化性材料114を光硬化させるために好適な光1204で光硬化性材料114を照射することによって)硬化させられ、モールド構造104aおよび104bによって画定される1つ以上の特徴を有するポリマー製品1200を形成する。
図12の右部分に示されるように、光硬化性材料114が硬化させられた後、モールド構造104aおよび104bは、(例えば、作動可能ステージ102aおよび/または102bを移動させることによって)互いから離れるように移動させられる。ポリマー製品1200は、次いで、抽出される(例えば、図12の下中央部分に示されるように)。
上で説明されるように、第1のエリア1202aおよび第2のエリア1202bの各々は、ポリマー製品1200の所定のサイズおよび形状に対応する。故に、ポリマー製品1200は、別個の分離プロセスを実施する必要なく生産される。ある場合、抽出後、ポリマー製品1200は、他の製造プロセスで直接使用されることができる(例えば、ヘッドセット等の装置に組み込まれる)。
上で説明されるように、光硬化性材料114は、異なるパターンに従って、モールド構造104aおよび/または104b上に分注されることができる。いくつかの例示的パターンが、図13A-13Eに示される。例証を容易にするために、単一のモールド構造104bのみが、図13A-13Cに示される。しかしながら、光硬化性材料114は、モールド構造104a、モールド構造104b、または両方の上もしくはそれに隣接した空間の中に分注され得ることを理解されたい。
図13Aに示されるように、光硬化性材料114は、1つ以上の線に従って分注されることができる。実践では、線の数および配置は、変動し得る。例えば、光硬化性材料114は、1本、2本、3本以上の線に従って分注されることができる。さらに、各線は、水平に、垂直に、またはある角度に従って延びていることができる。ある場合、線は、モールド構造に沿って均等に分配される(例えば、互いから均等に間隔を置かれる)ことができる。ある場合、線は、ある他のパターンに沿って分配される(例えば、互いから不均等に間隔を置かれる)ことができる。ある場合、線の各々は、類似する厚さおよび/または長さを有することができる。ある場合、線のうちの1本以上のものは、厚さおよび/または長さに関して異なり得る。さらに、線は、直線状である必要はない。例えば、1本以上の線は、曲線状または弓状であり得る。さらに、ある場合、2本以上の線は、互いに重なることができる。
図13Bに示されるように、光硬化性材料114は、1つ以上の滴(例えば、略卵形または円形堆積物)に従って分注されることもできる。実践では、滴の数および配置は、変動し得る。例えば、光硬化性材料114は、1つ、2つ、3つ以上の滴に従って分注されることができる。ある場合、滴は、モールド構造に沿って均等に分配される(例えば、互いから均等に間隔を置かれる)ことができる。ある場合、滴は、ある他のパターンに沿って分配される(例えば、互いから不均等に間隔を置かれる)ことができる。ある場合、滴の各々は、類似するサイズおよび/また形状を有することができる。ある場合、滴のうちの1つ以上のものは、サイズおよび/または形状に関して異なり得る。さらに、ある場合、2つ以上の滴は、互いに重なることができる。
図13Cに示されるように、光硬化性材料114は、自由形態パターン等の他のパターンに従って分注されることもできる。実践では、自由形態パターンは、変動し得る。例えば、光硬化性材料114は、1つ、2つ、3つ以上の別々の場所で分注されることができる。さらに、自由形態パターンのサイズおよび形状は、変動し得る。さらに、ある場合、2つ以上の自由形態パターンは、互いに重なることができる。
線、滴、および自由形態パターンが、図13A-13Cに関して別個に示されるが、ある場合、光硬化性材料114は、特定のモールド構造に対する組み合わせで線、滴、および/または自由形態パターンのうちの1つ以上のものに従って分注されることもできる。
さらに、ある場合、光硬化性材料114の分注パターンは、エリア1202aおよび/または1202bに沿った1つ以上の局所的特徴に対応することができる。例えば、エリア1202aおよび/または1202bが、(例えば、ポリマー製品のより厚い部分を画定する)特定の場所において比較的により大きい体積を有する特徴を画定する場合、分注パターンは、その場所により多くの光硬化性材料114を含むことができる。別の例として、エリア1202aおよび/または1202bが、(例えば、ポリマー製品のより薄い部分を画定する)特定の場所において比較的により小さい体積を有する特徴を画定する場合、分注パターンは、その場所により少ない光硬化性材料114を含むことができる。
ある場合、分注された光硬化性材料114の全体積は、光硬化性材料114が、エリア1202aおよび/または1202bを越えて実質的に漏出することなく、エリア1202aおよび/または1202bにわたって均等に拡散するように、精密に計量および調整されることができる。これは、例えば、材料の無駄を低減させ、または排除することに有用であり得る。さらに、これは、結果として生じるポリマー製品の一貫性を改良する(例えば、ポリマー製品は、エリア1202aおよび/または1202bを越えて硬化した余分な光硬化性材料を除去するために切断または切り揃えられる必要がない)。ある場合、分注された光硬化性材料114の全体積は、モールド構造104aおよび104bが整列させられたときのエリア1202aと1202bとの間の体積に実質的に等しくあり得る。
ある場合、光硬化性材料114は、モールド構造104aおよび104bがすでに整列させられた後、モールド構造104aと104bとの間に分注されることができる。例として、図13Dは、整列している2つのモールド構造104aおよび104bを示す。光硬化性材料114は、モールド構造104aおよび104bの側面に沿って1つ以上の場所1302a-eで光硬化性材料114を注入することによって、モールド構造104aと104bとの間に分注される。注入された光硬化性材料114は、毛管作用を通してモールド構造104aと104bとの間に拡散する。ある場合、異なる量の光硬化性材料114が、一様な拡散を促進するように、モールド構造104aおよび104bの側面に沿って異なる場所で注入されることができる。5つの場所1302a-eが、図13Dに示されるが、これらは、例証的例にすぎない。実践では、光硬化性材料114は、図13Dに示されるものの代わりに、またはそれに加えて1つ以上の他の場所で注入されることができる。
ある場合、モールド構造104aと104bとの間の縁のうちの1つ以上のものは、注入された光硬化性材料114の流動を制限するように密閉されることができる。例えば、図13Eは、整列している2つのモールド構造104aおよび104bを示す。縁1304a-eが、密閉される(例えば、モールド構造104aおよび104bが、これらの縁に沿って一緒に接合される)一方で、縁1304fは、開放しており、露出されている(例えば、モールド構造104aおよび104bは、この縁に沿って分離したままである)。光硬化性材料114は、モールド構造104aと104bとの間の体積を充填するように、縁1304fに沿って注入されることができる。この構成では、モールド構造104aおよび104bは、露出した縁1304fが、(例えば、光硬化性材料114が、流れ出すことを防止するために)モールド構造104aおよび104bの上部に沿って位置付けられるように、垂直に配置されることができる。光硬化性材料114は、(例えば、図1に示されるように)垂直の代わりに、(例えば、モールド構造104aおよび/または104bを通して)水平に光を向けることによって、硬化させられることができる。さらに、ある場合、縁は、(例えば、剥離可能な糊またはテープを使用して)可逆的に密閉されることができる。さらに依然として、1つ以上の密閉された縁は、(例えば、余分な材料を除去するように、および/または、硬化プロセス中に発生させられる任意の応力を解放するように)硬化プロセスの前または間に露出されることができる。密閉および露出した縁の例示的配置が、図13Eに示されるが、これは、例証的例にすぎない。実践では、密閉および露出した縁の別の配置も、実装に応じて可能である。
上で説明されるように、スペーサ構造が、モールド構造104aと104bとの間の間隔を調整するために使用されることができる。スペーサ構造は、例えば、結果として生じるポリマー製品が、それらの意図された形状から外れる可能性が低いように、モールド表面の相対的な向きを制御するために有用であり得る。さらに、結果として生じるポリマー製品は、生産中に歪ませられる(例えば、皺になる、引き伸ばされる、または圧縮される)可能性が低い。
ある場合、スペーサ構造は、光硬化性材料114が、生産プロセス中にスペーサ構造と接触しないように、モールド構造104aおよび104bのエリア1202aおよび1202bを越えて設置されることができる。これは、例えば、(例えば、スペーサ構造と光硬化性材料114との間の干渉に起因する意図的ではない変動を低減させることによって)ポリマー製品の品質を改良することに有益であり得る。
例として、図14は、表面120bを有するモールド構造104bを示す。表面120bは、(例えば、図12に関して説明されるように)ポリマー製品の所定のサイズおよび形状に対応する別々の連続エリア1202bを含む。この例では、モールド構造104bは、エリア1202bの周辺を越えて延びているいくつかの突出部1402a-dも含む。各突出部1402a-dは、それぞれのスペーサ構造1404a-dと、それぞれの基準特徴1406a-dとを含む。
スペーサ構造1404a-dは、図1および2に関して説明されるものに類似し得る。例えば、スペーサ構造1404a-dは、モールド構造104bから、対向するモールド構造(例えば、モールド構造104a)に向かって突出することができる。さらに、スペーサ構造1404a-dの各々は、モールド構造104aおよび104bが一緒にされる(例えば、一緒に押し付けられる)とき、スペーサ構造1404a-dが、モールド構造104aおよび104bに接触し、実質的に平坦な間隙体積がその間に画定されるように、実質的に等しい垂直高さを有することができる。さらに、スペーサ構造1404a-dが、エリア1202bを越えて位置付けられると、それらは、生産プロセス中に光硬化性材料114と接触する可能性が低い。したがって、結果として生じるポリマー製品は、歪ませられる可能性が低い。
基準特徴1406a-dは、モールド構造104bをモールド構造104aと整列させるために使用され得る構造またはマーキングである。例えば、基準特徴1406a-dは、システム100が(例えば、1つ以上のカメラもしくは光学センサを含むもの等の視覚位置合わせシステムを使用して)モールド構造104bの空間場所および/または向きを検出することを可能にする1つ以上の視覚的に際立った構造(例えば、対照的な構造パターン)もしくはマーキング(例えば、インク、塗料、層等によって示される対照的なパターンおよび/または色)を含むことができる。この情報に基づいて、システム100は、モールド構造104bを操作し、モールド構造104aとモールド構造104bとの間の相対位置および向きを制御することができる。
図14に示されるように、突出部1402a-dの各々は、(スペーサ構造1404a-dおよび基準特徴1406a-dが位置付けられる)プラットフォーム1408a-dと、プラットフォーム1408a-dとエリア1202bとの間に延びているブリッジ1410a-dとを含む。ブリッジ1410a-dの幅は、(例えば、エリア1202bの平面上の)プラットフォーム1408a-dの幅よりも狭い。これは、例えば、エリア1202b内の光硬化性材料114からスペーサ構造1404a-dをさらに分離するので、有益である。例えば、より広いブリッジと比較して、より狭いブリッジは、それを横断する光硬化性材料の流動をより良好に制限する。
図14は、単一のモールド構造104bのみを示すが、モールド構造104aは、図14に示されるものに類似する1つ以上の特徴(例えば、突出部、スペーサ構造、基準特徴等)も含み得ることを理解されたい。さらに、図14は、特定の数の各タイプの特徴およびこれらの特徴のための特定の場所を示すが、これらは、例証的例にすぎない。実践では、各タイプの特徴の数および/または核特徴のための場所は、実装に応じて異なり得る。
ある場合、モールド構造は、ポリマー製品の画定されたサイズおよび形状に対応する面積を越えた光硬化性材料の流動を制限する化学および/または構造特徴を含むことができる。これは、例えば、材料の無駄を低減させ、または排除することに有用であり得る。さらに、これは、結果として生じるポリマー製品の一貫性を改良する(例えば、ポリマー製品は、面積を越えて硬化した余分な光硬化性材料を除去するために切断または切り揃えられる必要がない)。
例として、図15は、モールド構造104bを示す。図15に示されるモールド構造は、図14に示されるものに類似し得る。例えば、モールド構造104bは、ポリマー製品の所定のサイズおよび形状に対応する別々の連続エリア1202bを有する表面120bを含む。モールド構造104bは、エリア1202bの周辺を越えて延びているいくつかの突出部1402a-dも含む。ある場合、各突出部1402a-dは、それぞれのスペーサ構造および/またはそれぞれの基準特徴(例証を容易にするために省略される)を含むことができる。ある場合、モールド構造104bは、1つ以上の他の基準特徴(例えば、エリア1202bに沿って位置付けられる基準特徴1502a-f)を含むことができる。
この例では、エリア1202bの周辺1500は、(例えば、光硬化性材料の表面エネルギーが、エリア1202bと比較して周辺1500において異なるように)エリア1202b自体のものと異なる表面化学を有する。例として、周辺1500は、エリア1202b内の光硬化性材料114が、周辺1500を越えて流動する可能性が低いように、(例えば、エリア1202bよりも大きい程度に)光硬化性材料114をはじく表面化学を有することができる。これは、例えば、生産プロセス中にエリア1202b内に光硬化性材料を含むことに有用であり得る。ある場合、周辺1500は、エリア1202bの縁(例えば、モールド構造104bの縁)に沿って延びていることができる。
ある場合、周辺1500は、光硬化性材料114をはじく材料、および/または、光硬化性材料114をはじくための「自己清浄」表面としての役割を果たすための疎水性材料(例えば、その表面上にナノ構造を有する材料)でコーティングされることができる。例示的材料は、有機修飾シリカ、ポリジメチルシロキサン(PDMS)、フルオロシラン、およびテフロン(登録商標)ベースのコーティングを含む。
周辺1500の幅(例えば、はねつけ縁部分の幅)は、変動し得る。例えば、幅は、0.5mm未満、1mm未満、5mm未満、またはある他の厚さであり得る。
図15は、単一のモールド構造104bのみを示すが、モールド構造104aは、図15に示されるものに類似する1つ以上の特徴(例えば、光硬化性材料をはじく表面化学を有する1つ以上の部分)も含み得ることを理解されたい。さらに、図15は、特定の数の各タイプの特徴およびこれらの特徴のための特定の場所を示すが、これらは、例証的例にすぎない。実践では、各タイプの特徴の数および/または各特徴のための場所は、実装に応じて異なり得る。
ある場合、モールド構造104bの1つ以上の他の部分は、光硬化性材料114をはじく表面化学を有することもできる。例えば、ブリッジ1410a-dおよび/またはプラットフォーム1408a-dのうちの1つ以上のものは、光硬化性材料114から突出部1402a-dを分離するように、PDMS、フルオロシラン、テフロン(登録商標)、および/または疎水性材料でコーティングされることができる。
別の例として、図16Aは、モールド構造104bを示す。図16Aに示されるモールド構造は、図14に示されるものに類似し得る。例えば、モールド構造104bは、ポリマー製品の所定のサイズおよび形状に対応する別々の連続エリア1202bを有する表面120bを含む。モールド構造104bは、エリア1202bの周辺を越えて延びているいくつかの突出部を含むこともでき、それらの各々は、スペーサ構造および/またはそれぞれの基準特徴(例証を容易にするために省略される)を有する。
この例では、エリア1202bの周辺1600は、(例えば、光硬化性材料の表面エネルギーが、エリア1202bと比較して周辺1600において異なるように)エリア1202b自体のそれと異なる構造パターンを有する。例として、周辺1600は、エリア1202b内の光硬化性材料114が、周辺1600を越えて流動する可能性が低いように、(例えば、エリア1202bと比較して)それを横断する光硬化性材料114の流動を妨げるエッチングされた格子パターンを有することができる。これは、例えば、生産プロセス中にエリア1202b内に光硬化性材料を含むことに有用であり得る。さらに、パターン化された周辺1600は、光学ポリマー製品を生産するときに有益であり得る。例えば、アイピース上のパターン化された周辺1600は、アイピース内の迷光(例えば、所望の光伝搬チャネル以外のチャネルを通して伝搬する迷光)の外部結合を促進し、それによって、アイピースによって投影される画像の品質を改良することができる。ある場合、パターン化された周辺1600は、(例えば、光学ポリマー製品の縁に沿った迷光の吸収を補助するように)光学ポリマー製品の縁に沿った光吸収材料(例えば、カーボンブラック塗料)の適用を促進することもできる。ある場合、周辺1600は、エリア1202bの縁(例えば、モールド構造104bの縁)に沿って延びていることができる。
ある場合、周辺1600の構造パターンは、(例えば、そのチャネル内に)特定の体積を有するように構成されることができる。これは、例えば、光硬化性材料がそれを越えて流動しないように、周辺1600が、最大で特定の体積の光硬化性材料を受け取ることを可能にするので、有用であり得る。ある場合、周辺1600によって画定される体積は、モールドの予期される材料「過充填」(例えば、エリア1202bの中に堆積させられる光硬化性材料の体積と、モールド構造104aおよび104bが整列させられた後のエリア1202aと302bとの間の利用可能な体積との間の差)より大きくあり得る。
ある場合、周辺1600の構造パターンは、結果として生じるポリマー製品上に脆い特徴または壊れやすい特徴(例えば、加力によりポリマー製品の他の部分から引き離され得る比較的に脆弱な縁)を授けるように構成されることができる。これは、例えば、別個の分離プロセス(例えば、レーザ切断)を実施する必要なく、余分な材料の切り揃えを促進するので、有用であり得る。
周辺1600のための例示的なエッチングされた格子パターンが、図16Bに示される。この例では、パターンは、交互する突出部1602とチャネル1604とを含む。各突出部およびチャネルの寸法は、実装に応じて変動し得る。ある場合、突出部の幅Wは、50~200μmであり得る。ある場合、チャネルの幅Wは、50~200μmであり得る。ある場合、(例えば、隣接するチャネルの高さを越えた)突出部の高さhは、1~10μmであり得る。これは、例えば、(例えば、光硬化性材料の滴が、周辺1600に付着し、それを越えて流動しないように)光硬化性材料の滴の「滴留め」のためのWenzel表面を周辺1600に提供することに有用であり得る。寸法は、例えば、周辺1600に沿った異なる体積の光硬化性製品の捕捉を促進するために、異なり得る。
ある場合、周辺1600は、疎水性ナノ構造を伴ってパターン化されることができる。これは、例えば、(例えば、光硬化性材料の滴が、周辺1600から離れるように転がり、それによって、エリア1202bのための明確な境界を区切るように)Cassie-Baxter表面を提供し、「滴転がり」表面を提供することに有用であり得る。例として、ナノ構造は、有機修飾シリカ、ポリジメチルシロキサン、フルオロシラン、およびテフロン(登録商標)等の材料を使用して、ナノパターン化されたモールドから複製されることができる。加えて、解放機能性でドープされた光硬化性材料は、そのような疎水性特徴を直接作成するために使用されることもできる。
ある場合、突出部およびチャネルは、規則的な反復空間パターンで交互することができる。ある場合、突出部およびチャネルは、ある他の空間パターンに従って、交互することができる。
周辺1600の幅(例えば、パターン化された縁部分の幅)は、変動し得る。例えば、幅は、0.5mm未満、1mm未満、5mm未満、またはある他の厚さであり得る。
図16Aおよび16Bは、単一のモールド構造104bのみを示すが、モールド構造104aは、図16Aに示されるものに類似する1つ以上の特徴(例えば、光硬化性材料の流動を制御するための1つ以上の構造パターン)も含み得ることを理解されたい。さらに、図16Aおよび16Bは、特定の数の各タイプの特徴およびこれらの特徴のための特定の場所を示すが、これらは、例証的例にすぎない。実践では、各タイプの特徴の数および/または核特徴のための場所は、実装に応じて異なり得る。
さらに、表面化学特徴および構造パターン特徴は、示される図15、16A、および16Bに関して別個に説明され、モールド構造が説明される表面化学特徴および説明される構造パターン特徴の両方を有し得ることを理解されたい。
ある場合、モールド構造が、別個の分離プロセスを実施する必要なく、同時に複数の異なるポリマー製品を形成するために使用されることができる。例として、図17は、例示的モールド構造104bを示す。この例では、モールド構造104bは、ポリマー製品の所定のサイズおよび形状に各々が対応する複数の異なる別々の連続エリア1702a-dを有する表面120bを含む。モールド構造104bは、いくつかのスペーサ構造1704a-eを含むことができる。
各エリア1702a-dは、図12-16に関して示され、説明されるエリア1202aおよび/または1202bに類似し得る。例えば、各エリア1702a-dは、特定のポリマー製品の所定のサイズおよび形状に対応する連続エリアであり得る。さらに、各エリア1702a-dは、(例えば、図15に関して説明されるものと同様に)光硬化性材料をはじく表面化学を有する周辺1706a-dおよび/または光硬化性材料の流動を調整する構造パターン(例えば、「滴留め」または「滴転がり」表面)を有する周辺1706a-dを含むことができる。
さらに、エリア1702a-dの各々を越える表面120bの面積1708(例えば、ポリマー製品を形成するために使用されない表面120bの一部)も、光硬化性材料をはじく表面化学を有することができる(例えば、PDMS、フルオロシラン、および/またはテフロン(登録商標)でコーティングされる)。これは、例えば、エリア1702a-dの各々を越える光硬化性材料の流動を制限することに有用であり得る。
スペーサ構造1704a-eは、図1、2、および14に関して示され、説明されるそれらに類似し得る。例えば、スペーサ構造1704a-eは、モールド構造104bから、対向するモールド構造に向かって突出することができる。さらに、スペーサ構造1704a-eの各々は、モールド構造104bが別のモールド構造と接合されるとき、スペーサ構造1704a-eがモールド構造に接触し、実質的に平坦な間隙体積がその間に画定されるように、実質的に等しい垂直高さを有する。
この配置は、例えば、別個の分離プロセスを実施する必要なく、同時に複数のポリマー製品の生産を可能にするので、有益である。図17は、ポリマー製品を形成するための4つの別々のエリアを有するモールド構造を示すが、これは、例証的例にすぎない。実践では、モールド構造は、ポリマー製品を形成するための任意の数の別々のエリア(例えば、1つ、2つ、3つ、4つ以上)を有することができる。
さらに、図17は、単一のモールド構造104bのみを示すが、モールド構造104aはまた、図17に示されるそれらに類似する1つ以上の特徴(例えば、ポリマー製品を形成するための複数の別々のエリア)も含み得ることを理解されたい。さらに、図17は、その特徴の各々のための特定の場所を示すが、これらは、例証的例にすぎない。実践では、核特徴のための場所は、実装に応じて異なり得る。
図18は、ポリマー製品を生産するための例示的プロセス1800を示す。プロセス1800は、例えば、システム100または900を使用して、実施されることができる。ある場合、プロセス1800は、(例えば、光学撮像システム内の導波管またはアイピースの一部として)光学用途で使用するために好適なポリマーフィルムを生産するために使用されることができる。ある場合、プロセス1800は、1,000μm以下の厚さと、少なくとも1cmの面積と、所定の形状とを有するポリマー製品を形成するために使用されることができる。
プロセス1800では、第1のモールド部分が、提供される(ステップ1802)。第1のモールド部分は、導波管部分の所定の形状に対応する別々の連続した第1のエリアを含む第1の表面を有する。第1のエリアは、第1のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られる。
第2のモールド部分も、提供される(ステップ1804)。第2のモールド部分は、導波管部分の所定の形状に対応する別々の連続した第2のエリアを含む第2の表面を有する。第2のエリアは、第2のエリアと異なる表面化学および/または表面構造を有する縁領域によって境を限られる。
ある場合、第1および/または第2のモールド部分の縁領域は、光硬化性材料をはじく材料を含む。ある場合、第1および/または第2のモールド部分の縁領域は、光硬化性材料の液滴を留めるように構成されたパターン化された表面を含む。ある場合、第1および/または第2のモールド部分の縁領域は、光硬化性材料の液滴を転がすように構成されたパターン化された表面を含む。例示的モールド部分は、例えば、図1-9および12-17に関して示され、説明される。例示的縁領域は、例えば、図15-17に関して示され、説明される。
計量された量の光硬化性材料が、第1のモールド部分の第1のエリアに隣接した空間の中に分注される(ステップ1806)。ある場合、計量された量の光硬化性材料は、第1のモールド部分の第1のエリアに隣接した空間内の複数の別々の場所で分注される。ある場合、計量された量の光硬化性材料は、第1のモールド部分の第1のエリアに隣接した空間内で非対称パターンに従って分注される。ある場合、計量された量の光硬化性材料は、第1のモールド部分の第1の表面の周辺において分注される。例示的分注パターンは、例えば、図13A-13Eに関して示され、説明される。
第1および第2の表面は、第1のエリアと第2のエリアとが互いに対して位置合わせされている状態で向かい合って配置される(ステップ1808)。ある場合、第1および第2の表面は、(例えば、図13Dおよび13Eに関して示され、説明されるように)光硬化性材料を分注することに先立って、向かい合って配置される。ある場合、第1および第2の表面は、(例えば、図12および13A-13Cに関して示され、説明されるように)光硬化性材料を分注した後、向かい合って配置される。ある場合、第1および第2のエリアは、第1および/または第2の表面上の1つ以上の基準マーキングに基づいて、互いに対して位置合わせされる。基準マーキングは、(例えば、図14に関して示され、説明されるように)第1および第2のエリアの外側に位置することができる。
第1の表面と第2の表面との間の相対的な分離は、光硬化性材料が、所定の形状を有する第1および第2の表面のそれぞれの第1のエリアと第2のエリアとの間の空間を充填するように、調節される(ステップ1810)。この配置では、第1および第2のエリアとそれらの対応する縁領域との間の異なる表面化学および/または表面構造が、縁領域を越えた光硬化性材料の流動を防止する。
ある場合、第1の表面と第2の表面との間の相対的な分離は、第1および/または第2の表面上に位置する1つ以上のスペーサに基づいて、制御される。1つ以上のスペーサは、(例えば、図14および17に関して示され、説明されるように)第1および第2のエリアの外側に位置することができる。
空間内の光硬化性材料は、導波管部分の形状で硬化させられたフィルムを形成するように、光硬化性材料を光硬化させるために好適な放射で照射される(ステップ1812)。光硬化性材料を光硬化させるための例示的技法が、図1および12に関して説明される。
硬化させられたフィルムは、導波管部分を提供するように第1および第2のモールド部分から分離される(ステップ1814)。ある場合、頭部搭載型ディスプレイが、導波管部分を使用して組み立てられる。
本明細書に説明されるように、成型および硬化プロセス中、種々の要因が、結果として生じるフィルムの形状に干渉し、それをその意図された形状から歪ませ得る。例として、フィルムは、重合プロセス中に内側の内部応力の蓄積に起因して、歪ませられ得る。例えば、光硬化性材料が硬化させられると、光硬化性材料のモノマーが、より長く重い鎖に重合する。対応して、光硬化性材料は、ポリマー鎖が一緒に物理的に移動すると、体積が減る(例えば、「収縮」を経験する)。これは、光硬化性材料の内側の内部応力の蓄積(例えば、ポリマー鎖運動性へのインピーダンスに起因する応力)および光硬化性材料内の歪みエネルギーの貯蔵をもたらす。硬化させられたフィルムが、モールドから抽出されると、歪みエネルギーが放出され、フィルムの薄化をもたらす。フィルムは、内部応力の空間分布に応じて、異なるように薄化し得る。したがって、フィルムは、重合プロセス中に導入された内部応力の特定の空間分布に応じて、フィルム間の変動を示し得る。故に、フィルムの一貫性は、成型プロセス中にフィルム内の応力の分布を調整することによって、改良されることができる。
例証すると、図19Aは、成型および硬化プロセス中(例えば、ポリマーフィルム1900がモールド構造104aと104bとの間に位置付けられるとき)の例示的ポリマーフィルム1900を示し、図19Bは、硬化および抽出後(例えば、ポリマーフィルム1900が、「離型」された後)のポリマーフィルム1900を示す。図19Aに示されるように、ポリマーフィルム1900が、硬化させられると、サイズが収縮する(垂直矢印によって示される)。これは、(例えば、応力がポリマーフィルムとモールド構造との間の接着または接合力より大きい場合)モールド構造104aおよび/または104bからのポリマーフィルム1900の層間剥離をもたらし得る。さらに、これは、(例えば、応力が、真空チャック1902の真空強度より大きい場合)モールド構造104bが定位置でモールド構造104bを保持する真空チャック1902から分離されるようになることを引き起こし得る。さらに依然として、これは、(例えば、応力がモールド構造の強度より大きい場合)モールド構造104aおよび104bにおける破壊を引き起こし得る。さらに依然として、この収縮は、ポリマーフィルム1900内の歪みエネルギーの貯蔵をもたらし得る。図19Bに示されるように、ポリマーフィルム1900がモールド構造104aおよび104bから抽出された後、それは、構造的リラクゼーションおよびさらなる収縮(垂直矢印によって示される)を経験し、ポリマーフィルム1900の薄化をもたらす。
ポリマーフィルムは、内部応力の空間分布に応じて、異なるように薄化し、厚さの局所的変動をもたらし得る。ある場合、厚さ変動分布は、光硬化性材料を光硬化させるために使用される光の強度分布と関連する。
例として、図20は、光硬化性材料を光硬化させるために使用される光2000(例えば、重複面積を伴う紫外線(UV)光源の2×2アレイを使用して発生させられる光)の例示的強度分布を示す。光のより高い強度を有する分布の部分が、より濃い影で示される一方で、光のより低い強度を有する分布の部分は、より薄い影で示される。図21Aおよび21Bは、強度分布2000を有する光を使用して硬化させられた2つの例示的ポリマーフィルム2100aおよび2100bを示す。図21Aおよび21Bに示されるように、ポリマーフィルム2100aおよび2100bの各々は、特に、そのフリンジにおいて、皺および著しい厚さ変動を示す。
種々の技法が、硬化プロセスの前、間、および/または後、ポリマーフィルム内の内部応力を調整するために使用されることができる。
ある場合、モールド構造104aおよび104bは、光硬化性材料の収縮を補償するために、硬化プロセス中に調節されることができる。例として、図22Aは、モールド構造104aと104bとの間に位置付けられる光硬化性材料114を示す。この例では、モールド構造104bが、定位置で固定される(例えば、真空チャック1902に固定される)一方で、モールド構造104aは、上下に移動するように構成される(例えば、作動可能ステージを使用して、モールド構造104aから離れ、モールド構造104bに向かって移動させられる)。さらに、モールド構造104aおよび104bは、光硬化性材料114上に特定の量の力を加えるように、位置付けられる。
硬化プロセス中、光が、光硬化性材料114の方に向けられる。光硬化性材料114が硬化し、サイズにおいて収縮する(例えば、厚において減る)と、モールド構造104aは、サイズの変化を補償するために、かつ光硬化性材料114上で同量の力を維持するために、モールド構造104bに向かって移動させられる。これは、光硬化性材料内の内部応力の蓄積を低減させ、または別様に排除し、光硬化性材料が硬化させられ、モールドから抽出された後、光硬化性材料114の潜在的厚さ変動を低減させる。
ある場合、モールド構造104aおよび104bは、光硬化性材料114が、依然として、「リフロー性」液相である間に(例えば、光硬化性材料114が、そのゲル点まで硬化させられる前に)圧縮力を光硬化性材料114加えることができる。ある場合、モールド構造104aおよび104bは、光硬化性材料114が圧縮性ゲル相である間に(例えば、光硬化性材料114がそのゲル点まで硬化させられた後であるが、その凝固点に到達する前)圧縮力を光硬化性材料114に加えることができる。
ある場合、モールド構造104aおよび104bは、閉ループ制御システムに従って動作させられることができる。例えば、図22Aに示されるように、モールド構造104aおよび104bは、各々が特定のモールド構造104aまたは104bに沿った特定の場所において加えられる力を測定するように構成された複数の力センサを含む1つ以上のセンサアセンブリ122を含むことができる。センサアセンブリ122は、(例えば、図1に関して示され、説明されるように)制御モジュール110に通信可能に結合されることができ、システムの動作中、力測定を制御モジュール110に伝送するように構成されることができる。力測定に基づいて、制御モジュール110は、(例えば、作動可能ステージ102aを使用して)モールド構造104bに対するモールド構造104aの位置を制御し、硬化プロセス中に光硬化性材料114上で一定の力を維持する一方で、モールド構造104aとモールド構造104bとの間で平行性を維持することができる。結果として生じるポリマーフィルムの最終的な厚さおよびポリマーフィルム内に貯蔵される応力レベルは、光硬化性材料114への加えられる力を調整することによって、制御されることができる。ある場合、5N~100Nの範囲内の力が、光硬化性材料114に加えられることができる。ある場合、より高い力を加えることは、ポリマーフィルムの最終的な厚さが、モールド構造104aと104bとの間の初期間隙の幅により近くなるが、ポリマーフィルム内の応力のより少ない調整を伴うことを可能にする。
ある場合、モールド構造104aおよび104bは、開ループ制御システムに従って動作させられることができる。例えば、図22Bに示されるように、モールド構造104aおよび104bは、1つ以上の圧縮性スペーサ構造6222と、1つ以上の非圧縮性スペーサ構造2204とを含むことができる。非圧縮性スペーサ構造2204は、モールド構造104aと104bとの間の最小距離を画定する。圧縮性スペーサ構造2202は、非圧縮性スペーサ構造2204よりも大きい高さを有し、(例えば、それらがある量の加力によって圧縮され得るように)非圧縮性スペーサ構造2204ほど剛ではない。システムの動作中、制御モジュール110は、モールド構造104bに向かってモールド構造104aを移動させ、圧縮性スペーサ構造2204を圧縮し、対応して、所定の一定の力を光硬化性材料114に加える。制御モジュール110は、非圧縮性スペーサ構造2204によって接触されるまで、モールド構造104bに向かってモールド構造104aを移動させ続ける。
圧縮性スペーサ構造2204の各々は、モールド構造104aとモールド構造104bとの間の平行性を維持しながら、モールド構造104aおよび104bが、光硬化性材料114上に均等な力を加えるように、同一の高さと、同一の剛性とを有することができる。結果として生じるポリマーフィルムの最終的な厚さおよびポリマーフィルム内に貯蔵される応力レベルは、圧縮性スペーサ構造2204の特定の高さおよび剛性を規定することによって、制御されることができる。ある場合、圧縮性スペーサ構造2204の高さは、圧縮スペーサ構造2204の高さより5%~15%大きくあり得る(例えば、硬化プロセス中の光硬化性材料114の体積収縮に対応する)。ある場合、圧縮性スペーサ構造の剛性は、0.01GPa~0.1GPaであり得る(例えば、ゴムに類似する)。ある場合、圧縮性スペーサ構造2204は、ゴム、ポリエチレン、テフロン(登録商標)、ポリスチレンフォーム、および/または他の圧縮性材料で構築されることができる。
ある場合、システムは、モールド構造104aと104bとの間に位置付けられる1つ以上のばね機構2206を含むこともできる。これらのばね機構2206は、光硬化性材料114に加えられる力の量をさらに調整し、モールド構造104aとモールド構造104bとの間の平行性をさらに維持することができる。
ある場合、モールド構造104aおよび104bは、互いに向かい、互いから離れるように周期的に移動し、硬化プロセス中に光硬化性材料114上に周期的負荷を加えることができる。これは、例えば、硬化プロセス中に光硬化性材料114を圧縮し、引き伸ばすことが、光硬化性材料の中に蓄積される応力を緩和し得るので、有用であり得る。
例として、図23に示されるように、モールド構造104aは、1つ以上の移動パターン2300a-cに従って移動させられることができる。例として、移動パターン2300aでは、モールド構造104aは、低応答時間および低利得に従って移動させられる(例えば、モールド構造104aは、光硬化性材料114がそのゲル点まで硬化させられた後にモールド構造104bに向かって移動させられ、徐々に離れるように移動させられる)。別の例として、移動パターン2300bでは、モールド構造104aは、高応答時間および高利得に従って移動させられる(例えば、モールド構造104aは、光硬化性材料114がそのゲル点まで硬化させられた後、「オーバーシュート」減衰振動パターンに従って、モールド構造104bから離れ、モールド構造に向かって交互に移動させられる)。別の例として、移動パターン2300cでは、モールド構造104aは、中応答時間および中利得に従って移動させられる(例えば、モールド構造104aは、光硬化性材料114がそのゲル点まで硬化させられた後、「調整された」減衰振動パターンに従って、モールド構造104bから離れ、モールド構造に向かって交互に移動させられる)。3つの例示的パターンが、図23に示されるが、他のパターンも、実装に応じて可能である。
実践では、モールド構造104aおよび104bは、それらの間の間隔が特定の回数で振動し、または「バウンドする」特定の周波数に従ってそうするように、制御されることができる。例として、モールド構造104aと104bとの間の間隔は、ゲル点と凝固点との間で1回以上(例えば、1回、2回、3回以上)振動することができる。ある場合、ゲル点と凝固点との間の時間の長さは、約3秒であり得る。これは、0.33Hz、0.67Hz、1Hz以上の振動に対応し得る。さらに、振動の振幅も、変動し得る。ある場合、各振動は、中心基準位置702に対して上向きまたは下向きに約5~10μmであり得る。
ある場合、蓄積された応力は、モールドから抽出される前に(例えば、ポリマーフィルムを「離型」する前に)ポリマーフィルムを焼鈍することによって、ポリマーフィルムから除去されることができる。種々の技法が、リマーフィルムが依然としてモールド構造間にある間に、熱をポリマーフィルムに加えるために使用されることができる。例として、ポリマーフィルムは、1つ以上の加熱されたチャック、高強度ランプ、赤外線(IR)ランプ、および/またはマイクロ波を使用する等、伝導加熱および/または放射加熱を通して、加熱されることができる。ある場合、放射加熱が、(例えば、より速いプロセス時間およびポリマーフィルムのみの潜在的に選択的な加熱のために)好ましくあり得る。ある場合、ポリマーフィルムは、10秒~3分の期間にわたってそれを40℃~200℃まで加熱することによって、焼鈍されることができる。
ある場合、光硬化性材料114は、結果として生じるポリマーフィルムから蓄積された応力を低減させるように、特定の空間分布および/または特定の時間特性を有する光のパターンを使用して、硬化させられることができる。例示的照明パターン800a-cが、図24A-24Cに示される。
図24Aに示されるように、光硬化性材料は、(例えば、硬化プロセス2402の開始から、光硬化性材料が完全に硬化させられるときの硬化プロセス2404の終了まで)ある期間にわたって連続的かつ一様な強度を有する照明パターン2400aで光硬化性材料を照射することによって、硬化させられることができる。ある場合、照明パターン2400aの使用は、かなりの量の蓄積された応力を有するポリマー製品2406aをもたらし得る(例えば、絶え間ない暴露が、収縮中のポリマー鎖による移動に迅速に応答するポリマー材料の能力を侵害し得る)。ある場合、これは、(例えば、y-z平面に沿った断面に沿って視認されたとき)その中心領域に沿うよりもその周辺に沿って厚いポリマー製品2406aをもたらし得る。
図24Bに示されるように、光硬化性材料は、経時的に可変強度を有する照明パターン2400bで光硬化性材料を照射することによって、硬化させられることができる。最初に(例えば、硬化プロセス2402の開始時に)、光硬化性材料は、高強度の光によって照射される。硬化プロセスが進行すると、光硬化性材料は、光硬化性材料が完全に硬化させられるまで(例えば、硬化プロセス2404の終了まで)、ますます低くなる強度の光によって照射される。ある場合、照明パターン2400bの使用は、光硬化性材料に、硬化プロセスの初期段階で比較的に大量の光を吸収させ、重合反応を駆動するために十分なフリーラジカルの生成をもたらし得る。光の強度が減少すると、ポリマー鎖は、ゆっくりと再配置し、(例えば、照明パターン2400aの使用と比較して)架橋網内に比較的により少量の応力をもたらし得る。ある場合、これは、照明パターン800aの使用と比較して、ポリマー製品2406bのより良好な機械的特性(例えば、より高いヤング率および/または硬度)ならびにより一貫した空間寸法(例えば、より低いTTV)をもたらし得る。
図24Cに示されるように、光硬化性材料は、経時的に可変強度を有する別の照明パターン2400cで光硬化性材料を照射することによって、硬化させられることができる。最初に(例えば、硬化プロセス2402の開始時に)、光硬化性材料は、より低い強度の光によって照射される。硬化プロセスが進行すると、光硬化性材料は、光硬化性材料が完全に硬化させられるまで(例えば、硬化プロセス2404の終了まで)、ますます高くなる強度の光によって照射される。ある場合、照明パターン2400cの使用は、光硬化性材料に、硬化プロセスの初期段階で比較的により少量の光を吸収させ、硬化プロセスの早期段階中により低い反応率をもたらし得る。したがって、光硬化性材料のモノマーは、よりゆっくりと反応し、網状組織内で比較的により低い応力蓄積をもたらす。続いて、より高い強度の光が、光硬化性材料を完全に硬化させるために使用されることができる。ある場合、これは、照明パターン2400aの使用と比較して、より一貫した空間寸法(例えば、より低いTTV)をもたらし得る。しかしながら、機械的特性は、比較的に遅い重合率に起因して、(照明パターン2400bの使用と比較して)ある状況ではあまり望ましくないこともある。
例示的照明パターン2400a-cが、上で示され、説明されるが、これらは、例証的例にすぎない。実践では、他の照明パターンも、本明細書に説明されるものの代わりに、またはそれに加えて光硬化性材料を硬化させるために使用されることができる。
ある場合、光硬化性材料は、ある期間にわたって光の1つ以上のパルスで光硬化性材料を照射すること(例えば、1つ以上のオンおよびオフサイクルに従って、光硬化性材料を光にさらすこと)によって、硬化させられることができる。ある場合、放射の各パルスの持続時間(例えば、各「オン」状態の持続時間)は、パルスの合間の各期間の持続時間(例えば、各「オフ」状態の持続時間)に対して変動し得る。例示的照明パターン2500a-cが、図25に示される。
図25Aに示されるように、光硬化性材料は、ある期間にわたって複数のパルスを有する照明パターン2500aで光硬化性材料を照射することによって、硬化させられることができる。この例では、各パルスの持続時間ton(例えば、各「オン」状態の持続時間)は、光の50%デューティサイクルに対応して、パルスの合間の持続時間toff(例えば、各「オフ」状態の持続時間)に等しい。照明パターン2500aは、硬化プロセス中に(例えば、「オフ」段階中に)光硬化性材料が冷却することを可能にしながら、(例えば、「オン」段階中に)中程度の重合率を有する光硬化性材料を硬化させるために使用されることができる。これは、例えば、光硬化性材料内の熱および/または応力の量を制御することに有益であり得る。さらに、結果として生じるポリマー製品の物理的特性(例えば、ポリマー製品のTTVパターン)は、tonおよびtoffのために特定の時間間隔を選択することによって実現されることができる。ある場合、toffおよびtonは、0.05秒~5秒であり得る。
図25に示されるように、光硬化性材料は、ある期間にわたって複数のパルスを有する別の照明パターン2500bで光硬化性材料を照射することによって、硬化させられることもできる。この例では、各パルスの持続時間ton(例えば、各「オン」状態の持続時間)は、光の50%より大きいデューティサイクルに対応して、パルスの合間の持続時間toff(例えば、各「オフ」状態の持続時間)より大きい。照明パターン2500bは、硬化プロセス中に(例えば、「オフ」段階中に)光硬化性材料が冷却することも可能にしながら、(例えば、照明パターン2500aと比較して「オン」段階中により多くの光を印加し、重合を駆動することによって)より遅い重合率を有する光硬化性材料を硬化させるために使用されることができる。上記のように、これは、光硬化性材料内の熱および/または応力の量を制御することに有益であり得る。さらに、結果として生じるポリマー製品の物理的特性(例えば、ポリマー製品のTTVパターン)は、tonおよびtoffのために特定の時間間隔を選択することによって実現されることができる。ある場合、toffは、0.05秒~5秒であり得、tonは、0.05秒~5秒であり得る。
図25に示されるように、光硬化性材料は、ある期間にわたって複数のパルスを有する別の照明パターン2500cで光硬化性材料を照射することによって、硬化させられることもできる。この例では、各パルスの持続時間ton(例えば、各「オン」状態の持続時間)は、光の50%未満のデューティサイクルに対応して、パルスの合間の持続時間toff(例えば、各「オフ」状態の持続時間)未満である。照明パターン2500cは、硬化プロセス中に(例えば、「オフ」段階中に)光硬化性材料が冷却することも可能にしながら、(例えば、照明パターン2500aと比較して「オン」段階中により少ない光を印加し、重合を駆動することによって)より速い重合率を有する光硬化性材料を硬化させるために使用されることができる。上記のように、これは、光硬化性材料内の熱および/または応力の量を制御することに有益であり得る。さらに、結果として生じるポリマー製品の物理的特性(例えば、ポリマー製品のTTVパターン)は、tonおよびtoffのために特定の時間間隔を選択することによって実現されることができる。ある場合、toffは、0.05秒~5秒であり得、tonは、0.05秒~5秒であり得る。
ある場合、放射の1つ以上のパルスの強度は、放射の1つ以上の他のパルスと異なる強度を有することができる。例示的照明パターン2600a-cが、図26に示される。これらの例の各々では、放射のパルスは、より高い強度を有するパルスと、より低い強度を有するパルスとを交互に繰り返す。これは、例えば、いくつかの光硬化性材料が、より低い熱伝導度を有するので、有用であり得、紫外線および/または発熱プロセスによって発生させられる熱は、伝導によって放散するためのより長い時間を要するであろう。交互の高および低強度パルスは、より円滑な率で硬化反応を維持することに役立ち得る。図26に示されるパターン2600a-cは、2つの異なる強度を有するパルスを交互に繰り返すが、これらは、例証的例にすぎない。ある場合、パターンは、3つ以上の異なる強度(例えば、3つ、4つ、5つ以上)を有するパルスを交互に繰り返すことができる。さらに、ある場合、パターンは、規則的または反復パターンに従って、異なる強度を有するパルスを交互に繰り返さない。例えば、パターンは、強度の任意の組み合わせを有し、任意の順序で配置されるパルスを含むことができる。
実践では、パルスの周波数は、実装に応じて異なり得る。例として、パルスの周波数は、0.1Hz~20Hzであり得る。ある場合、パルスの周波数は、一定であり得る。ある場合、パルスの周波数は、経時的に変動し得る。
ある場合、光硬化性材料は、空間に対して強度が変動する光で光硬化性材料を照射することによって、硬化させられることができる。例えば、光硬化性材料のある部分が、より高い強度の光で照射されることができる一方で、光硬化性材料の他の部分は、より低い強度の光で照射されることができる。これは、例えば、局所的エリア内の光硬化性材料の重合率を制御し、熱および/または応力の蓄積を調整することに有用であり得る。
例として、図27Aは、(x-y平面から視認される)空間に対して変動する照明パターン2700を示す。より薄い影が、より低い光強度に対応する一方で、より濃い影は、より高い光強度に対応する。(例えば、x方向に沿った)照明パターンの断面形状2702。この例では、照明パターン2700は、(例えば、曲線状外形パターンに従って)より高い強度の光で周辺部分2704を照射しながら、より低い強度の光で中心部分2702を照射する。これは、ポリマーフィルムが、多くの場合、(例えば、収縮を補償するための周辺リフロー性ポリマー材料の欠如に起因して)その縁に沿うよりもその中心で多くの応力を蓄積するので、有益であり得る。故に、(例えば、重合率を減速させるように)その縁と比較してあまり強くない光にポリマーフィルムの中心部分をさらすことは、蓄積された応力の量を低減させ、ポリマーフィルムの一貫性を改良し得る。例示的パターンが、図27Aに示されるが、これは、例証的例にすぎない。実践では、照明パターンは、実装に応じて、異なる空間パターンを有することができる。
さらに、ある場合、光硬化性材料は、順に光で光硬化性材料の異なる部分を照射することによって、硬化させられることができる。例えば、光硬化性材料のある部分が、最初に光で照射されることができ、その後、光硬化性材料の他の部分が続く。これは、例えば、特定の順序で局所的エリア内の光硬化性材料の重合率を制御し、熱および/または応力の蓄積を調整することに有用であり得る。
例として、図27Bは、同心パターンで配置される5つのゾーン2752a-eを有する照明パターン2750を示す。この例では、光硬化性材料は、(例えば、光硬化性材料の中心が、最初に硬化させられ、光硬化性材料の縁が、最後に硬化させられるように)順に、最初に中心部分2752aに沿って、次いで、リング部分2752bに沿って、次いで、リング部分2752cに沿って、次いで、リング部分2752dに沿って、最終的にリング部分2752eに沿って、光硬化性材料を照射することによって、硬化させられることができる。これは、例えば、周辺リフロー性ポリマー材料を通して(例えば、x-y平面に沿って)側方収縮補償を提供するので、有益である。放射の順次パターンが、例えば、とりわけ、個々にアドレス可能な光源アレイ(例えば、発光ダイオードの1つ以上のアレイ)、UV光学系、グレースケールUV窓、UVマスク、虹彩シャッタを使用して、達成されることができる。例示的パターンが、図27Bに示されるが、これは、例証的例にすぎない。実践では、照明パターンは、成型プロセス中に任意の順序で照明される任意の数の異なるゾーンを含むことができる。
さらに、いくつかの異なる技法が、上で示され、説明されるが、これらの技法は、互いに排他的ではない。実践では、任意の数のこれらの技法が、ポリマー製品内の応力の蓄積を調整し、ポリマー製品の一貫性を改良するために、併せて使用されることができる。例として、ポリマー製品は、(例えば、図22A、22B、および23に関して説明されるように)成型の前、間、および後、モールド構造間の相対的空間を制御し、個々に、または任意の組み合わせでのいずれかで、(例えば、図24A-24C、25、26、27A、および27Bに関して説明されるように)異なる空間および/または分布および/または時間特性を有する照明パターンに従って、光硬化性材料を照射することによって、生産されることができる。
さらに、これらの技法のうちの1つ以上のものが、特定の形状を有するポリマー製品を生産するために使用されることができる。例として、いくつかの異なるポリマー製品2800が、図28Aおよび28Bの断面図に示される。例えば、図28Aに示されるように、ポリマー製品2800は、対称構成または非対称構成を有することができる。ある場合、ポリマー製品2800は、1つ以上の凸面を有することができる。ある場合、ポリマー製品2800は、1つ以上の凹面を有することができる。さらに、図28Bに示されるように、ポリマー製品2800は、中心アイピースエリア2802(例えば、光を受け取り、透過させるための光学部分)と、支持部分2804(例えば、アイピースエリアのための構造支持を提供する放射状周辺部分)とを有することができる。これらの配置は、本明細書に説明される技法のうちの1つ以上のものを使用して、達成されることができる。
例として、ポリマー製品2800aは、図27Aおよび27Bに関して示され、説明される技法を組み合わせることによって、生産されることができる。例えば、光硬化性材料は、最初に、併せて照明パターン2750の部分2752a-dに従って、(例えば、紫外線で)照射されることができる。さらに、光強度の空間分布は、(例えば、曲線状外形パターンに従って、光硬化性材料の中心部分2702が、より低い強度の光で照射され、周辺部分2704が、次第に高くなる強度の光で照射されるように)照明パターン2700に従って設定されることができる。これは、平坦な中心アイピースエリア2802をもたらす。続いて、光硬化性材料は、実質的により低い光強度(例えば、部分2752a-dの照明強度よりも低い)を伴う(例えば、ポリマー製品の周辺に沿った)照明パターン2750の部分2752eに従って、(例えば、紫外線を用いて)照射されることができる。これは、ポリマー製品の周辺に沿って、より厚い支持部分2804をもたらす。
図29は、導波管フィルムを形成するための例示的プロセス2900を示す。プロセス2900は、例えば、システム100または900を使用して実施されることができる。ある場合、プロセス2900は、(例えば、光学撮像システム内の導波管またはアイピースの一部として)光学用途で使用するために好適なポリマーフィルムを生産するために使用されることができる。ある場合、このプロセスは、ヘッドセットで使用するために好適な導波管またはアイピースを生産するために特に有用であり得る。例えば、このプロセスは、光を誘導し、ヘッドセット着用者の視野を覆う光を投影するために十分である厚さおよび/または断面積を有する導波管またはアイピースを生産するために使用されることができる。例として、このプロセスは、800μm以下、600μm以下、400μm以下、200μm以下、100μm以下、もしくは50μm以下等の(例えば、デカルト座標系のz軸に沿って測定されるような)1,000μm以下の厚さと、最大約100cm以下等の5cm以上、10cm以上等の(例えば、デカルト座標系のx-y平面に対して測定されるような)少なくとも1cmの面積とを有し、所定の形状を有するポリマー製品を生産するために使用されることができる。ある場合、ポリマーフィルムは、x-y平面内で少なくとも1つの方向に少なくとも1cm(例えば、約30cm以下等の2cm以上、5cm以上、8cm以上、10cm以上)の寸法を有することができる。別の例として、このプロセスは、10μm~2mmの厚さと、1,000cmと同程度の大きさの面積とを有するポリマー製品(例えば、約18cmの直径を有する円形ポリマー製品)を生産するために使用されることができる。
プロセス2900では、光硬化性材料が、第1のモールド部分と第1のモールド部分の反対側の第2のモールド部分との間の空間の中に分注される(ステップ2902)。モールド部分を含む例示的システムが、例えば、図1に関して説明される。
第1のモールド部分の表面に対向している第2のモールド部分の表面に対する第1のモールド部分の表面の相対的な分離が、調節される(ステップ2904)。ある場合、相対的な分離は、光硬化性材料で充填される空間の少なくとも一部が所定の形状を有するように、調節されることができる。ある場合、相対的な分離は、光硬化性材料で充填される空間の少なくとも一部が、1,000μm以下の厚さと、少なくとも1cmの面積とを有するように、調節されることができる。ある場合、相対的な分離は、光硬化性材料で充填される空間の少なくとも一部が、10μm~2mmの厚さと、1,000cmと同程度の大きさの面積とを有するように、調節されることができる。モールド部分の位置を調節するための例示的システムが、例えば、図1に関して説明される。
ある場合、相対的な分離を変動させることは、第2のモールド部分に対して第1のモールド部分の位置を振動させることを含むことができる。例示的振動技法が、例えば、図23に関して説明される。
空間内の光硬化性材料は、硬化させられた導波管フィルムを形成するように、光硬化性材料を光硬化させるために好適な放射で照射される(ステップ2906)。光硬化性材料を照射するための例示的システムが、例えば、図1に関して説明される。
光硬化性材料を照射することと同時に、以下のうちの少なくとも1つが実施される(ステップ2908):(i)第1のモールド部分の表面と第2のモールド部分の表面との間の相対的な分離を変動させること、および光硬化性材料を照射する放射の強度を変動させること。
ある場合、相対的な分離は、第1のモールド部分と第2のモールド部分との間に延びている軸に沿って第1のモールド部分によって経験される力を調整するように、変動させられることができる。ある場合、相対的な分離は、力を調整する閉ループ制御システムに基づいて変動させられることができる。例示的閉ループシステムが、例えば、図22Aに関して説明される。
ある場合、相対的な分離は、光硬化性材料内のゲル点に到達するために十分な時間にわたって光硬化性材料を照射した後、変動させられることができる。ある場合、相対的な分離は、光硬化性材料内のゲル点に到達するために十分な時間にわたって光硬化性材料を照射した後、低減させられることができる。
ある場合、相対的な分離を変動させることは、第2のモールド部分に向かって第1のモールド部分を移動させ、第1のモールド部分と第2のモールド部分との間に配置される1つ以上のスペーサ構造を圧縮することを含むことができる。ある場合、スペーサ構造は、開ループ制御システムに従って圧縮されることができる。例示的開ループシステムが、例えば、図22Bに関して説明される。
ある場合、放射の強度を変動させることは、光硬化性材料を照射する空間強度パターンを変動させることを含むことができる。放射の例示的空間強度パターンが、例えば、図27Aに関して説明される。
ある場合、放射の強度を変動させることは、放射の出力を変動させることを含むことができる。出力を変動させることは、放射をパルスにすることを含むことができる。ある場合、放射の各パルスは、同一の出力を有することができる。ある場合、放射のパルスは、異なる出力を有することができる。ある場合、放射の各パルスは、同一の持続時間を有することができる。ある場合、放射のパルスは、異なる持続時間を有することができる。ある場合、パルス周波数は、一定であり得る。ある場合、パルス周波数は、変動させられることができる。放射の例示的パルスパターンが、例えば、図25および26に関して説明される。
ある場合、放射の強度を変動させることは、空間の異なるエリアを連続的に照射することを含むことができる。放射の例示的順次パターンが、例えば、図27Bに関して説明される。
ある場合、光硬化性材料で充填される空間の厚さおよび放射の強度は、変動し、高い相対的厚さの領域は、低い相対的厚さの領域と比較して、より高い放射量を受け取るように、変動させられることができる。
ある場合、このプロセスは、第1のモールド部分および第2のモールド部分から硬化させられた導波管フィルムを分離することをさらに含むことができる。
ある場合、このプロセスは、本明細書に説明されるプロセスを使用して形成される導波管フィルムを備えている頭部搭載型ディスプレイを組み立てることを含むことができる。
本明細書に説明される主題および動作のいくつかの実装は、デジタル電子回路で、または本明細書に開示される構造およびそれらの構造均等物を含むコンピュータソフトウェア、ファームウェア、もしくハードウェアで、またはそれらのうちの1つ以上のものの組み合わせで、実装されることができる。例えば、いくつかの実装では、制御モジュール110は、デジタル電子回路を使用して、またはコンピュータソフトウェア、ファームウェア、もしくはハードウェアで、またはそれらのうちの1つ以上のものの組み合わせで、実装されることができる。別の例では、図11、18、および29に示されるそれぞれのプロセス1100、1800、および2900は、少なくとも部分的にデジタル電子回路を使用して、またはコンピュータソフトウェア、ファームウェア、もしくはハードウェアで、またはそれらのうちの1つ以上のものの組み合わせで、実装されることができる。
本明細書に説明されるいくつかの実装は、デジタル電子回路、コンピュータソフトウェア、ファームウェア、またはハードウェアの1つ以上の群もしくはモジュールとして、またはそれらのうちの1つ以上のものの組み合わせで、実装されることができる。異なるモジュールが使用されることができるが、各モジュールは、異なる必要はなく、複数のモジュールが、同一のデジタル電子回路、コンピュータソフトウェア、ファームウェア、またはハードウェア、もしくはそれらの組み合わせの上に実装されることができる。
本明細書に説明されるいくつかの実装は、データ処理装置による実行のために、またはその動作を制御するように、コンピュータ記憶媒体上にエンコードされる1つ以上のコンピュータプログラム、すなわち、コンピュータプログラム命令の1つ以上のモジュールとして、実装されることができる。コンピュータ記憶媒体は、コンピュータ読み取り可能な記憶デバイス、コンピュータ読み取り可能な記憶基板、ランダムまたはシリアルアクセスメモリアレイもしくはデバイス、またはそれらのうちの1つ以上のものの組み合わせであり得るか、またはその中に含まれることができる。さらに、コンピュータ記憶媒体は、伝搬された信号ではないが、コンピュータ記憶媒体は、人工的に発生させられた信号でエンコードされるコンピュータプログラム命令のソースまたは宛先であり得る。コンピュータ記憶媒体は、1つ以上の別個の物理的構成要素もしくは媒体(例えば、複数のCD、ディスク、または他の記憶デバイス)であり得るか、またはその中に含まれることもできる。
用語「データ処理装置」は、一例として、プログラマブルプロセッサ、コンピュータ、チップ上のシステム、または前述の複数のものもしくは組み合わせを含むデータを処理するための全ての種類の装置、デバイス、およびマシンを包含する。装置は、特殊用途論理回路、例えば、FPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)を含むことができる。装置は、ハードウェアに加えて、当該コンピュータプログラムのための実行環境を作成するコード、例えば、プロセッサファームウェア、プロトコルスタック、データベース管理システム、オペレーティングシステム、クロスプラットフォーム実行時間環境、仮想マシン、またはそれらのうちの1つ以上のものの組み合わせを構成するコードを含むこともできる。装置および実行環境は、ウェブサービス、分散コンピューティング、およびグリッドコンピューティングインフラストラクチャ等の種々の異なるコンピューティングモデルインフラストラクチャを実現することができる。
コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、またはコードとしても公知である)は、コンパイラ型またはインタープリタ型言語、宣言型もしくは手続き型言語を含む任意の形態のプログラミング言語で書かれることができる。コンピュータプログラムは、ファイルシステム内のファイルに対応し得るが、その必要はない。プログラムは、他のプログラムもしくはデータ(例えば、マークアップ言語文書内に記憶された1つ以上のスクリプト)を保持するファイルの一部内に、当該プログラム専用の単一のファイル内に、または複数の協調ファイル(例えば、1つ以上のモジュール、サブプログラム、もしくはコードの一部を記憶するファイル)内に記憶されることができる。コンピュータプログラムは、1つのコンピュータ上で、または1つの場所に位置する、もしくは複数の場所にわたって分散され、通信ネットワークによって相互接続される複数のコンピュータ上で、実行されるように展開されることができる。
本明細書に説明されるプロセスおよび論理フローのうちのいくつかは、入力データに作用し、出力を発生させることによってアクションを実施するように1つ以上のコンピュータプログラムを実行する1つ以上のプログラマブルプロセッサによって実施されることができる。プロセスおよび論理フローは、特殊用途論理回路、例えば、FPGA(フィールドプログラマブルゲートアレイ)またはASIC(特定用途向け集積回路)によって実施されることもでき、装置も、それとして実装されることができる。
コンピュータプログラムの実行のために好適なプロセッサは、一例として、汎用および特殊用途マイクロプロセッサの両方、ならびに任意の種類のデジタルコンピュータのプロセッサを含む。概して、プロセッサは、読み取り専用メモリまたはランダムアクセスメモリもしくは両方から、命令およびデータを受信するであろう。コンピュータは、命令に従ってアクションを実施するためのプロセッサと、命令およびデータを記憶するための1つ以上のメモリデバイスとを含む。コンピュータは、データを記憶するための1つ以上の大容量記憶デバイス、例えば、磁気、光磁気ディスク、もしくは光ディスクを含むか、またはそれからデータを受信するか、もしくはそこにデータを転送するようにそれに動作可能に結合されるか、または両方でもあり得る。しかしながら、コンピュータは、そのようなデバイスを有する必要はない。コンピュータプログラム命令およびデータを記憶するために好適なデバイスは、一例として、半導体メモリデバイス(例えば、EPROM、EEPROM、フラッシュメモリデバイス、およびその他)、磁気ディスク(例えば、内部ハードディスク、リムーバブルディスク、およびその他)、光磁気ディスク、およびCD-ROMならびにDVD-ROMディスクを含む全ての形態の不揮発性メモリ、媒体、およびメモリデバイスを含む。プロセッサおよびメモリは、特殊用途論理回路によって補完される、またはそれに組み込まれることができる。
ユーザとの相互作用を提供するために、動作は、情報をユーザに表示するためのディスプレイデバイス(例えば、モニタまたは別のタイプのディスプレイデバイス)と、それによってユーザが入力をコンピュータに提供し得るキーボードおよびポインティングデバイス(例えば、マウス、トラックボール、タブレット、タッチセンサ式スクリーン、または別のタイプのポインティングデバイス)とを有するコンピュータ上に実装されることができる。他の種類のデバイスも、ユーザとの相互作用を提供するために使用されることができ、例えば、ユーザに提供されるフィードバックは、任意の形態の感覚フィードバック、例えば、視覚フィードバック、聴覚フィードバック、または触覚フィードバックであり得、ユーザからの入力は、音響、発話、または触覚入力を含む任意の形態で受信されることができる。加えて、コンピュータは、ユーザによって使用されるデバイスに文書を送信し、それから文書を受信することによって、例えば、ウェブブラウザから受信される要求に応答して、ウェブページをユーザのクライアントデバイス上のウェブブラウザに送信することによって、ユーザと相互作用することができる。
コンピュータシステムは、単一のコンピューティングデバイス、または近接して、もしくは概して互いから遠隔で動作し、典型的には、通信ネットワークを通して相互作用する複数のコンピュータを含み得る。通信ネットワークの例は、ローカルエリアネットワーク(「LAN」)およびワイドエリアネットワーク(「WAN」)、インターネットワーク(例えば、インターネット)、衛星リンクを備えているネットワーク、ならびにピアツーピアネットワーク(例えば、アドホックピアツーピアネットワーク)を含む。クライアントおよびサーバの関係は、それぞれのコンピュータ上で起動し、互いにクライアント-サーバ関係を有するコンピュータプログラムにより、生じ得る。
図30は、プロセッサ3010と、メモリ3020と、記憶デバイス3030と、入力/出力デバイス3040とを含む例示的コンピュータシステム3000を示す。コンポーネント3010、3020、3030、および3040の各々は、例えば、システムバス3050によって相互接続されることができる。プロセッサ3010は、システム3000内の実行のために命令を処理することが可能である。いくつかの実装では、プロセッサ3010は、シングルスレッドのプロセッサ、マルチスレッドのプロセッサ、または別のタイプのプロセッサである。プロセッサ3010は、メモリ3020内または記憶デバイス3030上に記憶された命令を処理することが可能である。メモリ3020および記憶デバイス3030は、システム3000内に情報を記憶することができる。
入力/出力デバイス3040は、システム3000のための入力/出力動作を提供する。いくつかの実装では、入力/出力デバイス3040は、ネットワークインターフェースデバイス、例えば、イーサネット(登録商標)カード、シリアル通信デバイス、例えば、RS-232ポート、および/または無線インターフェースデバイス、例えば、802.11カード、3G無線モデム、4G無線モデム等のうちの1つ以上のものを含むことができる。いくつかの実装では、入力/出力デバイスは、入力データを受信し、出力データを他の入力/出力デバイス、例えば、キーボード、プリンタ、およびディスプレイデバイス3060に送信するように構成されたドライバデバイスを含むことができる。いくつかの実装では、モバイルコンピューティングデバイス、モバイル通信デバイス、および他のデバイスが、使用されることができる。
本明細書は、多くの詳細を含むが、これらは、特許請求の範囲への限定としてではなく、むしろ、特定の例に特有の特徴の組み合わせとして解釈されるべきである。別個の実装との関連で本明細書に説明されるある特徴も、組み合わせられることができる。逆に、単一の実装との関連で説明される種々の特徴も、複数の実施形態では、別個に、または任意の好適な副次的組み合わせで、実装されることができる。
いくつかの実装が、説明された。それでもなお、種々の修正が、本発明の精神および範囲から逸脱することなく行われ得ることを理解されたい。故に、他の実装も、以下の請求項の範囲内である。

Claims (20)

  1. 光硬化性材料を平面状の物体に成形するためのシステムであって、前記システムは、
    第1のモールド構造と、
    第2のモールド構造と、
    前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも1つに沿って配置された複数の突出部と、
    前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも一方に沿って画定された複数の線形スロットを備える複数の陥凹と
    を備え、
    前記複数の線形スロットのうちの第1のスロットは、第1の方向に延在し、第1の経路を画定し、前記複数の突出部のうちの対応する1つの突出部が前記第1の経路に沿って平行移動することができ、前記複数の線形スロットのうちの第2のスロットは、第2の方向に延在し、第2の経路を画定し、前記複数の突出部のうちの別の1つの突出部が前記第2の経路に沿って平行移動することができ、前記第1の方向は、前記第2の方向と平行ではなく、
    動作中、前記システムは、
    前記第1のモールド構造と第2のモールド構造とが互いに面するように、前記第1および第2のモールド構造を位置付けることであって、
    前記複数の突出部のうちの少なくともいくつかが(i)前記第1のモールド構造から延在して、前記第2のモールド構造に接触するか、または(ii)前記第2のモールド構造から延在して、前記第1のモールド構造に接触し、
    前記複数の突出部のうちの少なくともいくつかは、前記複数の線形スロットの中に挿入され、
    体積が、前記第1のモールド構造と、前記第2のモールド構造との間に画定されている、ことと、
    前記体積において前記光硬化性材料を受け取ることと、
    放射を前記体積の中に向けることにより、前記光硬化性材料を硬化させてポリマーフィルムにすることと
    を行うように構成されている、システム。
  2. 前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも1つは、前記放射に対して実質的に透過的である、請求項1に記載のシステム。
  3. 前記複数の突出部は、前記第1のスロット内に挿入されるように構成された第1の突出部を備え、前記第1のスロットの断面積は、前記第1の突出部の断面積よりも大きい、請求項1に記載のシステム。
  4. 前記複数の突出部は、前記第2のスロット内に挿入されるように構成された第2の突出部を備え、前記第2のスロットの断面積は、前記第2の突出部の断面積よりも大きい、請求項3に記載のシステム。
  5. 前記複数の線形スロットは、第3の方向に延在する第3のスロットを備え、前記第3の方向は、前記第1の方向とも前記第2の方向とも平行ではない、請求項1に記載のシステム。
  6. 前記複数の突出部のうちの少なくとも1つは、長方形の断面を有する、請求項1に記載のシステム。
  7. 前記システムは、
    プラットフォームと、
    前記プラットフォームと前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも1つとの間に延在するブリッジであって、前記プラットフォームの幅は、前記ブリッジの幅よりも大きい、ブリッジと、
    前記プラットフォーム上に配置された基準特徴と
    を備える、請求項1に記載のシステム。
  8. 前記基準特徴は、構造パターンまたはマーキングのうちの少なくとも1つを備える、請求項7に記載のシステム。
  9. 前記プラットフォーム上に配置されたスペーサ構造をさらに備える、請求項7に記載のシステム。
  10. 前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも1つ上に画定された構造パターンをさらに備える、請求項1に記載のシステム。
  11. 前記構造パターンは、エッチングされた格子パターンを備える、請求項10に記載のシステム。
  12. 前記構造パターンは、複数の追加の突出部と複数のチャネルとを備え、前記追加の突出部の各々の高さは、1μmと10μmとの間である、請求項10に記載のシステム。
  13. 前記追加の突出部の各々の幅は、50μmと200μmとの間である、請求項12に記載のシステム。
  14. 前記構造パターンは、疎水性ナノ構造を備える、請求項10に記載のシステム。
  15. 前記疎水性ナノ構造は、有機修飾シリカ、ポリジメチルシロキサン、フルオロシラン、またはテフロンのうちの少なくとも1つを備える、請求項14に記載のシステム。
  16. 前記構造パターンは、前記第1のモールド構造または前記第2のモールド構造のうちの少なくとも1つを横断する前記光硬化性材料の流動を妨げるように構成されている、請求項10に記載のシステム。
  17. 前記構造パターンの体積は、(i)前記光硬化性材料の体積と、(ii)前記第1のモールド構造と前記第2のモールド構造との間に画定された体積との間の差よりも大きい、請求項16に記載のシステム。
  18. 前記構造パターンは、対応するパターンを前記ポリマーフィルムの縁に授けるように構成されている、請求項10に記載のシステム。
  19. 1つ以上の加熱要素をさらに備え、
    動作中、前記システムは、前記1つ以上の加熱要素を使用して、前記体積内の前記光硬化性材料に熱を印加するように構成されている、請求項1に記載のシステム。
  20. 動作中、前記システムは、前記体積が20μmと2mmとの間の厚さを有するように、前記第1のモールド構造および前記第2のモールド構造を位置付けるように構成されている、請求項1に記載のシステム。
JP2022145179A 2017-10-17 2022-09-13 ポリマー製品を成型する方法および装置 Active JP7353449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023151025A JP2024001894A (ja) 2017-10-17 2023-09-19 ポリマー製品を成型する方法および装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762573479P 2017-10-17 2017-10-17
US62/573,479 2017-10-17
US201862746426P 2018-10-16 2018-10-16
US62/746,426 2018-10-16
JP2020521445A JP7142691B2 (ja) 2017-10-17 2018-10-17 ポリマー製品を成型する方法および装置
PCT/US2018/056326 WO2019079480A1 (en) 2017-10-17 2018-10-17 METHODS AND APPARATUS FOR CASTING POLYMER PRODUCTS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020521445A Division JP7142691B2 (ja) 2017-10-17 2018-10-17 ポリマー製品を成型する方法および装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023151025A Division JP2024001894A (ja) 2017-10-17 2023-09-19 ポリマー製品を成型する方法および装置

Publications (2)

Publication Number Publication Date
JP2022184937A JP2022184937A (ja) 2022-12-13
JP7353449B2 true JP7353449B2 (ja) 2023-09-29

Family

ID=66097240

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020521445A Active JP7142691B2 (ja) 2017-10-17 2018-10-17 ポリマー製品を成型する方法および装置
JP2022145179A Active JP7353449B2 (ja) 2017-10-17 2022-09-13 ポリマー製品を成型する方法および装置
JP2023151025A Pending JP2024001894A (ja) 2017-10-17 2023-09-19 ポリマー製品を成型する方法および装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020521445A Active JP7142691B2 (ja) 2017-10-17 2018-10-17 ポリマー製品を成型する方法および装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023151025A Pending JP2024001894A (ja) 2017-10-17 2023-09-19 ポリマー製品を成型する方法および装置

Country Status (9)

Country Link
US (4) US11318692B2 (ja)
EP (2) EP3697588B1 (ja)
JP (3) JP7142691B2 (ja)
KR (2) KR102527262B1 (ja)
CN (2) CN111225780B (ja)
AU (1) AU2018352982A1 (ja)
CA (1) CA3076669A1 (ja)
IL (1) IL273750A (ja)
WO (1) WO2019079480A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170269A1 (en) 2017-03-16 2018-09-20 Molecular Imprints, Inc. Optical polymer films and methods for casting the same
US10515461B2 (en) * 2017-07-17 2019-12-24 Purdue Research Foundation Referencing system
US11318692B2 (en) * 2017-10-17 2022-05-03 Magic Leap, Inc. Methods and apparatuses for casting polymer products
WO2019195193A1 (en) 2018-04-02 2019-10-10 Magic Leap, Inc. Waveguides having integrated spacers, waveguides having edge absorbers, and methods for making the same
WO2019241398A1 (en) 2018-06-12 2019-12-19 Wendong Xing Edge sealant application for optical devices
EP4273612A3 (en) 2018-07-23 2023-12-06 Magic Leap, Inc. Optical device venting gaps for edge sealant and lamination dam
US11009661B2 (en) 2018-10-16 2021-05-18 Magic Leap, Inc. Methods and apparatuses for casting polymer products
CN115625829A (zh) 2018-10-16 2023-01-20 奇跃公司 一种形成具有预定形状的波导部分的方法
CN114341687A (zh) * 2019-06-24 2022-04-12 奇跃公司 具有集成间隔物的波导及相关系统和方法
US12038591B2 (en) 2019-06-24 2024-07-16 Magic Leap, Inc. Polymer patterned disk stack manufacturing
US11307408B2 (en) 2019-10-08 2022-04-19 Magic Leap, Inc. Color-selective waveguides for augmented reality/mixed reality applications
DE102019134739B3 (de) * 2019-12-17 2021-04-01 Meissner Ag Modell- Und Werkzeugfabrik Kernschießverfahren und Kernschießvorrichtung für die Herstellung von Kernen mit gleichzeitigem Härtungsverfahren
CZ202095A3 (cs) * 2020-02-24 2021-03-10 ROmiLL, spol. s r.o. Zařízení a způsob mikrovlnného ohřevu rotačních těles, zejména surových pneumatik
WO2021183919A1 (en) * 2020-03-12 2021-09-16 Magic Leap, Inc. Methods and apparatuses for casting optical polymer films
JP2023531478A (ja) 2020-06-25 2023-07-24 マジック リープ, インコーポレイテッド 頭部搭載型ディスプレイのための接眼レンズおよびそれを作製するための方法
TW202204937A (zh) 2020-07-30 2022-02-01 鮑威源 導向鏡組、變焦導向鏡組、傳輸鏡組及其應用
WO2022099602A1 (en) * 2020-11-13 2022-05-19 Haier Us Appliance Solutions, Inc. Annular heating assembly for an ice press
CN115157506B (zh) * 2021-02-04 2023-11-28 浙江大学台州研究院 一种精准检测以及控制液位的镜片浇注方法
JP7563265B2 (ja) 2021-03-23 2024-10-08 株式会社リコー プラスチック素子の製造方法、及びプラスチック素子の製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138416A (ja) 2003-11-06 2005-06-02 Kuraray Medical Inc コンタクトレンズ用の成形型
JP2010052172A (ja) 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd 合成樹脂の成形装置
JP2012187762A (ja) 2011-03-09 2012-10-04 Hitachi Maxell Ltd 微細パターン成形品の製造方法、スタンパおよび微細パターン成形品
JP2013051360A (ja) 2011-08-31 2013-03-14 Fujikura Ltd 絶縁性基板の製造方法及び多層積層板の製造方法
JP2014187331A (ja) 2013-03-25 2014-10-02 Toshiba Corp モールド及びその製造方法
JP2016195247A (ja) 2015-03-31 2016-11-17 芝浦メカトロニクス株式会社 インプリント用のテンプレート製造装置

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101202A (en) * 1963-07-26 1968-01-31 Leavlite Ltd Manufacture of thick sheets of synthetic resin material
US3754848A (en) 1971-11-10 1973-08-28 Cpi Inc High speed single cavity molding apparatus
DE2408748C3 (de) 1974-02-23 1981-02-26 Basf Ag, 6700 Ludwigshafen Verfahren und Vorrichtung zum Herstellen von Druckplatten
JPS59112625A (ja) 1982-12-18 1984-06-29 Mitsubishi Electric Corp 表面異物除去装置
GB8503695D0 (en) 1985-02-13 1985-03-13 Bp Chem Int Ltd Sandwich mouldings
US6201037B1 (en) 1986-01-28 2001-03-13 Ophthalmic Research Group International, Inc. Plastic lens composition and method for the production thereof
US5415816A (en) 1986-01-28 1995-05-16 Q2100, Inc. Method for the production of plastic lenses
JPS62198428A (ja) 1986-02-26 1987-09-02 Toshiba Corp 射出圧縮成形法
JPH04280824A (ja) 1991-03-06 1992-10-06 Canon Inc 光学素子の製造装置
JPH0623508A (ja) 1992-04-15 1994-02-01 Ryobi Ltd 金型内圧力測定装置
US6800225B1 (en) 1994-07-14 2004-10-05 Novartis Ag Process and device for the manufacture of mouldings and mouldings manufactured in accordance with that process
IL113693A0 (en) 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Contact lens production line pallet system
US6022498A (en) * 1996-04-19 2000-02-08 Q2100, Inc. Methods for eyeglass lens curing using ultraviolet light
US6096155A (en) * 1996-09-27 2000-08-01 Digital Optics Corporation Method of dicing wafer level integrated multiple optical elements
JPH11288340A (ja) 1998-04-02 1999-10-19 Canon Inc 手書き電子機器
US6419873B1 (en) 1999-03-19 2002-07-16 Q2100, Inc. Plastic lens systems, compositions, and methods
US6719929B2 (en) 2000-02-04 2004-04-13 Novartis Ag Method for modifying a surface
US6696220B2 (en) 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
WO2002006902A2 (en) 2000-07-17 2002-01-24 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
AUPR245201A0 (en) * 2001-01-10 2001-02-01 Silverbrook Research Pty Ltd An apparatus and method (WSM05)
JP3656591B2 (ja) 2001-06-28 2005-06-08 ソニー株式会社 光学記録媒体製造用スタンパの製造方法および光学記録媒体の製造方法
JP2004046093A (ja) * 2002-05-24 2004-02-12 Canon Inc 回折光学素子の製造方法
MY144124A (en) 2002-07-11 2011-08-15 Molecular Imprints Inc Step and repeat imprint lithography systems
JP3969263B2 (ja) 2002-09-20 2007-09-05 富士ゼロックス株式会社 高分子光導波路の製造方法
WO2004096501A2 (en) 2003-04-30 2004-11-11 Nini Bluman Method and system for motion improvement
KR100610230B1 (ko) 2003-12-31 2006-08-08 주식회사 루밴틱스 Uv 몰딩방법을 이용한 고분자 광도파로의 제조방법
JP4196839B2 (ja) 2004-01-16 2008-12-17 富士ゼロックス株式会社 高分子光導波路の製造方法
JP4409985B2 (ja) 2004-02-20 2010-02-03 株式会社リコー プレス成形装置、プレス成形方法及び成形品
DE102004043385B3 (de) * 2004-09-08 2006-05-18 Seereal Technologies Gmbh Verfahren und Einrichtung zur Replikation fein strukturierter Flachoptiken und optischen Masken mit derartigen strukturierten Optiken
JP2006202920A (ja) 2005-01-19 2006-08-03 National Institute Of Information & Communication Technology 加工装置
US7635263B2 (en) 2005-01-31 2009-12-22 Molecular Imprints, Inc. Chucking system comprising an array of fluid chambers
US20070023976A1 (en) 2005-07-26 2007-02-01 Asml Netherlands B.V. Imprint lithography
US20070037897A1 (en) 2005-08-12 2007-02-15 Guigui Wang Method for making contact lenses
WO2008060266A2 (en) 2005-10-03 2008-05-22 Massachusetts Institute Of Technology Nanotemplate arbitrary-imprint lithography
JP5268239B2 (ja) 2005-10-18 2013-08-21 キヤノン株式会社 パターン形成装置、パターン形成方法
JP2007219106A (ja) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
US20070216048A1 (en) * 2006-03-20 2007-09-20 Heptagon Oy Manufacturing optical elements
JP4854383B2 (ja) 2006-05-15 2012-01-18 アピックヤマダ株式会社 インプリント方法およびナノ・インプリント装置
US7618752B2 (en) 2006-10-12 2009-11-17 Hewlett-Packard Development Company, L.P. Deformation-based contact lithography systems, apparatus and methods
US9944031B2 (en) 2007-02-13 2018-04-17 3M Innovative Properties Company Molded optical articles and methods of making same
JP2008296450A (ja) 2007-05-31 2008-12-11 Olympus Corp 複合光学素子の成形方法
DK2052693T4 (da) * 2007-10-26 2021-03-15 Envisiontec Gmbh Proces og fri-formfabrikationssystem til at fremstille en tredimensionel genstand
US8361371B2 (en) 2008-02-08 2013-01-29 Molecular Imprints, Inc. Extrusion reduction in imprint lithography
JP2009200345A (ja) 2008-02-22 2009-09-03 Canon Inc 加工装置
WO2009116447A1 (ja) * 2008-03-19 2009-09-24 コニカミノルタオプト株式会社 ウエハレンズの製造方法
JP5366452B2 (ja) 2008-06-23 2013-12-11 東芝機械株式会社 被成型品の成型方法および成型装置
JP4768060B2 (ja) * 2008-09-25 2011-09-07 シャープ株式会社 光学素子、光学素子ウエハ、光学素子ウエハモジュール、光学素子モジュール、光学素子モジュールの製造方法、電子素子ウエハモジュール、電子素子モジュールの製造方法、電子素子モジュールおよび電子情報機器
CN101844389B (zh) 2009-03-27 2013-02-06 金宇轩 模内涂装整合系统的加工方法
JP5297266B2 (ja) 2009-05-19 2013-09-25 東芝機械株式会社 転写装置および転写方法
WO2010143466A1 (ja) * 2009-06-12 2010-12-16 コニカミノルタオプト株式会社 ウエハレンズの製造方法、中間型、光学部品、成形型及び成形型の製造方法
JP5707577B2 (ja) 2009-08-03 2015-04-30 ボンドテック株式会社 加圧装置および加圧方法
KR101005583B1 (ko) 2009-08-04 2011-01-05 한국기계연구원 기판 정렬 모듈 및 이를 구비하는 리소그래피 장치
US9079369B2 (en) 2009-10-21 2015-07-14 International Business Machines Corporation Enhanced separation of injection molded microlenses for high volume manufacturing
JP5419634B2 (ja) 2009-10-26 2014-02-19 株式会社東芝 パターン形成方法
CN103025496A (zh) * 2010-07-30 2013-04-03 柯尼卡美能达先进多层薄膜株式会社 成形装置及成形方法
SG188343A1 (en) 2010-09-03 2013-04-30 Ev Group E Thallner Gmbh Device and method for reducing a wedge error
EP2639033A4 (en) 2010-11-09 2016-12-21 Konica Minolta Inc METHOD FOR PRODUCING THIN LENS
US20120161367A1 (en) * 2010-12-28 2012-06-28 Taylor Made Golf Company, Inc. Mold base for urethane casting process
TWI503580B (zh) 2011-01-25 2015-10-11 Konica Minolta Opto Inc 成形模具、薄片狀透鏡以及光學透鏡之製造方法
JP5806494B2 (ja) 2011-04-01 2015-11-10 旭化成株式会社 ローラーモールドの作製方法
JP5893303B2 (ja) 2011-09-07 2016-03-23 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
JP5203493B2 (ja) 2011-09-29 2013-06-05 シャープ株式会社 成形装置および成形方法
JP5699228B2 (ja) * 2012-01-17 2015-04-08 富士フイルム株式会社 光学素子の製造方法及び光学素子
WO2013153613A1 (ja) 2012-04-09 2013-10-17 アイトリックス株式会社 インプリント装置、加圧部材、及びインプリント製造方法
TWI445616B (zh) 2012-05-16 2014-07-21 Ultrasonic stripping device and its application in manufacturing contact lens method
JP2013251462A (ja) 2012-06-01 2013-12-12 Canon Inc インプリント装置、および、物品の製造方法
US20140239529A1 (en) 2012-09-28 2014-08-28 Nanonex Corporation System and Methods For Nano-Scale Manufacturing
WO2014098093A1 (ja) * 2012-12-21 2014-06-26 旭硝子株式会社 光学素子の製造方法、光学素子、光学系及び撮像装置
WO2014145826A2 (en) 2013-03-15 2014-09-18 Nanonex Corporation System and methods of mold/substrate separation for imprint lithography
DE102013207243B4 (de) 2013-04-22 2019-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur herstellung einer struktur aus aushärtbarem material durch abformung
JP6230353B2 (ja) 2013-09-25 2017-11-15 キヤノン株式会社 パターン形状を有する膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子機器の製造方法
JP2016031952A (ja) 2014-07-25 2016-03-07 キヤノン株式会社 インプリント装置及び物品の製造方法
US9373604B2 (en) * 2014-08-20 2016-06-21 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures for wafer level package and methods of forming same
HUE036999T2 (hu) 2014-11-06 2018-08-28 Zeiss Carl Vision Int Gmbh Eljárás szemüveglencsék elõállítására
JP2016090945A (ja) 2014-11-10 2016-05-23 大日本印刷株式会社 光学部材、光学部材の製造方法、面光源装置、映像源ユニット、及び液晶表示装置
SG11201703341XA (en) * 2014-12-17 2017-07-28 Novartis Ag Reusable lens molds and methods of use thereof
JP6131941B2 (ja) 2014-12-25 2017-05-24 マツダ株式会社 圧力センサ取付構造及び圧力センサ位置調整方法
US9429692B1 (en) * 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
EP3056331A1 (de) * 2015-02-16 2016-08-17 Swarovski Aktiengesellschaft Verbundkörper mit Dekorkörper
US10558117B2 (en) 2015-05-20 2020-02-11 Canon Kabushiki Kaisha Imprint apparatus and article manufacturing method
US10061124B2 (en) * 2016-04-29 2018-08-28 Microsoft Technology Licensing, Llc Robust architecture for large field of view components
WO2018170269A1 (en) 2017-03-16 2018-09-20 Molecular Imprints, Inc. Optical polymer films and methods for casting the same
US11318692B2 (en) * 2017-10-17 2022-05-03 Magic Leap, Inc. Methods and apparatuses for casting polymer products
CN107671159B (zh) 2017-10-18 2020-02-18 大连理工大学 超声振动辅助脱模的限制性模压模具及晶粒细化方法
US11009661B2 (en) 2018-10-16 2021-05-18 Magic Leap, Inc. Methods and apparatuses for casting polymer products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138416A (ja) 2003-11-06 2005-06-02 Kuraray Medical Inc コンタクトレンズ用の成形型
JP2010052172A (ja) 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd 合成樹脂の成形装置
JP2012187762A (ja) 2011-03-09 2012-10-04 Hitachi Maxell Ltd 微細パターン成形品の製造方法、スタンパおよび微細パターン成形品
JP2013051360A (ja) 2011-08-31 2013-03-14 Fujikura Ltd 絶縁性基板の製造方法及び多層積層板の製造方法
JP2014187331A (ja) 2013-03-25 2014-10-02 Toshiba Corp モールド及びその製造方法
JP2016195247A (ja) 2015-03-31 2016-11-17 芝浦メカトロニクス株式会社 インプリント用のテンプレート製造装置

Also Published As

Publication number Publication date
JP7142691B2 (ja) 2022-09-27
US20240308162A1 (en) 2024-09-19
CN115257026A (zh) 2022-11-01
CN111225780B (zh) 2022-08-26
US20230373174A1 (en) 2023-11-23
KR20200068713A (ko) 2020-06-15
EP3697588B1 (en) 2024-04-03
EP3697588A1 (en) 2020-08-26
JP2020537603A (ja) 2020-12-24
US12030269B2 (en) 2024-07-09
EP4420867A1 (en) 2024-08-28
CN111225780A (zh) 2020-06-02
CA3076669A1 (en) 2019-04-25
AU2018352982A1 (en) 2020-05-07
KR20230058550A (ko) 2023-05-03
WO2019079480A1 (en) 2019-04-25
US20190111642A1 (en) 2019-04-18
US20220242076A1 (en) 2022-08-04
EP3697588A4 (en) 2021-03-24
IL273750A (en) 2020-05-31
US11318692B2 (en) 2022-05-03
JP2024001894A (ja) 2024-01-10
JP2022184937A (ja) 2022-12-13
KR102527262B1 (ko) 2023-04-28
US11787138B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7353449B2 (ja) ポリマー製品を成型する方法および装置
CN113167969B (zh) 用于浇铸聚合物产品的方法和装置
CN113165225B (zh) 一种形成具有预定形状的波导部分的方法
WO2006109425A1 (ja) 光造形方法
JP2014120604A (ja) インプリント装置、デバイス製造方法及びインプリント装置に用いられる型
JP2023107839A (ja) スタンプ、当該スタンプを用いた転写方法およびmems製造方法
JP7573128B2 (ja) ポリマー製品を鋳造するための方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R150 Certificate of patent or registration of utility model

Ref document number: 7353449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150