JP7015636B2 - 積層セラミック電子部品 - Google Patents

積層セラミック電子部品 Download PDF

Info

Publication number
JP7015636B2
JP7015636B2 JP2017012889A JP2017012889A JP7015636B2 JP 7015636 B2 JP7015636 B2 JP 7015636B2 JP 2017012889 A JP2017012889 A JP 2017012889A JP 2017012889 A JP2017012889 A JP 2017012889A JP 7015636 B2 JP7015636 B2 JP 7015636B2
Authority
JP
Japan
Prior art keywords
ceramic
ceramic capacitor
axis direction
thickness
prime field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012889A
Other languages
English (en)
Other versions
JP2018121010A (ja
Inventor
正剛 渡部
康友 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2017012889A priority Critical patent/JP7015636B2/ja
Priority to KR1020180006505A priority patent/KR102520821B1/ko
Priority to TW107101989A priority patent/TWI739987B/zh
Priority to CN201810077669.9A priority patent/CN108364790B/zh
Priority to US15/881,360 priority patent/US10354801B2/en
Publication of JP2018121010A publication Critical patent/JP2018121010A/ja
Application granted granted Critical
Publication of JP7015636B2 publication Critical patent/JP7015636B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/248Terminals the terminals embracing or surrounding the capacitive element, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、低背型の積層セラミック電子部品に関する。
電子機器の小型化に伴って、積層セラミック電子部品の低背化が求められている。特許文献1には、低背型の積層セラミックコンデンサが開示されている。この積層セラミックコンデンサでは、外部電極を薄くした分、セラミック素体を厚くすることによって、厚さ方向の強度を確保している。
特開2014-130999号公報
しかしながら、セラミック素体の厚さが80μm以下の超薄型の積層セラミックコンデンサでは、セラミック素体のみによっては厚さ方向の強度を確保できない場合がある。つまり、このような積層セラミックコンデンサでは、特許文献1に記載の技術を採用したとしても、充分な強度が得られにくい。
以上のような事情に鑑み、本発明の目的は、長手方向における抗折強度を確保可能な低背型の積層セラミック電子部品を提供することにある。
上記目的を達成するため、本発明の一形態に係る積層セラミック電子部品は、セラミック素体と、第1外部電極と、第2外部電極と、を具備する。
上記セラミック素体は、第1軸方向を向いた第1及び第2主面と、上記第1軸に直交する第2軸方向を向いた第1及び第2端面と、上記第1端面に引き出された第1内部電極と、上記第1内部電極に対向し、上記第2端面に引き出された第2内部電極と、を有し、上記第1及び第2軸に直交する第3軸方向に長尺に形成されている。
上記第1外部電極は、上記第1端面を覆う第1被覆部と、上記第1被覆部から上記第2主面に延出する第1延出部と、を有する。
上記第2外部電極は、上記第2端面を覆う第2被覆部と、上記第2被覆部から上記第2主面に延出する第2延出部と、を有する。
上記積層セラミック電子部品では、上記セラミック素体の上記第1軸方向の寸法をTとし、上記第1及び第2延出部の上記第1方向の寸法をTとすると、Tが80μm以下であり、かつT/(T+T)が0.32以下である。
この積層セラミック電子部品では、セラミック素体の長手方向に沿って第1及び第2外部電極が設けられ、第1及び第2外部電極によってセラミック素体が補強されている。この構成では、積層セラミック電子部品の厚さ(T+T)に対する第1及び第2延出部の厚さTの比率を0.32以下とすることにより、セラミック素体及び外部電極の全体として長手方向における高い抗折強度を得ることができる。
上記積層セラミック電子部品では、T/(T+T)が0.04以上であってもよい。
上記積層セラミック電子部品では、Tが3μm以上であってもよい。
この構成では、第1及び第2外部電極によってセラミック素体を補強する効果をより有効に得ることができる。
長手方向における抗折強度を確保可能な低背型の積層セラミック電子部品を提供することができる。
本発明の一実施形態に係る積層セラミックコンデンサの斜視図である。 上記積層セラミックコンデンサのA-A'線に沿った断面図である。 上記積層セラミックコンデンサのB-B'線に沿った断面図である。 上記積層セラミックコンデンサのセラミック素体の分解斜視図である。 比較例に係る積層セラミックコンデンサの斜視図である。 実施例及び比較例に係る積層セラミックコンデンサの抗折強度測定について説明するための模式図である。 実施例及び比較例に係る積層セラミックコンデンサの抗折強度の測定結果を示すグラフである。
以下、図面を参照しながら、本発明の実施形態を説明する。
図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は全図において共通である。
[積層セラミックコンデンサ10の構成]
図1~3は、本発明の一実施形態に係る積層セラミックコンデンサ10を示す図である。図1は、積層セラミックコンデンサ10の斜視図である。図2は、積層セラミックコンデンサ10の図1のA-A'線に沿った断面図である。図3は、積層セラミックコンデンサ10の図1のB-B'線に沿った断面図である。
積層セラミックコンデンサ10は、低背型に構成され、例えば厚さ(Z軸方向の寸法)を100μm以下とすることができる。また、積層セラミックコンデンサ10では、例えば、長手方向(X軸方向)の寸法を0.5mm~2.0mmとすることができ、短手方向(Y軸方向)の寸法を0.2mm~1.0mmとすることができる。
より具体的に、積層セラミックコンデンサ10のサイズは、例えば、0.6mm×0.3mm×50μm、1.0mm×0.5mm×80μm、1.6mm×0.8mm×100μmなどとすることができる。勿論、積層セラミックコンデンサ10は、これら以外にも様々なサイズとすることができる。
積層セラミックコンデンサ10は、セラミック素体11と、第1外部電極14と、第2外部電極15と、を具備する。セラミック素体11は、積層セラミックコンデンサ10の本体として構成され、X軸方向に長尺に形成されている。外部電極14,15はそれぞれ、セラミック素体11の表面を部分的に覆っている。
セラミック素体11は、X軸方向を向いた2つの側面と、Y軸方向を向いた2つの端面と、Z軸方向を向いた2つの主面と、を含む6面体形状を有する。なお、セラミック素体11は厳密に6面体形状でなくてもよく、例えば、セラミック素体11の各面が曲面であってもよく、セラミック素体11が全体として丸みを帯びた形状であってもよい。
セラミック素体11のZ軸方向の寸法である厚さTは、80μm以下である。このようにセラミック素体11の厚さTを非常に小さくすることにより、外部電極14,15の厚さを含めた積層セラミックコンデンサ10の厚さを100μm以下とすることが可能となる。
この一方で、セラミック素体11の厚さTを非常に小さくすると、セラミック素体11における厚さTに対する長手方向の寸法の比率(アスペクト比)が大きくなる。これにより、セラミック素体11では、長手方向における抗折強度が小さくなるため、長手方向の中央部に加わる厚さ方向の応力によって亀裂などの機械的損傷が発生しやすくなる。
セラミック素体11では、厚さTが長手方向の寸法の5分の1以下である場合に、特に機械的損傷が発生しやすくなる。セラミック素体11には、様々なタイミングで厚さ方向の応力が加わることが考えられるが、特に、積層セラミックコンデンサ10の実装時に加わる厚さ方向の応力に耐えることが求められる。
つまり、積層セラミックコンデンサ10は、セラミック素体11の一方の主面の中央部を吸着保持するチップマウンタによって基板に実装される。このとき、チップマウンタからセラミック素体11の主面に厚さ方向の応力が加わる。セラミック素体11単体では、この応力に耐える抗折強度が得られない場合がある。
本実施形態では、外部電極14,15が、セラミック素体11の長手方向の全範囲にわたって設けられ、セラミック素体11を長手方向に沿って補強する機能を有する。第1外部電極14はセラミック素体11の一方の端面を覆う第1被覆部14aを有し、第2外部電極15はセラミック素体11の他方の端面を覆う第2被覆部15aを有する。
第1外部電極14は、第1被覆部14aからZ軸方向下側の主面にY軸方向に沿って延出する第1延出部14bを有する。第2外部電極15は、第2被覆部15aからZ軸方向下側の主面にY軸方向に沿って延出する第2延出部15bを有する。延出部14b,15bは、Y軸方向に相互に離間している。
この一方で、第1外部電極14は、セラミック素体11のZ軸方向上側の主面には延出していない。また、第2外部電極15も、セラミック素体11のZ軸方向上側の主面には延出していない。これらにより、外部電極14,15ではいずれも、Y-Z平面に並行な断面がL字状となっている。
つまり、セラミック素体11の短手方向の両端部は、L字状の断面を有する外部電極14,15によって覆われている。これにより、セラミック素体11が外部電極14,15によって長手方向に沿って補強される。このため、積層セラミックコンデンサ10では、セラミック素体11及び外部電極14,15の全体として抗折強度を確保できる。
積層セラミックコンデンサ10のZ軸方向の寸法である厚さは、セラミック素体11の厚さTと、延出部14b,15bのZ軸方向の寸法である厚さTと、の合計(T+T)として表すことができる。つまり、積層セラミックコンデンサ10では、要求される厚さ(T+T)となるように、厚さT,Tの比率を決定可能である。
積層セラミックコンデンサ10では、主に外部電極14,15の延出部14b,15bの存在によって、セラミック素体11を長手方向に沿って補強する効果が得られる。したがって、延出部14b,15bの厚さTが0よりも大きければ、積層セラミックコンデンサ10の抗折強度を向上させることができる。
しかし、延出部14b,15bによってセラミック素体11を補強する効果をより有効に得るためには、延出部14b,15bの厚さTがある程度確保されていることが好ましい。具体的に、積層セラミックコンデンサ10では、T/(T+T)が0.04以上であることが好ましい。
また、同様の観点から、積層セラミックコンデンサ10では、延出部14b,15bの厚さTが、3μm以上であることが好ましく、5μm以上であることが更に好ましい。また、この場合、積層セラミックコンデンサ10の実装時に延出部14b,15bにおける半田喰われを防止することできるという効果も得られる。
この一方で、積層セラミックコンデンサ10の厚さ(T+T)に対する延出部14b,15bの厚さTの比率を大きくしすぎると、セラミック素体11の厚さTが小さくなりすぎ、セラミック素体11単体としての抗折強度が不充分となる。したがって、セラミック素体11の厚さTがある程度確保されている必要がある。
具体的に、積層セラミックコンデンサ10では、T/(T+T)が0.32以下となるように、厚さT,Tの比率が決定される。また、積層セラミックコンデンサ10では、T/(T+T)が0.3以下であることが好ましい。これにより、積層セラミックコンデンサ10の長手方向における抗折強度が向上する。
つまり、積層セラミックコンデンサ10では、厚さT,Tの比率を上記のようにすることにより、外部電極14,15に延出部14b,15bを設けない構成、すなわち厚さTが0である構成よりも高い抗折強度が得られやすくなる。したがって、外部電極14,15に延出部14b,15bを設けることによる効果が有効に得られる。
なお、延出部14b,15bの厚さTは均一でなくてもよい。この場合、延出部14b,15bの厚さTは、延出部14b,15bの厚さの最大値として規定することができる。また、外部電極14,15の被覆部14a,15aのY軸方向の寸法である厚さTは、延出部14b,15bの厚さTと同程度であっても、異なっていてもよい。
また、延出部14b,15bでは、セラミック素体11の主面を補強する機能を良好に得るために、Y軸方向の寸法Lをセラミック素体11の短手方向の寸法Lの25%以上とすることが好ましい。また、同様の観点から、延出部14b,15bの寸法Lは、125μm以上とすることが好ましい。
外部電極14,15はそれぞれ、電気の良導体により形成され、積層セラミックコンデンサ10の端子として機能する。外部電極14,15を形成する電気の良導体としては、例えば、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)などを主成分とする金属や合金を用いることができる。
外部電極14,15は、特定の構成に限定されない。例えば、外部電極14,15は、単層構造であっても複層構造であってもよい。複層構造の外部電極14,15は、例えば、下地膜と表面膜との2層構造や、下地膜と中間膜と表面膜との3層構造として構成されていてもよい。
下地膜は、例えば、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)などを主成分として形成することができる。本実施形態では、スパッタリング法によって下地膜を形成する。しかし、下地膜は、スパッタリング法以外に、例えば、ディップ法、スプレー法、印刷法などでも形成することもできる。
中間膜は、例えば、白金(Pt)、パラジウム(Pd)、金(Au)、銅(Cu)、ニッケル(Ni)などを主成分として形成することができる。表面膜は、例えば、銅(Cu)、錫(Sn)、パラジウム(Pd)、金(Au)、亜鉛(Zn)などを主成分として形成することができる。中間膜及び表面膜は、例えば、メッキ法などで形成することができる。
セラミック素体11は、容量形成部16と、カバー部17と、サイドマージン部18と、を有する。容量形成部16は、セラミック素体11のX軸及びZ軸方向における中央部に配置されている。カバー部17は容量形成部16をZ軸方向から覆い、サイドマージン部18は容量形成部16をX軸方向から覆っている。
より詳細に、カバー部17は、容量形成部16のZ軸方向両側にそれぞれ配置されている。サイドマージン部18は、容量形成部16のX軸方向両側にそれぞれ配置されている。カバー部17及びサイドマージン部18は、主に、容量形成部16を保護するとともに、容量形成部16の周囲の絶縁性を確保する機能を有する。
容量形成部16には、複数の第1内部電極12と、複数の第2内部電極13と、が設けられている。内部電極12,13は、いずれもX-Y平面に沿って延びるシート状であり、Z軸方向に沿って交互に配置されている。内部電極12,13は、容量形成部16においてZ軸方向に相互に対向している。
図4は、セラミック素体11の分解斜視図である。セラミック素体11は、図4に示すようなシートが積層された構造を有している。容量形成部16及びサイドマージン部18は、内部電極12,13が印刷されたシートで構成することができる。カバー部17は、内部電極12,13が印刷されていないシートで構成することができる。
図3示すように、第1内部電極12は、第1外部電極14側のセラミック素体11の端面に引き出され、第1外部電極14に接続されている。第2内部電極13は、第2外部電極15側のセラミック素体11の端面に引き出され、第2外部電極15に接続されている。これにより、内部電極12,13が外部電極14,15と導通している。
また、第1内部電極12は、第2外部電極15との間に間隔をあけて配置され、第2外部電極15から絶縁されている。第2内部電極13は、第1外部電極14との間に間隔をあけて配置され、第1外部電極14から絶縁されている。つまり、第1内部電極12は第1外部電極14のみと導通し、第2内部電極13は第2外部電極15のみと導通している。
内部電極12,13はそれぞれ、電気の良導体により形成され、積層セラミックコンデンサ10の内部電極として機能する。内部電極12,13を形成する電気の良導体としては、例えばニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)などを主成分とする金属や合金が用いられる。
容量形成部16は、誘電体セラミックスによって形成されている。積層セラミックコンデンサ10では、内部電極12,13間の各誘電体セラミック層の容量を大きくするため、容量形成部16を形成する材料として高誘電率の誘電体セラミックスが用いられる。高誘電率の誘電体セラミックスとしては、例えば、チタン酸バリウム(BaTiO)に代表される、バリウム(Ba)及びチタン(Ti)を含むペロブスカイト構造の材料が挙げられる。
また、容量形成部16を構成する誘電体セラミックスは、チタン酸バリウム系以外にも、チタン酸ストロンチウム(SrTiO)系、チタン酸カルシウム(CaTiO)系、チタン酸マグネシウム(MgTiO)系、ジルコン酸カルシウム(CaZrO)系、チタン酸ジルコン酸カルシウム(Ca(Zr,Ti)O)系、ジルコン酸バリウム(BaZrO)系、酸化チタン(TiO)系などであってもよい。
カバー部17及びサイドマージン部18も、誘電体セラミックスによって形成されている。カバー部17及びサイドマージン部18を形成する材料は、絶縁性セラミックスであればよいが、容量形成部16と同様の組成系の材料を用いることより、製造効率が向上するとともに、セラミック素体11における内部応力が抑制される。
上記の構成により、積層セラミックコンデンサ10では、外部電極14,15の間に電圧が印加されると、容量形成部16において内部電極12,13の間の複数の誘電体セラミック層に電圧が加わる。これにより、積層セラミックコンデンサ10では、外部電極14,15の間の電圧に応じた電荷が蓄えられる。
なお、積層セラミックコンデンサ10の構成は、特定の構成に限定されず、積層セラミックコンデンサ10に求められるサイズや性能などに応じて、公知の構成を適宜採用可能である。例えば、各内部電極12,13の枚数や、内部電極12,13の間の誘電体セラミック層の厚さは、適宜決定可能である。
[積層セラミックコンデンサ10の作用効果]
図5は、比較例に係る積層セラミックコンデンサ110の斜視図である。積層セラミックコンデンサ110は、本実施形態に係る積層セラミックコンデンサ10とは異なり、セラミック素体111の長手方向(X軸方向)の両端部に外部電極114,115が設けられた一般的な構成を有する。
比較例に係る積層セラミックコンデンサ110では、長手方向の中央部がセラミック素体111のみによって構成されている。したがって、積層セラミックコンデンサ110の長手方向における抗折強度は、セラミック素体111単体の長手方向における抗折強度と等しい。
このため、積層セラミックコンデンサ110では、セラミック素体111の厚さTを80μm以下とすると、長手方向における抗折強度が不充分となる。したがって、積層セラミックコンデンサ110では、実装時などにセラミック素体111の長手方向の中央部に厚さ方向の応力が加わると、亀裂などの機械的損傷が発生しやすい。
この一方で、本実施形態に係る積層セラミックコンデンサ10では、上記のとおり、セラミック素体11が長手方向に沿って外部電極14,15によって補強されている。したがって、積層セラミックコンデンサ10では、比較例に係る積層セラミックコンデンサ10よりも、長手方向における高い抗折強度が得られる。
つまり、本実施形態に係る積層セラミックコンデンサ10では、外部電極14,15を一般的な構成から変更することによって、長手方向における抗折強度を向上させることができる。したがって、積層セラミックコンデンサ10では、新たな構成を加えることなく、機械的損傷を防止することが可能である。
更に、本実施形態に係る積層セラミックコンデンサ10では、セラミック素体11の短手方向の両端部に外部電極14,15が設けられているため、外部電極14,15同士が近接している。このため、積層セラミックコンデンサ10では、等価直列インダクタンス(ESL:Equivalent Series Inductance)を低減することができる。
[実施例]
積層セラミックコンデンサ10について、厚さ(T+T)を67μmに統一し、厚さ(T+T)に対する延出部14b,15bの厚さTの比率T/(T+T)が異なる6種類のサンプルを作製した。いずれのサンプルにおいても、X軸方向の寸法を1.0mmとし、Y軸方向の寸法を0.5mmとした。
各サンプルのセラミック素体11は、内部電極を形成するための導電性ペーストが適宜印刷された誘電体セラミックスのグリーンシートの積層体を切断して得られたチップを焼成することによって作製した。セラミック素体11の焼成温度は、1000℃~1400℃とした。
積層セラミックコンデンサ10について、セラミック素体11の焼成時における収縮量を考慮した上で、厚さ0.5~3μmのグリーンシートの積層数を調整することによって、セラミック素体11の厚さTが67μm、64μm、62μm、57μm、47μm、37μmの6種類のサンプルを作製した。
各サンプルの外部電極14,15は、スパッタリング法で成膜した下地膜にメッキ処理を施すことにより形成した。各サンプルの外部電極14,15の延出部14b,15bの厚さTは、メッキ処理の条件(電流及び時間など)を調整することによって0μm(延出部14b,15b無し)、3μm、5μm、10μm、20μm、30μmとした。
なお、延出部14b,15bの厚さTが3μm、5μm、10μm、20μm、30μmの5つのサンプルは、上記実施形態の実施例に該当する。一方、延出部14b,15bを設けていない、つまり延出部14b,15bの厚さTが0μmのサンプルは、上記実施形態の比較例に該当する。
以上により得られた積層セラミックコンデンサ10のサンプルについて、抗折強度測定を行った。図6は、抗折強度測定について説明するための模式図である。抗折強度測定には、Z軸方向下方に窪む凹部S1が設けられた架台Sと、架台Sの凹部S1のZ軸方向上方に配置された押圧子Pと、を用いる。
架台Sの凹部S1のX軸方向の寸法は、各サンプルの長手方向の寸法の0.6倍である。また、押圧子PのZ軸方向下端部は、半径500μmの円弧状の断面となるように形成されている。各サンプルは、長手方向において凹部S1を跨ぎ、押圧子Pがセラミック素体11の主面の中央部に対向するように、架台S上にセットされる。
図6は、積層セラミックコンデンサ10のサンプルを架台S上にセットした状態を示す。この状態から、押圧子PをZ軸方向下方に移動させ、各サンプルのZ軸方向上面に対して、各サンプルに機械的損傷が発生するまでZ軸方向下方への応力を加える。この間、押圧子Pから各サンプルに加えている荷重を逐次測定した。
そして、各サンプルに機械的損傷が発生したときの荷重を各サンプルの抗折強度とした。図7は、各サンプルの抗折強度の測定結果を示すグラフである。図7の横軸は各サンプルにおける厚さ(T+T)に対する延出部14b,15bの厚さTの比率T/(T+T)を示し、図7の縦軸は各サンプルの抗折強度を示している。
なお、図7に示す抗折強度は、荷重の測定値ではなく、積層セラミックコンデンサ10のうちT/(T+T)が0(つまり延出部14b,15b無し)の比較例に係るサンプルの抗折強度を「1」として、実施例に係る各サンプルの抗折強度を規格化した値で示している。つまり、図7に示す抗折強度は、各サンプルの抗折強度の相対値である。
図7に示すように、各プロットから、山なりの近似曲線を描くことができる。より詳細に、積層セラミックコンデンサ10の抗折強度は、T/(T+T)が0から0.15くらいまでの領域で増加し、T/(T+T)が0.15を超えるあたりから減少しはじめ、T/(T+T)が0.25を超える領域で直線的に減少している。
また、0<T/(T+T)≦0.32では、抗折強度が1.0より大きく、つまり延出部14b,15b無しのサンプルよりも大きい抗折強度が得られることがわかる。また、0.04≦T/(T+T)≦0.3では、抗折強度が1.1以上であり、延出部14b,15b無しのサンプルよりも1割以上大きい抗折強度が得られることがわかる。
[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
例えば、積層セラミックコンデンサ10では、外部電極14,15がセラミック素体11の端面からZ軸方向下側の主面のみならずX軸方向を向いた両側面のうち少なくとも一方にも延出していてもよい。つまり、積層セラミックコンデンサ10の外部電極14,15では、X-Y平面に沿った断面がU字状又はL字状であってもよい。
また、上記実施形態では積層セラミック電子部品の一例として積層セラミックコンデンサ10について説明したが、本発明は一対の外部電極を有する積層セラミック電子部品全般に適用可能である。このような積層セラミック電子部品としては、例えば、チップバリスタ、チップサーミスタ、積層インダクタなどが挙げられる。
10…積層セラミックコンデンサ
11…セラミック素体
12,13…内部電極
14,15…外部電極
14a,15a…被覆部
14b,15b…延出部
16…容量形成部
17…カバー部
18…サイドマージン部

Claims (4)

  1. 第1軸方向を向いた第1及び第2主面と、前記第1軸に直交する第2軸方向を向いた第1及び第2端面と、前記第1端面に引き出された第1内部電極と、前記第1内部電極に対向し、前記第2端面に引き出された第2内部電極と、を有し、前記第1及び第2軸に直交する第3軸方向に長尺に形成されたセラミック素体と、
    前記第1端面を覆う第1被覆部と、前記第1被覆部から前記第2主面に延出し、前記第1主面に延出しない第1延出部と、を有する第1外部電極と、
    前記第2端面を覆う第2被覆部と、前記第2被覆部から前記第2主面に延出し、前記第1主面に延出しない第2延出部と、を有する第2外部電極と、
    を具備し、
    前記セラミック素体の前記第1軸方向の寸法をTとし、前記第1及び第2延出部の前記第1方向の寸法をTとすると、T64μm以下であり、かつT/(T+T)が0.04以上0.3以下である
    積層セラミック電子部品。
  2. 請求項1に記載の積層セラミック電子部品であって、
    が3μm以上である
    積層セラミック電子部品。
  3. 請求項1又は2に記載の積層セラミック電子部品であって、
    が前記セラミック素体の前記第3軸方向の寸法の5分の1以下である
    積層セラミック電子部品。
  4. 請求項1からのいずれか1項に記載の積層セラミック電子部品であって、
    が57μm以下である
    積層セラミック電子部品。
JP2017012889A 2017-01-27 2017-01-27 積層セラミック電子部品 Active JP7015636B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017012889A JP7015636B2 (ja) 2017-01-27 2017-01-27 積層セラミック電子部品
KR1020180006505A KR102520821B1 (ko) 2017-01-27 2018-01-18 적층 세라믹 전자 부품
TW107101989A TWI739987B (zh) 2017-01-27 2018-01-19 積層陶瓷電子零件
CN201810077669.9A CN108364790B (zh) 2017-01-27 2018-01-26 层叠陶瓷电子部件
US15/881,360 US10354801B2 (en) 2017-01-27 2018-01-26 Multi-layer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012889A JP7015636B2 (ja) 2017-01-27 2017-01-27 積層セラミック電子部品

Publications (2)

Publication Number Publication Date
JP2018121010A JP2018121010A (ja) 2018-08-02
JP7015636B2 true JP7015636B2 (ja) 2022-02-03

Family

ID=62980125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012889A Active JP7015636B2 (ja) 2017-01-27 2017-01-27 積層セラミック電子部品

Country Status (5)

Country Link
US (1) US10354801B2 (ja)
JP (1) JP7015636B2 (ja)
KR (1) KR102520821B1 (ja)
CN (1) CN108364790B (ja)
TW (1) TWI739987B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182926B2 (ja) 2018-07-17 2022-12-05 太陽誘電株式会社 積層セラミック電子部品
JP7308021B2 (ja) * 2018-10-12 2023-07-13 太陽誘電株式会社 セラミック電子部品、セラミック電子部品の製造方法およびセラミック電子部品実装回路基板
JP7495785B2 (ja) * 2018-10-30 2024-06-05 Tdk株式会社 積層セラミック電子部品
JP7514069B2 (ja) * 2018-10-30 2024-07-10 Tdk株式会社 積層セラミック電子部品
JP7269723B2 (ja) * 2018-12-14 2023-05-09 太陽誘電株式会社 積層セラミック電子部品及び回路基板
JP7351095B2 (ja) * 2019-03-27 2023-09-27 Tdk株式会社 積層セラミック電子部品
JP7259474B2 (ja) * 2019-03-27 2023-04-18 Tdk株式会社 積層セラミック電子部品
JP2021027095A (ja) * 2019-08-01 2021-02-22 太陽誘電株式会社 積層セラミック電子部品
JP7477073B2 (ja) * 2019-08-01 2024-05-01 太陽誘電株式会社 積層セラミック電子部品
JP7115461B2 (ja) * 2019-12-12 2022-08-09 株式会社村田製作所 積層セラミックコンデンサ
JP7536620B2 (ja) 2020-11-27 2024-08-20 太陽誘電株式会社 セラミック電子部品、実装基板およびセラミック電子部品の製造方法
KR20230089085A (ko) * 2021-12-13 2023-06-20 삼성전기주식회사 적층형 커패시터

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004480A (ja) 2010-06-21 2012-01-05 Tdk Corp 電子部品の製造方法及び電子部品
JP2012253077A (ja) 2011-05-31 2012-12-20 Tdk Corp 電子部品の製造方法及び電子部品
JP2013179267A (ja) 2012-02-03 2013-09-09 Murata Mfg Co Ltd セラミック電子部品
JP2014130999A (ja) 2012-12-27 2014-07-10 Samsung Electro-Mechanics Co Ltd 積層セラミックキャパシタ及びその製造方法
JP2015050452A (ja) 2013-08-30 2015-03-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. 基板内蔵用積層セラミック電子部品及び積層セラミック電子部品内蔵型印刷回路基板
JP2016181597A (ja) 2015-03-24 2016-10-13 太陽誘電株式会社 積層セラミックコンデンサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201259839Y (zh) * 2008-08-04 2009-06-17 华新科技股份有限公司 制造积层陶瓷电容器的印刷网板
JP5273122B2 (ja) * 2010-10-25 2013-08-28 Tdk株式会社 電子部品及び電子部品の製造方法
KR101843182B1 (ko) * 2011-05-31 2018-03-28 삼성전기주식회사 적층 세라믹 전자부품
JP2014220324A (ja) * 2013-05-07 2014-11-20 株式会社村田製作所 積層セラミックコンデンサ
JP2015035581A (ja) * 2013-07-10 2015-02-19 株式会社村田製作所 セラミック電子部品およびその製造方法
CN104749389B (zh) 2013-12-30 2017-07-14 同方威视技术股份有限公司 通用型进样器、气相色谱仪和联用谱仪
KR102089696B1 (ko) * 2014-04-30 2020-03-16 삼성전기주식회사 적층 세라믹 전자부품 및 적층 세라믹 전자부품의 실장 기판
JP6481446B2 (ja) * 2014-06-13 2019-03-13 株式会社村田製作所 積層コンデンサの実装構造体
KR101630043B1 (ko) * 2014-06-26 2016-06-13 삼성전기주식회사 기판 내장용 적층 세라믹 전자부품, 그 제조방법 및 적층 세라믹 전자부품 내장형 인쇄회로기판
KR101512601B1 (ko) * 2014-11-13 2015-04-15 삼성전기주식회사 적층 세라믹 커패시터 및 적층 세라믹 커패시터의 실장 기판
US10068710B2 (en) * 2015-07-17 2018-09-04 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004480A (ja) 2010-06-21 2012-01-05 Tdk Corp 電子部品の製造方法及び電子部品
JP2012253077A (ja) 2011-05-31 2012-12-20 Tdk Corp 電子部品の製造方法及び電子部品
JP2013179267A (ja) 2012-02-03 2013-09-09 Murata Mfg Co Ltd セラミック電子部品
JP2014130999A (ja) 2012-12-27 2014-07-10 Samsung Electro-Mechanics Co Ltd 積層セラミックキャパシタ及びその製造方法
JP2015050452A (ja) 2013-08-30 2015-03-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. 基板内蔵用積層セラミック電子部品及び積層セラミック電子部品内蔵型印刷回路基板
JP2016181597A (ja) 2015-03-24 2016-10-13 太陽誘電株式会社 積層セラミックコンデンサ

Also Published As

Publication number Publication date
KR102520821B1 (ko) 2023-04-12
KR20180088581A (ko) 2018-08-06
US10354801B2 (en) 2019-07-16
JP2018121010A (ja) 2018-08-02
US20180218839A1 (en) 2018-08-02
TWI739987B (zh) 2021-09-21
TW201832254A (zh) 2018-09-01
CN108364790A (zh) 2018-08-03
CN108364790B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
JP7015636B2 (ja) 積層セラミック電子部品
JP7302940B2 (ja) 積層セラミック電子部品
JP7182926B2 (ja) 積層セラミック電子部品
JP6851747B2 (ja) 積層セラミック電子部品
JP7274282B2 (ja) 積層セラミック電子部品及びその製造方法
US20180151295A1 (en) Multi-layer ceramic capacitor
JP7065735B2 (ja) 積層セラミック電子部品
US20210082621A1 (en) Multilayer capacitor
CN113223858A (zh) 层叠陶瓷电子部件及其制造方法
CN111326344B (zh) 层叠陶瓷电子部件和电路板
JP7359595B2 (ja) 積層セラミックコンデンサ、回路基板及び積層セラミックコンデンサの製造方法
JP7056864B2 (ja) セラミック電子部品
JP2022105218A (ja) 積層セラミック電子部品及びその製造方法
JP2023079253A (ja) 積層セラミック電子部品
JP2023025982A (ja) セラミック電子部品及び回路基板
TW201833955A (zh) 積層陶瓷電容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124