JP7316026B2 - 殺菌発酵乳の製造方法 - Google Patents

殺菌発酵乳の製造方法 Download PDF

Info

Publication number
JP7316026B2
JP7316026B2 JP2018067577A JP2018067577A JP7316026B2 JP 7316026 B2 JP7316026 B2 JP 7316026B2 JP 2018067577 A JP2018067577 A JP 2018067577A JP 2018067577 A JP2018067577 A JP 2018067577A JP 7316026 B2 JP7316026 B2 JP 7316026B2
Authority
JP
Japan
Prior art keywords
fermented milk
milk
heat
sterilized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067577A
Other languages
English (en)
Other versions
JP2019176774A (ja
Inventor
佑介 野澤
誠二 長岡
淳 宮内
朋史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2018067577A priority Critical patent/JP7316026B2/ja
Priority to PCT/JP2019/013525 priority patent/WO2019189551A1/ja
Priority to CN201980022575.4A priority patent/CN111918554A/zh
Publication of JP2019176774A publication Critical patent/JP2019176774A/ja
Application granted granted Critical
Publication of JP7316026B2 publication Critical patent/JP7316026B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Description

本発明は、発酵後に加熱殺菌された、殺菌発酵乳の製造方法に関する。
平成26年12月23日に公布され、施行された、改正乳等省令(乳及び乳製品の成分規格等に関する省令)において、発酵させた後において加熱殺菌した発酵乳(殺菌発酵乳)に関する成分規格等が規定された。詳細には、発酵乳については、従来より製品規格として、乳酸菌数又は酵母数(1mlあたり)が1000万以上であることが定められていたが、改正により、発酵乳のうち、発酵させた後において、75℃以上で15分間加熱するか、又はこれと同等以上の殺菌効果を有する方法で加熱殺菌したものは、この限りでないことが規定された。これにより、従来の発酵乳と比較して賞味期限が長く、保存中の風味変化の少ない殺菌発酵乳の開発が今後期待される。
一方、乳中に含まれるカゼインは、酸性域等において凝集分離して沈殿する性質があることが知られている。このような問題を解決するために、酸性乳飲料等では、凝集や沈殿を抑制するための成分を添加して安定化することが試みられている。例えば、特許文献1は、酸性飲料中で凝集分離が起これば、飲料の外観を著しく損ない、商品価値が下落することに鑑み、乳タンパクが凝集分離を起こさないような発酵乳飲料又は乳酸菌飲料の製造法として、原料発酵乳を製造するにあたり、予めタンパク原料中にカルボキシメチルセルロースナトリウムを添加しておくことを特徴とする方法を提案する。特許文献2は、酸性乳飲料の製造において、従来の安定剤を発酵前に添加して原料発酵乳を調製すると、凝集分離などにより上澄みや沈殿が生じて糊状感を与え、また食後にざらつき感がでるという問題がある一方で、原料発酵乳と安定剤溶液とを別々に調製する方法では工程も設備も複雑になるという問題に鑑み、安定剤として水溶性ヘミセルロースを採用し、その存在下で乳酸菌発酵させる方法を提案する。特許文献3は、酸性下のタンパク質の安定性の向上、及び低粘度化による食感の改良を同時に図ることを課題とし、酸性乳飲料等において、低分子化したペクチンを多く含有させることを提案する。特許文献4は、高濃度のカゼインを含む乳タンパク質を含有する酸性乳飲料において、分離及び沈殿を抑制し、低粘度で飲みやすい形態の酸性乳飲料及びその製造方法を提供することを課題としてなされたものであり、大豆多糖類、HMペクチン、不溶性セルロースそれぞれを特定の濃度で含有させたことを特徴とする酸性乳飲料を提案する。
また特許文献5は、保存中の発酵乳におけるpH低下を防ぐために発酵後に加熱殺菌することに着目し、pH6.0以下では加熱によりタンパク質の凝集が生じやすい一方で従来の酸乳安定剤はpH5以下でしか効果が発揮されないことに鑑み、架橋型加工デンプンを採用し、これを含む調乳液をpH5.3~6まで発酵させ、得られた発酵物を加熱殺菌する、発酵乳の製造方法を提案する。特許文献6は、発酵後に加熱処理を行っても、良好な風味となめらかな組織を両立できる乳タンパク質が高濃度に含まれる発酵乳の製造方法として、pH3.3~5.2の高タンパク質濃度の発酵乳に対して75℃以上の加熱処理を施す際に、架橋型加工デンプンと酸乳安定剤を含有させることを提案する。
特開昭63-157931号公報 特開平7-059512号公報 特開2001-61409号公報 国際公開WO2016/068251号公報 特開2017-063727号公報 特開2017-169477号公報
本発明は、発酵乳を加熱殺菌する際に生じる、凝集物あるいは粒子径の増大を抑制した殺菌発酵乳を得ることを課題とする。上述のように、酸性下において乳を加熱処理すると、乳タンパク質の凝集が生じ、著しい風味の悪化に繋がる。特に乳に含まれるタンパク質の濃度が高い場合、凝集が増すため、凝集を防止するには多量の安定剤の含有が必要となり、さらに風味を低下させる要因となってしまうという問題がある。
本発明者らは、殺菌発酵乳の製造に際し、加熱殺菌工程における凝集物の発生や粒子径の増大を抑制するための条件について種々検討した。その結果、加熱殺菌工程における温度の制御が効果的であり、特に発酵乳と熱媒との温度差を低く制御することで、発酵乳を安定化でき、ざらつきが少ない良好な殺菌発酵乳が得られることを見出し、本発明を完成した。
本発明は、以下を提供する。
[1] 殺菌発酵乳の製造方法であって、
原料乳を発酵させ、発酵乳を得る工程;及び
得られた発酵乳を加熱殺菌する工程であって、発酵乳の温度、及び発酵乳と熱媒との温度差(Δt)を制御し、発酵乳における凝集物又は粒子の径の増大を抑制する工程
を含む、製造方法。
[2] 殺菌発酵乳の製造方法であって、
加熱殺菌工程において、発酵乳と熱媒との温度差(Δt)を7.0℃以下に制御する工程
を含む、製造方法。
[3] Δtを7.0℃以下に制御することが、少なくとも発酵乳の温度が60℃以上であるときに行われる、2に記載の製造方法。
[4] 加熱殺菌工程における殺菌条件が、75℃以上で15分間、又はこれと同等以上の殺菌効果を有する加熱条件である、1~3のいずれか1項に記載の製造方法。
[5] 発酵工程が、発酵乳が、pH5.2以下となるまで行われる、1~4のいずれか1項に記載の製造方法。
[6] 加熱殺菌工程の前、又は後に均質化工程を含む、1~5のいずれか1項に記載の製造方法。
[7] 酸乳安定剤を0.30質量%以下で含む殺菌発酵乳の製造のための、1~6のいずれか1項に記載の製造方法。
[8] 加熱殺菌工程において、加熱殺菌される発酵乳と熱媒との温度差(Δt)を制御することを特徴とする、発酵乳の安定化方法。
粗大な粒子、又はざらつきの少ない殺菌発酵乳を提供できる。
熱制御することにより過度に酸乳安定剤を配合することなく、製造できる。
高タンパク質組成の原料を用いる場合あっても、過度に酸乳安定剤を加えることなく、殺菌処理を施しても粗大な粒子又はざらつきの少ない風味良好な殺菌発酵乳を製造することができる。
乳成分、特に乳タンパク質を多く含有する、風味良好な殺菌発酵乳を製造しうる。
業務用発酵乳として、また加工食品の原材料として本発明の発酵乳を利用した場合、乳タンパク質を多く含有する濃厚な組成であっても、凝集せず、液状又は糊状であるため、計量及び原料投入等の利便性を、向上しうる。
これまでの技術では達成できないような濃厚な液状又は糊状の殺菌発酵乳を製造しうる。
実施例1~2の昇温推移 比較例1~2の昇温推移 メディアン径の推移 メディアン径の推移
本発明は、下記の工程を含む、殺菌発酵乳の製造方法を提供する。
原料乳を発酵させ、発酵乳を得る工程(発酵工程);及び
得られた発酵乳を加熱殺菌する工程であって、加熱殺菌温度、及び発酵乳と熱媒との温度差(Δt)を制御する工程(加熱殺菌工程)。
<発酵工程>
[原料乳]
本発明に用いられる原料乳は、生乳、クリーム、濃縮脱脂乳、乳タンパク質濃縮物、牛乳、特別牛乳、生山羊乳、殺菌山羊乳、生めん羊乳、成分調整牛乳、低脂肪牛乳、無脂肪牛、及び加工乳からなる群より選択されるいずれかを含んでいてよい。
原料乳の乳脂肪の濃度は、原料乳の全体に対して、8.0質量%以下が例示され、0.01~8.0質量%が好ましく、0.01~7.0質量%がより好ましく、0.01~6.0質量%がさらに好ましい。原料乳全体に対する乳脂肪の濃度が上記範囲内であることにより、得られる殺菌発酵乳において風味が適したものとなるからである。
原料乳の無脂乳固形分(SNF)の濃度は、原料乳の全体に対して、20質量%以下が例示され、1~20質量%が好ましく、3~19質量%がより好ましく、5~18質量%がさらに好ましい。原料乳全体に対する無脂乳固形分(SNF)の濃度が上記範囲内であることによって、得られる殺菌発酵乳において風味が良好となるからである。なお、無脂乳固形分(SNF)とは、乳成分のうち、乳脂肪を除いた成分を意味する。
原料乳のタンパク質の濃度は、原料乳の全体に対して、12質量%以下が例示され、1~11質量%が好ましく、1.5~10質量%がより好ましく、2~9質量%がさらに好ましい。原料乳全体に対する乳タンパク質の濃度が上記範囲内であることによって、得られる殺菌発酵乳において風味が良好となるからである。原料乳における乳タンパク質濃度が高くなると、酸性条件下や加熱下において凝集が生じやすくなると考えられるが、本発明の製造方法では適切に安定化されることから、原料乳のタンパク質濃度が高い場合であっても、良好な殺菌発酵乳を得ることができる。
原料乳は、ホモミキサーやホモジナイザー等を用いた均質化工程を経たものであってもよい。均質化により、脂肪球が微粒化され、生乳やクリームに含まれる乳脂肪分の分離や浮上が抑制される。生乳やクリームを配合しない場合には、均質化工程を省略してもよい。
原料乳は、間接加熱装置や直接加熱装置や通電加熱装置等による殺菌工程を経たものであってもよい。原料乳を殺菌する方法や設備には、食品分野において通常使用される方法や設備を使用すればよい。このとき、原料乳を殺菌する方法として、例えば、低温保持殺菌法(LTLT、60~70℃、20~40分間等)、高温保持殺菌法(HTLT、80~90℃、5~20分間等)、高温短時間殺菌法(HTST、100~110℃、1~3分間等)、超高温瞬間殺菌法(UHT、120~150℃、1~10秒間等)等が例示される。原料乳を殺菌する前に、必要に応じて、原料乳のpHを調整してもよい。そして、原料乳を殺菌した後には、原料乳を発酵温度の近くまで冷却してから、発酵のためのスターターを添加するとよい。
[乳酸菌等]
発酵工程は、原料乳に微生物スターターを接種することにより開始される。微生物としては、例えば、乳酸菌、ビフィズス菌、酵母等が例示される。本発明において、乳酸菌、ビフィズス菌、酵母等には、本発明の効果が得られれば、公知のものを適宜使用できる。具体的には、乳酸菌の場合、発酵乳の製造において使用の実績があるブルガリア菌、サーモフィラス菌、ラクチス菌、クレモリス菌、カゼイ菌、ビフィズス菌が例示され、ヨーグルトの製造において一般的な使用の実績があるブルガリア菌とサーモフィラス菌の組合せ(混合物)が好ましい。以下、乳酸菌を例に挙げて、原料乳の発酵について具体的に説明するが、本発明においては原料乳の発酵に使用できる微生物は乳酸菌に限られるものではない。
[発酵条件]
原料乳を発酵する条件は、本発明の効果が得られれば、特に制限されないが、発酵温度及び/又は発酵時間を適宜調整することが好ましい。このとき、本発明において、発酵温度は、実際に使用する乳酸菌の種類や乳酸菌の活動の至適温度等に依存するが、例えば、30~50℃が例示され、35~48℃が好ましく、38~45℃がより好ましい。具体的に例えば、ブルガリア菌とサーモフィラス菌の組合せ(混合物)では、30~45℃が例示され、32~44℃が好ましく、34~44℃がより好ましく、36~43℃がさらに好ましく、38~43℃が特に好ましい。発酵温度が前記範囲であることによって、適正な発酵時間で風味良好な発酵乳ができる。
また、発酵時間は、実際に使用する乳酸菌の種類や乳酸菌の添加量や発酵温度等に依存するが、具体的には、例えば、ブルガリア菌とサーモフィラス菌の組合せ(混合物)を用いる場合、1~20時間が例示され、1.5~15時間が好ましく、2~12時間がより好ましく、2.5~10時間がさらに好ましい。発酵時間が前記範囲であることによって、製造適性も良好で、風味良好な殺菌発酵乳ができる。
発酵工程は、pHが適切な値となるまで行うことができる。発酵終了時のpHは、3.0~5.2が例示され、3.2~4.9が好ましく、3.4~4.8がより好ましく、3.6~4.5がさらに好ましく、3.8~4.3が特に好ましい。原料乳の発酵終了時のpHが前記範囲であることによって、風味が良好な発酵乳が得られるからである。pHが、等電点付近の3.8~5.2である場合、発酵乳において凝集が生じやすくなると考えられるが、本発明の製造方法では適切に安定化されることから、十分な発酵が行なわれた場合であっても、良好な殺菌発酵乳を得ることができる。原料乳の発酵終了時のpHは、例えばpH計で測定する。本発明に関し、pHの値を示すときは、特に記載した場合を除き、10℃における値である。
<加熱殺菌工程>
本発明においては、発酵乳は、加熱殺菌され、殺菌発酵乳が製造される。
[加熱殺菌方式等]
加熱殺菌における加熱熱源(熱媒)としては、水蒸気又は熱水を用いることができる。方式は、熱媒殺菌対象と熱媒を接触させることなく熱交換器伝熱壁を介して加熱する間接加熱方式であってもよく、熱媒水蒸気を加熱対象に接触させる直接加熱方式であってもよいが、後述するΔtが制御しやすいとの観点からは、間接加熱方式が好ましい。間接加熱方式においては、プレート式熱交換器、二重管式熱交換器、多重管式熱交換器、多管式熱交換器を使用することができる。
[殺菌条件]
殺菌条件は、発酵乳の風味の劣化を適切に抑えられる条件であれば、特に限定されないが、改正された乳等省令で規定されている、発酵乳の発酵後の加熱殺菌条件を適用できる。具体的には75℃以上で15分間、又はこれと同等以上の殺菌効果を有する加熱条件であることが好ましい。これと同等以上の殺菌効果を有する加熱条件は、80℃での5分間~100℃での3秒間の範囲内であってもよい。この範囲には、85℃での120秒間の加熱が含まれる。加熱殺菌後は速やかに冷却することが好ましい。
上記以外の殺菌条件は、例えば50~100℃程度で5秒~30分間、60~100℃程度で5秒~20分間、70~100℃程度で5秒~10分間、80~100℃程度で5秒~10分間であり得る。
本発明においては、発酵後の加熱殺菌工程において、発酵乳の温度が55℃となるとき、好ましくは57℃以上となるとき、より好ましくは60℃以上となるときに、発酵乳の温度、及び発酵乳と熱媒との温度差(Δt)を制御する。このような温度帯においてΔtを制御することにより、殺菌発酵乳における凝集物又は粒子の径の増大を抑制することができる。55℃、57℃、又は60℃より下の温度帯において、Δtを制御してもよい。本発明においてはまた、発酵後の加熱殺菌工程の少なくとも一部の時間帯において、好ましくは1/2以上の時間帯において、より好ましくは殺菌工程を通じて、発酵乳の温度、及び発酵乳と熱媒との温度差(Δt)を制御してもよい。このような制御によっても、殺菌発酵乳における凝集物又は粒子の径の増大を抑制することができる。
Δtとしては、具体的には、7℃以下が例示され、好ましくは6℃以下に、より好ましくは4℃以下に、さらに好ましくは2℃以下に制御される。Δtの下限値は、特に限定されないが、発酵乳を迅速に目的の殺菌温度に到達させるとの観点からは、1℃以上とすることができ、1.4℃以上としてもよい。
食品分野における殺菌工程においては、通常、Δtは10℃程度である。しかしながら、本発明者らの検討によると、発酵乳の殺菌に際してΔtを7.0℃以内となるように加熱処理を施したところ、Δtが7.1以上となるように加熱処理を施した場合と比較して、発酵乳における凝集物と粒子系の増大を顕著に抑制しうることが分かった。また加熱殺菌工程が進むにつれ発酵乳の粒子径が増大する傾向があるが、Δtが7.1℃以上である場合には、発酵乳の温度が75℃以上となる場合に、Δtが7.0以下である場合には見られない粒子径の増大が起こることが分かった。特に85℃時点の粒子径が大幅に増大することが確認された。また高温となるにつれて、ざらつきを与える大きい粒子径の頻度が増加すること、例えば1000mPa・s以下の液状発酵乳においてざらつきを与えるような、30~40μm以上の粒子の頻度が増加することも確認された。
Δtの制御により殺菌発酵乳が安定化できるのは、Δtを、一定値以内に抑えることにより、従来の酸性飲料に比較して粘度が高いために流動性が悪い発酵乳であっても、ムラの少ない均一な殺菌ができ、過度な凝集が起こりにくいからであると考えられる。
本発明においては、加熱殺菌工程において発酵乳の温度が比較的高くなったときに、Δtを制御することとしてもよい。発酵乳の温度が高いほど、凝集物が発生しやすく、また粒子径が増大しやすいと考えられるからである。具体的には、発酵乳の温度が60℃以上である場合にΔtを7.0℃以下に制御することが例示され、また発酵乳の温度が70℃以上である場合にΔtを7.0℃以下に制御することが好ましく、発酵乳の温度が70℃以上である場合にΔtを6.0℃以下に制御することが好ましく、発酵乳の温度が80℃以上である場合にΔtを6.0℃以下に制御することが好ましく、発酵乳の温度が80℃以上である場合にΔtを4.0℃以下に制御することが好ましく、発酵乳の温度が85℃以上である場合にΔtを4.0℃以下に制御することが好ましく、発酵乳の温度が85℃以上である場合にΔtを2.0℃以下に制御することが好ましい。
加熱殺菌工程においては、凝集物の発生の抑制という観点からは初期段階でのΔtの制御は必要ではないが、初期段階の発酵乳の温度が比較的低い場合にΔtが大きくなりやすいことから、Δtの制御は、加熱殺菌工程の初期の段階で十分に行ってもよい。
<他の工程>
本発明の殺菌発酵乳の製造方法は、発酵工程及び加熱殺菌工程以外に、それらの工程のいずれかの前又は後に、他の工程を含んでいてもよい。他の工程には、発酵乳を液状化又は均質化する工程、酸乳安定剤を添加する工程、発酵乳を容器に充填する工程等が含まれる。
[液状化(破砕)又は均質化]
発酵乳には固形状のカードが含まれるが、発酵乳を液状化(破砕)又は均質化する条件は、特に制限されないが、液状化後の粘度(殺菌発酵乳の粘度)が所定の粘度に、液状化後の粒子径が所定の粒子径となるよう適宜調整することが好ましい。
カードが含まれる発酵乳を液状化又は均質化する方法や設備には、食品分野において通常使用される方法や設備を使用すればよい。例えば、ホモゲナイザー(均質機)、ホモミキサー、ホモディスパー、スーパーミキサー、メッシュフィルター、インラインミキサー、撹拌・調温の機能付きのタンク、撹拌・調温・減圧・均質化の機能付きのタンク等が例示され、これらの何れか1種を単独で使用するか、又は2種以上を組合せて使用することができる。
発酵乳を液状化又は均質化する条件は、当業者であれば、製造される殺菌発酵乳において意図する風味や食感等に応じて、適宜設計することができる。例えば、60メッシュのフィルターを用いることができ、ホモゲナイザーを使用する場合は、その圧力を0~20MPaとすることが例示され、0.2~15MPaが好ましく、0.4~10MPaがより好ましく、0.6~8MPaがさらに好ましい。ホモゲナイザーによる均質化工程は、2以上の複数の段階によりおこなってもよい。
[酸乳安定剤の添加]
本発明の殺菌発酵乳には、酸乳安定剤を添加することができる。酸乳安定剤の添加により、凝集物あるいは粒子径の増大を、より抑制することができる。酸乳安定剤を添加する場合、酸乳安定剤の種類及び量、ならびに添加方法は、本発明の効果が得られれば、特に制限されない。
酸乳安定剤の種類は、本発明の効果が得られれば、特に制限されないが、具体的には、ペクチン(ハイメトキシペクチン(HMペクチン)、ローメトキシペクチン(LMペクチン))、κ-カラギナン、ι-カラギナン、脱アシルジェランガム、アルギン酸塩が例示され、これらの何れか1種を単独で使用するか、又は2種以上を組合せて使用することができる。ペクチンとは、平均分子量が50,000~150,000Daのポリガラクチュロン酸を意味する。この構成糖のガラクチュロン酸には、フリー型とメチルエステル型の2種類があり、全ガラクチュロン酸のうち、メチルエステルとして存在するガラクチュロン酸の割合をエステル化度(DE値)と呼ぶ。このDE値により、ペクチンの性質は異なる。そして、DE値が50%以上のものをハイメトキシペクチン(HMペクチン)と呼び、50%未満のものをローメトキシペクチン(LMペクチン)という。
本発明の製造方法では、加熱殺菌工程においてΔtを制御することにより発酵乳における凝集物や粒子の径の増大が抑えられるので、発酵乳において酸乳安定剤を含まないか、又は含む量を少量とすることができる。凝集物あるいは粒子径の増大を、より抑制するとの観点からは、酸乳安定剤を含むことが好ましく、酸乳安定剤を含む場合、その量は、具体的には、殺菌発酵乳の全体に対して、0.050~0.50質量%が例示され、0.060~0.45質量%が好ましく、0.060~0.40質量%がより好ましく、0.070~0.35質量%がさらに好ましく、0.070~0.30質量%が特に好ましい。凝集物あるいは粒子径の増大をさらに抑制するとの観点からは、殺菌発酵乳における酸乳安定剤の量は、0.10~0.70質量%が例示され、0.15~0.65質量%が好ましく、0.20~0.60質量%がより好ましく、0.25~0.55質量%がさらに好ましく、0.30~0.50質量%が特に好ましい。
酸乳安定剤の添加方法は、本発明の効果が得られれば、特に制限されないが、原料乳の殺菌工程の前、発酵工程の前、発酵乳の加熱殺菌工程の前等が例示できる。添加は、酸乳安定剤が十分に分散・溶解されればよく、例えば、酸乳安定剤を水等に分散させてから加温して溶解させた後に、この溶液を原料乳等に添加する方法、酸乳安定剤が溶解できる温度に原料乳等を加温し、この加温した原料乳等に酸乳安定剤を分散・溶解させる方法、原料乳等と酸乳安定剤の溶液を別々に殺菌した後に、これらを混合する方法等が例示される。
<殺菌発酵乳の特徴>
[粘度]
本発明により得られる殺菌発酵乳の加熱殺菌直後の粘度は、例えば、200~800mPa・s(測定温度:10℃)である。殺菌発酵乳の粘度が850mPa・s(測定温度:10℃)を超えると、液状らしさが弱まり、糊状らしさが強まる傾向にある。
液状化又は均質化のための工程を経た場合、殺菌発酵乳の粘度は、800mPa・s以下であり、750mPa・s以下が好ましく、700mPa・s以下がより好ましく、650mPa・s以下がさらに好ましい。液状化後の粘度を前記範囲とすることによって、食感が良好な発酵乳が得られるためである。また発酵乳においては、粘度が低いほど、凝集物や径の増大した粒子によるざらつきを感じやすいが、本発明の製造方法では、殺菌発酵乳において凝集物や粒子の径の増大が抑えられているので、粘度を低くすることができる。なお本発明において、発酵乳の粘度を示すときは、特に記載した場合を除き、10℃での粘度の値である。
粘度は、B型粘度計(例えば、VISCO METER-TV-10、東機産業株式会社)で測定することができる。具体的には、試料(検体):100mLを10℃で牛乳壜(容量:110mL)に充填してから、ローターにスピンドルM2(東機産業株式会社)を使用し、ローターを回転(60rpm、30秒間)させて測定することができる。そして、B型粘度計で測定する上記以外の方法で、粘度を測定した場合には、B型粘度計で測定した粘度の測定値の差異と調整して、本発明の粘度の範囲(上限値、下限値等)を設定することができる。
[凝集物]
本発明により得られる殺菌発酵乳においては、凝集物が抑制されている。発酵乳における凝集物の有無、又は程度は官能検査により、ざらつきの有無又は程度を確認することにより、評価することができる。
[粒子径]
本発明により得られる殺菌発酵乳の加熱殺菌直後の発酵乳のメディアン径は、例えば20μm以下である。本発明の殺菌発酵乳のメディアン径は、1~20μmが好ましく、2~18μmがより好ましく、4~18μmがさらに好ましく、6~16μmがさらに好ましく、8~16μmが特に好ましい。
本発明に関し、発酵乳の粒子径をいうときは、特に記載した場合を除き、レーザー回折/散乱式粒子径分布測定装置で測定した累積粒子数分布曲線において50%となる点の粒子径、すなわち粒子数基準累積50%径(d50)をいう。より詳細には、レーザー回折式粒度分布計(例えば、SALD-2000、島津製作所)により、殺菌発酵乳の分散体の粒度分布を測定した結果に対して、その積算値で50%の粒子径であり、この積算値で50%の粒子径とは、小さい粒子径から粒子数を加算していき、粒子数の合計値の50%に到達したところの粒子径である。また本発明に関しては、この粒子数基準累積50%径(d50)をメディアン径という。
本発明により得られた殺菌発酵乳は、製造の直後から10℃、14日間保存して、離水や沈殿が認められないことが期待できる。なお、本発明において「離水が認められない」とは、実質的に離水が認められないことを意味し、離水が全く認められないか、認められたとしても極少量である場合をいう。離水が認められないことは、目視により確認できる。
また、本発明において「沈澱が認められない」とは、実質的に沈澱が認められないことを意味し、沈澱が全く認められないか、認められたとしても極少量である場合をいう。沈澱が認められないことは、目視により確認できる。
以下に、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。また、これら実施例では乳原料の配合において、タンパク質濃度が高くなるように設定した。この理由は、本発明による効果を明確にするためである。特に、乳タンパク質に関しては、カゼインの等電点であるpH4.6に近づくほどタンパク質の凝集が生じやすいことから、実施例では乳タンパク質を高く配合した。しかし、上述の理由から実施例の配合に限定されるものではない。
[試験1.加熱殺菌時の粒子径の推移評価]
<発酵乳の調製1>
乳脂肪分5.2重量%、無脂固形分17.2重量%、タンパク質8.0重量%となるように、クリーム、生乳、濃縮脱脂乳、乳タンパク質濃縮物並びに水を混合して原料ミックスを調製した。原料ミックスは75℃まで加温した後、均質機にて1次圧10MPa、2次圧5Mpa(どちらも流量は135L/h)にて均質化を行った。原料ミックスを目的に応じて任意の温度並びに時間で殺菌し、次いで43℃まで冷却した。冷却後、乳酸菌スターター(明治ブルガリアヨーグルトLB81から分離したブルガリア菌並びにサーモフィラス菌)を3.0重量%で添加し、発酵乳のpHが4.1になるまで43℃にて4時間から10時間の発酵を行った。その後、3.3%HMペクチン(CPケルコ社製)液を添加し、最終濃度が0.5%となるよう調整した。さらに、均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)にて均質化を行った。
<評価方法1>
〔メディアン径の測定方法〕
各実施例の条件にて加熱処理した発酵乳について、発酵乳の粒度分布はレーザー回折式の粒度分布測定装置SALD-2200(島津製作所製)を用いて測定した。具体的には、加熱処理後の発酵乳を測定対象のpHに調整したイオン交換水で希釈し、この回折・散乱の光強度の分布の最大値が35~75%(絶対値:700~1500)になるように調整した。そして、粒度分布測定装置用のソフトウェアWingSALD IIを用いて、この光強度の分布を解析した。
<実施例1~2>
上述の「発酵乳の調製1」にて得た発酵乳を60℃まで加温した。その後、60℃以上の温度帯を通して、その発酵乳と温水との温度差(以降、Δtと記載)が7.0℃以内となるように加熱処理を施し(図1)、60、65、70、75、80、85℃におけるメディアン径並びに粒度分布について評価した。
<比較例1~2>
上述の「発酵乳の調製1」にて得た発酵乳を60℃まで加温した。その後、60℃以上の温度帯を通して、その発酵乳と温水とのΔtが7.1℃以上となるように加熱処理を施し(図2)、60、65、70、75、80、85℃におけるメディアン径並びに粒度分布について評価した。
その結果、図3の通り、加熱処理温度が上昇するにつれて、発酵乳のメディアン径は増大する傾向にあるが、昇温時60℃以降のΔtが7.5℃以上の場合、85℃時点のメディアン径が大幅に増大することが確認された(比較例1、2)。これに対して、昇温時60℃以降のΔtが6.7℃以下の場合、メディアン径の大きさが抑制されていることが確認された(実施例1、2)。なお、比較例1、2では高温となるにつれて、粒度分布は粒子径の大きいものの頻度が増加するが、実施例1、2では加熱処理時のΔtを小さくすることで、抑制されることも確認された。
以上の結果から、発酵乳の加熱殺菌時のΔtを小さくすることで、加熱時に発生し、ざらつきの原因となるメディアン径の増大を抑制できることが確認された。
[試験2.連続式熱交換器を用いた際の評価]
<発酵乳の調製2>
乳脂肪分5.2重量%、無脂固形分17.2重量%、タンパク質8.0重量%となるように、クリーム、生乳、濃縮脱脂乳、乳タンパク質濃縮物並びに水を混合して原料ミックスを調製した。原料ミックスは75℃まで加温した後、均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)にて均質化を行った。原料ミックスを目的に応じて任意の温度並びに時間で殺菌し、次いで43℃まで冷却した。冷却後、乳酸菌スターター(明治ブルガリアヨーグルトLB81から分離したブルガリア菌並びにサーモフィラス菌)を3.0重量%で添加し、発酵乳のpHが4.1になるまで43℃にて4時間から10時間の発酵を行った。その後、3.3%HMペクチン液を添加し、最終濃度が0.5%となるよう調整した。さらに、ペクチンを添加した発酵乳を均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を行い、連続式熱交換器を用いて、加熱殺菌時のΔtを任意の値に調整し、85℃24秒あるいは120秒の殺菌に供した後、10℃以下に冷却した。さらに、実施例によっては均質化処理を行った。
<評価方法2>
〔粘度測定〕
各実施例の条件にて製造した発酵乳の粘度をB型粘度計TVB-10(東機産業)を用いて測定した。試料は4号(M23)ローターを用いて、10℃において60rpm、30秒間後の値を計測した。
〔メディアン径の測定方法〕
各実施例の条件にて加熱処理した発酵乳について、発酵乳の粒度分布はレーザー回折式の粒度分布測定装置SALD-2200(島津製作所製)を用いて測定した。具体的には、加熱処理後の発酵乳を測定対象に合わせてpH調整したイオン交換水で希釈し、この回折・散乱の光強度の分布の最大値が35~75%(絶対値:700~1500)になるように調整した。そして、粒度分布測定装置用のソフトウェアWingSALD IIを用いて、この光強度の分布を解析した。
〔官能評価〕
各実施例の条件にて加熱処理した発酵乳をパネル5名が試食して、ざらつきの有無を評価した。
<実施例3>
上述の「発酵乳の調製2」の記載において、加熱殺菌時のΔt(85℃時点)を1.5℃に調整し、本発酵乳を85℃24秒の殺菌に施し、その後冷却し、得た殺菌発酵乳を種々評価した。なお、この加熱処理において、少なくとも60℃以上の温度帯ではΔt≦7.0℃であった。
<実施例4>
実施例3と同様に得た殺菌発酵乳に、均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。
<実施例5>
上述の「発酵乳の調製2」の記載において、加熱殺菌時のΔt(85℃時点)を3.1℃に調整し、本発酵乳を85℃120秒の殺菌に施し、その後冷却し得た殺菌発酵乳に、均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。
<比較例3>
上述の「発酵乳の調製2」の記載において、加熱殺菌時のΔt(85℃時点)を15.2℃に調整し、本発酵乳を85℃24秒の殺菌に施し、その後冷却し、得た殺菌発酵乳を種々評価した。
<比較例4>
比較例3と同様に得た殺菌発酵乳を、均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。
その結果、下表の通り、実施例3~5ではΔtを小さく保つことにより加熱殺菌後に均質化処理を施さずとも、ざらつきなく滑らかな発酵乳が製造できることが確認された。対して、比較例3~4では加熱殺菌後に均質化処理を施しても発酵乳のざらつきは解消できないことを確認した。
以上の結果から、連続式熱交換器を用いた殺菌においても、加熱殺菌時のΔtを小さくすることで、加熱時に発生し、ざらつきの原因となる凝集物並びにメディアン径を抑制できることが確認された。
Figure 0007316026000001
[試験3.ペクチン濃度を調整した場合の評価]
<発酵乳の調製3>
乳脂肪分1.7重量%、無脂固形分16.7重量%、タンパク質6.0重量%となるように、クリーム、脱脂粉乳並びに水を混合して原料ミックスを調製した。原料ミックスは75℃まで加温した後、均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)にて均質化を行った。原料ミックスを目的に応じて任意の温度並びに時間で殺菌し、次いで43℃まで冷却した。冷却後、乳酸菌スターター(明治ブルガリアヨーグルトLB81から分離したブルガリア菌並びにサーモフィラス菌)を3.0重量%で添加し、発酵乳のpHが4.3になるまで43℃にて4時間から8時間の発酵を行った。その後、実施例によっては、60メッシュフィルター処理し、スムージング処理した発酵乳を得た。発酵後の発酵乳もしくはスムージング処理した発酵乳に、HMペクチンの最終濃度が0.3%もしくは0.5%となるように調整した。さらに、ペクチンを添加したその後、バッチ式にて加熱殺菌時のΔtを任意の値に調整し、85℃120秒の殺菌に供した後、10℃以下に冷却し、均質化処理を行った。
<評価方法3>
〔粘度測定〕
各実施例の条件にて加熱処理した発酵乳の粘度をB型粘度計TVB-10(東機産業)を用いて測定した。試料は3号(M22)もしくは4号(M23)ローターを用いて、10℃において60rpm、30秒間後の値を計測した。
〔メディアン径の測定方法〕
各実施例の条件にて加熱処理した発酵乳について、発酵乳のメディアン径はレーザー回折式の粒度分布測定装置SALD-2200(島津製作所製)を用いて測定した。具体的には、加熱処理後の発酵乳を測定対象に合わせてpH調整したイオン交換水で希釈し、この回折・散乱の光強度の分布の最大値が35~75%(絶対値:700~1500)になるように調整した。そして、粒度分布測定装置用のソフトウェアWingSALD IIを用いて、この光強度の分布を解析し、メディアン径及び標準偏差を求めた。
〔官能評価〕
各実施例の条件にて加熱処理した発酵乳をパネル5名が試食して、風味並びにテクスチャを評価した。
<実施例6>
上述の「発酵乳の調製3」の記載において、60メッシュフィルター処理し、スムージング処理した発酵乳を得た。その後、HMペクチンの最終濃度が0.3%となるように混合し、加熱殺菌時のΔtを1.0~4.0℃に調整し、本発酵乳を85℃120秒の殺菌に施し、その後冷却した。その後得た殺菌発酵乳を均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。また、加熱処理時の80、85℃におけるメディアン径についても評価した。
<実施例7>
上述の「発酵乳の調製3」の記載において得た発酵乳(60メッシュフィルター処理なし)に、HMペクチンの最終濃度が0.5%となるように調整した。その後、加熱殺菌時のΔtを2.0~4.0℃に調整し、本発酵乳を85℃120秒の殺菌に施し、その後冷却した。その後得た殺菌発酵乳を均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。また、加熱処理時の80、85℃におけるメディアン径についても評価した。
<比較例5>
上述の「発酵乳の調製3」の記載において、60メッシュフィルター処理し、スムージング処理した発酵乳を得た。その後、HMペクチンの最終濃度が0.3%となるように調整し、加熱殺菌時のΔtを8.0~12.0℃に調整し、本発酵乳を85℃120秒の殺菌に施し、その後冷却した。その後得た殺菌発酵乳を均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。また、加熱処理時の80、85℃におけるメディアン径についても評価した。
<比較例6>
上述の「発酵乳の調製3」の記載において得た発酵乳(60メッシュフィルター処理なし)に、HMペクチンの最終濃度が0.5%となるように調整した。その後、加熱殺菌時のΔtを8.0~10.0℃に調整し、本発酵乳を85℃120秒の殺菌に施し、その後冷却した。その後得た殺菌発酵乳を均質機にて1次圧10MPa、2次圧5MPa(どちらも流量は135L/h)の均質化を施し、種々評価した。また、加熱処理時の80、85℃におけるメディアン径についても評価した。
その結果、表2及び図4の通り、比較例5、6に対して、実施例6、7ではΔtを小さくすることにより、メディアン径の大きさが抑制されていることが確認された。
また、表3の通り、ペクチン濃度0.5%同様、ペクチン濃度を0.3%に低減させた場合においても、Δtを小さくすることにより、メディアン径の大きさが抑制されており、官能評価においてもざらつきが認められないことを確認された。
以上の結果から、加熱殺菌時のΔtを小さくすることで、ペクチン濃度を低下させた場合においても、加熱時に発生し、ざらつきの原因となる凝集物並びにメディアン径を抑制できることが確認された。
Figure 0007316026000002
Figure 0007316026000003

Claims (9)

  1. 殺菌発酵乳の製造方法であって、
    原料乳を発酵させ、発酵乳を得る工程;及び
    得られた発酵乳を85℃以下で加熱殺菌する工程であって、発酵乳の温度、及び発酵乳と熱媒との温度差(Δt)を7.0℃以下に制御し、発酵乳における凝集物又は粒子の径の増大を抑制し、殺菌条件が、75℃以上で15分間、又はこれと同等以上の殺菌効果を有する加熱条件である工程
    を含む、製造方法。
  2. 殺菌発酵乳の製造方法であって、
    加熱殺菌工程において、85℃以下で加熱し、発酵乳と熱媒との温度差(Δt)を7.0℃以下に制御し、殺菌条件が、75℃以上で15分間、又はこれと同等以上の殺菌効果を有する加熱条件である工程
    を含む、製造方法。
  3. Δtを7.0℃以下に制御することが、少なくとも発酵乳の温度が60℃以上であるときに行われる、請求項1又は2に記載の製造方法。
  4. 発酵工程が、発酵乳が、pH5.2以下となるまで行われる、請求項1に記載の製造方法。
  5. 加熱殺菌工程の前、又は後に均質化工程を含む、請求項1~のいずれか1項に記載の製造方法。
  6. 加熱殺菌工程の後に、10℃以下で均質化する工程を含む、請求項1~のいずれか1項に記載の製造方法。
  7. 酸乳安定剤を0.30質量%以下で含む殺菌発酵乳の製造のための、請求項1~のいずれか1項に記載の製造方法。
  8. 加熱殺菌工程において、加熱殺菌される発酵乳と熱媒との温度差(Δt)を7.0℃以下に制御することを特徴とする、発酵乳における凝集物の径の増大を抑制する方法。
  9. 加熱殺菌が、プレート式熱交換器、二重管式熱交換器、多重管式熱交換器、又は多管式熱交換器を用いるものである、請求項1~に記載の製造方法、又は請求項に記載の方法。
JP2018067577A 2018-03-30 2018-03-30 殺菌発酵乳の製造方法 Active JP7316026B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018067577A JP7316026B2 (ja) 2018-03-30 2018-03-30 殺菌発酵乳の製造方法
PCT/JP2019/013525 WO2019189551A1 (ja) 2018-03-30 2019-03-28 殺菌発酵乳の製造方法
CN201980022575.4A CN111918554A (zh) 2018-03-30 2019-03-28 杀菌发酵乳的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067577A JP7316026B2 (ja) 2018-03-30 2018-03-30 殺菌発酵乳の製造方法

Publications (2)

Publication Number Publication Date
JP2019176774A JP2019176774A (ja) 2019-10-17
JP7316026B2 true JP7316026B2 (ja) 2023-07-27

Family

ID=68062139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067577A Active JP7316026B2 (ja) 2018-03-30 2018-03-30 殺菌発酵乳の製造方法

Country Status (3)

Country Link
JP (1) JP7316026B2 (ja)
CN (1) CN111918554A (ja)
WO (1) WO2019189551A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058229A1 (ja) * 2022-09-14 2024-03-21 株式会社明治 殺菌発酵乳及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510445A (ja) 2000-10-10 2004-04-08 ビーオーピーエー・アイルランド・リミテッド 酪農製品
JP2009017864A (ja) 2007-07-16 2009-01-29 Nihon Tetra Pak Kk 飲料の製造法及び装置
CN103636781A (zh) 2013-12-11 2014-03-19 石家庄君乐宝乳业有限公司 一种奶制品及其制备方法
JP2015181391A (ja) 2014-03-24 2015-10-22 不二製油株式会社 牛乳含有液及び牛乳含有食品の製造方法
JP2017169477A (ja) 2016-03-23 2017-09-28 森永乳業株式会社 発酵乳の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL171009C (nl) * 1979-03-06 1983-02-01 Dmv Campina Bv Werkwijze voor het bereiden van een houdbare yoghurtdrank.
JPS5816857B2 (ja) * 1979-03-06 1983-04-02 デ−エムブイ−カンピナ ビ−・ブイ ヨ−グルト飲料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510445A (ja) 2000-10-10 2004-04-08 ビーオーピーエー・アイルランド・リミテッド 酪農製品
JP2009017864A (ja) 2007-07-16 2009-01-29 Nihon Tetra Pak Kk 飲料の製造法及び装置
CN103636781A (zh) 2013-12-11 2014-03-19 石家庄君乐宝乳业有限公司 一种奶制品及其制备方法
JP2015181391A (ja) 2014-03-24 2015-10-22 不二製油株式会社 牛乳含有液及び牛乳含有食品の製造方法
JP2017169477A (ja) 2016-03-23 2017-09-28 森永乳業株式会社 発酵乳の製造方法

Also Published As

Publication number Publication date
WO2019189551A1 (ja) 2019-10-03
JP2019176774A (ja) 2019-10-17
CN111918554A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
JP6600622B2 (ja) 弱酸性の乳飲料の製造方法
JP5230614B2 (ja) 発酵ホエイ調製物およびその製造方法
JP7358098B2 (ja) ヨーグルト及びヨーグルトの製造方法
JP2021016318A (ja) ヨーグルト及びヨーグルトの製造方法
RU2375879C2 (ru) Способ получения молочного продукта
JP6639043B2 (ja) 高タンパク質ヨーグルト様発酵乳の製造方法
JP5132539B2 (ja) 濃厚乳及び濃厚乳用乳化剤
EP1854362A1 (en) Modified Whey Protein for Low Casein Processed Cheese
JP2024009284A (ja) 発酵乳
JP4831747B2 (ja) 濃縮乳製品およびその製造方法
WO2012133015A1 (ja) 液状発酵乳及びその製造方法
TW201808108A (zh) 發酵滅菌的食用酸奶油組成物及其製備方法
JP7316026B2 (ja) 殺菌発酵乳の製造方法
JP6656963B2 (ja) 後発酵型ドリンクヨーグルトおよびその製造方法
JPH10313781A (ja) 酸性乳飲料の製造方法
JP6955907B2 (ja) 発酵乳の製造方法
JP6901837B2 (ja) 低温殺菌した原料ミックスを用いた発酵乳の製造方法
JP7246877B2 (ja) 液状発酵乳の製造方法
JP7118520B2 (ja) 発酵乳の製造方法
JP7471046B2 (ja) 低温発酵による発酵乳の製造方法および該方法により製造された発酵乳
WO2019064956A1 (ja) 発酵乳の製造方法
WO2019064954A1 (ja) 発酵乳及びその製造方法
WO2024058230A1 (ja) 殺菌発酵乳及びその製造方法
JP7385984B2 (ja) 発酵乳の高pH製造方法および該方法により製造された発酵乳
JP2023047901A (ja) 発酵乳及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230214

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R150 Certificate of patent or registration of utility model

Ref document number: 7316026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150