JP7300393B2 - アノード保護ポリマー層を含有するリチウム金属二次バッテリー及び製造方法 - Google Patents

アノード保護ポリマー層を含有するリチウム金属二次バッテリー及び製造方法 Download PDF

Info

Publication number
JP7300393B2
JP7300393B2 JP2019555187A JP2019555187A JP7300393B2 JP 7300393 B2 JP7300393 B2 JP 7300393B2 JP 2019555187 A JP2019555187 A JP 2019555187A JP 2019555187 A JP2019555187 A JP 2019555187A JP 7300393 B2 JP7300393 B2 JP 7300393B2
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
polymer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019555187A
Other languages
English (en)
Other versions
JP2020517054A (ja
Inventor
ツァーム,アルナ
ゼット. チャン,ボア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanotek Instruments Inc
Original Assignee
Nanotek Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanotek Instruments Inc filed Critical Nanotek Instruments Inc
Publication of JP2020517054A publication Critical patent/JP2020517054A/ja
Application granted granted Critical
Publication of JP7300393B2 publication Critical patent/JP7300393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Description

関連出願の相互参照
本出願は、2017年4月10日に出願された米国特許出願第15/483348号(その内容を参照によって本願明細書に組み入れる)に対する優先権を主張する。
本発明は、一般に、アノード活物質として(薄リチウム箔、コーティング又はシートの形態の)リチウム金属層を有する再充電可能なリチウム金属バッテリーの分野、並びにその製造方法に関する。
リチウムイオン及びリチウム(Li)金属セル(リチウム-硫黄又はLi-エアセルなどを含めて)は、電気自動車(EV)、ハイブリッド電気自動車(HEV)、並びにラップトップコンピュータ及び携帯電話などの携帯用電子デバイスのための有望な電源であると考えられている。リチウム金属は、アノード活物質として(Li4.4Si以外の)他のいかなる金属又は金属インターカレーション化合物と比較して、最も高い容量(3,861mAh/g)を有する。したがって、一般に、Li金属バッテリーは、リチウムイオンバッテリーよりも有意に高いエネルギー密度を有する。
歴史的に、再充電可能なリチウム金属バッテリーは、リチウム金属アノードと組み合わせて、カソード活物質としてTiS、MoS、MnO、CoO及びVなどの高い比容量を有する非リチウム化化合物を使用して製造されていた。バッテリーが放電されると、リチウムイオンは電解質を通ってリチウム金属アノードからカソードまで移動し、そしてカソードはリチウム化された。残念なことに、サイクル時に、リチウム金属は、最終的にバッテリー中で安全ではない状態を引き起こす樹枝状結晶の形成をもたらした。結果として、これらのタイプの二次バッテリーの製造は1990年初期に中止され、リチウムイオンバッテリーへの道が与えられた。
今でも、サイクリング安定性及び安全性の懸念は、EV、HEV及びマイクロ電子デバイス用のLi金属バッテリーのさらなる商業化を妨げる主要な要因である。これらの問題は、主にLiが、繰り返される充電-放電サイクル又は過充電の間に樹枝状結晶構造を形成する高い傾向のため、内部電気ショート及び熱暴走が導かれるためである。以下に簡単に要約されるように、樹枝状結晶に関連する問題に対処するための多くの試みがなされた。
Fauteuxら[D.Fauteuxら、「Secondary Electrolytic Cell and Electrolytic Process」、米国特許第5,434,021号明細書、1995年7月18日]は、金属アノードから電解質及び逆方向への金属イオンの移動を可能にする保護表面層(例えば、多核芳香族及びポリエチレンオキシドの混合物)を金属アノードに適用した。電着の間(すなわち、バッテリー再充電の間)、イオンが金属アノード上に逆に均一に引き付けられるため、表面層は電子導電性でもある。Alamgirら[M.Alamgirら、「Solid polymer electrolyte batteries containing metallocenes」、米国特許第5,536,599号明細書、1996年7月16日]は、固体ポリマー電解質ベースの再充電可能なバッテリー中での化学的過充電及び樹枝状結晶形成を防ぐためにフェロセンを使用した。
Skotheim[T.A.Skotheim、「Stabilized Anode for Lithium-Polymer Battery」、米国特許第5,648,187号明細書(1997年7月15日);同第5,961,672号明細書(1999年10月5日)]によって、Li金属アノードと電解質との間に挿入されたLiイオン導電性ポリマーの真空蒸着薄膜の使用によって樹枝状結晶形成に対して安定化されたLi金属アノードが提供された。Skotheimら[T.A.Skotheimら「Lithium Anodes for Electrochemical Cells」、米国特許第6,733,924号明細書(2004年5月11日);同第6,797,428号明細書(2004年9月28日);同第6,936,381号明細書(2005年8月30日);及び同第7,247,408号明細書(2007年7月24日)]によって、Li金属ベースの第1の層と、一時的な保護金属(例えば、Cu、Mg及びAl)の第2の層と、リチウムシリケート及びリチウムホスフェートなどの単一イオン導電性ガラス又はポリマーの少なくとも1層(典型的に2層以上)から構成される第3の層とからなる多層アノード構造がさらに提案された。少なくとも3又は4層からなるそのようなアノード構造は、製造及び使用するに非常に複雑であり、且つ費用がかかりすぎる。
LiI-LiPO-Pのガラス状表面層などのLiアノードのための保護コーティングは、プラズマ補助堆積から得られてよい[S.J.Viscoら、「Protective Coatings for Negative Electrodes」、米国特許第6,025,094号明細書(2000年2月15日)]。Viscoらによって、複雑な多層保護コーティングも提案されるなどした[S.J.Viscoら、「Protected Active Metal Electrode and Battery Cell Structures with Non-aqueous Interlayer Architecture」、米国特許第7,282,295号明細書(2007年10月16日);同第7,282,296号明細書(2007年10月16日);及び同第7,282,302号明細書(2007年10月16日)]。
これらの以前の努力にもかかわらず、再充電可能なLi金属バッテリーはなお市場において成功していない。これは、これらの従来技術アプローチがなお主要な欠陥を有するという概念によるものでありそうである。例えば、いくつかの場合、アノード又は電解質構造が非常に複雑である。他には、材料が非常に高価であるか、又はこれらの材料を製造するためのプロセスが非常に煩雑であるか、又は困難である。
リチウム金属アノードと関連する別の主要な問題は、アノードに再度堆積されることが不可能であり、且つアノードから単離される「機能を失ったリチウム含有種」の繰り返される形成を導く、電解質とリチウム金属との間の継続的な反応である。これらの反応は、電解質及びリチウム金属を不可逆的に消費し続け、急速な容量減衰をもたらす。リチウム金属のこのような継続的な損失を埋め合わせるために、バッテリーの製造時に、過剰量のリチウム金属(必要とされるであろう量よりも3~5倍高い量)がアノードにおいて典型的に導入される。これは、費用を追加するのみならず、バッテリーの重量及び体積を有意に増加させ、バッテリーセルのエネルギー密度を減少させる。この重大な問題は広く無視されてきたが、バッテリー産業においてこの問題への適切な解決策は存在しなかった。
明らかに、Li金属の樹枝状結晶によって誘導されるLi金属バッテリーにおける内部ショート及び熱暴走問題を防ぐため、並びにリチウム金属と電解質との間の有害な反応を減少させるか、又は排除するための、より単純で、より費用効果が高く、且つ実施することがより容易なアプローチに対する切迫した必要性が存在する。
したがって、本発明の目的は、リチウム金属アノードを有する全てのタイプのLi金属バッテリーのリチウム金属樹枝状結晶及び反応の問題を克服するための効果的な方法を提供することであった。本発明の特定の目的は、高い比容量、高い比エネルギー、安全性、並びに長期及び安定なサイクル寿命を示すリチウム金属セルを提供することであった。
本明細書において、カソードと、アノードと、カソード及びアノードの間に配置される電解質又は分離体-電解質アセンブリとを含んでなるリチウム二次バッテリーにおいて、アノードが、(a)アノード活物質としてのリチウム又はリチウム合金の箔又はコーティングと、(b)5%以上の回復可能な引張歪み、室温において10-6S/cm以上のリチウムイオン導電率及び1nm~10μmの厚さを有する高弾性ポリマーの薄層とを含んでなり、高弾性ポリマーが、0.5×10~9×10グラム/モルの分子量を有する超高分子量ポリマーを含有し、且つリチウム又はリチウム合金の箔/コーティングと電解質又は分離体-電解質アセンブリとの間に配置されているリチウム二次バッテリーが報告される。リチウム又はリチウム合金の箔又はコーティングは、集電体(例えば、Cu箔、Niフォーム、グラフェンシート、炭素ナノ繊維、カーボンナノチューブなどのナノフィラメントの多孔性の層)によって支持されてもよい。電解質がソリッドステート電解質である場合、多孔性分離体は必要とされなくてもよい。
超高分子量(UHMW)ポリマーは、好ましくは、ポリアクリロニトリル(PAN)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリアクリルアミド(PAA)、ポリ(メチルメタクリレート)(PMMA)、ポリ(メチルエーテルアクリレート)(PMEA)、そのコポリマー、そのスルホン化誘導体、その化学的誘導体、又はその組合せから選択される。
高弾性ポリマーは、一方向引張下で(ポリマー中に添加剤又は強化材の不在下で)測定される場合、少なくとも2%(好ましくは、少なくとも5%)である弾性変形を示すポリマーを意味する。材料科学及び工学の分野において、「弾性変形」とは、負荷の解放時に本質的に完全に回復可能であり、且つ回復プロセスが本質的に瞬間的(ほぼ時間遅れはない)である(機械的に応力を受けた場合の)材料の変形として定義される。従来より、そのような高弾性は、軽度に架橋されたポリマー又はゴムに由来する。それとは対照的に、本発明の高弾性ポリマーは、熱可塑性ポリマー(非架橋ポリマー又は架橋ネットワークを含有しないポリマー)に由来する。この熱可塑性物質は架橋ポリマーではない。本発明のUHMWポリマーの弾性変形は、典型的に、且つ好ましくは10%より高く、より好ましくは30%より高く、さらにより好ましくは50%より高く、なおより好ましくは100%より高い。
このUHMWポリマー層は、リチウム箔/コーティング表面に対して配置された薄膜であり得るか、又はリチウム箔/コーティング表面上に堆積された薄膜であってもよい。保護層が弾性でない場合、リチウムバッテリーが放電すると、集電体と保護層との間に間隙が生じるため、リチウム箔/コーティングの厚さを減少させてもよいことに留意されてよい。そのような間隙は、リチウムイオンが集電体に戻って再堆積することを不可能にするであろう。我々は、高弾性であるUHMWポリマーが、アノード層と合同して、又は一致して膨張又は収縮することが可能であることを観察した。この能力は、集電体(又はリチウム膜自体)と保護層との間の良好な接触を維持することを補助し、リチウムイオンの再堆積を可能にする。
UHMWポリマーは、保護層の製造を容易にするために、0.5×10~5×10グラム/モル未満、好ましくは4×10グラム/モル未満、より好ましくは3×10グラム/モル未満の分子量を有する。UHMWポリマーは、5×10グラム/モルより高いか、又は最高9×10グラム/モルまでの分子量を有することができる。分子量が高すぎると、リチウム箔/コーティング上に薄い保護ポリマー層を堆積するが困難となる可能性がある。
特定の実施形態において、超高分子量ポリマーは、その中に分散された電気導電性材料を含有する。電気導電性材料(すなわち、電子導電性材料)は、電子導電性ポリマー、金属粒子若しくはワイヤー(若しくは金属ナノワイヤー)、グラフェンシート、カーボン繊維、黒鉛繊維、カーボンナノ繊維、黒鉛ナノ繊維、カーボンナノチューブ、黒鉛粒子、膨張黒鉛フレーク、アセチレンブラック粒子又はその組合せから選択されてよい。電気導電性材料(例えば、金属ナノワイヤー、ナノ繊維など)は、好ましくは、100nm未満の厚さ又は直径を有する。
特定の実施形態において、超高分子量ポリマーは、超高分子量ポリマーの連鎖間に分散されたリチウム塩及び/又は液体溶媒を含有する。
UHMWポリマー中に分散された液体溶媒は、好ましくは、1,3-ジオキソラン(DOL)、1,2-ジメトキシエタン(DME)、テトラエチレングリコールジメチルエーテル(TEGDME)、ポリ(エチレングリコール)ジメチルエーテル(PEGDME)、ジエチレングリコールジブチルエーテル(DEGDBE)、2-エトキシエチルエーテル(EEE)、スルホン、スルホラン、炭酸エチレン(EC)、炭酸プロピレン(PC)、炭酸ジメチル(DMC)、炭酸メチルエチル(MEC)、炭酸ジエチル(DEC)、プロピオン酸エチル、プロピオン酸メチル、ガンマ-ブチロラクトン(γ-BL)、アセトニトリル(AN)、酢酸エチル(EA)、ギ酸プロピル(PF)、ギ酸メチル(MF)、トルエン、キシレン、酢酸メチル(MA)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、アリルエチルカーボネート(AEC)、ヒドロフルオロエーテル、イオン液体溶媒又はその組合せから選択されてよい。
UHMWポリマー中に分散されリチウム塩は、好ましくは、過塩素酸リチウム(LiClO)、ヘキサフルオロリン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、ヘキサフルオロヒ化リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビス-トリフルオロメチルスルホニルイミドリチウム(LiN(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiBOB)、オキサリルジフルオロホウ酸リチウム(LiBF)、硝酸リチウム(LiNO)、Li-フルオロアルキル-リン酸塩(LiPF(CFCF)、リチウムビスペルフルオロ-エチスルホニルイミド(LiBETI)、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミド(LiTFSI)、イオン性液体ベースのリチウム塩、又はそれらの組合せから選択されてよい。
アノード側面において、好ましく且つ典型的に、保護層のための高弾性ポリマーは、10-5S/cm以上、より好ましくは10-3S/cm以上、最も好ましくは10-2S/cm以上のリチウムイオン導電率を有する。選択されたポリマーのいくつかは、10-2S/cmより高いリチウムイオン導電率を示す。いくつかの実施形態において、高弾性ポリマーは、その中に分散された添加剤又は充填剤を含有しないニートUHMWポリマーである。他の実施形態では、高弾性ポリマーは、UHMWポリマー母材材料中に分散されたリチウムイオン導電性添加剤0.1重量%~50重量%(好ましくは1重量%~35重量%)を含有するポリマー母材複合物である。いくつかの実施形態において、高弾性ポリマーは、0.1重量%~10重量%のカーボンナノチューブ、カーボンナノ繊維、グラフェン又はそれらの組合せから選択される強化材ナノフィラメントを含有する。
いくつかの実施形態において、UHMWポリマーは、天然ポリイソプレン(例えばシス-1,4-ポリイソプレン天然ゴム(NR)及びトランス-1,4-ポリイソプレンガタパーチャ)、合成ポリイソプレン(イソプレンゴムのためのIR)、ポリブタジエン(ブタジエンゴムのためのBR)、クロロプレンゴム(CR)、ポリクロロプレン(例えばネオプレン、Bayprenなど)、ハロゲン化ブチルゴム(クロロブチルゴム(CIIR)及びブロモブチルゴム(BIIR)など、ブチルゴム(イソブチレンとイソプレンとのコポリマー、IIR)、スチレン-ブタジエンゴム(スチレンとブタジエンとのコポリマー、SBR)、ニトリルゴム(ブタジエンとアクリロニトリルとのコポリマー、NBR)、EPM(エチレンプロピレンゴム、エチレンとプロピレンとのコポリマー)、EPDMゴム(エチレンプロピレンジエンゴム、エチレン、プロピレン及びジエン成分のターポリマー)、エピクロロヒドリンゴム(ECO)、ポリアクリルゴム(ACM、ABR)、シリコーンゴム(SI、Q、VMQ)、フルオロシリコーンゴム(FVMQ)、フルオロエラストマー(FKM、及びFEPM;例えばViton、Tecnoflon、Fluorel、Aflas及びDai-El)、ペルフルオロエラストマー(FFKM:Tecnoflon PFR、Kalrez、Chemraz、Perlast)、ポリエーテルブロックアミド(PEBA)、クロロスルホン化ポリエチレン(CSM;例えばハイパロン)、及びエチレン酢酸ビニル(EVA)、熱可塑性エラストマー(TPE)、タンパク質レジリン、タンパク質エラスチン、エチレンオキシド-エピクロロヒドリンコポリマー、ポリウレタン、ウレタン-尿素コポリマー、及びそれらの組合せから選択されるエラストマーと(ブレンド、コポリマー又は相互侵入ネットワークを形成するために)混合される。
いくつかの実施形態において、高弾性ポリマーは、UHMWポリマー母材材料中に分散されたリチウムイオン導電性添加剤を含有する複合物であり、そこでリチウムイオン導電性添加剤は、LiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO、又はそれらの組合せから選択され、式中、X=F、Cl、I、又はBr、R=炭化水素基、x=0~1、y=1~4である。
UHMWポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、それらの誘導体(例えばスルホン化変種)、又はそれらの組合せから選択される電子導電性ポリマーとの混合物又はブレンド、コポリマー又は半相互侵入ネットワーク(セミ-IPN)を形成してもよい。
いくつかの実施形態において、UHMWポリマーは、エラストマーと、ポリ(エチレンオキシド)(PEO)、ポリプロピレンオキシド(PPO)、ポリ(アクリロニトリル)(PAN)、ポリ(メチルメタクリレート)(PMMA)、ポリ(フッ化ビニリデン)(PVdF)、ポリビス-メトキシエトキシエトキシド-ホスファゼネックス(phosphazenex)、ポリ塩化ビニル、ポリジメチルシロキサン、ポリ(フッ化ビニリデン)-ヘキサフロオロプロピレン(PVDF-HFP)、それらのスルホン化誘導体、又はそれらの組合せから選択されるリチウムイオン導電性ポリマーとの混合物、ブレンド又はセミ-IPNを形成してもよい。スルホン化はここで、改良されたリチウムイオン導電率をポリマーに与えることが見出されている。
カソード活物質は、無機材料、有機材料、ポリマー材料又はその組合せから選択されてよい。無機材料は、金属酸化物、金属リン酸塩、金属ケイ化物、金属セレン化物、金属硫化物又はその組合せから選択されてよい。
無機材料は、酸化リチウムコバルト、酸化リチウムニッケル、酸化リチウムマンガン、酸化リチウムバナジウム、リチウム-混合金属酸化物、リン酸リチウム鉄、リン酸リチウムマンガン、リン酸リチウムバナジウム、リチウム-混合金属リン酸塩、リチウム金属ケイ化物又はその組合せから選択されてよい。
特定の好ましい実施形態において、無機材料は、CoF、MnF、FeF、VF、VOF、TiF、BiF、NiF、FeF、CuF、CuF、SnF、AgF、CuCl、FeCl、MnCl及びその組合せからなる群を含む金属フッ化物又は金属塩化物から選択される。特定の好ましい実施形態において、無機材料は、M及びMaがFe、Mn、Co、Ni、V若しくはVOから選択され、MbがFe、Mn、Co、Ni、V、Ti、Al、B、Sn若しくはBiであり;且つx+y≦1である、LiMSiO又はLiMaMbSiOとして示されるリチウム遷移金属ケイ酸塩から選択される。
特定の好ましい実施形態において、無機材料は、遷移金属ジカルコゲン化物、遷移金属トリカルコゲン化物又はその組合せから選択される。無機材料は、TiS、TaS、MoS、NbSe、MnO、CoO、酸化鉄、酸化バナジウム又はその組合せから選択される。
カソード活物質層は、VO、LiVO、V、Li、V、Li、Li、V、Li、V13、Li13(式中、0.1<x<5)、それらのドープされた変種、それらの誘導体及びその組合せからなる群から選択される酸化バナジウムを含有する金属酸化物を含有してもよい。
カソード活物質層は、層状化合物LiMO、スピネル化合物LiM、カンラン石(olivine)化合物LiMPO、ケイ酸塩化合物LiMSiO、タボライト(Tavorite)化合物LiMPOF、ホウ酸塩化合物LiMBO又はその組合せ(式中、Mは遷移金属又は複数の遷移金属の混合物である)から選択される金属酸化物又は金属リン酸塩を含有してもよい。
いくつかの実施形態において、無機材料は、(a)セレン化ビスマス又はテルル化ビスマス、(b)遷移金属ジカルコゲン化物又はトリカルコゲン化物、(c)ニオブ、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、チタン、コバルト、マンガン、鉄、ニッケル又は遷移金属の硫化物、セレン化物又はテルル化物;(d)窒化ホウ素、或いは(e)その組合せから選択される。
リチウム硫黄セルに関して、カソードは、硫黄、硫黄含有分子、硫黄化合物、リチウム多硫化物、硫黄/炭素ハイブリッド又は複合材料、硫黄/黒鉛ハイブリッド又は複合材料、硫黄/グラフェンハイブリッド又は複合材料、硫黄-ポリマー化合物、或いはその組合せを含有し得る。リチウム-セレンバッテリーに関して、カソードは、カソード活物質としてセレン(Se)又はSe含有化合物を含有する。
カソード活物質層は、ポリ(硫化アントラキノニル)(PAQS)、リチウムオキソ炭素、3,4,9,10-ペリレンテトラカルボン酸二無水物(PTCDA)、ポリ(硫化アントラキノニル)、ピレン-4,5,9,10-テトラオン(PYT)、ポリマー結合PYT、キノ(トリアゼン)、酸化還元活性有機材料、テトラシアノキノジメタン(TCNQ)、テトラシアノエチレン(TCNE)、2,3,6,7,10,11-ヘキサメトキシトリフェニレン(HMTP)、ポリ(5-アミノ-1,4-ジヒドロキシアントラキノン)(PADAQ)、二硫化ホスファゼンポリマー([(NPS]n)、リチウム化1,4,5,8-ナフタレンテトラオールホルムアルデヒドポリマー、ヘキサアザトリナフチレン(HATN)、ヘキサアザトリフェニレンヘキサカルボニトリル(HAT(CN))、5-ベンジリデンヒダントイン、イサチンリチウム塩、ピロメリット酸ジイミドリチウム塩、テトラヒドロキシ-p-ベンゾキノン誘導体(THQLi)、N,N’-ジフェニル-2,3,5,6-テトラケトピペラジン(PHP)、N,N’-ジアリル-2,3,5,6-テトラケトピペラジン(AP)、N,N’-ジプロピル-2,3,5,6-テトラケトピペラジン(PRP)、チオエーテルポリマー、キノン化合物、1,4-ベンゾキノン、5,7,12,14-ペンタセンテトロン(PT)、5-アミノ-2,3-ジヒドロ-1,4-ジヒドロキシアントラキノン(ADDAQ)、5-アミノ-1,4-ジヒドロキシアントラキノン(ADAQ)、カリックスキノン、Li、Li、Li又はその組合せから選択される有機材料又はポリマー材料を含有してもよい。
チオエーテルポリマーは、ポリ[メタンテトリル-テトラ(チオメチレン)](PMTTM)、ポリ(2,4-ジチオペンタニレン)(PDTP)、主鎖チオエーテルポリマーとしてポリ(エテン-1,1,2,2-テトラチオール)(PETT)を含有するポリマー、共役芳香族部分からなる主鎖を有し、且つペンダントとしてチオエーテル側鎖を有する側鎖チオエーテルポリマー、ポリ(2-フェニル-1,3-ジチオラン)(PPDT)、ポリ(1,4-ジ(1,3-ジチオラン-2-イル)ベンゼン)(PDDTB)、ポリ(テトラヒドロベンゾジチオフェン)(PTHBDT)、ポリ[1,2,4,5-テトラキス(プロピルチオ)ベンゼン](PTKPTB)又はポリ[3,4(エチレンジチオ)チオフェン](PEDTT)から選択される。
他の実施形態において、カソード活物質層は、銅フタロシアニン、亜鉛フタロシアニン、スズフタロシアニン、鉄フタロシアニン、鉛フタロシアニン、ニッケルフタロシアニン、バナジルフタロシアニン、フルオロクロムフタロシアニン、マグネシウムフタロシアニン、マンガンフタロシアニン、ジリチウムフタロシアニン、アルミニウムフタロシアニンクロリド、カドミウムフタロシアニン、クロロガリウムフタロシアニン、コバルトフタロシアニン、銀フタロシアニン、無金属フタロシアニン、その化学誘導体又はその組合せなどのフタロシアニン化合物から選択される有機材料を含有する。
カソード活物質は、好ましくは、100nmより小さい厚さ又は直径を有するナノ粒子(球形、楕円、及び不規則な形状)、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートリット、又はナノホーンの形態である。これらの形状は、特に断りがない限り又は上記の種のうちの特定のタイプが望ましいのでなければ一括して「粒子」と称することができる。さらに好ましくは、カソード活物質は、50nmより小さい、さらにより好ましくは20nmより小さい、最も好ましくは10nmより小さい寸法を有する。いくつかの実施形態において、1つの粒子又は粒子のクラスターは、粒子及び/又は高弾性ポリマー層(封入シェル)の間に配置された炭素の層でコーティング又は包含されてもよい。
カソード層は、カソード活物質粒子と混合された黒鉛、グラフェン又は炭素材料をさらに含有してもよい。炭素又は黒鉛材料は、ポリマー炭素、非晶質炭素、化学蒸着炭素、コールタールピッチ、石油ピッチ、メソフェーズピッチ、カーボンブラック、コークス、アセチレンブラック、活性炭、100nmより小さい寸法を有する微細膨張黒鉛粒子、人工黒鉛粒子、天然黒鉛粒子、又はそれらの組合せから選択される。グラフェンは、純粋(pristine)グラフェン、グラフェンオキシド、還元グラフェンオキシド、グラフェンフルオリド、水素化グラフェン、窒素化グラフェン、官能化グラフェンなどから選択されてもよい。
カソード活物質粒子は、炭素材料、グラフェン、電子導電性ポリマー、導電性金属酸化物、又は導電性金属コーティングから選択される導電性保護コーティングでコートされるか、又は包含されてもよい。好ましくは、ナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートリット、又はナノホーンの形態のカソード活物質がリチウムイオンでプレインターカレートされるか、又はプレドープされて、プレリチウム化アノード活物質の0.1重量%~54.7重量%のリチウムの量を有する前記プレリチウム化アノード活物質を形成する。
本発明は、エアカソードと、上記で定義される高弾性ポリマーをベースとする保護層を含んでなるアノードと、アノード及びエアカソードとの間に配置された電解質又は分離体と組み合わせた電解質とを含んでなるリチウム金属-エアバッテリーも提供する。エアカソードにおいて、戸外からの(又はバッテリー外部の酸素供給元からの)酸素が主要カソード活物質である。エアカソードは、カソードにおいて形成された酸化リチウム材料を支持するための不活性材料を必要とする。出願人は、驚くべきことに、導電性ナノフィラメントの集積化構造が、排出生成物(例えば酸化リチウム)を支持するために意図されたエアカソードとして使用可能であることを見出した。
したがって、本発明のさらなる実施形態は、エアカソードが、相互に連結する細孔を含んでなる電子導電性経路の多孔性ネットワークを形成するように相互に連結する電気導電性のナノメートル規模のフィラメントの集積化構造を含んでなり、フィラメントが、500nm未満(好ましくは100nm未満)の横方向寸法を有するリチウム金属-エアバッテリーである。これらのナノフィラメントは、カーボンナノチューブ(CNT)、炭素ナノ繊維(CNF)、グラフェンシート、炭素繊維、黒鉛繊維などから選択可能である。
本発明は、リチウムバッテリーの製造方法において、(a)カソード活物質層及びカソード活物質層を支持するための任意選択的なカソード集電体を提供することと;(b)(リチウム金属又はリチウム合金箔若しくはコーティングを含有する)アノード活物質層及びリチウム金属又はリチウム合金箔又はコーティングを支持するための任意選択的なアノード集電体を提供することと;(c)アノード活物質層及びカソード活物質層と接触する電解質並びにアノード及びカソードを電気的に分離する任意選択的な分離体を提供することと、(d)2%~200%の回復可能な引張歪み、室温において10-6S/cm以上のリチウムイオン導電率及び0.5nm~10μmの厚さを有する高弾性ポリマーのアノード保護層を提供することとを含んでなり、高弾性ポリマーが、0.5×10~9×10グラム/モルの分子量を有する超高分子量ポリマーを含有するリチウムバッテリーの製造方法も提供する。このようなアノード保護層は、リチウム金属又はリチウム合金箔又はコーティングと、電解質又は分離体との間に配置される。
超高分子量ポリマーは、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレングリコール、ポリビニルアルコール、ポリアクリルアミド、ポリ(メチルメタクリレート)、ポリ(メチルエーテルアクリレート)、そのコポリマー、そのスルホン化誘導体、その化学的誘導体、又はその組合せから選択されてよい。
好ましくは、高弾性ポリマーは、1×10-5S/cm~5×10-2S/cmのリチウムイオン導電率を有する。いくつかの実施形態において、高弾性ポリマーは、10~200%、(より好ましくは>30、さらにより好ましくは>50%)の回復可能な引張歪みを有する。
特定の実施形態において、高弾性ポリマーを提供する操作は、超高分子量ポリマーと、エラストマー、電子導電性ポリマー(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、そのスルホン化誘導体又はその組合せ)、リチウムイオン導電性材料、強化材(例えば、カーボンナノチューブ、カーボンナノ繊維及び/又はグラフェン)或いはその組合せとの混合物/ブレンド/複合物を提供することを含有する。
この混合物/ブレンド/複合物において、リチウムイオン導電性材料は、高弾性ポリマー中に分散され、且つ好ましくは、LiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せ(式中、X=F、Cl、I又はBr、R=炭化水素基、x=0~1、y=1~4である)から選択される。
いくつかの実施形態において、リチウムイオン導電性材料は高弾性ポリマー中に分散され、且つ過塩素酸リチウム(LiClO)、ヘキサフルオロリン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、ヘキサフルオロヒ化リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス-トリフルオロメチルスルホニルイミドリチウム(LiN(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiBOB)、オキサリルジフルオロホウ酸リチウム(LiBF)、硝酸リチウム(LiNO)、Li-フルオロアルキル-リン酸塩(LiPF(CFCF)、リチウムビスペルフルオロ-エチルスルホニルイミド(LiBETI)、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミド(LiTFSI)、イオン性液体ベースのリチウム塩、又はそれらの組合せから選択される。
図1は、アノード層(集電体、Cu箔の表面上に堆積された薄Li箔又はLiコーティング)と、多孔性分離体と、カソード活物質の粒子、導電性添加剤(図示されず)及び樹脂結合剤(図示されず)から構成されるカソード活物質層とを含有する従来技術のリチウム金属バッテリーセルの概略図である。カソード活性層を支持するカソード集電体も示される。 図2は、アノード層(集電体、Cu箔の表面上に堆積された薄Li箔又はLiコーティング)と、UHMWポリマーをベースとするアノード保護層と、多孔性分離体と、カソード活物質の粒子、導電性添加剤(図示されず)及び樹脂結合剤(図示されず)から構成されるカソード活物質層とを含有する本発明のリチウム金属バッテリーセルの概略図である。カソード活性層を支持するカソード集電体も示される。 図3(A)は、UHMW PEO-ECポリマーの代表的な引張応力-歪み曲線である。 図3(B)は、4つのリチウムセル:それぞれV粒子を含有するカソードを有する2つのセル(一方のセルはUHMW PEOポリマー保護層を有し、そして他方は有さない)、及びそれぞれグラフェン包含V粒子を含有するカソードを有する2つのセル(一方のセルはUHMW PEOポリマー保護層を有し、そして他方は有さない)の比インターカレーション容量曲線である。 図4(A)は、UHMW PAN/PCポリマーフィルムの代表的な引張応力-歪み曲線である。 図4(B)は、それぞれ、(1)アノードの高弾性UHMW PAN/PC層、及び(2)アノードにポリマー保護層がないことを特徴とする2つのリチウム-LiCoOセル(最初にセルはリチウムを含まない)の比容量値である。 図5は、(1)高弾性UHMW PPO保護層を有する、及び(2)保護層を有さない、FeFをベースとするカソード活物質を有する2つのコインセルの放電容量曲線を示す。 図6は、それぞれ、アノード活物質としてLi及びカソード活物質としてFePc/RGO混合粒子を有する2つのリチウム-FePc(有機)セルの比容量である(一方のセルはUHMW PAN保護アノードを含有し、そして他は保護層を有さない)。 図7は、S含浸活性MCMB粒子をベースとするカソード活物質を有する2つのLi-Sバッテリーのカソード比容量値である(一方のセルはUHMW-PEO保護アノードを含有し、そして他はアノード保護層を有さない)。 図8は、それぞれ、S/グラフェンハイブリッドベースのカソード活物質及び(1)アノード保護用の高弾性UHMW PAN層を有する、及び(2)アノード保護層を有さない、2つのLi-Sバッテリーのカソード比容量値である。
本発明は、好ましくは、有機電解質、ポリマーゲル電解質、イオン液体電解質、半固体電解質、又はソリッドステート電解質をベースとするリチウム二次バッテリーに関する。リチウム二次バッテリーの形状は、円筒形、四角形、ボタン状等であることが可能である。本発明は、いずれかのバッテリー形状若しくは形態又は電解質の種類に限定されない。
本発明は、カソードと、アノードと、カソード及びアノードの間に配置される電解質又は分離体-電解質アセンブリとを含んでなるリチウム二次バッテリーにおいて、アノードが、a)アノード活物質としてのリチウム又はリチウム合金の箔又はコーティングと、(b)5%以上の回復可能な引張歪み、室温において10-6S/cm以上のリチウムイオン導電率及び1nm~10μmの厚さを有する高弾性ポリマーの薄層とを含んでなり、高弾性ポリマーが、0.5×10~9×10グラム/モルの分子量を有する超高分子量ポリマーを含有し、且つリチウム又はリチウム合金の箔/コーティングと電解質又は分離体-電解質アセンブリとの間に配置されているリチウム二次バッテリーを提供する。リチウム又はリチウム合金の箔又はコーティングは、集電体(例えば、Cu箔、Niフォーム、グラフェンシート、炭素ナノ繊維、カーボンナノチューブなどの電子導電性経路の3D相互連結ネットワークを形成するナノフィラメントの多孔性の層)によって支持されてもよい。
超高分子量(UHMW)ポリマーは、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレングリコール、ポリビニルアルコール、ポリアクリルアミド、ポリ(メチルメタクリレート)、ポリ(メチルエーテルアクリレート)、そのコポリマー、そのスルホン化誘導体、その化学的誘導体、又はその組合せから選択されてよい。この分類のUHMWポリマーは、選択された溶媒及び/又はリチウム塩のいくらかの量によって含浸される場合、高弾性(典型的に5%以上の完全に回復可能な歪みを有する)、及びリチウムイオンに対して高度に導電性となる。本質的に導電性であるポリマー、ナノ炭素材料(例えば、カーボンナノチューブ又は炭素ナノ繊維)及び/又はグラフェンは、そのようなUHMWポリマーの連鎖間に分散し、ポリマーに電子導電性を付与し得る。最も好ましくは、このような高弾性ポリマーは、電子導電性及びリチウムイオン導電性の両方である。
好ましくは、このような保護層は、リチウムバッテリー中で使用される電解質とは組成が異なり、且つアノードの活物質層(例えば集電体上のLi箔又はLiコーティング)及び電解質(又は電解質-分離体層)の間に配置される別個の層として維持される。
我々は、この保護層がいくつかの予想外の利益をもたらすことを発見した。すなわち、(a)樹枝状結晶の形成が本質的に排除された;(b)アノード側面に戻るリチウムの均一な堆積が容易に達成される;(c)この層は、最小の界面抵抗でリチウム箔/コーティングから/までの、及びリチウム箔/コーティング及び保護層の間の界面を通してのリチウムイオンの円滑で中断されない輸送を保証する;及び(d)サイクル安定性が有意に改善可能であり、且つサイクル寿命が増加した。
図1に示されるような従来のリチウム金属バッテリーにおいて、アノード活物質(リチウム)は、アノード集電体(例えばCu箔)の直接上に薄膜の形態又は薄い箔の形態で堆積される。バッテリーは、リチウム金属バッテリー、リチウム硫黄バッテリー、リチウムエアバッテリー、リチウムセレンバッテリーなどである。以前に背景の項目で議論された通り、これらのリチウム二次バッテリーは、アノードにおける樹枝状結晶によって誘導される内部ショート及び「機能を失ったリチウム」の問題を有する。
我々は、リチウム箔/コーティング及び電解質(又は電解質/分離体)の間の新規アノード保護層を開発し、そして導入することによって、30年超の間バッテリーの設計者及び電気化学者を困らせたこれらの困難な問題を解決した。この保護層は、一方向引張下での5%以上の回復可能な(弾性)引張歪み、及び室温において10-6S/cm以上(好ましく且つより典型的に1×10-5S/cm~5×10-2S/cm)のリチウムイオン導電率を有する(超高分子量ポリマーを含有する)高弾性ポリマーを含んでなる。
図2に概略的に示されるように、本発明の一実施形態は、アノード層(集電体、Cu箔の表面上に堆積された薄Li箔又はLiコーティング)と、UHMWポリマーをベースとするアノード保護層と、多孔性分離体と、カソード活物質の粒子、導電性添加剤(図示されず)及び樹脂結合剤(図示されず)から構成されるカソード活物質層とを含有するリチウム金属バッテリーセルである。カソード活性層を支持するカソード集電体(例えばAl箔)も図2に示される。
高弾性ポリマーは、一方向引張下で測定される場合、少なくとも5%の弾性変形を示すポリマーを意味する。材料科学及び工学の分野において、「弾性変形」とは、負荷の解放時に本質的に完全に回復可能であり、且つ回復が本質的に瞬間的である(機械的に応力を受けた場合の)材料の変形として定義される。弾性変形は、好ましくは10%より高く、より好ましくは3
0%より高く、さらにより好ましくは50%より高く、なおより好ましくは100%より高い。
図2は、リチウムバッテリーの製造時にアノード上にリチウムコーティングが既に存在していることを示すが、これは本発明の一実施形態であることに留意されてよい。別の実施形態は、リチウムバッテリーの製造時にアノード上にリチウム箔又はリチウムコーティングを含有しないリチウムバッテリーである(Cu箔又はグラフェン/CNTマットなどのアノード集電体のみ)。前後に返送されることが必要とされるリチウムは、最初にカソード活物質(例えば、酸化バナジウム、Vの代わりの酸化リチウムバナジウムLi;又は硫黄の代わりのリチウム多硫化物)中に貯蔵される。(例えば、電気化学的形成プロセスの一部としての)リチウムバッテリーの最初の充電の間、リチウムはカソード活物質から出て、アノード側面へと移動し、そしてアノード集電体上で堆積する。本発明の高弾性ポリマー層の存在は、アノード集電体表面上でのリチウムイオンの均一な堆積を可能にする。そのような別のバッテリー構造によって、バッテリー製造の間にリチウム箔又はコーティングの層が存在する必要が回避される。裸のリチウム金属は、空気中湿分及び酸素に対して非常に感応性であり、したがって、実際のバッテリー製造環境においては取り扱いがより困難である。この戦略は、Li及びLiなどのリチウム化(リチウム含有)カソード活物質中にリチウムをあらかじめ貯蔵している。
本発明のリチウム二次バッテリーは、多種多様なカソード活物質を含有することができる。カソード活物質層は、無機材料、有機材料、ポリマー材料又はその組合せから選択されるカソード活物質を含有してよい。無機材料は、金属酸化物、金属リン酸塩、金属ケイ化物、金属セレン化物、遷移金属硫化物又はその組合せから選択されてよい。
無機材料は、酸化リチウムコバルト、酸化リチウムニッケル、酸化リチウムマンガン、酸化リチウムバナジウム、リチウム-混合金属酸化物、リン酸リチウム鉄、リン酸リチウムマンガン、リン酸リチウムバナジウム、リチウム-混合金属リン酸塩、リチウム金属ケイ化物又はその組合せから選択されてよい。
特定の好ましい実施形態において、無機材料は、CoF、MnF、FeF、VF、VOF、TiF、BiF、NiF、FeF、CuF、CuF、SnF、AgF、CuCl、FeCl、MnCl及びその組合せからなる群を含む金属フッ化物又は金属塩化物から選択される。特定の好ましい実施形態において、無機材料は、M及びMaがFe、Mn、Co、Ni、V若しくはVOから選択され、MbがFe、Mn、Co、Ni、V、Ti、Al、B、Sn若しくはBiであり;且つx+y≦1である、LiMSiO又はLiMaMbSiOとして示されるリチウム遷移金属ケイ酸塩から選択される。
特定の好ましい実施形態において、無機材料は、遷移金属ジカルコゲン化物、遷移金属トリカルコゲン化物又はその組合せから選択される。無機材料は、TiS、TaS、MoS、NbSe、MnO、CoO、酸化鉄、酸化バナジウム又はその組合せから選択される。
カソード活物質層は、VO、LiVO、V、Li、V、Li、Li、V、Li、V13、Li13(式中、0.1<x<5)、それらのドープされた変種、それらの誘導体及びその組合せからなる群から選択される酸化バナジウムを含有する金属酸化物を含有してもよい。
カソード活物質層は、層状化合物LiMO、スピネル化合物LiM、カンラン石(olivine)化合物LiMPO、ケイ酸塩化合物LiMSiO、タボライト(Tavorite)化合物LiMPOF、ホウ酸塩化合物LiMBO又はその組合せ(式中、Mは遷移金属又は複数の遷移金属の混合物である)から選択される金属酸化物又は金属リン酸塩を含有してもよい。
いくつかの実施形態において、無機材料は、(a)セレン化ビスマス又はテルル化ビスマス、(b)遷移金属ジカルコゲン化物又はトリカルコゲン化物、(c)ニオブ、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、チタン、コバルト、マンガン、鉄、ニッケル又は遷移金属の硫化物、セレン化物又はテルル化物;(d)窒化ホウ素、或いは(e)その組合せから選択される。
カソード活物質層は、ポリ(硫化アントラキノニル)(PAQS)、リチウムオキソ炭素、3,4,9,10-ペリレンテトラカルボン酸二無水物(PTCDA)、ポリ(硫化アントラキノニル)、ピレン-4,5,9,10-テトラオン(PYT)、ポリマー結合PYT、キノ(トリアゼン)、酸化還元活性有機材料、テトラシアノキノジメタン(TCNQ)、テトラシアノエチレン(TCNE)、2,3,6,7,10,11-ヘキサメトキシトリフェニレン(HMTP)、ポリ(5-アミノ-1,4-ジヒドロキシアントラキノン)(PADAQ)、二硫化ホスファゼンポリマー([(NPS]n)、リチウム化1,4,5,8-ナフタレンテトラオールホルムアルデヒドポリマー、ヘキサアザトリナフチレン(HATN)、ヘキサアザトリフェニレンヘキサカルボニトリル(HAT(CN))、5-ベンジリデンヒダントイン、イサチンリチウム塩、ピロメリット酸ジイミドリチウム塩、テトラヒドロキシ-p-ベンゾキノン誘導体(THQLi)、N,N’-ジフェニル-2,3,5,6-テトラケトピペラジン(PHP)、N,N’-ジアリル-2,3,5,6-テトラケトピペラジン(AP)、N,N’-ジプロピル-2,3,5,6-テトラケトピペラジン(PRP)、チオエーテルポリマー、キノン化合物、1,4-ベンゾキノン、5,7,12,14-ペンタセンテトロン(PT)、5-アミノ-2,3-ジヒドロ-1,4-ジヒドロキシアントラキノン(ADDAQ)、5-アミノ-1,4-ジヒドロキシアントラキノン(ADAQ)、カリックスキノン、Li、Li、Li又はその組合せから選択される有機材料又はポリマー材料を含有してもよい。
チオエーテルポリマーは、ポリ[メタンテトリル-テトラ(チオメチレン)](PMTTM)、ポリ(2,4-ジチオペンタニレン)(PDTP)、主鎖チオエーテルポリマーとしてポリ(エテン-1,1,2,2-テトラチオール)(PETT)を含有するポリマー、共役芳香族部分からなる主鎖を有し、且つペンダントとしてチオエーテル側鎖を有する側鎖チオエーテルポリマー、ポリ(2-フェニル-1,3-ジチオラン)(PPDT)、ポリ(1,4-ジ(1,3-ジチオラン-2-イル)ベンゼン)(PDDTB)、ポリ(テトラヒドロベンゾジチオフェン)(PTHBDT)、ポリ[1,2,4,5-テトラキス(プロピルチオ)ベンゼン](PTKPTB)又はポリ[3,4(エチレンジチオ)チオフェン](PEDTT)から選択される。
他の実施形態において、カソード活物質層は、銅フタロシアニン、亜鉛フタロシアニン、スズフタロシアニン、鉄フタロシアニン、鉛フタロシアニン、ニッケルフタロシアニン、バナジルフタロシアニン、フルオロクロムフタロシアニン、マグネシウムフタロシアニン、マンガンフタロシアニン、ジリチウムフタロシアニン、アルミニウムフタロシアニンクロリド、カドミウムフタロシアニン、クロロガリウムフタロシアニン、コバルトフタロシアニン、銀フタロシアニン、無金属フタロシアニン、その化学誘導体又はその組合せなどのフタロシアニン化合物から選択される有機材料を含有する。
リチウム二次バッテリーは、カソードが、硫黄、硫黄含有分子、硫黄含有化合物、金属硫化物、硫黄-炭素ポリマー、リチウム多硫化物、硫黄/炭素ハイブリッド又は複合材料、硫黄/黒鉛ハイブリッド又は複合材料、硫黄/グラフェンハイブリッド又は複合材料、硫黄-ポリマー化合物、或いはその組合せを含んでなるリチウム-硫黄バッテリーであってよい。
再充電可能なリチウム-硫黄セルにおいて、金属硫化物は、M(式中、xは1~3の整数であり、且つyは1~10の整数であり、且つMは、アルカリ金属、Mg又はCaから選択されるアルカリ金属、遷移金属、周期表の第13族~第17族からの金属、或いはその組合せから選択される金属元素である)によって示される材料を含有し得る。金属元素Mは、好ましくは、Li、Na、K、Mg、Zn、Cu、Ti、Ni、Co、Fe又はAlから選択される。いくつかの好ましい実施形態において、カソード層中の金属硫化物は、Li、Li、Li、Li、Li、Li、Li、Li、Li、Li10、又はその組合せを含有する。
好ましく且つ典型的に、高弾性ポリマーは、10-5S/cm以上、より好ましくは10-4S/cm以上、さらに好ましくは10-3S/cm以上、最も好ましくは10-2S/cm以上のリチウムイオン導電率を有する。いくつかの実施形態において、高弾性ポリマーは、添加剤又は充填剤がその中に分散されていないニートポリマーである。他の実施形態では、高弾性ポリマーは、UHMWポリマー母材材料中に分散されたリチウムイオン導電性添加剤0.1重量%~50重量%(好ましくは1重量%~35重量%)を含有するポリマー母材複合物である。高弾性ポリマーは、高弾性(弾性変形歪み値>2%)を有さなければならない。弾性変形は、完全に回復可能である変形であり、回復プロセスは、本質的に瞬間的である(著しい時間遅れはない)。高弾性ポリマーは、5%~300%以下(その元の長さの3倍)、より典型的に10%~200%、さらにより典型的に30%~100%の弾性変形を示すことができる。金属は典型的に高い延性を有するが(すなわち破断せずにかなりの程度伸長され得る)、変形の大部分は塑性変形であり(回復可能でない)且つごく少量の弾性変形である(典型的に<1%及びより典型的に<0.2%)ことを指摘しておいてもよいだろう。
いくつかの好ましい実施形態において、高弾性ポリマーは、高弾性(高い弾性変形歪み)及び高いリチウムイオン導電率のユニークな組合せを示す超高分子量ポリマーの選択された群を含有する。これらのUHMWポリマーは、リチウムイオン導電率をさらに増加させるためにリチウム塩を含有することができる。UHMWポリマーは、その中に分散された電子導電性材料を含有してもよい。したがって、高弾性は、好ましくは、リチウムイオン導電性及び電子導電性である。
特定の好ましい実施形態において、高弾性ポリマーは、好ましくは、UHMWポリアクリロニトリル(UHMW PAN)、ポリエチレンオキシド(UHMW PEO)、ポリプロピレンオキシド(UHMW PPO)、ポリエチレングリコール(UHMW PEG)、ポリビニルアルコール(UHMW PVA)、ポリアクリルアミド(UHMW PAA)、ポリ(メチルメタクリレート)(UHMW PMMA)、ポリ(メチルエーテルアクリレート)(UHMW PMEA)、そのコポリマー、そのスルホン化誘導体、その化学的誘導体、又はその組合せから選択される超高分子量(UHMW)ポリマーを含有する。
アノード保護層を製造するための第1のステップは、UHMWポリマーを溶媒中に溶解して、溶液を形成することである。その後、イオン導電性材料(例えば、本質的に導電性であるポリマー、CNT、グラフェンなど)及び/又はリチウム導電性添加剤(例えば、リチウム塩)をポリマー-溶媒溶液中に分散又は溶解し、懸濁液(分散体又はスラリーとも記載される)を形成する。次に、この懸濁液をリチウム箔又はリチウムコーティング上に噴霧し、続いて溶媒除去処理をすることができる。ポリマーが沈殿して、リチウム箔/コーティングの表面上に堆積する。これは、例えば、超音波噴霧、空気補助噴霧、エアロゾールコーティング、単純な噴霧コーティング、ブラッシング、印刷などによって達成することができる。これらの技術は当該技術において周知である。
スラリー中にいくつかのリチウム塩を添加することが選択されてもよい。例えば、この手順は、液体溶媒中にUHMW PVAを溶解して溶液を形成することによって開始されてもよい。次いで、リチウム塩、LiPFを所望の重量パーセントで溶液中に添加することができる。次いで、任意選択的に、導電性材料の粒子を混合物溶液中に導入し、スラリーを形成してもよい。次いで、スラリーをLi箔又はLiコーティング層の表面上に噴霧コーティングしてもよい。溶媒の除去時、(ポリマーの非晶質ゾーンにおいて)その中に分散されたLiPF及び任意選択的な導電性粒子を含有するUHMW PVAを含有する高弾性ポリマーの層が形成される。
上記高弾性ポリマーは、アノードを保護するために単独で使用されてもよい。代わりに、UHMWポリマーは、広範囲の一連のエラストマー、導電性ポリマー、リチウムイオン導電性材料及び/又は強化材(例えば、カーボンナノチューブ、カーボンナノ繊維又はグラフェンシート)と混合することができる。
広範囲のエラストマーをUHMWポリマーと混合して、カソード活物質粒子を封入するブレンド、コポリマー又は相互侵入ネットワークを形成することができる。エラストマー材料は、天然ポリイソプレン(例えばシス-1,4-ポリイソプレン天然ゴム(NR)及びトランス-1,4-ポリイソプレンガタパーチャ)、合成ポリイソプレン(イソプレンゴムのためのIR)、ポリブタジエン(ブタジエンゴムのためのBR)、クロロプレンゴム(CR)、ポリクロロプレン(例えばネオプレン、Bayprenなど)、ハロゲン化ブチルゴム(クロロブチルゴム(CIIR)及びブロモブチルゴム(BIIR)など、ブチルゴム(イソブチレンとイソプレンとのコポリマー、IIR)、スチレン-ブタジエンゴム(スチレンとブタジエンとのコポリマー、SBR)、ニトリルゴム(ブタジエンとアクリロニトリルとのコポリマー、NBR)、EPM(エチレンプロピレンゴム、エチレンとプロピレンとのコポリマー)、EPDMゴム(エチレンプロピレンジエンゴム、エチレン、プロピレン及びジエン成分のターポリマー)、エピクロロヒドリンゴム(ECO)、ポリアクリルゴム(ACM、ABR)、シリコーンゴム(SI、Q、VMQ)、フルオロシリコーンゴム(FVMQ)、フルオロエラストマー(FKM、及びFEPM;例えばViton、Tecnoflon、Fluorel、Aflas及びDai-El)、ペルフルオロエラストマー(FFKM:Tecnoflon PFR、Kalrez、Chemraz、Perlast)、ポリエーテルブロックアミド(PEBA)、クロロスルホン化ポリエチレン(CSM;例えばハイパロン)、及びエチレン酢酸ビニル(EVA)、熱可塑性エラストマー(TPE)、タンパク質レジリン、タンパク質エラスチン、エチレンオキシド-エピクロロヒドリンコポリマー、ポリウレタン、ウレタン-尿素コポリマー、及びそれらの組合せから選択されてもよい。
いくつかの実施形態において、UHMWポリマーは、高弾性ポリマー母材材料中に分散されたリチウムイオン導電性添加剤を含有するポリマー母材複合物を形成し、リチウムイオン導電性添加剤は、LiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO又はそれらの組合せ(式中、X=F、Cl、I又はBr、R=炭化水素基、x=0~1、y=1~4である)から選択される。
いくつかの実施形態において、UHMWポリマーを、過塩素酸リチウム(LiClO)、ヘキサフルオロリン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、ヘキサフルオロヒ化リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス-トリフルオロメチルスルホニルイミドリチウム(LiN(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiBOB)、オキサリルジフルオロホウ酸リチウム(LiBF)、硝酸リチウム(LiNO)、Li-フルオロアルキル-リン酸塩(LiPF(CFCF)、リチウムビスペルフルオロ-エチルスルホニルイミド(LiBETI)、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミド(LiTFSI)、イオン性液体ベースのリチウム塩、又はそれらの組合せから選択されるリチウム塩を含有するリチウムイオン導電性添加剤と混合することができる。
UHMWポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、その誘導体(例えば、スルホン化変種)又はその組合せから選択される電子導電性ポリマーとの混合物、ブレンド又は半相互侵入ネットワークを形成し得る。いくつかの実施形態において、UHMWポリマーは、ポリ(エチレンオキシド)(PEO)、ポリプロピレンオキシド(PPO)、ポリ(アクリロニトリル)(PAN)、ポリ(メチルメタクリレート)(PMMA)、ポリ(ビニリデンフルオリド)(PVdF)、ポリビス-メトキシエトキシエトキシド-ホスファゼンエクス(phosphazenex)、ポリビニルクロリド、ポリジメチルシロキサン、ポリ(ビニリデンフルオリド)-ヘキサフルオロプロピレン(PVDF-HFP)、それらの誘導体(例えばスルホン化変種)、又はそれらの組合せから選択されるリチウムイオン導電性ポリマーとの混合物、コポリマー又は半相互侵入ネットワークを形成し得る。
UHMWポリマーと混合され得る不飽和ゴムには、天然ポリイソプレン(例えばシス-1,4-ポリイソプレン天然ゴム(NR)及びトランス-1,4-ポリイソプレンガタパーチャ)、合成ポリイソプレン(イソプレンゴムのためのIR)、ポリブタジエン(ブタジエンゴムのためのBR)、クロロプレンゴム(CR)、ポリクロロプレン(例えばネオプレン、Bayprenなど)、ハロゲン化ブチルゴム(クロロブチルゴム(CIIR)及びブロモブチルゴム(BIIR)など、ブチルゴム(イソブチレンとイソプレンとのコポリマー、IIR)、スチレン-ブタジエンゴム(スチレンとブタジエンとのコポリマー、SBR)、ニトリルゴム(ブタジエンとアクリロニトリルとのコポリマー、NBR)が含まれる。
このカテゴリーの飽和ゴム及び関連エラストマーには、EPM(エチレンプロピレンゴム、エチレンとプロピレンとのコポリマー)、EPDMゴム(エチレンプロピレンジエンゴム、エチレン、プロピレン及びジエン成分のターポリマー)、エピクロロヒドリンゴム(ECO)、ポリアクリルゴム(ACM、ABR)、シリコーンゴム(SI、Q、VMQ)、フルオロシリコーンゴム(FVMQ)、フルオロエラストマー(FKM、及びFEPM;例えばViton、Tecnoflon、Fluorel、Aflas及びDai-El)、ペルフルオロエラストマー(FFKM:Tecnoflon PFR、Kalrez、Chemraz、Perlast)、ポリエーテルブロックアミド(PEBA)、クロロスルホン化ポリエチレン(CSM;例えばハイパロン)、及びエチレン酢酸ビニル(EVA)、熱可塑性エラストマー(TPE)、タンパク質レジリン、及びタンパク質エラスチンが含まれる。ポリウレタン及びそのコポリマー(例えば尿素-ウレタンコポリマー)は、活物質粒子を封入するための特に有用なエラストマーシェル材料である。
いくつかのマイクロ封入プロセスは、活物質の粒子を封入するために使用されてもよい。これらのプロセスでは、典型的に、高弾性ポリマー又はその前駆体(モノマー又はオリゴマー)が溶媒中に可溶性であることが必要される。幸いにも、本明細書で使用される全てのUHMWポリマー又はそれらの前駆体は、いくつかの一般的な溶媒中に可溶性である。ポリマー又はその前駆体は一般的な有機溶媒中に容易に溶解可能であり、溶液を形成する。次いで、リチウム金属又は合金層上に堆積するために、この溶液を使用することができる。堆積時、溶媒は除去されるか、又は前駆体は完全に重合される。
以下の実施例において、実施の最良の様式を説明するためのUHMWポリマーの3つの例として、UHMW PEO、UHMW PPO及びUHMW PANが使用された。同様に、他のUHMWポリマーも使用可能である。これらは、本発明の範囲を制限するものとして解釈されるべきではない。
実施例1:高弾性UHMWポリマーによって保護されたリチウムアノード及びV粒子を含有するカソードを含有するリチウムバッテリー
カソード活物質層は、それぞれ、V粒子及びグラフェン包含V粒子から調製した。V粒子は商業的に入手可能であった。グラフェン包含V粒子は企業内で調製した。典型的な実験において、LiCl水溶液中でのVの混合によって五酸化バナジウムゲルが得られた。LiCl溶液による相互作用によって得られたLi交換ゲル(Li:Vモル比は1:1に保持された)をGO懸濁液と混合し、次いでTeflonラインステンレス鋼35mlオートクレーブ中に配置し、密封し、そして12時間、180℃まで加熱した。そのような水熱処理後、緑色の固体を回収し、これを徹底的に洗浄し、2分間超音波処理し、そして70℃で12時間乾燥後、別の水中0.1%GOと混合し、超音波処理してナノベルトサイズまで分解し、次いで、200℃において噴霧乾燥させ、グラフェン包含V複合物粒状物を得た。次いで、V粒子及びグラフェン包含V粒子の選択された量でそれぞれカソード層を製造し、続いて、周知のスラリーコーティングプロセスを行った。
リチウム金属保護のためのUHM WPEOベースの高弾性ポリマー層を次の手順に従って調製する:最初にUHMW PEOを脱イオン水(1.6重量%)中に溶解し、均質で透明な溶液を形成した。次いで、リチウム塩(1~40%のLiClO)及びグラフェン酸化物(0.1~5%のGO)シートを、別々に、そして組み合わせてPEO溶液に添加し、一連のスラリーを形成した。スラリーを別々にガラス表面上にキャストし、膜を形成し、この膜を乾燥させて、リチウム塩及び/又は電子導電性材料グラフェン酸化物シートを含有する種々のUHMW PEO膜を形成した。UHMWポリマー膜の厚さは、0.45~1.88μmで様々であった。
また、UHMW PEO水溶液をガラス表面上にキャストし、そして乾燥させてPEOフィルムを形成した。完全乾燥時に、ポリマーフィルムを所望の溶媒(例えばEC)中に浸漬し、ゴム様ポリマーを形成した。いくつかの引張試験試験片を溶媒(例えばEC)を含むそれぞれのポリマーフィルムから切り取り、そして万能試験機で試験した。ポリマーの代表的な引張応力-歪み曲線を図3(A)に示す。これは、このポリマーが約150%の弾性変形を有することを示す。この値は、いずれの固体添加剤も含まないニートのポリマー(いくつかの溶媒を含む)に関する(リチウム塩なし、及び導電性添加剤なし)。40重量%までのリチウム塩の添加によって、この弾性は、典型的に、5%~60%の可逆性引張歪みまで減少する。
電気化学試験のために、作用電極は、85重量%のV又は88%のグラフェン包含V粒子、5~8重量%のCNT及びN-メチル-2-ピロリドン(NMP)に溶解された7重量%のポリフッ化ビニリデン(PVDF)結合剤を混合して全固形分5重量%のスラリーを形成することによって作製された。スラリーをAl箔上にコートした後、電極を2時間の間真空中で120℃で乾燥させて、加圧前に溶媒を除去した。次いで、電極をディスク(φ=12mm)に切断し、真空中で24時間の間100℃で乾燥させた。
対向/参照電極としてリチウム金属、セパレーターとしてCelgard2400膜、及びエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合物(EC-DEC、1:1v/v)中に溶解された1MのLiPF電解質溶液を有するCR2032(3V)コイン型セルを使用して電気化学測定を実施した。セルの組立をアルゴン充填グローブボックス内で行なった。CV測定は、1mV/sの走査速度でCH-6電気化学ワークステーションを使用して実施された。高弾性ポリマー結合剤を特徴とするセル及びPVDF結合剤を含有するセルの電気化学的性能は、Arbin電気化学ワークステーションを使用して、50mA/gの電流密度で定電流充電/放電サイクル経過によって評価された。
図3(B)に、4つのリチウムセル:それぞれV粒子を含有するカソードを有する2つのセル(一方のセルはUHMW PEOポリマー保護層を有し、そして他方は有さない)、及びそれぞれグラフェン包含V粒子を含有するカソードを有する2つのセル(一方のセルはUHMW PEOポリマー保護層を有し、そして他方は有さない)の比インターカレーション容量曲線を要約する。サイクル数が増加すると、未保護のセルの比容量は最速レートで低下する。それとは対照的に、本発明のUHMW PEOポリマー保護層は、多数のサイクルに対して有意により安定であり、且つ高い比容量をバッテリーセルにもたらす。これらのデータは、本発明のUHMWポリマー保護アプローチの驚くべき、且つ優れた性能を明らかに示した。
高弾性UHMWポリマー保護層は、バッテリー放電の間にリチウム箔の厚さが減少する時の破損が生じることなく、高い範囲まで可逆的に変形することが可能であると思われる。保護ポリマー層はまた、アノードにおいて液体電解質とリチウム金属との間の継続的な反応を防ぎ、リチウム及び電解質の継続的な損失の問題を減少させる。これによって、バッテリー再充電の間にカソードから戻る時のリチウムイオンの有意により均一の堆積も可能となり、したがって、リチウム樹枝状結晶は生じない。これらは、SEMを使用して、数回の充電-放電サイクル後のバッテリーセルから回収された電極の表面を調べることによって観察された。
実施例2:リチウム-LiCoOセル(初期はリチウムを含まないセル)のアノードにおける高弾性ポリマーの導入
Li-LiCoOセルにおけるアノード層保護のための高弾性ポリマーは、超高分子量ポリアクリロニトリル(UHMW PAN)をベースとするものであった。UHMW PAN(0.3g)を5mlのジメチルホルムアミド(DMF)中に溶解し、溶液を形成した。次いで、いくらかのLiPF塩(5重量%)及びいくらかのCNT(2重量%)を溶液中に分散させ、スラリーを形成した。次いで、スラリーを別々にキャストし、乾燥させ、ポリマー膜を形成した。
調製された溶液からガラス支持体上に弾性試験用のポリマーフィルムをキャストし、続いて、換気フード下70℃における溶媒蒸発を行った。微量のDMFを除去するために、フィルムを70℃で48時間、減圧(<1トル)において徹底的に乾燥させた。ポリマーフィルムを炭酸プロピレン(PC)中に浸漬させ、PC可塑化UHMW PANフィルムを形成した。これらのフィルム上で引張試験も実行し、そしていくつかの試験結果を図4(A)に要約する。この一連のポリマーは、約80%まで弾性伸張可能である。
保護ポリマー層を有する、又は保護ポリマー層を有さないバッテリーセルは、周知のスラリーコーティング手順を使用して調製した。図4(B)は、アノード保護UHMWポリマー層を有するセルが有意により安定なサイクリング挙動を提供することを示す。高弾性ポリマーは、なおリチウムイオンの容易な拡散を可能にしながらも、リチウムコーティングから電解質を単離するようにも作用する。
実施例3:金属フッ化物ナノ粒子ベースのカソード及びUHMW PPO保護リチウムアノードを含有するLi金属セル
リチウムアノードの保護のために、実施例1に記載の手順と同様の手順を使用することによって、UHMW PPOポリマーを保護薄層として導入した。CoF、MnF、FeF、VF、VOF、TiF及びBiFの商業的に入手可能な粉末に高強度ボールミル粉砕を受けさせ、粒径を約0.5~2.3μmまで低下させた。次いで、これらの金属フッ化物粒子のそれぞれの種類を、グラフェンシート(導電性添加剤として)と一緒にNMP及びPVDF結合剤懸濁液中に添加し、複数成分スラリーを形成した。次いで、スラリーをAl箔上にスラリーコーティングし、カソード層を形成した。
図5に、同一カソード活物質(FeF)を有するが、一方のセルは高弾性UHMW PPOポリマー保護アノードを有し、そして他方は保護層を有さない2つのコインセルの放電容量曲線を示す。これらの結果は、高弾性UHMWポリマー保護戦略が、リチウム金属バッテリーの容量減衰に対して優れた保護を提供することを明らかに示した。
高弾性ポリマーは、充電及び放電の間にアノード層が膨張及び収縮する時の破損が生じることなく、可逆的に変形することが可能であると思われる。ポリマーは、液体電解質及びリチウム金属の間の継続的な反応も防ぐ。樹枝状結晶様特徴が見出されず、アノードが高弾性UHMWポリマーによって保護されていた。これらは、SEMを使用して、数回の充電-放電サイクル後のバッテリーセルから回収された電極の表面を調べることによって確認された。
実施例4:金属ナフタロシアニン/還元グラフェンオキシド(FePc/RGO)のハイブリッド粒状物カソード及びUHMW PAN保護Li箔アノードを含有するLi-有機セル
ミル粉砕チャンバー中で30分間、FePc及びRGOの混合物をボールミル粉砕することによって、組み合わせたFePcの粒子/グラフェンシートが得られた。得られたFePc/RGO混合物粒子は、ポテト様形状であった。パンコーティング手順を使用して、これらの混合物粒子のいくつかを高弾性UHMW PANポリマーによって封入した。それぞれ、Li箔アノード、多孔性分離体及びFePc/RGO粒子(封入又は未封入)のカソード層を含有する2つのリチウムセルを調製した。
これらの2つのリチウムセルのサイクリング挙動を図6に示す。ここでは、アノード中に高弾性ポリマー保護層を有するリチウム-有機セルが有意により安定したサイクリング応答を示すことが示される。この保護ポリマーは、ポリマー層自体がリチウム金属とイオン的に接触し続け、且つリチウムイオンに対して透過性でありながら、リチウム金属及び電解質の間の継続的な接触を減少させるか、又は排除する。このアプローチは、全てのリチウム-有機バッテリーのサイクル寿命を有意に増加させた。
実施例5:アノード保護層及び硫黄含浸活性炭粒子を含有するカソードを含有するLi-Sセル
硫黄を導電性材料(例えば、炭素/黒鉛粒子)と組み合わせる1つの方法は、溶液又は溶融混合プロセスを使用することである。高度に多孔性の活性炭粒子、化学エッチングされたメソカーボンミクロボール(活性化MCMB)、及び剥離黒鉛ワームを10~60分間、117~120℃(Sの融点、115.2℃よりわずかに高い温度)において硫黄溶融体と混合し、硫黄含浸炭素粒子を得た。
図7は、S含浸活性化MCMBをベースとするカソード活物質を有する2つのLi-Sバッテリーのカソード比容量値を示しており、一方のセルはUHMW PEO保護アノードを有するものであり、そして他方のセルはアノード保護層を有さないものである。アノードにおいて導入されたUHMWポリマー層の高度に有利な影響が非常に有意である。
実施例6:アノード保護層及び硫黄コーティンググラフェンシートを含有するカソードを含有するLi-Sセル
カソード調製手順には、元素硫黄の蒸気を生じさせ、単層又は数層のグラフェンシートの表面上でのS蒸気の堆積を可能にさせることが含まれる。第1のステップとして、液体培地中に懸濁されたグラフェンシート(例えば、水中のグラフェンオキシド又はNMP中のグラフェン)を基板(例えばガラス表面)上に噴霧し、グラフェンシートの薄層を形成した。次いで、このようなグラフェンの薄層を昇華によって生じる物理的蒸着に曝露した。固体硫黄の昇華は40℃より高い温度で生じるが、有意であり、且つ実際に有用な昇華レートは温度が100℃超になるまで典型的に生じない。我々は、グラフェン表面上に硫黄の薄膜(約1nm~10nmの厚さの硫黄)を堆積させるために、典型的に10~120分の蒸着時間で117~160℃を使用した。次いで、硫黄の薄膜がその上に堆積されたグラフェンのこの薄層は、エアジェットミルを使用して、容易にSコーティングのグラフェンシートの破片へ粉砕された。これらのSコーティンググラフェンシートから(例えば、噴霧乾燥によって)直径約5~15μmの二次粒子を作成し、次いで、これを高弾性UHMW PANポリマーによって封入した。従来のスラリーコーティング手順を使用して、これらの封入粒状物からカソード電極を作成した。
S/グラフェンハイブリッドベースのカソード活物質及び高弾性UHMW PAN保護層を有するか、又は有さないリチウム箔アノードを有する2つのLi-Sバッテリーのカソード比容量値を図8に要約する。それぞれ、アノード保護のための層(2)があるもの、及びアノード保護層を有さないものである。これらのデータは、UHMWポリマー層保護アプローチの効率をさらに実証する。
実施例7:高弾性ポリマー中のリチウムイオン導電性添加剤の効果
種々のリチウムイオン導電性添加剤をいくつかの異なるポリマーマトリックス材料に添加し、アノード保護層を調製した。得られるポリマー/塩複合材料のリチウムイオン導電率値を表1に要約する。我々は、室温におけるそれらのリチウムイオン導電率が10-6S/cm以上である場合、これらのポリマー複合材料が適切なアノード保護層材料であることを発見した。これらの材料によって、リチウムイオンは、1μm以下の厚さを有する保護層を通して容易に拡散することが可能であるように思われる。より厚いポリマー膜(例えば10μm)に関しては、10-4S/cm以上のこれらのUHMWポリマーの室温におけるリチウムイオン導電率が必要とされるであろう。
Figure 0007300393000001
結論として、高弾性UHMWポリマーをベースとするアノード保護層の戦略は、驚くべきことに、容量減衰、並びに潜在的な内部ショート及びリチウム二次バッテリーの爆発を導くリチウム金属樹枝状結晶形成及びリチウム金属-電解質反応の問題を軽減することにおいて効果がある。

Claims (36)

  1. カソードと、アノードと、前記カソードと前記アノードとの間に配置される電解質又は分離体-電解質アセンブリとを含んでなるリチウム二次バッテリーにおいて、前記アノードが、
    a)アノード活物質としてのリチウム又はリチウム合金の箔又はコーティングと、
    b)5%以上の回復可能な引張歪み、室温において10-6S/cm以上のリチウムイオン導電率及び1nm~10μmの厚さを有する高弾性ポリマーの薄層と
    を含んでなり、前記高弾性ポリマーが、0.5×10~9×10グラム/モルの分子量を有する超高分子量ポリマーを含有し、且つ前記リチウム又はリチウム合金と前記電解質又は分離体-電解質アセンブリとの間に配置されていることを特徴とするリチウム二次バッテリー。
  2. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレングリコール、ポリビニルアルコール、ポリアクリルアミド、ポリ(メチルメタクリレート)、ポリ(メチルエーテルアクリレート)、そのコポリマー、そのスルホン化誘導体、その化学的誘導体、及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  3. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、0.5×10~5×10グラム/モル未満の分子量を有することを特徴とするリチウム二次バッテリー。
  4. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、1×10~3×10グラム/モル未満の分子量を有することを特徴とするリチウム二次バッテリー。
  5. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、前記超高分子量ポリマーの連鎖間に分散されたリチウム塩及び/又は液体溶媒を含有することを特徴とするリチウム二次バッテリー。
  6. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、その中に分散された電気導電性材料を含有することを特徴とするリチウム二次バッテリー。
  7. 請求項6に記載のリチウム二次バッテリーにおいて、前記電気導電性材料が、電子導電性ポリマー、金属粒子若しくはワイヤー、グラフェンシート、カーボン繊維、黒鉛繊維、カーボンナノ繊維、黒鉛ナノ繊維、カーボンナノチューブ、黒鉛粒子、膨張黒鉛フレーク、アセチレンブラック粒子、及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  8. 請求項7に記載のリチウム二次バッテリーにおいて、前記電気導電性材料が100nm未満の厚さ又は直径を有することを特徴とするリチウム二次バッテリー。
  9. 請求項5に記載のリチウム二次バッテリーにおいて、前記液体溶媒が、1,3-ジオキソラン(DOL)、1,2-ジメトキシエタン(DME)、テトラエチレングリコールジメチルエーテル(TEGDME)、ポリ(エチレングリコール)ジメチルエーテル(PEGDME)、ジエチレングリコールジブチルエーテル(DEGDBE)、2-エトキシエチルエーテル(EEE)、スルホン、スルホラン、炭酸エチレン(EC)、炭酸プロピレン(PC)、炭酸ジメチル(DMC)、炭酸メチルエチル(MEC)、炭酸ジエチル(DEC)、プロピオン酸エチル、プロピオン酸メチル、ガンマ-ブチロラクトン(γ-BL)、アセトニトリル(AN)、酢酸エチル(EA)、ギ酸プロピル(PF)、ギ酸メチル(MF)、トルエン、キシレン、酢酸メチル(MA)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、アリルエチルカーボネート(AEC)、ヒドロフルオロエーテル、イオン液体溶媒、及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  10. 請求項5に記載のリチウム二次バッテリーにおいて、前記リチウム塩が、過塩素酸リチウム、LiClO、ヘキサフルオロリン酸リチウム、LiPF、ホウフッ化リチウム、LiBF、ヘキサフルオロヒ化リチウム、LiAsF、トリフルオロメタスルホン酸リチウム、LiCFSO、ビス-トリフルオロメチルスルホニルイミドリチウム、LiN(CFSO、ビス(オキサラト)ホウ酸リチウム、LiBOB、オキサリルジフルオロホウ酸リチウム、LiBF、硝酸リチウム、LiNO、Li-フルオロアルキル-リン酸塩、LiPF(CFCF、リチウムビスペルフルオロ-エチスルホニルイミド、LiBETI、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド、リチウムトリフルオロメタンスルホンイミド、LiTFSI、イオン性液体ベースのリチウム塩、又はそれらの組合せから選択されることを特徴とするリチウム二次バッテリー。
  11. 請求項1に記載のリチウム二次バッテリーにおいて、前記高弾性ポリマーの薄層が、1nm~1μmの厚さを有することを特徴とするリチウム二次バッテリー。
  12. 請求項1に記載のリチウム二次バッテリーにおいて、前記高弾性ポリマーの薄層が、100nm未満の厚さを有することを特徴とするリチウム二次バッテリー。
  13. 請求項1に記載のリチウム二次バッテリーにおいて、前記高弾性ポリマーの薄層が、10nm未満の厚さを有することを特徴とするリチウム二次バッテリー。
  14. 請求項1に記載のリチウム二次バッテリーにおいて、前記高弾性ポリマーが、1×10-4S/cm~10-2S/cmのリチウムイオン導電率を有することを特徴とするリチウム二次バッテリー。
  15. 請求項1に記載のリチウム二次バッテリーにおいて、前記カソードの活物質が、無機材料、有機材料、ポリマー材料又はその組合せから選択され、且つ前記無機材料が、硫黄又はアルカリ金属ポリスルフィドを含まないことを特徴とするリチウム二次バッテリー。
  16. 請求項15に記載のリチウム二次バッテリーにおいて、前記無機材料が、金属酸化物、金属リン酸塩、金属ケイ化物、金属セレン化物、遷移金属硫化物及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  17. 請求項15に記載のリチウム二次バッテリーにおいて、前記無機材料が、酸化リチウムコバルト、酸化リチウムニッケル、酸化リチウムマンガン、酸化リチウムバナジウム、リチウム-混合金属酸化物、リン酸リチウム鉄、リン酸リチウムマンガン、リン酸リチウムバナジウム、リチウム-混合金属リン酸塩、リチウム金属ケイ化物及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  18. 請求項15に記載のリチウム二次バッテリーにおいて、前記無機材料が、CoF、MnF、FeF、VF、VOF、TiF、BiF、NiF、FeF、CuF、CuF、SnF、AgF、CuCl、FeCl、MnCl及びその組合せからなる群を含む金属フッ化物又は金属塩化物から選択されることを特徴とするリチウム二次バッテリー。
  19. 請求項15に記載のリチウム二次バッテリーにおいて、前記無機材料が、M及びMaが、Fe、Mn、Co、Ni、V又はVOから選択され、Mbが、Fe、Mn、Co、Ni、V、Ti、Al、B、Sn又はBiから選択され;且つx+y≦1である、LiMSiO又はLiMaMbSiOとして示されるリチウム遷移金属ケイ酸塩から選択されることを特徴とするリチウム二次バッテリー。
  20. 請求項15に記載のリチウム二次バッテリーにおいて、前記無機材料が、遷移金属ジカルコゲン化物、遷移金属トリカルコゲン化物及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  21. 請求項15に記載のリチウム二次バッテリーにおいて、前記無機材料が、TiS、TaS、MoS、NbSe、MnO、CoO、酸化鉄、酸化バナジウム及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  22. 請求項16に記載のリチウム二次バッテリーにおいて、前記金属酸化物が、VO、LiVO、V、Li、V、Li、Li、V、Li、V13、Li13(式中、0.1<x<5)、それらのドープされた変種、それらの誘導体及びその組合せからなる群から選択される酸化バナジウムを含有することを特徴とするリチウム二次バッテリー。
  23. 請求項16に記載のリチウム二次バッテリーにおいて、前記金属酸化物又は金属リン酸塩が、層状化合物LiMO、スピネル化合物LiM、カンラン石(olivine)化合物LiMPO、ケイ酸塩化合物LiMSiO、タボライト(Tavorite)化合物LiMPOF、ホウ酸塩化合物LiMBO又はその組合せ(式中、Mは遷移金属又は複数の遷移金属の混合物である)から選択されることを特徴とするリチウム二次バッテリー。
  24. 請求項16に記載のリチウム二次バッテリーにおいて、前記無機材料が、(a)セレン化ビスマス又はテルル化ビスマス、(b)遷移金属ジカルコゲン化物又はトリカルコゲン化物、(c)ニオブ、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、チタン、コバルト、マンガン、鉄、ニッケル又は遷移金属の硫化物、セレン化物又はテルル化物;(d)窒化ホウ素、及び(e)その組合せからなる群から選択されることを特徴とするリチウム二次バッテリー。
  25. 請求項15に記載のリチウム二次バッテリーにおいて、前記有機材料又はポリマー材料が、ポリ(硫化アントラキノニル)(PAQS)、リチウムオキソ炭素、3,4,9,10-ペリレンテトラカルボン酸二無水物(PTCDA)、ポリ(硫化アントラキノニル)、ピレン-4,5,9,10-テトラオン(PYT)、ポリマー結合PYT、キノ(トリアゼン)、酸化還元活性有機材料、テトラシアノキノジメタン(TCNQ)、テトラシアノエチレン(TCNE)、2,3,6,7,10,11-ヘキサメトキシトリフェニレン(HMTP)、ポリ(5-アミノ-1,4-ジヒドロキシアントラキノン)(PADAQ)、二硫化ホスファゼンポリマー([(NPS]n)、リチウム化1,4,5,8-ナフタレンテトラオールホルムアルデヒドポリマー、ヘキサアザトリナフチレン(HATN)、ヘキサアザトリフェニレンヘキサカルボニトリル(HAT(CN))、5-ベンジリデンヒダントイン、イサチンリチウム塩、ピロメリット酸ジイミドリチウム塩、テトラヒドロキシ-p-ベンゾキノン誘導体(THQLi)、N,N’-ジフェニル-2,3,5,6-テトラケトピペラジン(PHP)、N,N’-ジアリル-2,3,5,6-テトラケトピペラジン(AP)、N,N’-ジプロピル-2,3,5,6-テトラケトピペラジン(PRP)、チオエーテルポリマー、キノン化合物、1,4-ベンゾキノン、5,7,12,14-ペンタセンテトロン(PT)、5-アミノ-2,3-ジヒドロ-1,4-ジヒドロキシアントラキノン(ADDAQ)、5-アミノ-1,4-ジヒドロキシアントラキノン(ADAQ)、カリックスキノン、Li、Li、Li及びその組合せから選択されることを特徴とするリチウム二次バッテリー。
  26. 請求項25に記載のリチウム二次バッテリーにおいて、前記チオエーテルポリマーが、ポリ[メタンテトリル-テトラ(チオメチレン)](PMTTM)、ポリ(2,4-ジチオペンタニレン)(PDTP)、主鎖チオエーテルポリマーとしてポリ(エテン-1,1,2,2-テトラチオール)(PETT)を含有するポリマー、共役芳香族部分からなる主鎖を有し、且つペンダントとしてチオエーテル側鎖を有する側鎖チオエーテルポリマー、ポリ(2-フェニル-1,3-ジチオラン)(PPDT)、ポリ(1,4-ジ(1,3-ジチオラン-2-イル)ベンゼン)(PDDTB)、ポリ(テトラヒドロベンゾジチオフェン)(PTHBDT)、ポリ[1,2,4,5-テトラキス(プロピルチオ)ベンゼン](PTKPTB)又はポリ[3,4(エチレンジチオ)チオフェン](PEDTT)から選択されることを特徴とするリチウム二次バッテリー。
  27. 請求項15に記載のリチウム二次バッテリーにおいて、前記有機材料が、銅フタロシアニン、亜鉛フタロシアニン、スズフタロシアニン、鉄フタロシアニン、鉛フタロシアニン、ニッケルフタロシアニン、バナジルフタロシアニン、フルオロクロムフタロシアニン、マグネシウムフタロシアニン、マンガンフタロシアニン、ジリチウムフタロシアニン、アルミニウムフタロシアニンクロリド、カドミウムフタロシアニン、クロロガリウムフタロシアニン、コバルトフタロシアニン、銀フタロシアニン、無金属フタロシアニン、その化学誘導体及びその組合せから選択されるフタロシアニン化合物を含有することを特徴とするリチウム二次バッテリー。
  28. 請求項1に記載のリチウム二次バッテリーにおいて、前記カソードの活物質が、0.5nm~100nmの厚さ又は直径を有するナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートリット、又はナノホーンの形態であることを特徴とするリチウム二次バッテリー。
  29. 請求項28に記載のリチウム二次バッテリーにおいて、前記ナノ粒子、ナノワイヤー、ナノ繊維、ナノチューブ、ナノシート、ナノベルト、ナノリボン、ナノディスク、ナノプレートリット、又はナノホーンが、カーボン材料、グラフェン、電子導電性ポリマー、導電性金属酸化物、又は導電性金属コーティングから選択される導電性保護コーティングでコートされるか、又は包含されることを特徴とするリチウム二次バッテリー。
  30. 請求項1に記載のリチウム二次バッテリーにおいて、前記高弾性ポリマーが、その中に分散された添加剤又は充填剤を有さないニートポリマーであることを特徴とするリチウム二次バッテリー。
  31. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、その中に分散されたリチウムイオン導電性添加剤0.1重量%~50重量%を含有するか、或いは0.1重量%~10重量%のカーボンナノチューブ、カーボンナノ繊維、グラフェン及びそれらの組合せから選択される強化材ナノフィラメントを含有することを特徴とするリチウム二次バッテリー。
  32. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーがリチウムイオン導電性添加剤と混合されて、複合物が形成され、前記リチウムイオン導電性添加剤が、前記高弾性ポリマー中に分散され、且つLiCO、LiO、Li、LiOH、LiX、ROCOLi、HCOLi、ROLi、(ROCOLi)、(CHOCOLi)、LiS、LiSO及びそれらの組合せ(式中、X=F、Cl、I又はBr、R=炭化水素基、x=0~1、y=1~4である)から選択されることを特徴とするリチウム二次バッテリー。
  33. 請求項1に記載のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、二環式ポリマー、そのスルホン化誘導体又はその組合せから選択される電子導電性ポリマーと混合されて、ブレンド、コポリマー又は半相互侵入ネットワークが形成されることを特徴とするリチウム二次バッテリー。
  34. 請求項1のリチウム二次バッテリーにおいて、前記超高分子量ポリマーが、0.5×106g/モル未満の分子量を有するリチウムイオン導電性ポリマーとの混合物、ブレンド、コポリマー、又は半相互侵入ネットワークを形成し、且つポリ(エチレンオキシド)(PEO)、ポリプロピレンオキシド(PPO)、ポリ(アクリロニトリル)(PAN)、ポリ(メチルメタクリレート)(PMMA)、ポリ(ビニリデンフルオリド)(PVdF)、ポリビス-メトキシエトキシエトキシド-ホスファゼンエクス(phosphazenex)、ポリビニルクロリド、ポリジメチルシロキサン、ポリ(ビニリデンフルオリド)-ヘキサフルオロプロピレン(PVDF-HFP)、それらのスルホン化誘導体、及びそれらの組合せから選択されることを特徴とするリチウム二次バッテリー。
  35. 請求項1のリチウム二次バッテリーにおいて、前記カソードが、硫黄、硫黄含有分子、硫黄含有化合物、金属硫化物、硫黄-炭素ポリマー、リチウム多硫化物、硫黄/炭素ハイブリッド又は複合材料、硫黄/黒鉛ハイブリッド又は複合材料、硫黄/グラフェンハイブリッド又は複合材料、硫黄-ポリマー化合物、及びその組合せを含んでなるリチウム-硫黄バッテリーであることを特徴とするリチウム二次バッテリー。
  36. 請求項1のリチウムバッテリーにおいて、リチウム金属バッテリー、リチウム-硫黄バッテリー、リチウム-セレンバッテリー、又はリチウム-エアバッテリーであることを特徴とするリチウムバッテリー。
JP2019555187A 2017-04-10 2018-03-29 アノード保護ポリマー層を含有するリチウム金属二次バッテリー及び製造方法 Active JP7300393B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/483,348 2017-04-10
US15/483,348 US10770721B2 (en) 2017-04-10 2017-04-10 Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
PCT/US2018/025150 WO2018191025A1 (en) 2017-04-10 2018-03-29 Lithium metal secondary battery containing an anode-protecting polymer layer and manufacturing method

Publications (2)

Publication Number Publication Date
JP2020517054A JP2020517054A (ja) 2020-06-11
JP7300393B2 true JP7300393B2 (ja) 2023-06-29

Family

ID=63711867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019555187A Active JP7300393B2 (ja) 2017-04-10 2018-03-29 アノード保護ポリマー層を含有するリチウム金属二次バッテリー及び製造方法

Country Status (5)

Country Link
US (1) US10770721B2 (ja)
JP (1) JP7300393B2 (ja)
KR (1) KR102673528B1 (ja)
CN (1) CN110710023B (ja)
WO (1) WO2018191025A1 (ja)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
KR20210040986A (ko) 2018-08-15 2021-04-14 하이드로-퀘벡 전극 물질 및 이의 제조 방법
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US11152620B2 (en) 2018-10-18 2021-10-19 Global Graphene Group, Inc. Process for producing porous graphene particulate-protected anode active materials for lithium batteries
WO2020086117A1 (en) * 2018-10-22 2020-04-30 Nanotek Instruments, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
EP3761405A4 (en) * 2018-10-31 2021-05-26 Lg Chem, Ltd. SECONDARY LITHIUM BATTERY
WO2020091453A1 (ko) * 2018-10-31 2020-05-07 주식회사 엘지화학 리튬 이차전지
JP7110400B2 (ja) 2018-11-23 2022-08-01 エルジー エナジー ソリューション リミテッド リチウム-硫黄電池用電解液及びそれを含むリチウム-硫黄電池
WO2020105981A1 (ko) * 2018-11-23 2020-05-28 주식회사 엘지화학 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
CN109768323B (zh) * 2018-12-05 2022-02-15 湖州天丰电源有限公司 一种全固态锂金属-硫电池及其制备方法
CN109755448A (zh) * 2018-12-28 2019-05-14 北京中能东道绿驰科技有限公司 一种带有补锂涂层的锂电池隔膜及其制备方法
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
WO2020154552A1 (en) * 2019-01-24 2020-07-30 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
CN109888252B (zh) * 2019-03-29 2021-12-07 荆门市格林美新材料有限公司 一种共包覆镍钴锰三元正极材料及制备方法
CN110112417B (zh) * 2019-04-25 2022-07-05 浙江锋锂新能源科技有限公司 弹性锂金属负极表面修饰层、其制备方法及锂金属负极
CN110137416A (zh) * 2019-05-15 2019-08-16 武汉理工大学 一种聚烯烃锂电隔膜制备方法
KR20200134985A (ko) * 2019-05-24 2020-12-02 현대자동차주식회사 내구성이 우수한 리튬 공기 전지용 전해질막, 그 제조방법 및 이를 포함하는 리튬 공기 전지
CN112018304B (zh) * 2019-05-29 2022-12-27 河北金力新能源科技股份有限公司 一种锂硫电池用涂层隔膜、制备方法及锂硫电池
CN110137573A (zh) * 2019-05-31 2019-08-16 中国科学院金属研究所 一种以金属锂为负极的锂二次电池用电解液
CN110299517A (zh) * 2019-06-14 2019-10-01 西安宇驰特能防务装备研究院有限公司 一种用于提高锂离子电池有机正极材料充放电容量的方法
DE102019208911A1 (de) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Polymerelektrolyt-Lithium-Zelle mit Formierungshilfsmaterial
US11342553B2 (en) * 2019-10-02 2022-05-24 Enevate Corporation Methods for prelithiation of silicon containing electrodes
GB2588123A (en) 2019-10-08 2021-04-21 Sumitomo Chemical Co Metal battery
US20220376232A1 (en) * 2019-11-04 2022-11-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods of fabrication of engineered carbon nanofiber/cu electrode architectures for dendrite-free high efficiency li metal batteries
CN111435756A (zh) * 2019-12-27 2020-07-21 蜂巢能源科技有限公司 锂电池及其制备方法和应用
CN111416089B (zh) * 2020-04-10 2022-06-10 吉林师范大学 一种诱导和抑制锂枝晶生长的复合隔膜及制备方法和使用该隔膜的锂离子电池
CN111477950B (zh) * 2020-05-14 2022-02-15 华鼎国联四川动力电池有限公司 一种改善循环和倍率的固态电解质
CN114068890B (zh) * 2020-08-07 2023-12-08 华为技术有限公司 复合金属负极及其制备方法、二次电池以及终端
US11811051B2 (en) * 2020-09-22 2023-11-07 Apple Inc. Electrochemical cell design with lithium metal anode
US11728547B2 (en) * 2020-09-22 2023-08-15 Apple Inc. Polymer electrolyte lamination layer for lithium metal battery
CN112151761A (zh) * 2020-10-22 2020-12-29 珠海冠宇电池股份有限公司 一种锂负极及其制备方法和应用
US11637291B2 (en) * 2020-11-04 2023-04-25 Global Graphene Group, Inc. Lithium-protecting polymer layer for an anode-less lithium metal secondary battery and manufacturing method
US12095079B2 (en) 2020-12-21 2024-09-17 Honeycomb Battery Company Elastic network polymer-encapsulated anode particles for lithium batteries and method of manufacturing
CN112447961B (zh) * 2020-12-12 2021-11-09 安徽嘉誉伟丰机电科技股份有限公司 一种高比容量的锂电池正极材料的制备方法
CN112701286A (zh) * 2020-12-28 2021-04-23 中国科学院过程工程研究所 一种氟化铁/碳复合正极材料、其制备方法和锂离子电池
US20220263070A1 (en) * 2021-02-15 2022-08-18 Global Graphene Group, Inc. Solid-state medium for lithium ion transport, lithium batteries and manufacturing method
CN112909436A (zh) * 2021-03-03 2021-06-04 合肥国轩高科动力能源有限公司 一种锂离子电池复合隔膜及其制备方法以及锂离子电池
CN113346067B (zh) * 2021-08-02 2021-11-26 浙江金羽新能源科技有限公司 一种柔性复合金属锂薄膜的制备方法及锂离子电池
US20230101561A1 (en) * 2021-09-28 2023-03-30 Global Graphene Group, Inc. Flame-Resistant High Energy Density Lithium-Ion Batteries and Manufacturing Method
CN113942987A (zh) * 2021-10-25 2022-01-18 骆驼集团资源循环襄阳有限公司 一种制备磷酸铁前驱体及磷酸铁锂正极材料的方法
CN114039027B (zh) * 2021-11-02 2023-02-28 珠海冠宇电池股份有限公司 一种电极片及包含该电极片的锂离子电池
CN114213670B (zh) * 2021-12-28 2023-04-14 河北科技大学 一种离子型共价有机框架材料及其制备方法和应用以及锂金属负极材料
US20230246171A1 (en) * 2022-01-28 2023-08-03 Global Graphene Group, Inc. Anode Electrode Protective Layer for Lithium-ion Batteries
WO2023235552A1 (en) * 2022-06-03 2023-12-07 AM Batteries, Inc. Electrode for electrochemical energy storage devices
US20240213460A1 (en) 2022-12-23 2024-06-27 Belenos Clean Power Holding Ag Lithium metal anode protective layer and method of depositing same on lithium metal anode
CN116093252B (zh) * 2023-04-06 2023-06-27 宁德新能源科技有限公司 负极极片、以及包含其的电化学装置及电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071998A (ja) 2003-08-20 2005-03-17 Samsung Sdi Co Ltd リチウム金属電池用負極保護膜組成物、これを使用して製造されたリチウム金属電池用負極、及びリチウム金属電池
JP2010097843A (ja) 2008-10-17 2010-04-30 Panasonic Corp リチウムイオン二次電池
WO2010092815A1 (ja) 2009-02-13 2010-08-19 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
US20160329567A1 (en) 2015-05-06 2016-11-10 Samsung Electronics Co., Ltd. Negative electrode for lithium battery and lithium battery comprising the same
JP2016219411A (ja) 2015-05-15 2016-12-22 三星電子株式会社Samsung Electronics Co.,Ltd. リチウム金属電池
US20160372743A1 (en) 2015-06-19 2016-12-22 SolidEnergy Systems Multi-layer polymer coated li anode for high density li metal battery
US20170062829A1 (en) 2015-08-31 2017-03-02 Samsung Electronics Co., Ltd. Lithium metal battery
WO2017034656A1 (en) 2015-08-24 2017-03-02 Nanotek Instruments, Inc. Rechargeable lithium batteries having an ultra-high volumetric energy density and required production process
JP2018510466A (ja) 2015-03-30 2018-04-12 ソリッドエナジー システムズ 電池使用におけるリチウム金属負極のための複合材被覆システムおよび方法

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid
JPH0667981B2 (ja) * 1988-04-28 1994-08-31 松下電器産業株式会社 ポリアセチレン又はポリアセン型超長共役ポリマーの製造方法
US5057339A (en) * 1988-12-29 1991-10-15 Matsushita Electric Industrial Co., Ltd. Metallized polyacetylene-type or polyacene-type ultralong conjugated polymers and process for producing the same
JP3021543B2 (ja) * 1990-05-17 2000-03-15 三洋電機株式会社 非水電解質電池の製造方法
US5350647A (en) 1990-12-24 1994-09-27 Hope Stephen F Electrodes for electrochemical devices
JPH08846B2 (ja) * 1992-01-14 1996-01-10 松下電器産業株式会社 ポリアセチレン型共役ポリマーの製造方法
US5342710A (en) * 1993-03-30 1994-08-30 Valence Technology, Inc. Lakyer for stabilization of lithium anode
US5460905A (en) * 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5648187A (en) * 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5961672A (en) 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5536599A (en) 1994-05-16 1996-07-16 Eic Laboratories Inc. Solid polymer electrolyte batteries containing metallocenes
JPH07326344A (ja) * 1994-05-31 1995-12-12 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびそれを用いてなるリチウム二次電池
US5434021A (en) 1994-08-12 1995-07-18 Arthur D. Little, Inc. Secondary electrolytic cell and electrolytic process
US6025094A (en) 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
KR100276656B1 (ko) 1998-09-16 2001-04-02 박찬구 박막형 복합 재료 양극으로 구성된 고체형 이차 전지
US6515101B1 (en) * 1998-09-25 2003-02-04 Iowa State University Research Foundation, Inc. High performance fluorinated polymers and methods
US6451484B1 (en) * 1999-04-21 2002-09-17 Samsung Sdi Co., Ltd. Lithium secondary battery and manufacturing method thereof
US6447952B1 (en) 1999-06-07 2002-09-10 Eltron Research, Inc. Polymer electrolytes
US6733924B1 (en) 1999-11-23 2004-05-11 Moltech Corporation Lithium anodes for electrochemical cells
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
CN1215584C (zh) 2000-09-20 2005-08-17 三洋电机株式会社 用于可充电锂电池的电极和可充电锂电池
US7087348B2 (en) 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells
US7282302B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
KR20120118511A (ko) 2002-10-15 2012-10-26 폴리플러스 배터리 컴퍼니 활성 금속 애노드를 보호하기 위한 이온 전도성 합성물
US7618678B2 (en) 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
CN101203628A (zh) 2004-10-01 2008-06-18 普立万公司 阴极保护化合物在经处理的金属制品上的应用
US8404388B2 (en) 2005-08-09 2013-03-26 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US8053112B2 (en) * 2006-03-17 2011-11-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US8039152B2 (en) 2007-04-03 2011-10-18 Toyota Motor Engineering & Manufacturing North America, Inc. Tin in an active support matrix
US9564629B2 (en) 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries
US8580432B2 (en) 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US8241793B2 (en) 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
US8986895B2 (en) 2009-02-04 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
US8236452B2 (en) 2009-11-02 2012-08-07 Nanotek Instruments, Inc. Nano-structured anode compositions for lithium metal and lithium metal-air secondary batteries
CN102598374B (zh) * 2009-11-12 2016-10-19 独立行政法人产业技术综合研究所 非水二次电池用正极活性物质
US8795544B2 (en) * 2010-06-30 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Power storage device, lithium-ion secondary battery, electric double layer capacitor and lithium-ion capacitor
JP5891655B2 (ja) * 2010-08-30 2016-03-23 ソニー株式会社 非水電解質電池および非水電解質電池の製造方法、並びに絶縁材および絶縁材の製造方法、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
US8753772B2 (en) 2010-10-07 2014-06-17 Battelle Memorial Institute Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
KR101947353B1 (ko) 2011-09-30 2019-02-12 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 고성능 리튬/황 전지들에서 황 고정제로서의 그래핀 옥시드
CN103187570B (zh) 2011-12-28 2015-09-30 清华大学 硫-石墨烯复合材料的制备方法
US9437370B2 (en) 2012-02-27 2016-09-06 Nanotek Instruments, Inc. Lithium-ion cell having a high-capacity anode and a high-capacity cathode
US9923206B2 (en) 2012-09-10 2018-03-20 Nanotek Instruments, Inc. Encapsulated phthalocyanine particles, high-capacity cathode containing these particles, and rechargeable lithium cell containing such a cathode
KR20150088281A (ko) * 2012-11-19 2015-07-31 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 결정형 무기물 및/또는 무기-유기 하이브리드 폴리머의 코팅체를 가지는 입상 전극 및 이들의 제조 방법
CN103078076B (zh) * 2013-01-11 2015-08-26 宁波晶一新材料科技有限公司 复合隔离膜及使用此隔离膜的锂离子电池
US9368831B2 (en) 2013-06-10 2016-06-14 Nanotek Instruments, Inc. Lithium secondary batteries containing non-flammable quasi-solid electrolyte
KR101613511B1 (ko) 2014-02-26 2016-04-19 서강대학교산학협력단 고체 고분자 전해질 조성물 및 이를 포함하는 리튬 이차전지
US10297867B2 (en) * 2014-03-19 2019-05-21 Sekisui Chemical Co., Ltd. Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
KR20150135245A (ko) * 2014-03-27 2015-12-02 후루카와 덴키 고교 가부시키가이샤 양극 활물질, 이차 전지용 양극, 이차 전지, 및 양극 활물질의 제조 방법
CN104103809B (zh) * 2014-07-31 2017-02-01 中国科学院上海硅酸盐研究所 一种锂离子电池合金负极用三层电极结构
US9742001B2 (en) 2014-08-07 2017-08-22 Nanotek Instruments, Inc. Graphene foam-protected anode active materials for lithium batteries
KR101755121B1 (ko) * 2014-10-31 2017-07-06 주식회사 엘지화학 안정한 보호층을 갖는 리튬금속 전극 및 이를 포함하는 리튬 이차전지
EP4037007A1 (en) 2014-11-03 2022-08-03 24M Technologies, Inc. Battery cell comprising a semi-solid electrode
KR20160083630A (ko) * 2014-12-31 2016-07-12 삼성에스디아이 주식회사 리튬이차전지용 올리빈형 양극 활물질, 그것의 제조방법 및 그것을 포함하는 리튬이차전지
JP2016131081A (ja) * 2015-01-13 2016-07-21 三菱重工業株式会社 二次電池
US10062922B2 (en) 2015-01-26 2018-08-28 University Of Dayton Lithium batteries having artificial solid electrolyte interphase membrane for anode protection
US10601049B2 (en) 2015-08-31 2020-03-24 The Board Of Trustees Of The Leland Stanford Junior University High performance battery anodes with polymeric coatings including molecules cross-linked through dynamic bonds
KR102618538B1 (ko) * 2015-08-31 2023-12-28 삼성전자주식회사 리튬 금속 음극을 포함한 리튬금속전지, 상기 리튬 금속 음극을 보호하는 방법 및 그 방법에 따라 제조된 보호막
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
KR102659163B1 (ko) * 2016-04-20 2024-04-22 삼성전자주식회사 양극 및 이를 포함하는 리튬전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071998A (ja) 2003-08-20 2005-03-17 Samsung Sdi Co Ltd リチウム金属電池用負極保護膜組成物、これを使用して製造されたリチウム金属電池用負極、及びリチウム金属電池
JP2010097843A (ja) 2008-10-17 2010-04-30 Panasonic Corp リチウムイオン二次電池
WO2010092815A1 (ja) 2009-02-13 2010-08-19 パナソニック株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2018510466A (ja) 2015-03-30 2018-04-12 ソリッドエナジー システムズ 電池使用におけるリチウム金属負極のための複合材被覆システムおよび方法
US20160329567A1 (en) 2015-05-06 2016-11-10 Samsung Electronics Co., Ltd. Negative electrode for lithium battery and lithium battery comprising the same
JP2016219411A (ja) 2015-05-15 2016-12-22 三星電子株式会社Samsung Electronics Co.,Ltd. リチウム金属電池
US20160372743A1 (en) 2015-06-19 2016-12-22 SolidEnergy Systems Multi-layer polymer coated li anode for high density li metal battery
WO2017034656A1 (en) 2015-08-24 2017-03-02 Nanotek Instruments, Inc. Rechargeable lithium batteries having an ultra-high volumetric energy density and required production process
US20170062829A1 (en) 2015-08-31 2017-03-02 Samsung Electronics Co., Ltd. Lithium metal battery

Also Published As

Publication number Publication date
JP2020517054A (ja) 2020-06-11
KR102673528B1 (ko) 2024-06-12
US20180294476A1 (en) 2018-10-11
CN110710023A (zh) 2020-01-17
KR20190130170A (ko) 2019-11-21
WO2018191025A1 (en) 2018-10-18
US10770721B2 (en) 2020-09-08
CN110710023B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
JP7300393B2 (ja) アノード保護ポリマー層を含有するリチウム金属二次バッテリー及び製造方法
JP7382231B2 (ja) リチウム金属二次バッテリーのためのリチウムアノード保護ポリマー層及び製造方法
JP7154225B2 (ja) 封入されたカソード活物質粒子、それを含有するリチウム二次バッテリー及び製造方法
US10862157B2 (en) Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10734646B2 (en) Lithium metal secondary battery containing an electrochemically stable anode-protecting layer
US10727531B2 (en) Lithium metal secondary battery featuring an anode-protecting layer
JP7300389B2 (ja) リチウムバッテリーカソード及び製造方法
JP2020513150A (ja) ポリマーでカプセル化された硫黄カソードを含むアルカリ金属−硫黄二次電池及び製造方法
US20190393486A1 (en) Method of improving anode stability in a lithium metal secondary battery
US11171388B2 (en) Method of improving fast-chargeability of a lithium battery
US10784509B2 (en) Lithium metal secondary battery containing two anode-protecting layers
US10978744B2 (en) Method of protecting anode of a lithium-sulfur battery
US10985365B2 (en) Lithium-sulfur battery containing two anode-protecting layers
US20190393496A1 (en) Method of extending cycle-life of a lithium metal secondary battery
WO2020050895A1 (en) Lithium metal secondary battery containing two anode-protecting layers
US10854927B2 (en) Method of improving cycle-life of alkali metal-sulfur secondary battery
WO2020055470A1 (en) Lithium-sulfur battery containing two anode-protecting layers
WO2019246474A1 (en) Lithium metal secondary battery featuring an anode-protecting layer
WO2020046442A1 (en) Lithium-sulfur battery containing an electrode-protecting layer
WO2020046444A1 (en) Lithium metal secondary battery containing an electrochemically stable anode-protecting layer
US20190393508A1 (en) Method of improving cycle-life of a lithium metal secondary battery
WO2019246068A1 (en) Alkali metal-sulfur secondary battery containing a conductive electrode- protecting layer
CN110915049B (en) Polymer layer for protecting lithium anode of lithium metal secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7300393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150