JP7056976B2 - バイパスされたゲート構造を有するトランジスタ - Google Patents

バイパスされたゲート構造を有するトランジスタ Download PDF

Info

Publication number
JP7056976B2
JP7056976B2 JP2020128523A JP2020128523A JP7056976B2 JP 7056976 B2 JP7056976 B2 JP 7056976B2 JP 2020128523 A JP2020128523 A JP 2020128523A JP 2020128523 A JP2020128523 A JP 2020128523A JP 7056976 B2 JP7056976 B2 JP 7056976B2
Authority
JP
Japan
Prior art keywords
gate
finger
gate finger
jumper
source contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020128523A
Other languages
English (en)
Other versions
JP2020184648A (ja
Inventor
ファレル、ドナルド
ウッド、サイモン
シェパード、スコット
ナミシア、ダン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Wolfspeed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfspeed Inc filed Critical Wolfspeed Inc
Publication of JP2020184648A publication Critical patent/JP2020184648A/ja
Priority to JP2022059193A priority Critical patent/JP7414876B2/ja
Application granted granted Critical
Publication of JP7056976B2 publication Critical patent/JP7056976B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本明細書に記載される発明の概念は、マイクロ電子デバイス、より詳細には単位セル・ベースの構造を有する高電力、高周波トランジスタ・デバイスに関する。
近年、高電力処理能力を必要とし、一方で無線周波数(500MHz)、Sバンド(3GHz)及びXバンド(10GHz)などの高周波で動作する電気回路がますます一般的になってきた。高電力、高周波回路の増加のために、無線周波数以上で確実に動作することができ、一方でより高い電力負荷をなお処理することができるトランジスタに対する要求が相応して増加している。
出力電力の増大をもたらすために、より大きなゲート周辺部を有するトランジスタが開発されている。トランジスタの実効的なゲート周辺部を増加させるための1つの技法は、並列に接続された複数のトランジスタ・セルを設けることである。例えば、高電力トランジスタは、図1に示すように、それぞれの細長いソースコンタクトとドレインコンタクトとの間に並列に延在する複数のゲート・フィンガーを含むことがある。
特に、図1は、半導体構造20上にゲート・パッド12、ソース・パッド22、及びドレイン・パッド32を含む従来のトランジスタ構造10の金属レイアウトを示す。ゲート・パッド12は、ゲート・バス14によって、第1の方向(例えば、図1に示すy方向)に並列に延在する複数のゲート・フィンガー16に接続されている。ソース・パッド22は、ソース・バス24を介して複数の並列のソースコンタクト26に接続され、ドレイン・パッド32は、ドレイン・バス34を介して複数のドレインコンタクト36に接続されている。各ゲート・フィンガー16は、1対の隣接するソースコンタクト26とドレインコンタクト36との間をy方向に沿って延びている。トランジスタ10の単位セルは、ボックス40で示され、隣接するソースコンタクト26とドレインコンタクト36との間に延在するゲート・フィンガー16を含む。ゲート長は、x方向のゲート・メタライゼーションの寸法であり、一方、ゲート幅は、ソースコンタクト26とドレインコンタクト36がy方向に重なる距離である。すなわち、ゲート・フィンガー16の「幅」は、隣接するソース/ドレインコンタクト26、36と平行に延在するゲート・フィンガー16の寸法を指す。デバイスのゲート周辺部は、デバイス10の各ゲート・フィンガー16に対するゲート幅の和を指す。
米国特許出願公開第2002/0066908号明細書 米国特許出願公開第2002/0167023号明細書 米国特許出願公開第2004/0061129号明細書 米国特許第7,906,799号明細書 米国特許第6,316,793号明細書 米国特許出願公開第2003/0102482号明細書
単位セルを追加することに加えて、ゲート・フィンガーをより広く(すなわち、y方向により長く)することによってマルチセル・トランジスタ・デバイスのゲート周辺部を増加させることができる。しかしながら、デバイスのゲート・フィンガーがより広くなるにつれ、デバイスの高周波性能が悪影響を受ける可能性がある。加えて、ゲート・フィンガーをより広くすることは、典型的には、ゲート・フィンガーが、ゲート・フィンガーのメタライゼーションのエレクトロマイグレーションを引き起こす可能性がある電流密度の増加に対処しなければならないことを意味する。
一部の実施例によるトランジスタ・デバイスは、第1の方向に延在するソースコンタクトと、ソースコンタクトに隣接して第1の方向に延在するゲート・フィンガーと、ゲート・フィンガーに隣接するドレインコンタクトと、を含み、ゲート・フィンガーがドレインコンタクトとソースコンタクトとの間にある。ゲート・パッドは、ゲート・フィンガーに沿った複数の点でゲート・フィンガーに電気的に接続されている。
デバイスは、第1の方向に延在する、ゲート・パッドに導電的に接続されたゲート・ジャンパーをさらに含む。ゲート・パッドは、ゲート・ジャンパーを介してゲート・フィンガーに沿った複数の点の少なくとも1つに導電的に接続されている。
デバイスは、ゲート・ジャンパー及びゲート・フィンガーに接続されたゲート・バスと、第1の方向にゲート・バスから離間され、ゲート・ジャンパーをゲート・フィンガーに接続するゲート信号分配バーと、をさらに含むことができる。
さらなる実施例によるトランジスタ・デバイスは、ゲート・パッドと、ゲート・フィンガー上の第1の位置でゲート・パッドと導電性接触し、第1の方向に延在するゲート・フィンガーと、ゲート・パッドと導電性接触し、第1の方向に延在するゲート・ジャンパーと、を含む。ゲート・ジャンパーは、第1の位置から離間された、ゲート・フィンガー上の第2の位置でゲート・フィンガーに導電的に接続され、それによりゲート・パッドで受信されたゲート信号が第1の位置及び第2の位置でゲート・フィンガーに印加される。
さらなる実施例によるトランジスタ・デバイスは、ゲート・バスと、ゲート・バスと接触し、第1の方向に延在するゲート・フィンガーと、ゲート・バスと接触し、第1の方向に延在するゲート・ジャンパーと、を含み、ゲート・ジャンパーが、第1の方向にゲート・バスから離間された、ゲート・フィンガーに沿った位置で、ゲート・フィンガーと導電性接触している。
さらなる実施例によるトランジスタ・デバイスは、基板と、基板上のゲート・バスと、基板上にあり、第1の方向に延在する第1及び第2のソースコンタクト・セグメントと、を含む。第1及び第2のソースコンタクト・セグメントは、間隙によって第1の方向に互いに分離されている。デバイスは、基板上にあり、ゲート・バスに接続されたゲート・フィンガーをさらに含む。ゲート・フィンガーは、ソースコンタクト・セグメントに隣接して第1の方向に延在する。デバイスは、ゲート・フィンガーに隣接する、基板上のドレインコンタクトであって、ゲート・フィンガーがドレインコンタクトとソースコンタクト・セグメントとの間にある、ドレインコンタクトと、ゲート・バスに接続されたゲート・ジャンパーであって、ソースコンタクト・セグメントの上方に設けられた、第1の方向に延在する、ゲート・ジャンパーと、基板上にあり、第1及び第2のソースコンタクト・セグメントの間の間隙からゲート・フィンガーへ延在するゲート信号分配バーと、をさらに含む。ゲート信号分配バーは、第1の方向にゲート・バスから離間されたゲート信号分配点でゲート・フィンガーに接触し、ゲート信号分配バーは、ゲート・ジャンパーに導電的に接続されている。
本発明についてのさらなる理解を提供するために含まれ、本出願に組み込まれ、本出願の一部を構成する添付図面は、本発明のある特定の実施例を示す。
従来のマルチセル・トランジスタの金属レイアウトの平面図。 一部の実施例によるトランジスタの金属レイアウトの平面図。 一部の実施例によるトランジスタの金属レイアウトの部分斜視図。 図2の線A-A’に沿ってとられた、一部の実施例によるトランジスタの金属レイアウトの部分断面図。 一部の実施例によるトランジスタの金属レイアウトの、レイアウトの平面図。 一部の実施例によるトランジスタの金属レイアウトの一部の詳細平面図。 図2の線B-B’に沿ってとられた、トランジスタ・デバイスの単位セルの断面図。
本発明の概念の実施例は、本発明の実施例が示される添付図面を参照して以降でより完全に記載される。しかしながら、本発明の概念は、多くの異なる形態で具現化されてもよく、本明細書に述べられた実施例に限定されると解釈されるべきではない。むしろ、これらの実施例は、本開示が完璧且つ完全であり、本発明の概念の範囲を当業者に完全に伝えるように提供される。同様の数字は、全体を通して同様の要素を指す。
本発明の概念の実施例は、大きな実効ゲート幅を有するマルチセル・トランジスタ・デバイスを提供する。ゲート・フィンガーの幅に沿った複数の位置でゲート・フィンガーにゲート信号を供給することによって、広いゲート・フィンガーに通常付随する高周波利得性能及びエレクトロマイグレーションの問題を改善することができる。一部の実施例によると、マルチセル・トランジスタ・デバイスのより大きなゲート幅は、セルのソース領域の上方にゲート・ジャンパーとして機能する第2の金属層を追加することによって対応することができる。ゲート・ジャンパーは、ゲート・フィンガーに沿った様々な位置でゲート・フィンガーに接続され、ゲート・フィンガーを複数のセグメントに事実上分割する。ゲート・ジャンパーは、ゲート・パッドをゲート・セグメントに接続する、ソースコンタクトの上方の第2の金属層によって提供されてもよい。一部の実施例では、ゲート・ジャンパーは、ソースコンタクトの上ではなく、ドレインコンタクト又はゲート・フィンガーの上方を走ることができる。
ゲートをセグメントに事実上分割し、ゲート・ジャンパーによってセグメントのそれぞれにゲート信号を分配することによって、デバイスの利得性能及びエレクトロマイグレーションの問題を改善することができる。
したがって、本発明の概念の実施例は、各ゲートに対して複数の単位セルを直列に規定するトランジスタ・レイアウトを提供する。個々には、単位セルのそれぞれは、より短い実効ゲート幅を有する。しかしながら、直列に接続されると、単位セルは、単一のゲート・フィンガーの実効長を増加させることができる。直列接続された単位セルのゲート・フィンガーは、単位セルのソースコンタクトの上方を走る第2の金属ブリッジによってゲート・バスに接続される。金属ブリッジは、ソースコンタクト間で接続バーに接続され、この接続バーがソースコンタクト間で基板の表面に沿って走り、ゲート・フィンガーに接続する。
本明細書に記載されるようなレイアウトを有するトランジスタは、より高い周波数性能及びより高い出力電力を有し、一方で電流密度を低減させることができ、これによってデバイスの信頼性を改善することができる。
図2は、一部の実施例によるトランジスタ100の金属レイアウトの平面図である。トランジスタは、以下でより詳細に記載される1つ又は複数のデバイス・エピタキシャル層を含む半導体構造120上に形成されている。図2のレイアウトは、理解を容易にするために簡略化されており、ゲート・バス114に接続されたゲート・パッド112、及びドレイン・バス134に接続されたドレイン・パッド132を含む。ソース・パッド及びソース・バスは、図を明瞭にするために図2からは省略されているが、図5及び図6には示されている。
複数のゲート・フィンガー116がゲート・バス114に接続され、y方向に延在する。同様に、複数のドレインコンタクト136がドレイン・バス134に接続され、ゲート・フィンガー116のそれぞれと平行に且つ隣接して延在する。4つのゲート・フィンガー116及び3つのドレインコンタクト136のみが図2に示されているが、トランジスタ100は、トランジスタが多数の単位セルを有するように、さらに多くのゲート・フィンガー及びソースコンタクトを有してもよいことを認識されるであろう。
ソースコンタクト162がレイアウト内に設けられており、ゲート・フィンガー116のうちの隣接するゲート・フィンガーと平行にy方向に延在する。ソースコンタクト162は、y方向にそれぞれのソースコンタクト・セグメント162a、162b及び162cに分割されている。ソースコンタク・セグメントは、デバイス構造を横切って横に(x方向に)延在するソースコンタクト・バー128(図6)によって接続されてもよい。
ソースコンタクト・セグメント162a~162cのうちの隣接するソースコンタクト・セグメントは、間隙162gによって分離されている。図2は、各ソースコンタクト162に対して3つのソース・ゲートコンタクト・セグメント162a~162cを示すが、本発明の概念は、そのような構成に限定されず、ソースコンタクト162が2つ以上のソース・ゲートコンタクト・セグメント162a~162cを含んでもよいことを認識されるであろう。
ゲート・フィンガー116は、ソースコンタクト116の全長にわたってソースコンタクト162と平行に延在することができる。しかしながら、ソースコンタクト162は、ソースコンタクト・セグメント162a、162b及び162cに分割されているため、ソースコンタクト・セグメント162a、162b及び162cは、ゲート・フィンガー116のそれぞれに対して複数の直列の単位セル40a、40b、40cを規定する。すなわち、各ゲート・フィンガー116は、ゲート・フィンガー116が延在し且つゲート・フィンガー116の幅を規定する方向(y方向)にレイアウトされる複数の単位セル40a、40b、40cに対するゲートコンタクトとして機能する。したがって、各ゲート・フィンガー116がデバイス全体のゲート周辺部に寄与する全幅は、ゲート・フィンガー116が、隣接するソースコンタクト・セグメント162a、162b及び162cとy方向に重なる距離に等しい。
トランジスタ100は、ゲート・フィンガー116と平行にy方向に沿って延在する複数のゲート・ジャンパー172をさらに含む。ゲート・ジャンパー172は、ソースコンタクト162の上方に形成されてもよく、例えば、誘電体層及び/又は空隙によってソースコンタクト162から絶縁されていてもよい。ゲート・ジャンパー172は、ゲート・バス114に電気的に接続され、各ゲート・フィンガー116をゲート・フィンガー116に沿った複数の位置でゲート・バス114に接続する。
特に、ゲート・ジャンパー172は、デバイスの幅に沿った複数の位置に設けられた、ソースコンタクト・セグメント162a、162b及び162cのうちの隣接するソースコンタクト・セグメント間の間隙162gからゲート・フィンガー116へ横に(x方向に)延在するゲート信号分配バー174を介してゲート・フィンガー116に接続する。ゲート信号分配バー174は、ゲート信号分配点176でゲート・フィンガー116と接触する。したがって、ゲート・パッド112に印加された電気信号(「ゲート信号」)は、ゲート・バス114に、次いでゲート・ジャンパー172に運ばれ、ゲート・ジャンパー172がゲート・フィンガー116の幅に沿った複数の位置(ゲート信号分配点176)でゲート信号をゲート・フィンガー116に分配する。したがって、図1に示す実施例では、ゲート・フィンガー116がデバイスの全幅に対してゲート信号を運ぶのではなく、ゲート信号は、デバイスの幅の大部分にわたってゲート・ジャンパー172によって運ばれ、次いで、デバイスの幅に沿った様々な位置でゲート・フィンガー116に分配される。
ゲート・ジャンパー172は、ゲート・フィンガー116よりも大きな断面積を有し、したがって、エレクトロマイグレーション及び高周波利得性能の低下などの、ゲート幅の増加に通常付随する問題を伴わずに、ゲート・フィンガーよりもより高い電流密度によりよく対処できる可能性がある。
図3は、一部の実施例によるトランジスタ100の金属レイアウトの部分斜視図であり、図4は、図2の線A-A’に沿ってとられたトランジスタ100の金属レイアウトの部分断面図である。図3及び図4で見られるように、ゲート・ジャンパー172は、ソースコンタクト・セグメント162a、162b、162c、ゲート・フィンガー116、ゲート・バス114、及びゲート信号分配バー174の金属レベルよりも高い金属レベルに形成されている。ゲート・ジャンパー172は、垂直コンタクトプラグ178によってゲート・バス114及びゲート信号分配バー174に接続されている。
ゲート・ジャンパー172、ゲート・バス114、垂直コンタクトプラグ178、及びゲート信号分配バー174は、非常に低い抵抗を有する、銅又はアルミニウムなどの導電性材料から形成されてもよい。
図5は、一部の実施例によるトランジスタ100の金属レイアウトの、レイアウトの平面図であり、図6は、図5の金属レイアウトの一部分150の詳細平面図である。金属レイアウトは、垂直に(y方向に)延在する複数の単位セル40を含む。単位セル40のそれぞれは、デバイスの全幅にわたって延在する1つのゲート・フィンガー116を含み、上述したように垂直方向(y方向)に配置された直列の単位セル40a、40b、40cに細分されている。図5及び図6に示す実施例では、単位セル40のそれぞれは、直列の単位セル40a、40b、及び40cが、370ミクロン、380ミクロン、及び370ミクロンの幅をそれぞれ有する1120ミクロンの全幅を有するが、本発明の概念はこれらの特定の寸法に限定されない。このようにして、デバイスの実効ゲート幅を増加させることができる。
図6を参照すると、ゲート・パッド112及びゲート・バス114は、構造の一方の端部に設けられているが、ドレイン・パッド132及びドレイン・バス134は、構造のもう一方の端部に設けられている。ソース・パッド122は、構造の側部に設けられ、ソース・バス124に接続されている。ソース・バス124は、横方向(x方向)に延在する複数のソース分配バー128に接続されて、ソースコンタクト・セグメント162a、162b、162cと接触する。
図6のトランジスタ100のデバイス・レイアウトの一部分150の詳細図は、ゲート・フィンガー116、ゲート・ジャンパー172、ゲート信号分配バー174、及びゲート信号分配バー174がゲート・フィンガー116と接触するゲート信号分配点176も示している。
図7は、図2の線B-B’に沿ってとられたトランジスタ・デバイス100の単位セル40の断面図である。トランジスタ構造100は、例えば、4H-SiC又は6H-SiCを含んでもよい基板200を含む半導体構造120を含む。チャネル層210が基板210上に形成され、バリア層220がチャネル層210上に形成されている。チャネル層210及びバリア層220は、バリア層220の材料がチャネル層210の材料よりも大きなバンドギャップを有するIII族窒化物ベースの材料を含むことができる。例えば、チャネル層210は、GaNを含むことができ、一方バリア層は、AlGaNを含むことができる。
バリア層220とチャネル層210との間のバンドギャップの差、及びバリア層220とチャネル層210との間の界面における圧電効果のために、二次元電子ガス(2DEG)が、チャネル層210とバリア層220との間の接合部においてチャネル層210内に誘起される。2DEGは、ソースコンタクト・セグメント162b及びドレインコンタクト136のそれぞれの下の、デバイスのソース領域とドレイン領域との間の導通を可能にする高度に導電性の層である。ソースコンタクト・セグメント162b及びドレインコンタクト136は、バリア層220上に形成されている。ゲート・フィンガー116は、ドレインコンタクト136とソースコンタクト・セグメント162bとの間のバリア層220上に形成されている。ゲート・ジャンパー172は、ソースコンタクト・セグメント162bの上方に設けられ、垂直コンタクトプラグ178及びゲート信号分配バー174を介してゲート・フィンガー116に接続されている。垂直コンタクトプラグ178及びゲート信号分配バーは、ソースコンタクト・セグメント162a~162cのうちの隣接するソースコンタクト・セグメント間の間隙162gに設けられ、ソースコンタクト・セグメント162a~162cと物理的に接触しない。
第1の層間絶縁層232が、ドレインコンタクト136、ゲート・フィンガー116、ソースコンタクト・セグメント162b、及びゲート信号分配バー174を覆って基板上に形成されている。層間絶縁層232は、例えば、SiN、SiOなどの誘電体材料を含むことができる。垂直コンタクトプラグ178は、第1の層間絶縁層232を貫通する。ゲート・ジャンパー172は、ゲート・ジャンパー172をソースコンタクト・セグメント162bから絶縁する第1の層間絶縁層232上に形成されている。第2の層間絶縁層234が第1の層間絶縁層232及びゲート・ジャンパー172上に形成されてもよい。第2の層間絶縁層234は、例えば、SiN、SiOなどの誘電体材料を含むことができる。
ゲート・フィンガー116の材料は、バリア層の組成に基づいて選ばれてもよい。しかしながら、ある特定の実施例では、窒化物ベースの半導体材料にショットキー接触を行うことができる従来の材料、例えば、Ni、Pt、NiSi、Cu、Pd、Cr、W及び/又はWSiNなどを使用することができる。ドレインコンタクト136及びソースコンタクト・セグメント162は、GaNにオーミック接触を形成することができる、TiAlNなどの金属を含むことができる。
本発明の概念の実施例は、III族窒化物ベースの高電子移動度トランジスタ(HEMT)デバイスに関連して使用するのに特によく適している場合がある。本明細書で使用されるように、用語「III族窒化物」は、窒素と、周期律表のIII族の元素、通常アルミニウム(Al)、ガリウム(Ga)、及び/又はインジウム(In)との間に形成される半導体化合物を指す。この用語は、AlGaN及びAlInGaNなどの三元及び四元化合物も指す。これらの化合物は全て、1モルの窒素が合計で1モルのIII族元素と組み合わされた実験式を有する。
本発明の実施例を利用することができるGaNベースのHEMTに適した構造は、例えば、共通に譲渡された、2002年6月6日に公開された特許文献1「Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors Having A Gate Contact On A Gallium Nitride Based Cap Segment And Methods Of Fabricating Same」、2002年11月14日に公開された特許文献2「Group-III Nitride Based High Electron Mobility Transistor (HEMT) With Barrier/Spacer Layer」、2004年4月1日に公開された特許文献3「Nitride-Based Transistors And Methods Of Fabrication Thereof Using Non-Etched Contact Recesses」、2011年3月15日に発行された特許文献4「Nitride-Based Transistors With A Protective Layer And A Low-Damage Recess」、及び2001年11月13日に発行された「Nitride Based Transistors On Semi-Insulating Silicon Carbide Substrates」という名称の特許文献5に記載され、これらの開示は、その全体が参照により本明細書に組み込まれる。
本発明の特定の実施例では、基板200は、例えば、4Hポリタイプの炭化ケイ素(SiC)であってもよい半絶縁性炭化ケイ素基板であってもよい。他の炭化ケイ素候補ポリタイプには、3C、6H、及び15Rポリタイプが含まれる。
任意選択のバッファ層、核生成層及び/又は遷移層(図示せず)がチャネル層210の下の基板200上に設けられてもよい。例えば、炭化ケイ素基板とデバイスの残りの部分との間の適切な結晶構造遷移を提供するためにAlNバッファ層が含まれていてもよい。さらに、例えば、共通に譲渡された、2003年6月5日に公開された、「Strain Balanced Nitride Heterojunction Transistors And Methods Of Fabricating Strain Balanced Nitride Heterojunction Transistors」という名称の特許文献6に記載されるように歪平衡遷移層も設けられてもよく、その開示は、本明細書に完全に述べられているかのように参照により本明細書に組み込まれる。さらに、SiNキャッピング層などの1つ又は複数のキャッピング層がバリア層220上に設けられてもよい。
炭化ケイ素は、III族窒化物デバイスに対する非常に一般的な基板材料であるサファイア(Al)よりもIII族窒化物にはるかに近い結晶格子整合を有する。SiCのより近い格子整合によって、結果として、サファイア上で一般的に利用可能なものよりもより高品質のIII族窒化物膜を得ることが可能になる。また、炭化ケイ素は、非常に高い熱伝導率を有し、その結果、炭化ケイ素上のIII族窒化物デバイスの総出力電力は、典型的には、サファイア上に形成された同一のデバイスの場合ほどには基板の熱放散によって制限されない。また、半絶縁性炭化ケイ素基板の利用可能性は、素子分離及び寄生容量低減に備えることができる。適切なSiC基板は、例えば、本発明の譲受人であるノースカロライナ州ダラム市のCree社によって製造されている。
基板材料として炭化ケイ素が使用されてもよいが、本発明の実施例は、任意の適切な基板、例えば、サファイア、窒化アルミニウム、窒化アルミニウムガリウム、窒化ガリウム、シリコン、GaAs、LGO、ZnO、LAO、InPなどを利用することができる。一部の実施例では、適切なバッファ層も形成することができる。
本発明の一部の実施例では、チャネル層210は、チャネル層210の伝導帯端のエネルギーが、チャネル層とバリア層との間の界面でのバリア層220の伝導帯端のエネルギーよりも低い場合は、AlGa1-xN(ここで0≦x<1)などのIII族窒化物である。本発明のある特定の実施例では、チャネル層210がGaNであることを示す、x=0である。また、チャネル層210は、InGaN、AlInGaNなどの、他のIII族窒化物であってもよい。チャネル層210は、ドープされていない、或は、意図せずにドープされていてもよく、約20Åを超える厚さに成長させてもよい。また、チャネル層210は、例えば、超格子、又はGaN、AlGaNなどの組合せなどの、多層構造であってもよい。
チャネル層210は、バリア層220のバンドギャップよりも小さいバンドギャップを有することができ、また、チャネル層210は、バリア層220よりも大きな電子親和力を有することができる。本発明の概念のある特定の実施例では、バリア層220は、約0.1nm~約10nmの厚さを有するAlN、AlInN、AlGaN、又はAlInGaNである。本発明の概念の特定の実施例では、バリア層22は、十分に厚く、チャネル層210とバリア層220との間の界面においてかなりのキャリア濃度を誘起するのに十分に高いAl組成及びドーピングを有する。
バリア層220は、III族窒化物であってもよく、チャネル層210よりも大きなバンドギャップ、及びチャネル層210よりも小さな電子親和力を有する。したがって、本発明のある特定の実施例では、バリア層220は、AlGaN、AlInGaN、及び/又はAlN、或はそれらの層の組合せを含んでもよい。バリア層220は、例えば、約0.1nm~約30nmの厚さであってもよい。本発明のある特定の実施例では、バリア層220は、ドープされていないか、又は約1019cm-3未満の濃度までn型ドーパントでドープされている。本発明の一部の実施例では、バリア層220は、AlGa1-xNであり、ここで0<x<1である。特定の実施例では、アルミニウム濃度は、約25%である。しかしながら、本発明の他の実施例では、バリア層220は、約5%~約100%のアルミニウム濃度を有するAlGaNを含む。本発明の特定の実施例では、アルミニウム濃度は、約10%よりも大きい。
本発明の実施例は、GaN高電子移動度トランジスタ(HEMT)構造を参照して示されているが、本発明の概念はそのようなデバイスに限定されない。したがって、本発明の実施例は、複数の単位セル及び制御電極を有する他のトランジスタ・デバイスを含むことができる。本発明の実施例は、より広い制御電極が望まれ、デバイスの複数の単位セルが存在する任意の半導体デバイスで使用するのに適している可能性がある。したがって、例えば、本発明の実施例は、SiC、GaN、GaAs、シリコンなどを使用して製造されるMESFET、MMIC、SIT、LDMOS、BJT、pHEMTなどの、様々なタイプのデバイスで使用するのに適している可能性がある。
様々な要素を記載するために本明細書では第1、第2などの用語が使用されることがあるが、これらの要素は、これらの用語によって限定されるべきではないことを理解されるであろう。これらの用語は、1つの要素と別の要素とを区別するために使用されているだけである。例えば、本発明の範囲から逸脱せずに、第1の要素を第2の要素と呼ぶことができ、同様に、第2の要素を第1の要素と呼ぶことができる。本明細書で使用されるように、用語「及び/又は」は、関連する列記されたアイテムの1つ又は複数の任意の及び全ての組合せを含む。
本明細書で使用される用語は、特定の実施例のみを記載するためのものであって、本発明を限定することは意図されない。本明細書で使用されるように、単数形「1つの(a)」、「1つの(an)」及び「その(the)」は、文脈上そうでないと明白に示さない限り、複数形を同様に含むことが意図されている。本明細書で使用される場合、用語「備える(comprises)」、「備えている(comprising)」、「含む(includes)」、及び/又は「含んでいる(including)」は、述べた特徴、整数、ステップ、動作、要素、及び/又は構成要素の存在を特定するが、1つ若しくは複数の他の特徴、整数、ステップ、動作、要素、構成要素、及び/又はそれらのグループの存在或いは追加を排除しないことをさらに理解されるであろう。
別段の定めがない限り、本明細書で使用される(技術的及び科学的用語を含む)全ての用語は、本発明が属する当業者によって通常理解されるものと同一の意味を有する。本明細書で使用される用語は、本明細書の文脈及び関連技術におけるそれらの意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に規定されない限り、理想化された、又は過度に形式的な意味で解釈されるべきではないことをさらに理解されるであろう。
層、領域、又は基板などの要素が、別の要素「上に」存在する、又は要素「の上に」延在するとして言及される場合は、その要素は、他の要素上に直接存在してもよく、又は他の要素の上に直接延在してもよく、或は介在する要素が存在してもよいことを理解されるであろう。対照的に、要素が別の要素「上に直接」存在する、又は別の要素「の上に直接」延在するとして言及される場合は、介在する要素は存在しない。また、要素が別の要素に「接続されている」又は「結合されている」として言及される場合は、その要素は、他の要素に直接接続、又は結合されていてもよく、或は介在する要素が存在してもよいことを理解されるであろう。対照的に、要素が別の要素に「直接接続されている」又は「直接結合されている」という場合は、介在する要素は存在しない。
「下方の」若しくは「上方の」又は「上部の」若しくは「下部の」或は「水平の」若しくは「横の」若しくは「垂直の」などの相対語は、本明細書では、図に示されるように、1つの要素、層、又は領域のもう1つの要素、層又は領域との関係を説明するために使用されることがある。これらの用語は、図に描かれている向きに加えてデバイスの異なる向きを包含することが意図されていることを理解されるであろう。
本発明の実施例は、本発明の理想化された実施例(及び中間構造体)の概略図である断面図を参照して本明細書に記載されている。図面の層及び領域の厚さは、明瞭にするために誇張されていることがある。さらに、例えば、製造技法及び/又は公差の結果として図の形状からの変形が予想される。したがって、本発明の実施例は、本明細書に示された領域の特定の形状に限定されると解釈されるべきではなく、例えば、製造に起因する形状の偏差を含むものとする。
図面及び明細書では、本発明の典型的な実施例が開示されており、特定の用語が用いられているが、これらの用語は、限定するためではなく、一般的且つ記述的な意味でのみ使用されており、本発明の範囲は以下の特許請求の範囲において述べられる。

Claims (10)

  1. 第1の単位セル及び第2の単位セルと、
    前記第1及び第2の単位セルに共通するソースコンタクトと、
    第1の方向に延在する、前記第1の単位セルの第1のゲート・フィンガーであって、前記第1のゲート・フィンガーは、少なくとも第1のセグメントと第2のセグメントを含む、前記第1のゲート・フィンガーと、
    前記第1の方向に延在する、前記第2の単位セルの第2のゲート・フィンガーと、
    前記第1の方向に延在する、ゲート・ジャンパーと
    を備え、
    前記第1のゲート・フィンガー及び前記第2のゲート・フィンガーは、前記第1の方向に垂直な第2の方向において互いに離間され、
    前記ゲート・ジャンパーが、前記第1のゲート・フィンガーの前記第1のセグメントに隣接する前記第1の方向に延在するが、前記第1のゲート・フィンガーの前記第2のセグメントに隣接する前記第1の方向には延在しない、マルチセル・トランジスタ。
  2. 前記第2の方向に延在し、前記第1のゲート・フィンガーの前記第1のセグメントへ前記ゲート・ジャンパーを接続する第1のゲート信号分配バーと、前記第2の方向に延在し、前記第1のゲート・フィンガーの前記第2のセグメントへ前記ゲート・ジャンパーを電気的に接続する第2のゲート信号分配バーとを更に備える、請求項1に記載のマルチセル・トランジスタ。
  3. 前記第2の方向に延在し、前記ゲート・ジャンパー及び前記第1のゲート・フィンガーに電的に接続されているゲート信号分配バーをさらに備え、前記ゲート信号分配バーは、前記第1のゲート・フィンガー及び前記第2のゲート・フィンガーと同じ金属層に形成されている、請求項1又は2に記載のマルチセル・トランジスタ。
  4. 前記ゲート・ジャンパーが前記ソースコンタクトの一部と垂直方向に重なっている、請求項1から3までのいずれか一項に記載のマルチセル・トランジスタ。
  5. 前記第1の方向に延在する、前記第1の単位セル又は前記第2の単位セルのドレインコンタクトをさらに備える、請求項1から3までのいずれか一項に記載のマルチセル・トランジスタ。
  6. 前記ゲート・ジャンパーが、共通の前記ソースコンタクトの一部、前記第1のゲート・フィンガーの一部、前記第2のゲート・フィンガーの一部、及び/又は前記ドレインコンタクトの一部の上に形成されている、請求項5に記載のマルチセル・トランジスタ。
  7. 前記第2の方向に取られる断面における前記ゲート・ジャンパーの断面積が、前記第2の方向に取られる断面における前記第1のゲート・フィンガー及び/又は前記第2のゲート・フィンガーの断面積よりも大きい、請求項1から6までのいずれか一項に記載のマルチセル・トランジスタ。
  8. 第2の方向に延在し、前記ゲート・ジャンパーに電気的に接続しているゲート・バスをさらに備え、前記第1のゲート・フィンガー及び前記第2のゲート・フィンガーは、前記ゲート・バスに直接的に接触する、請求項1から7までのいずれか一項に記載のマルチセル・トランジスタ。
  9. 前記ソースコンタクトが第1のソースコンタクトであり、前記マルチセル・トランジスタが、間隙によって前記第1のソースコンタクトから前記第1の方向に離間されている第2のソースコンタクトをさらに備える、請求項に記載のマルチセル・トランジスタ。
  10. 前記第1のゲート・フィンガー及び前記第2のゲート・フィンガーが、前記第2のソースコンタクトに隣接して延在し、前記ゲート・ジャンパーは、前記第2のソースコンタクトの一部と垂直方向に重なっていない、請求項9に記載のマルチセル・トランジスタ。
JP2020128523A 2016-03-17 2020-07-29 バイパスされたゲート構造を有するトランジスタ Active JP7056976B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022059193A JP7414876B2 (ja) 2016-03-17 2022-03-31 バイパスされたゲート構造を有するトランジスタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/073,201 US9786660B1 (en) 2016-03-17 2016-03-17 Transistor with bypassed gate structure field
US15/073,201 2016-03-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018548833A Division JP6743170B2 (ja) 2016-03-17 2017-03-13 バイパスされたゲート構造を有するトランジスタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022059193A Division JP7414876B2 (ja) 2016-03-17 2022-03-31 バイパスされたゲート構造を有するトランジスタ

Publications (2)

Publication Number Publication Date
JP2020184648A JP2020184648A (ja) 2020-11-12
JP7056976B2 true JP7056976B2 (ja) 2022-04-19

Family

ID=58448611

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018548833A Active JP6743170B2 (ja) 2016-03-17 2017-03-13 バイパスされたゲート構造を有するトランジスタ
JP2020128523A Active JP7056976B2 (ja) 2016-03-17 2020-07-29 バイパスされたゲート構造を有するトランジスタ
JP2022059193A Active JP7414876B2 (ja) 2016-03-17 2022-03-31 バイパスされたゲート構造を有するトランジスタ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018548833A Active JP6743170B2 (ja) 2016-03-17 2017-03-13 バイパスされたゲート構造を有するトランジスタ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022059193A Active JP7414876B2 (ja) 2016-03-17 2022-03-31 バイパスされたゲート構造を有するトランジスタ

Country Status (6)

Country Link
US (1) US9786660B1 (ja)
EP (2) EP3430649B1 (ja)
JP (3) JP6743170B2 (ja)
KR (1) KR102120576B1 (ja)
CN (2) CN113782596B (ja)
WO (1) WO2017160707A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910491B2 (en) * 2013-09-10 2021-02-02 Delta Electronics, Inc. Semiconductor device having reduced capacitance between source and drain pads
US10069002B2 (en) * 2016-07-20 2018-09-04 Semiconductor Components Industries, Llc Bond-over-active circuity gallium nitride devices
JP6812764B2 (ja) * 2016-11-29 2021-01-13 日亜化学工業株式会社 電界効果トランジスタ
US10103258B2 (en) * 2016-12-29 2018-10-16 Texas Instruments Incorporated Laterally diffused metal oxide semiconductor with gate poly contact within source window
US10263085B2 (en) * 2016-12-30 2019-04-16 Texas Instruments Incorporated Transistor with source field plates and non-overlapping gate runner layers
US10811370B2 (en) 2018-04-24 2020-10-20 Cree, Inc. Packaged electronic circuits having moisture protection encapsulation and methods of forming same
US10483352B1 (en) * 2018-07-11 2019-11-19 Cree, Inc. High power transistor with interior-fed gate fingers
US10763334B2 (en) 2018-07-11 2020-09-01 Cree, Inc. Drain and/or gate interconnect and finger structure
US10600746B2 (en) * 2018-07-19 2020-03-24 Cree, Inc. Radio frequency transistor amplifiers and other multi-cell transistors having gaps and/or isolation structures between groups of unit cell transistors
US10855244B2 (en) 2018-10-19 2020-12-01 Cree, Inc. Transistor level input and output harmonic terminations
EP3872844A4 (en) * 2018-11-30 2022-02-09 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE
US10770415B2 (en) 2018-12-04 2020-09-08 Cree, Inc. Packaged transistor devices with input-output isolation and methods of forming packaged transistor devices with input-output isolation
WO2020197852A1 (en) * 2019-03-28 2020-10-01 Cree, Inc. In-transistor load modulation
US11417746B2 (en) * 2019-04-24 2022-08-16 Wolfspeed, Inc. High power transistor with interior-fed fingers
DE102020107288A1 (de) * 2019-12-10 2021-06-10 X-Fab Semiconductor Foundries Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
US11035785B1 (en) * 2019-12-17 2021-06-15 International Business Machines Corporation Hybrid field effect transistor and surface enhanced infrared absorption based biosensor
US11837559B2 (en) * 2020-04-03 2023-12-05 Wolfspeed, Inc. Group III nitride-based radio frequency amplifiers having back side source, gate and/or drain terminals
KR20220158261A (ko) 2020-04-03 2022-11-30 울프스피드, 인크. 소스, 게이트 및/또는 드레인 도전성 비아들을 갖는 iii족 질화물계 라디오 주파수 트랜지스터 증폭기들
US11574854B2 (en) 2020-04-08 2023-02-07 National Research Council Of Canada Distributed inductance integrated field effect transistor structure
WO2022079995A1 (ja) * 2020-10-16 2022-04-21 パナソニックIpマネジメント株式会社 窒化物半導体装置
US20230120292A1 (en) 2021-10-19 2023-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Device layout design for improving device performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094054A (ja) 2000-09-19 2002-03-29 Hitachi Ltd 半導体装置およびその製造方法
JP2008251565A (ja) 2007-03-29 2008-10-16 Fujitsu Ltd 半導体装置
US20110102077A1 (en) 2009-10-30 2011-05-05 Freescale Semiconductor, Inc. Semiconductor device with feedback control

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP2001094094A (ja) 1999-09-21 2001-04-06 Hitachi Ltd 半導体装置およびその製造方法
SE520109C2 (sv) 2000-05-17 2003-05-27 Ericsson Telefon Ab L M Effekttransistorer för radiofrekvenser
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP3712111B2 (ja) * 2001-03-30 2005-11-02 ユーディナデバイス株式会社 電力増幅用半導体装置
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP2003168736A (ja) * 2001-11-30 2003-06-13 Hitachi Ltd 半導体素子及び高周波電力増幅装置並びに無線通信機
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
JP2004260364A (ja) * 2003-02-25 2004-09-16 Renesas Technology Corp 半導体装置及び高出力電力増幅装置並びにパソコンカード
JP2004096119A (ja) * 2003-09-12 2004-03-25 Hitachi Ltd 半導体装置およびその製造方法
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7135747B2 (en) 2004-02-25 2006-11-14 Cree, Inc. Semiconductor devices having thermal spacers
GB0416174D0 (en) * 2004-07-20 2004-08-18 Koninkl Philips Electronics Nv Insulated gate field effect transistors
US20060017064A1 (en) * 2004-07-26 2006-01-26 Saxler Adam W Nitride-based transistors having laterally grown active region and methods of fabricating same
US7288803B2 (en) * 2004-10-01 2007-10-30 International Rectifier Corporation III-nitride power semiconductor device with a current sense electrode
JP5011549B2 (ja) 2004-12-28 2012-08-29 株式会社村田製作所 半導体装置
US8203185B2 (en) * 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods
US7956421B2 (en) 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture
JP2008258369A (ja) * 2007-04-04 2008-10-23 Renesas Technology Corp 半導体装置およびその製造方法
JP2009016686A (ja) 2007-07-06 2009-01-22 Toshiba Corp 高周波用トランジスタ
JP5106041B2 (ja) 2007-10-26 2012-12-26 株式会社東芝 半導体装置
EP2161754A3 (en) 2008-09-03 2010-06-16 Kabushiki Kaisha Toshiba A semiconductor device and fabrication method for the same
US20120012908A1 (en) * 2009-03-30 2012-01-19 Koji Matsunaga Semiconductor device
US8399924B2 (en) * 2010-06-17 2013-03-19 Texas Instruments Incorporated High voltage transistor using diluted drain
US8319256B2 (en) * 2010-06-23 2012-11-27 Power Integrations, Inc. Layout design for a high power, GaN-based FET
JP2012084743A (ja) 2010-10-13 2012-04-26 Fujitsu Semiconductor Ltd 半導体装置及び電源装置
JP5733616B2 (ja) * 2011-04-21 2015-06-10 住友電工デバイス・イノベーション株式会社 半導体装置
US20130313653A1 (en) * 2012-05-25 2013-11-28 Infineon Technologies Austria Ag MOS Transistor with Multi-finger Gate Electrode
JP5983117B2 (ja) * 2012-07-11 2016-08-31 三菱電機株式会社 半導体装置
US9087718B2 (en) * 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
CN103633046B (zh) * 2013-12-13 2017-03-15 苏州能讯高能半导体有限公司 半导体器件及其制造方法
US9406673B2 (en) * 2013-12-23 2016-08-02 Infineon Technologies Austria Ag Semiconductor component with transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094054A (ja) 2000-09-19 2002-03-29 Hitachi Ltd 半導体装置およびその製造方法
JP2008251565A (ja) 2007-03-29 2008-10-16 Fujitsu Ltd 半導体装置
US20110102077A1 (en) 2009-10-30 2011-05-05 Freescale Semiconductor, Inc. Semiconductor device with feedback control

Also Published As

Publication number Publication date
JP2020184648A (ja) 2020-11-12
KR102120576B1 (ko) 2020-06-08
EP3430649A1 (en) 2019-01-23
JP2022079655A (ja) 2022-05-26
JP6743170B2 (ja) 2020-08-19
CN113782596A (zh) 2021-12-10
KR20180121579A (ko) 2018-11-07
EP4036988A1 (en) 2022-08-03
WO2017160707A1 (en) 2017-09-21
CN109155331B (zh) 2021-09-21
US9786660B1 (en) 2017-10-10
CN109155331A (zh) 2019-01-04
JP2019512886A (ja) 2019-05-16
JP7414876B2 (ja) 2024-01-16
US20170271329A1 (en) 2017-09-21
EP3430649B1 (en) 2022-05-04
CN113782596B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
JP7056976B2 (ja) バイパスされたゲート構造を有するトランジスタ
US11575037B2 (en) Bypassed gate transistors having improved stability
US9947616B2 (en) High power MMIC devices having bypassed gate transistors
JP5457046B2 (ja) 半導体装置
US10923585B2 (en) High electron mobility transistors having improved contact spacing and/or improved contact vias
KR101927408B1 (ko) 고전자 이동도 트랜지스터 및 그 제조방법
JP2020524911A (ja) 平滑化された立ち上がり動作及び改善された線形性を有する複数のユニット・セル・トランジスタを有する半導体デバイス
JP7240480B6 (ja) エンハンスメント・モード及びデプレッション・モード・トランジスタの両者を有するモノリシック・マイクロ波集積回路
US20220020874A1 (en) Bypassed gate transistors having improved stability
JP2022002308A (ja) バイパス・ゲート式トランジスタを備える高出力mmicデバイス
US20230253490A1 (en) Bypassed gate transistors having improved stability
KR102137749B1 (ko) 전력 반도체 소자
US11777023B2 (en) Semiconductor device and method for manufacturing the same
US20230326981A1 (en) Semiconductor device and manufacturing method thereof
US20230078017A1 (en) Semiconductor device incorporating a substrate recess
WO2023056145A1 (en) Bypassed gate transistors having improved stability
KR20140054585A (ko) 전력 반도체 소자

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7056976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150