JP7278926B2 - 電動機の制御装置、電動車両、電動機の制御方法 - Google Patents

電動機の制御装置、電動車両、電動機の制御方法 Download PDF

Info

Publication number
JP7278926B2
JP7278926B2 JP2019200883A JP2019200883A JP7278926B2 JP 7278926 B2 JP7278926 B2 JP 7278926B2 JP 2019200883 A JP2019200883 A JP 2019200883A JP 2019200883 A JP2019200883 A JP 2019200883A JP 7278926 B2 JP7278926 B2 JP 7278926B2
Authority
JP
Japan
Prior art keywords
voltage
control device
maximum value
motor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019200883A
Other languages
English (en)
Other versions
JP2021078179A (ja
Inventor
隆宏 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019200883A priority Critical patent/JP7278926B2/ja
Priority to CN202080066320.0A priority patent/CN114424450A/zh
Priority to PCT/JP2020/040244 priority patent/WO2021090731A1/ja
Publication of JP2021078179A publication Critical patent/JP2021078179A/ja
Application granted granted Critical
Publication of JP7278926B2 publication Critical patent/JP7278926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、電動機の制御装置、電動車両および電動機の制御方法に関する。
絶縁冷媒によって液冷される電動機は、絶縁耐力の確保と、冷媒の循環による冷却性能向上が望まれる。そのため、絶縁冷媒の温度に基づき冷媒の流量を制御する技術が提案されている。
本願発明の背景技術として、下記の特許文献1が知られている。特許文献1には、温度検出手段が検出した絶縁媒体温度が所定の値を越えたとき、電気機器内部と冷却装置の間を循環する絶縁媒体流量を定常状態の流量から、温度検出手段が検出した絶縁媒体温度に対応する無放電領域上限流量を超えない範囲の流量に増加させる電気機器が記載されている。これにより、絶縁耐力の確保と冷却性能の向上が両立され、電気機器の最大出力の向上が可能となる。
特開2006-32651号公報
特許文献1では、絶縁冷媒の温度が急変した場合、冷媒流量の制御対応が遅れる。そうすると、電気機器は絶縁耐力が低下し、同時に出力も低下する恐れがある。そのため、絶縁冷媒の温度が急変した際も、電気機器の絶縁耐力を確保することが課題であった。
ポンプにより循環される絶縁冷媒によって冷却される電動機の制御装置は、前記電動機に対するトルク指令と、電源から電力変換回路に印加される直流電圧と、前記電動機の回転子位置と、に基づいて電流指令を算出する電流指令演算部と、算出された前記電流指令と、前記直流電圧と、前記絶縁冷媒の流量および温度と、に基づいて、前記電動機へ印加される電圧の最大値を制限する制限部と、を備える。
本発明によれば、電動機は、温度の急変に対応した絶縁耐力を確保できる。
本発明の実施形態に係る、電動機および電動機の制御装置の全体構成である。 本発明の第1の実施形態に係る、電動機の制御装置の制御ブロック図である。 本発明の第1の実施形態に係る、電動機の制御装置が備える制限部の処理フローチャートである。 本発明の第1の実施形態に係る、スイッチング時に電動機へ印加される電圧波形パターンである。 本発明の第2の実施形態に係る、電動機の制御装置が備える制限部の処理フローチャートである。 本発明の第3の実施形態に係る、電動機の制御装置が備える制限部の処理フローチャートである。 本発明の第3の実施形態に係る、スイッチング素子に印加されるゲート電圧の波形の参考図である。 本発明による電動機の制御装置が適用された電動車両を示す図である。
(電動機の制御装置の構造、および第1の実施形態)
図1は、本発明の実施形態に係る、電動機およびインバータ制御装置2(以下、単に制御装置2と称する)と関連する制御装置の全体構成を示す図である。
図1に示すように、電動機および電動機の制御装置の全体構成は、電動システム制御装置1(以下、単に制御装置1と称する)、制御装置2、ポンプ制御装置3(以下、単に制御装置3と称する)、インバータ100、モータ200、位置センサ210、電流センサ220、電圧センサ230、絶縁冷媒300、ポンプ310、冷媒流量センサ320、冷媒温度センサ330を備えている。
制御装置1は、図示されていない上位の制御装置から入力される指令に基づいて、モータ200に対するトルク指令を出力する。トルク指令は制御装置2へ入力される。
制御装置2は、制御装置1から入力されるトルク指令と、電流センサ220で検出された三相交流電流と、位置センサ210で検出されたモータ200の回転子位置と、電圧センサ230において検出された入力電圧と、に基づき、スイッチング信号によりインバータ100をPWM制御する。なお、制御装置2の内部の詳細は後述する。
制御装置3は、冷媒流量センサ320から入力された冷媒流量と、冷媒温度センサ330から入力された冷媒温度に基づき、モータ200が過温度により故障しないように、絶縁冷媒300の流量を制御するための冷媒流量指令をポンプ310に出力する。
電力変換回路であるインバータ100は、スイッチング素子110a~110fにより構成される。スイッチング素子110aはU相上アーム、スイッチング素子110bはU相下アーム、スイッチング素子110cはV相上アーム、スイッチング素子110dはV相下アーム、スイッチング素子110eはW相上アーム、スイッチング素子110fはW相下アームに配置されている。
スイッチング素子110a~110fは、金属酸化膜型電界効果トランジスタ(MOSFET)や絶縁ゲートバイポーラトランジスタ(IGBT)などと、ダイオードを組み合わせて、構成される。
また、スイッチング素子110a~110fは、制御装置2で生成されたスイッチング信号に基づいて、それぞれオンもしくはオフされる。これにより、スイッチング素子110a~110fは、外部の直流電源から印加された直流電圧を交流電圧に変換する。ここで変換された交流電圧は、モータ200の固定子に印加され、固定子に設けられた三相のコイルに交流電流をそれぞれ発生させる。この三相交流電流は、モータ200に回転磁界を発生させ、それによりモータ200の回転子が回転する。なお、スイッチング素子110a~110fの温度は、図示されていない検出部によって検出され、制御装置2にフィードバックされる。
位置センサ210は、モータ200の回転子の位置を検出する。ここで検出した回転子位置は、制御装置2へ出力される。
電流センサ220は、モータ200に流れる三相交流電流を検出する。ここで検出した三相交流電流は、制御装置2へ出力される。
電圧センサ230は、バッテリなどの外部の直流電源からインバータ100に印加される直流電圧(以下、単に入力電圧と称する)を検出し、検出した入力電圧を制御装置2へ出力する。
絶縁冷媒300は、モータ200の内部に充填されており、ポンプ310によって循環する。モータ200とポンプ310の間で、不図示の冷却構造を経由して絶縁冷媒300が循環することにより、モータ200が冷却される。絶縁冷媒300には変圧器用鉱物油やギアオイルなどの電気絶縁性を有する液体が用いられる。
ポンプ310は、ポンプ制御装置3から入力される冷媒流量指令に基づいて、絶縁冷媒300を循環させるとともに、流量を制御する。
冷媒流量センサ320は、絶縁冷媒300の流量を検出する。検出された冷媒流量は、制御装置2および制御装置3に入力される。
冷媒温度センサ330は、絶縁冷媒300の温度を検出する。検出された冷媒温度は、制御装置2および制御装置3に入力される。
図2は、本発明の第1の実施形態に係る、電動機の制御装置の制御ブロック図である。
図2のブロック図のうち、電流指令演算部10(以下、単に演算部10と称する),制限部20,電流制御部30,PWM信号生成部40,速度変換部50は、本発明のメイン構造である制御装置2の内部に備わっている。
演算部10は、制御装置1から入力されたトルク指令と、速度変換部50を介してモータ200からフィードバックされた角速度および回転子位置と、インバータ100からフィードバックされたスイッチング素子温度と、電圧センサ230で検出された入力電圧と、に基づいて制限前電流指令を算出する。
演算部10から制限部20へ出力される制限前電流指令の算出には、出力電流の最小化を目的とする最大トルク電流制御や電力損失の最小化を目的とする最大効率制御などの、公知の算出技術が用いられる。
また、インバータ100のスイッチング素子110a~110fが過温度により破損することを防止するため、スイッチング素子温度に基づいて、制限前電流指令は制御される。ただし、インバータ100の使用条件等によっては、スイッチング素子温度の影響を考慮せずに制限前電流指令を算出してもよい。その場合には、インバータ100から演算部10にスイッチング素子温度をフィードバックする必要はない。
制限部20は、演算部10から入力された制限前電流指令と、センサ320,330からそれぞれフィードバックされた冷媒流量、冷媒温度と、電圧センサ230からフィードバックされた入力電圧と、に基づいて制限後電流指令を算出する。なお、制限部20内部の処理ステップについては、後述の図3で説明する。
電流制御部30は、制限部20から入力された制限後電流指令と、電流センサ220からフィードバックされた三相交流電流とから、予め定められた制御ゲインに基づき比例制御や積分制御などの公知技術により、PWM信号生成部40へ電圧指令を出力する。
PWM信号生成部40は、入力された電圧指令に基づいて、スイッチング素子110a~110fをオンもしくはオフするスイッチング信号を生成する。スイッチング信号生成の際には、公知技術である三角波キャリア比較法や空間ベクトル変調法などが用いられる。
速度変換部50には、位置センサ210で検出されたモータ200の回転子位置のデータがフィードバックされる。速度変換部50は、モータ200の回転子位置のデータを基にして角速度を電流指令演算部10へ出力する。
図3は、制限部20の処理フローチャートである。
ステップS1では、絶縁冷媒300の温度と流量に基づいて、絶縁耐圧を算出する。モータ200の絶縁耐圧は、絶縁冷媒300の温度と流量によって変化する。ただし、流動帯電現象による影響を受けるため、影響を評価するために漏れ電流の計測も必要となる。漏れ電流は、絶縁耐圧と同じように、絶縁冷媒300の温度と流量によって変化する。よって、絶縁冷媒300の温度と流量ごとに異なる絶縁耐圧と漏れ電流の関係データを予め制限部20に記憶し、そのデータを基にして、状況に応じた正確な絶縁耐圧を算出する。
ステップS2では、モータ200へ印加される電圧の最大値を算出する。電圧の最大値は、スイッチング素子110a~110fがターンオンもしくはターンオフした際に発生する。その電圧の大きさは、ターンオンもしくはターンオフする際の電流、すなわち三相交流電流の大きさと相関がある。また、モータ200へ印加される電圧は、入力電圧の変化に伴い振幅が変化する。そのため、例えば、モータ200へ印加される電圧が最も大きくなる条件、すなわち、入力電圧が最大になるときの三相交流電流と電圧の最大値の関係を記憶しておく必要がある。したがって、入力電圧ごとに異なる三相交流電流と瞬時最大電圧の関係データを予め制限部20に記憶し、そのデータと演算部10から入力された制限前電流指令を基にして、状況に応じた正確な電圧の最大値を算出する。
ステップS3では、ステップS1で算出した絶縁耐圧とステップS2で算出した電圧の最大値とを比較し、電圧の最大値が絶縁耐圧未満であるかどうかを判定する。このとき、ステップS1で算出した絶縁耐圧とステップS2で算出した電圧の最大値とには、それぞれ誤差が含まれていることを鑑み、電圧の最大値と絶縁耐圧マージンとの和が絶縁耐圧未満かどうかを判定することが望ましい。
絶縁耐圧マージンとは、電圧の最大値が絶縁耐圧を超過することがないように、算出した絶縁耐圧に余分に設定される値のことである。具体的には、絶縁冷媒300の温度と流量の検出誤差に起因する絶縁耐圧の算出誤差をはじめ、絶縁冷媒300の経年劣化による絶縁耐圧の低下や、入力電圧の変動に伴う電圧の最大値の増減、スイッチング素子温度の変化による電圧の最大値の増減などが複合的に発生した際に設定される。もし、絶縁耐圧と電圧の最大値を算出する際に考慮していない変動要因が多く存在し、かつ算出誤差が大きい場合、絶縁耐圧マージンの値はより大きく設定される必要がある。
ステップS3では、電圧の最大値が絶縁耐圧未満だと判定された場合、制限されることなく制限前電流指令は出力され、フローチャートを終了する。一方で、電圧の最大値が絶縁耐圧以上だと判定された場合、ステップS4に移行する。
ステップS4では、ステップS2で電圧の最大値を算出する際に用いた三相交流電流と最大電圧の関係データにおいて、ステップS1で算出した絶縁耐圧よりも電圧の最大値が小さくなるような三相交流電流の値を、制限後出力電流として算出する。そして、電流制御部30へ算出した制限後電流指令を出力し、フローチャートを終了する。これにより、インバータ100からモータ200に出力される三相交流電流を制限して、インバータ100からモータ200へ印加される電圧の最大値が制限されるようにする。このとき、誤差を踏まえて電圧の最大値と絶縁耐圧マージンとの和が絶縁耐圧未満となることが望ましい。
図4は、図3におけるステップS3,S4に係る、スイッチング時に電動機へ印加される電圧波形パターンの例である。
例えば、入力電圧が高く三相交流電流も大きいケース4の場合、スイッチング時にモータ200へ印加される電圧の最大値が絶縁耐圧を超過する恐れがある。制御装置2は、制限部20のステップS3において、この状態を電圧の最大値が絶縁耐圧以上であると判定する。その結果、制限部20のステップS4に移行する。ステップS4で制限後電流指令が算出され、図4のケース3のように電圧の最大値が絶縁耐圧未満に制限される。
一方、入力電圧が低く三相交流電流も低い場合、三相交流電流を制限すると、ケース1のように、スイッチング時にモータ200へ印加される電圧の最大値が過剰に制限されてしまい、必要以上にインバータ100の出力が低下する。そのため、図3のステップS2において、入力電圧ごとに記憶された三相交流電流と電圧の最大値の関係に基づき、その状況に適切な電圧の最大値を算出することで対応する。
以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)ポンプ310により循環される絶縁冷媒300によって冷却されるモータ200の制御装置2は、モータ200に対するトルク指令と、電源からインバータ100に印加される直流電圧と、モータ200の回転子位置と、に基づいて電流指令を算出する電流指令演算部10と、算出された電流指令と、直流電圧と、絶縁冷媒300の流量および温度と、に基づいて、モータ200へ印加される電圧の最大値を制限する制限部20を備える。このようにしたので、モータ200は温度の急変に対応した絶縁耐力を確保できる。
(2)制限部20は、インバータ100からモータ200に出力する三相交流電流を制限することによって、モータ200へ印加される電圧の最大値を制限する。このようにしたので、制御装置2が実施する三相交流電流の制御において、モータ200へ印加される電圧の最大値を制限することができる。
(3)制限部20は、絶縁冷媒300の流量および温度に基づいてモータ200の絶縁耐圧を算出し(ステップS1)、算出した絶縁耐圧に基づいてモータ200へ印加される電圧の最大値を制限する(ステップS2~S4)。このようにしたので、モータ200へ印加される電圧の最大値を、絶縁耐圧に応じて適切に制限することができる。
(4)制限部20は、電流指令と直流電圧からモータ200へ印加される電圧の最大値を算出し(ステップS2)、算出した電圧の最大値が絶縁耐圧よりも小さくなるように、モータ200へ印加される電圧の最大値を制限する(ステップS3、S4)。このようにしたので、確実に電圧の最大値を絶縁耐圧以下にし、モータ200の絶縁耐力を確保できる。
(第2の実施形態)
図5は、本発明の第2の実施形態に係る、インバータ100のスイッチング素子温度に基づいて電圧の最大値を制限する、制限部20の処理のフローチャートである。
モータ200に印加される電圧の最大値は、スイッチング素子110a~110fがターンオンもしくはターンオフした際に発生し、その電圧の大きさは、ターンオンもしくはターンオフする際のスイッチング素子温度と相関がある。
ステップS1では、図3のステップS1と同様に、絶縁冷媒300の温度と流量に基づいて、絶縁耐圧を算出する。
本実施形態では、インバータ100からモータ200へ印加される三相交流電流と電圧の最大値の関係データが、制限部20においてスイッチング素子温度毎に予め記憶されている。ステップS2では、スイッチング素子温度毎に予め記憶されている三相交流電流と電圧の最大値の関係のデータのうち、インバータ100から制限部20へフィードバックされたスイッチング素子温度に対応するデータを選択する。こうして選択したデータに基づいて、フィードバックされた入力電圧と演算部10から入力された制限前電流指令から、より正確な電圧の最大値を算出することが可能となる。
ステップS3では、図3のステップS3と同様に、電圧の最大値が絶縁耐圧未満だと判定された場合、制限されることなく制限前電流指令は出力され、フローチャートを終了する。一方で、電圧の最大値が絶縁耐圧以上だと判定された場合、ステップS4に進む。
ステップS4では、図3のステップS4と同様に、ステップS2で選択した三相交流電流と電圧の最大値の関係から、ステップS1で算出した絶縁耐圧よりも電圧の最大値が小さくなるような三相交流電流の値を、制限後出力電流として算出する。そして、電流制御部30へ算出した制限後電流指令を出力し、フローチャートを終了する。このとき、誤差を踏まえて電圧の最大値と絶縁耐圧マージンの和が絶縁耐圧未満となることが望ましい。
以上説明した本発明の第2の実施形態によれば、以下の作用効果を奏する。
(5)制限部20は、電流指令と、直流電圧と、インバータ100のスイッチング素子110a~110fの温度と、に基づいて、モータ200へ印加される電圧の最大値を算出する(ステップS2)。このようにしたので、入力電圧以外の情報からも電圧の最大値を算出することができ、モータ200は温度の急変に対応した絶縁耐力を確保できる。また、これにより絶縁耐圧マージンを減少させることが可能となり、出力する三相交流電流の過剰な制限を抑制することができる。
(第3の実施形態)
図6は、本発明の第3の実施形態に係る、ゲート電圧に基づいて電圧の最大値を制限する、制限部20の処理のフローチャートである。
モータ200に印加される電圧の最大値は、スイッチング素子110a~110fがターンオンもしくはターンオフした際に発生し、その大きさはスイッチング素子をターンオンもしくはターンオフさせて駆動するゲート電圧の振幅と相関がある。
ステップS1では、図3,5のステップS1と同様に、絶縁冷媒300の温度と流量に基づいて、絶縁耐圧を算出する。
本実施形態では、インバータ100からモータ200へ印加される三相交流電流と電圧の最大値の関係データが、制限部20においてゲート電圧毎に予め記憶されている。なお、ゲート電圧は、過印加されないように、図示されていない制御部によって、公知の技術を用いて制御される。これにより、インバータ100のスイッチング素子110a~110fを駆動するゲート電圧が変化する。ステップS2では、ゲート電圧毎に予め記憶されている三相交流電流と電圧の最大値の関係のデータのうち、現在のゲート電圧に対応するデータを選択する。こうして選択したデータを基にして、フィードバックされた入力電圧と演算部10から入力された制限前電流指令から、状況に応じた正確な電圧の最大値を算出する。
ステップS3では、図3,5のステップS3と同様に、電圧の最大値が絶縁耐圧未満だと判定された場合、制限されることなく制限前電流指令は出力され、フローチャートを終了する。一方で、電圧の最大値が絶縁耐圧以上だと判定された場合、ステップS4に進む。
ステップS4では、電圧の最大値が絶縁耐圧未満となるようなゲート電圧を算出する。ゲート電圧の振幅を低下させると、それに伴いゲート電圧が上昇または下降する速度が低下する。その結果、スイッチング素子110a~110fがターンオンもしくはターンオフする速度が低下するため、ゲート電圧の振幅を低下させることによって電圧の最大値を制限することができる。
ステップS5では、制限部20に予め記憶されているゲート電圧毎の三相交流電流と電圧の最大値の関係のうち、ステップS4で算出したゲート電圧に対応する関係を選択する。そして、選択した三相交流電流と電圧の最大値の関係から、ステップS1で算出した絶縁耐圧よりも電圧の最大値が小さくなるような三相交流電流の値を、制限後出力電流として算出する。その後、電流制御部30へ算出した制限後電流指令を出力し、フローチャートを終了する。
図7は、第3の実施形態に係る、スイッチング素子に印加されるゲート電圧の波形の参考図である。
図7に示すようなスイッチング素子110a~110fをターンオンもしくはターンオフさせるゲート電圧は、例えば印加時のゲート電圧±15Vから、±12Vに下げれば、振幅は6V分小さくなる。ゲート電圧の振幅を小さくすると、関連する電圧の最大値も下がり、絶縁耐圧マージンも減らすことができる。
以上説明した本発明の第3の実施形態によれば、以下の作用効果を奏する。
(6)制限部20は、電流指令と、直流電圧と、インバータ100のスイッチング素子110a~110fを駆動するゲート電圧と、に基づいて、モータ200へ印加される電圧の最大値を算出する(ステップS2)。このようにしたので、入力電圧以外の情報からも電圧の最大値を算出することができ、モータ200は温度の急変に対応した絶縁耐力を確保できる。また、絶縁耐圧マージンを減少させることが可能となり、出力される三相交流電流の過剰な制限を防ぐことができる。
(電動車両)
図8は、本発明による制御装置2が適用された電動車両600を示す図である。電動車両600は、モータ200をモータ/ジェネレータとして適用したパワートレインを有する。
電動車両600のフロント部には、前輪車軸601が回転可能に軸支されており、前輪車軸601の両端には、前輪602,603が設けられている。電動車両600のリア部には、後輪車軸604が回転可能に軸支されており、後輪車軸604の両端には後輪605,606が設けられている。
前輪車軸601の中央部には、動力分配機構であるデファレンシャルギア611が設けられており、エンジン610から変速機612を介して伝達された回転駆動力を左右の前輪車軸601に分配するようになっている。エンジン610とモータ200とは、エンジン610のクランクシャフトに設けられたとモータ200の回転軸に設けられたプーリーの間に架け渡されたベルトを介して機械的に連結されている。
これにより、モータ200の回転駆動力がエンジン610に、エンジン610の回転駆動力がモータ200にそれぞれ伝達できるようになっている。モータ200は、制御装置2の制御に応じてインバータ100から出力された3相交流電力がステータのステータコイルに供給されることによって、ロータが回転し、3相交流電力に応じた回転駆動力を発生する。
すなわち、モータ200は、制御装置2によって制御されて電動機として動作する一方、エンジン610の回転駆動力を受けてロータが回転することによって、3相交流電力を発生する発電機として動作する。
インバータ100は、高電圧(42Vあるいは300V)系電源である高圧バッテリ622から供給された直流電力を3相交流電力に変換する電力変換装置であり、運転指令値とロータの磁極位置とに基づいて、モータ200のステータコイルに流れる3相交流電流を制御する。
モータ200によって発電された3相交流電力は、インバータ100によって直流電力に変換されて高圧バッテリ622を充電する。高圧バッテリ622にはDC/DCコンバータ624を介して低圧バッテリ623に電気的に接続されている。低圧バッテリ623は、電動車両600の低電圧(14v)系電源を構成するものであり、エンジン610を初期始動(コールド始動)させるスタータ625,ラジオ,ライトなどの電源に用いられている。
電動車両600が信号待ちなどの停車時(アイドルストップモード)にあるとき、エンジン610を停止させ、再発車時にエンジン610を再始動(ホット始動)させる時には、インバータ100でモータ200を駆動し、エンジン610を再始動させる。
なお、アイドルストップモードにおいて、高圧バッテリ622の充電量が不足している場合や、エンジン610が十分に温まっていない場合などにおいては、エンジン610を停止せず駆動を継続する。また、アイドルストップモード中においては、エアコンのコンプレッサなど、エンジン610を駆動源としている補機類の駆動源を確保する必要がある。この場合、モータ200を駆動させて補機類を駆動する。
加速モード時や高負荷運転モードにある時にも、モータ200を駆動させてエンジン610の駆動をアシストする。逆に、高圧バッテリ622の充電が必要な充電モードにある時には、エンジン610によってモータ200を発電させて高圧バッテリ622を充電する。すなわち、モータ200は、電動車両600の制動時や減速時などでは回生運転される。
電動車両600は、絶縁冷媒の温度と流量に基づいて、モータ200に印加する三相交流電流を制限する指令を出す制御装置2と、制御装置2から出力される制限されたPWMパルスにより直流電圧を交流電圧に変換してモータ200を駆動するインバータ100と、直流電圧を昇圧するDC/DCコンバータ624とを備えている。これにより、車両が駆動している間も安定的に絶縁冷媒300の制御を行うことができる。
以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1 電動システム制御装置
2 インバータ制御装置
3 ポンプ制御装置
10 電流指令演算部
20 制限部
30 電流制御部
40 PWM信号生成部
50 速度変換部
100 インバータ
110a U相上アームスイッチング素子
110b U相下アームスイッチング素子
110c V相上アームスイッチング素子
110d V相下アームスイッチング素子
110e W相上アームスイッチング素子
110f W相下アームスイッチング素子
200 モータ
210 位置センサ
220 電流センサ
230 電圧センサ
300 絶縁冷媒
310 ポンプ
320 冷媒流量センサ
330 冷媒温度センサ
600 電動車両

Claims (8)

  1. ポンプにより循環される絶縁冷媒によって冷却される電動機の制御装置であって、
    前記電動機に対するトルク指令と、電源から電力変換回路に印加される直流電圧と、前記電動機の回転子位置と、に基づいて電流指令を算出する電流指令演算部と、
    算出された前記電流指令と、前記直流電圧と、前記絶縁冷媒の流量および温度と、に基づいて、前記電動機へ印加される電圧の最大値を制限する制限部と、を備える制御装置。
  2. 請求項1に記載の制御装置であって、
    前記制限部は、前記電力変換回路から前記電動機に出力する三相交流電流を制限することによって、前記電圧の最大値を制限する制御装置。
  3. 請求項1に記載の制御装置であって、
    前記制限部は、前記絶縁冷媒の流量および温度に基づいて前記電動機の絶縁耐圧を算出し、算出した前記絶縁耐圧に基づいて前記電圧の最大値を制限する制御装置。
  4. 請求項3に記載の制御装置であって、
    前記制限部は、前記電流指令と前記直流電圧から前記電圧の最大値を算出し、前記絶縁耐圧よりも前記電圧の最大値が小さくなるように、前記電圧の最大値を制限する制御装置。
  5. 請求項4に記載の制御装置であって、
    前記制限部は、前記電流指令と、前記直流電圧と、前記電力変換回路のスイッチング素子の温度と、に基づいて、前記電圧の最大値を算出する制御装置。
  6. 請求項4に記載の制御装置であって、
    前記制限部は、前記電流指令と、前記直流電圧と、前記電力変換回路のスイッチング素子を駆動するゲート電圧と、に基づいて、前記電圧の最大値を算出する制御装置。
  7. 請求項1乃至6のいずれかに記載の制御装置を備えた電動車両。
  8. ポンプにより循環される絶縁冷媒の温度と流量から、絶縁抵抗と漏れ電流をそれぞれ求め、前記絶縁抵抗と前記漏れ電流の関係から、電動機の絶縁耐圧を算出するステップと、
    電力変換回路において、スイッチング素子に入力される電圧ごとに異なる出力時の電流と電圧の最大値の関係が予め記憶されており、前記関係から前記電圧の最大値を算出するステップと、
    算出した前記電圧の最大値よりも前記絶縁耐圧の方が大きいことを確かめるステップと、
    前記電圧の最大値よりも前記絶縁耐圧の方が小さい場合、前記電圧の最大値を制限するための電流を算出するステップと、を備える電動機の制御方法。
JP2019200883A 2019-11-05 2019-11-05 電動機の制御装置、電動車両、電動機の制御方法 Active JP7278926B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019200883A JP7278926B2 (ja) 2019-11-05 2019-11-05 電動機の制御装置、電動車両、電動機の制御方法
CN202080066320.0A CN114424450A (zh) 2019-11-05 2020-10-27 电动机的控制装置、电动车辆、电动机的控制方法
PCT/JP2020/040244 WO2021090731A1 (ja) 2019-11-05 2020-10-27 電動機の制御装置、電動車両、電動機の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200883A JP7278926B2 (ja) 2019-11-05 2019-11-05 電動機の制御装置、電動車両、電動機の制御方法

Publications (2)

Publication Number Publication Date
JP2021078179A JP2021078179A (ja) 2021-05-20
JP7278926B2 true JP7278926B2 (ja) 2023-05-22

Family

ID=75848051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200883A Active JP7278926B2 (ja) 2019-11-05 2019-11-05 電動機の制御装置、電動車両、電動機の制御方法

Country Status (3)

Country Link
JP (1) JP7278926B2 (ja)
CN (1) CN114424450A (ja)
WO (1) WO2021090731A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343993A (ja) 2003-04-22 2004-12-02 Matsushita Electric Ind Co Ltd モータ制御装置、圧縮機、空気調和機、及び冷蔵庫
WO2015140867A1 (ja) 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039576A1 (fr) * 2000-11-09 2002-05-16 Daikin Industries, Ltd. Procede et dispositif de commande de moteur synchrone
US6794883B2 (en) * 2002-03-19 2004-09-21 Emerson Electric Co. Method and system for monitoring winding insulation resistance
JP4259219B2 (ja) * 2003-08-11 2009-04-30 トヨタ自動車株式会社 モータ駆動装置およびそれを搭載した自動車
JP2006032651A (ja) * 2004-07-16 2006-02-02 Mitsubishi Electric Corp 電気機器
JP2006141095A (ja) * 2004-11-10 2006-06-01 Toyota Industries Corp 永久磁石型同期モータを駆動制御する装置
JP5217579B2 (ja) * 2007-08-06 2013-06-19 株式会社豊田自動織機 電動機の制御方法及び制御装置
RU2479447C1 (ru) * 2009-03-25 2013-04-20 Мицубиси Электрик Корпорейшн Устройство управления для транспортного средства с электрическим двигателем переменного тока
JP2011109765A (ja) * 2009-11-16 2011-06-02 Toyota Motor Corp 回転電機冷却システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343993A (ja) 2003-04-22 2004-12-02 Matsushita Electric Ind Co Ltd モータ制御装置、圧縮機、空気調和機、及び冷蔵庫
WO2015140867A1 (ja) 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機

Also Published As

Publication number Publication date
JP2021078179A (ja) 2021-05-20
CN114424450A (zh) 2022-04-29
WO2021090731A1 (ja) 2021-05-14

Similar Documents

Publication Publication Date Title
US6486632B2 (en) Control device for motor/generators
US8054031B2 (en) Converter device, rotating electrical machine control device, and drive device
US9849806B1 (en) Current based six step control
US11056984B2 (en) Inverter control device
WO2008007723A1 (fr) Dispositif de commande de charge et véhicule utilisant celui-ci
CN111713012B (zh) 马达控制装置以及使用它的电动车辆系统
WO2021049248A1 (ja) モータ制御装置、機電一体ユニット、および電動車両システム
JP5303295B2 (ja) 車両用電力変換装置および電動車両
JP2011109765A (ja) 回転電機冷却システム
WO2019171856A1 (ja) 電力変換装置
JP2016151267A (ja) 電動圧縮機
JP4968163B2 (ja) 車両用モータ制御装置
US9148082B2 (en) Control device and control method
JP7278926B2 (ja) 電動機の制御装置、電動車両、電動機の制御方法
JP7413171B2 (ja) モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム
JP2016208686A (ja) 電動車両
WO2021020115A1 (ja) 制御装置、電動車両
US20240157810A1 (en) Control apparatus and program
WO2024101080A1 (ja) モータ制御装置、および、電気車
JP2023173339A (ja) モータシステム、ハイブリッドシステム、機電一体ユニット、電動車両システム
US20240042867A1 (en) Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method
JP7206723B2 (ja) 電動発電機の制御装置
JP2014045557A (ja) 電動負荷の駆動装置
JP2023170202A (ja) モータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム
JP2019068575A (ja) インバータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230510

R150 Certificate of patent or registration of utility model

Ref document number: 7278926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150