JP6997720B2 - 固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法 - Google Patents

固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法 Download PDF

Info

Publication number
JP6997720B2
JP6997720B2 JP2018552450A JP2018552450A JP6997720B2 JP 6997720 B2 JP6997720 B2 JP 6997720B2 JP 2018552450 A JP2018552450 A JP 2018552450A JP 2018552450 A JP2018552450 A JP 2018552450A JP 6997720 B2 JP6997720 B2 JP 6997720B2
Authority
JP
Japan
Prior art keywords
data
signal
pixel
reset
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018552450A
Other languages
English (en)
Other versions
JPWO2018096813A1 (ja
Inventor
雅樹 榊原
頼人 坂野
聡子 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JPWO2018096813A1 publication Critical patent/JPWO2018096813A1/ja
Application granted granted Critical
Publication of JP6997720B2 publication Critical patent/JP6997720B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/533Control of the integration time by using differing integration times for different sensor regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本技術は、固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法に関する。詳しくは、相関二重サンプリング処理を行う固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法に関する。
従来より、固体撮像素子においては、リセットノイズや固定パターンノイズを低減するために相関二重サンプリング(CDS:Correlated Double Sampling)処理が行われている。このCDS処理において、信号レベルのサンプリングを複数回に亘って行う目的で、その回数に応じた容量のメモリを画素毎に設ける固体撮像素子が提案されている(例えば、非特許文献1参照。)。この固体撮像素子では、CDS処理後のデータがB(Bは整数)ビットで、サンプリングの回数がN(Nは2以上の整数)回である場合、画素アレイの外部において画素毎に、N個のBビットのメモリが設けられる。そして、n(nは1乃至Nの整数)回目のサンプリングの際のデータがn番目のメモリに保持される。そして、固体撮像素子は、N個のメモリのそれぞれから読み出したデータの平均値を最終的な画素データとして出力する。
Stuart Kleinfelder, et al., A 10000 Frames/s CMOS Digital Pixel Sensor, IEEE JOURNAL OF SOLID-STATE CIRCUITS 2001.
上述の従来技術では、サンプリングの回数が多くなるほど、メモリの個数(N)が多くなり、それらのメモリからなるメモリアレイのメモリ容量が増大してしまうという問題がある。メモリ容量が大きいほど、コストや実装面積が増大するため、メモリ容量を削減することが望ましい。
本技術はこのような状況に鑑みて生み出されたものであり、相関二重サンプリング処理を行う固体撮像素子においてメモリ容量の増大を抑制することを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定のリセットレベルと露光量に応じた複数の信号レベルとのそれぞれを順に生成する画素回路と、上記所定のリセットレベルをデジタルデータに変換してリセットデータとして出力した後に上記複数の信号データのそれぞれをデジタルデータに変換して信号データとして出力するアナログデジタル変換器と、保持データを保持するメモリと、上記リセットデータと最初に出力された上記信号データとの差分を上記保持データとして上記メモリに保持させた後に当該保持させた保持データと2回目以降に出力された上記信号データとを加算して当該加算したデータを新たな保持データとして上記メモリに保持させる演算回路とを具備する固体撮像素子、および、その制御方法である。これにより、リセットデータと最初に出力された信号データとの差分と2回目以降に出力された信号データとを演算したデータがメモリに保持されるという作用をもたらす。
また、この第1の側面において、上記アナログデジタル変換器は、所定数の上記信号レベルのそれぞれを上記信号データに変換し、上記メモリの容量は、底を2とする上記所定数の対数と上記差分のデータサイズとの和であってもよい。これにより、底を2とする所定数の対数と差分のデータサイズとの和の容量のメモリにデータが保持されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、上記複数の信号レベルと同じ個数の上記リセットレベルを生成し、上記演算回路は、上記リセットデータが出力されるたびに上記リセットデータと上記保持データとを加算して当該加算したデータを新たな保持データとして上記メモリに保持させてもよい。これにより、リセットデータが出力されるたびにリセットデータと保持データとを加算したデータによりメモリが更新されるという作用をもたらす。
また、この第1の側面において、上記複数の信号レベルのそれぞれに対応する露光時間は異なり、上記画素回路は、1つの上記リセットレベルを生成してもよい。これにより、リセットレベルの変換回数が1回になるという作用をもたらす。
また、この第1の側面において、上記アナログデジタル変換器は、上記露光時間の比率に応じた動作周波数により上記信号レベルを変換してもよい。これにより、露光時間の比率に応じた動作周波数により信号レベルが変換されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、転送された電荷を蓄積して当該蓄積された電荷量に応じた電圧を生成する電荷蓄積部と、上記電荷蓄積部を共有する複数のフォトダイオードと上記複数のフォトダイオードのそれぞれにおいて光電変換により生成された上記電荷を上記電荷蓄積部に転送する転送部とを備えてもよい。これにより、電荷蓄積部を共有する画素回路により電圧が生成されるという作用をもたらす。
また、この第1の側面において、上記複数の信号レベルのそれぞれに対応する露光時間は異なり、上記演算回路は、上記露光時間のそれぞれの比率により上記リセットデータおよび上記信号データを乗算した後に上記差分の演算を行ってもよい。これにより、露光時間のそれぞれの比率によりリセットデータおよび信号データが乗算されるという作用をもたらす。
また、この第1の側面において、上記露光時間のそれぞれの比率は2のべき乗であり、
上記演算回路は、上記リセットデータおよび上記信号データに対してシフト演算を行ってもよい。これにより、リセットデータおよび上記信号データに対してシフト演算が実行されるという作用をもたらす。
また、この第1の側面において、上記画素回路は2次元格子状に配列され、上記アナログデジタル変換器は、上記画素回路ごとに設けられてもよい。これにより、画素回路ごとに設けられたメモリにデータが保持されるという作用をもたらす。
また、この第1の側面において、積層された2つの半導体基板をさらに具備し、上記画素回路は、上記2つの半導体基板の一方に配置され、上記アナログデジタル変換器および上記メモリは、上記2つの半導体基板の他方に配置されてもよい。これにより、積層された2つの半導体基板の一方で電圧が生成され、他方でデータの保持とAD変換とが行われるという作用をもたらす。
また、この第1の側面において、積層された2つの半導体基板をさらに具備し、上記画素回路および上記メモリは、上記2つの半導体基板の一方に配置され、上記アナログデジタル変換器は、上記2つの半導体基板の他方に配置されてもよい。これにより、積層された2つの半導体基板の一方でデータが保持され、他方でAD変換が行われるという作用をもたらす。
また、この第1の側面において、積層された第1、第2および第3の半導体基板をさらに具備し、上記画素回路は、上記第1の半導体基板に配置され、上記アナログデジタル変換器は、上記第2の半導体基板に配置され、上記メモリは、上記第3の半導体基板に配置されてもよい。これにより、第1の半導体基板で電圧が生成され、第2の半導体基板でAD変換が行われ、第3の半導体基板でデータが保持されるという作用をもたらす。
また、本技術の第2の側面は、第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順に生成する画素回路と、上記第1のリセットレベルと上記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、上記第2のリセットレベルと上記第1の信号レベルとのそれぞれを上記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換器と、上記第1のリセットデータと上記第2の信号データとの差分を第1の画素データとして求め、上記第2のリセットデータと上記第1の信号データとの差分を上記第2の画素データとして求める相関二重サンプリング処理部と、上記第1の画素データを保持する第1メモリと、上記第2の画素データを保持する第2メモリと、上記保持された第2の画素データの値が所定値より高いか否かを判定して上記第2の画素データの値が上記所定値より高い場合には上記保持された第1の画素データを出力させ、上記第2の画素データの値が上記所定値に満たない場合には上記第2の画素データを出力させる判定部とを具備する固体撮像素子、および、その制御方法である。これにより、第2の画素データの値が所定値より高い場合には第1の画素データが出力され、第2の画素データの値が所定値に満たない場合には第2の画素データが出力されるという作用をもたらす。
また、この第2の側面において、上記第1のリセットレベルと上記第2の信号レベルとを所定の感度により上記画素回路に生成させ、上記第2のリセットレベルと上記第1の信号レベルとを所定の感度と異なる感度により上記画素回路に生成させる画素駆動部をさらに具備してもよい。これにより、感度が変更されるという作用をもたらす。
また、この第2の側面において、上記画素回路は、上記第1および第2のリセットレベルと上記第1および第2の信号レベルとのそれぞれを画素信号として生成し、上記アナログデジタル変換器は、スロープを持つ所定の参照信号と上記画素信号とを複数回に亘って比較して当該比較結果を出力する比較部と、上記比較結果のそれぞれからなるデータを上記第1および第2のリセットデータと上記第1および第2の信号データのいずれかとして記憶するデータ記憶部とを備え、上記第2のリセットレベルと上記第1の信号レベルとのそれぞれを比較するときの上記スロープの傾きは、上記第1のリセットレベルと上記第2の信号レベルとのそれぞれを比較するときの傾きより緩やかであってもよい。これにより、スロープの傾きが変更されるという作用をもたらす。
また、この第2の側面において、上記画素回路は、二次元格子状に配列され、上記アナログデジタル変換器は、上記画素回路ごとに配置され、上記第2メモリは、上記画素回路の全てに共有されてもよい。これにより、共有された第2メモリにデータが保持されるという作用をもたらす。
また、本技術の第3の側面は、所定のリセットレベルと露光量に応じた複数の信号レベルとのそれぞれを順に生成する画素回路と、上記所定のリセットレベルをデジタルデータに変換してリセットデータとして出力した後に上記複数の信号レベルのそれぞれをデジタルデータに変換して信号データとして出力するアナログデジタル変換器と、保持データを保持するメモリと、上記リセットデータと最初に出力された上記信号データとの差分を上記保持データとして上記メモリに保持させた後に当該保持させた保持データと2回目以降に出力された上記信号データとを加算して当該加算したデータを新たな保持データとして上記メモリに保持させる演算回路と、上記保持された保持データに対して所定の信号処理を実行するデジタル信号処理部とを具備する固体撮像装置である。これにより、リセットデータと最初に出力された信号データとの差分と2回目以降に出力された信号データとを加算したデータに対して信号処理が実行されるという作用をもたらす。
また、本技術の第4の側面は、第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順生成する画素回路と、上記第1のリセットレベルと上記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、上記第2のリセットレベルと上記第1の信号レベルとのそれぞれを上記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換器と、上記第1のリセットデータと上記第2の信号データとの差分を第1の画素データとして求め、上記第2のリセットデータと上記第1の信号データとの差分を上記第2の画素データとして求める相関二重サンプリング処理部と、上記第1の画素データを保持する第1メモリと、上記第2の画素データを保持する第2メモリと、上記保持された第2の画素データの値が所定値より高いか否かを判定して上記第2の画素データの値が上記所定値より高い場合には上記保持された第1の画素データを出力させ、上記第2の画素データの値が上記所定値に満たない場合には上記第2の画素データを出力させる判定部と、上記第1および第2の画素データのうち出力されたデータに対して所定の信号処理を実行するデジタル信号処理部とを具備する固体撮像装置である。これにより、第2の画素データの値が所定値より高い場合には第1の画素データに対して信号処理が実行され、第2の画素データの値が所定値に満たない場合には第2の画素データに対して信号処理が実行されるという作用をもたらす。
本技術によれば、相関二重サンプリング処理を行う固体撮像素子においてメモリ容量の増大を抑制することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。 本技術の第1の実施の形態における画素アレイ部の一構成例を示すブロック図である。 本技術の第1の実施の形態における画素の一構成例を示すブロック図である。 本技術の第1の実施の形態における画素回路、差動入力回路、電圧変換回路および正帰還回路の一構成例を示す回路図である。 本技術の第1の実施の形態におけるデータ記憶部の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるラッチ制御回路の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるラッチ回路および双方向バッファの一構成例を示すブロック図である。 本技術の第1の実施の形態における出力部の一構成例を示すブロック図である。 本技術の第1の実施の形態における演算回路およびメモリの一構成例を示すブロック図である。 本技術の第1の実施の形態における加算回路の一構成例を示す回路図である。 本技術の第1の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第1の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第1の実施の形態における画素および出力部の一構成例を示すブロック図である。 本技術の第1の実施の形態と比較例とのそれぞれにおけるCDS処理を説明するための図である。 本技術の第1の実施の形態におけるCDS処理の一例を示すフローチャートである。 本技術の第2の実施の形態における画素回路の一構成例を示す回路図である。 本技術の第3の実施の形態における演算回路およびメモリの一構成例を示すブロック図である。 本技術の第3の実施の形態におけるシフタの一構成例を示す回路図である。 本技術の第3の実施の形態における画素の駆動例を示すタイミングチャートである。 本技術の第3の実施の形態における1回目および2回目のCDS処理を説明するための図である。 本技術の第3の実施の形態における3回目および4回目のCDS処理を説明するための図である。 本技術の第3の実施の形態と比較例とのそれぞれにおけるCDS処理を説明するための図である。 本技術の第4の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第4の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第4の実施の形態におけるCDS処理を含む演算処理を説明するための図である。 本技術の第5の実施の形態における出力部の一構成例を示すブロック図である。 本技術の第5の実施の形態における出力部の処理を説明するための図である。 本技術の第5の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第5の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第5の実施の形態におけるスロープの傾きについて説明するための図である。 本技術の第5の実施の形態におけるCDS処理を説明するための図である。 本技術の第5の実施の形態におけるCDS処理の一例を示すフローチャートである。 本技術の第6の実施の形態における画素回路および差動入力回路の一構成例を示す回路図である。 本技術の第6の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第6の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。 本技術の第6の実施の形態におけるCDS処理を説明するための図である。 本技術の第7の実施の形態における固体撮像素子の積層構造の一例を示す斜視図である。 本技術の第7の実施の形態の第1の変形例における固体撮像素子の積層構造の一例を示す斜視図である。 本技術の第7の実施の形態の第2の変形例における固体撮像素子の積層構造の一例を示す斜視図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(データの加算値をメモリに保持する例)
2.第2の実施の形態(サブ画素からのデータの加算値をメモリに保持する例)
3.第3の実施の形態(露光時間の異なる複数のデータの加算値をメモリに保持する例)
4.第4の実施の形態(1つのリセットデータと複数の信号データとの加算値をメモリに保持する例)
5.第5の実施の形態(分解能の異なる2つのデータを異なるメモリに保持する例)
6.第6の実施の形態(分解能および感度の異なる2つのデータを異なるメモリに保持する例)
7.第7の実施の形態(積層型の固体撮像素子においてデータの加算値をメモリに保持する例)
8.移動体への応用例
<1.第1の実施の形態>
[撮像装置の構成例]
図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200、DSP(Digital Signal Processing)回路120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、フレームメモリ160、記憶部170および電源部180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータが想定される。
光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号に同期して、光電変換により画像データを生成するものである。ここで、垂直同期信号は、撮像のタイミングを示す所定周波数の周期信号である。固体撮像素子200は、生成した画像データをDSP回路120に信号線209を介して供給する。
DSP回路120は、固体撮像素子200からの画像データに対して所定の信号処理を実行するものである。このDSP回路120は、処理後の画像データをバス150を介してフレームメモリ160などに出力する。なお、DSP回路120は、特許請求の範囲に記載のデジタル信号処理部の一例である。
表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。
バス150は、光学部110、固体撮像素子200、DSP回路120、表示部130、操作部140、フレームメモリ160、記憶部170および電源部180が互いにデータをやりとりするための共通の経路である。
フレームメモリ160は、画像データを保持するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。電源部180は、固体撮像素子200、DSP回路120や表示部130などに電源を供給するものである。
[固体撮像素子の構成例]
図2は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、半導体基板201を備える。この半導体基板201には、DAC(Digital to Analog Converter)210と、複数の時刻コード発生部220とが設けられる。また、半導体基板201には、垂直駆動回路230、画素アレイ部240、画素駆動回路250、タイミング生成回路260および出力部270が設けられる。また、画素アレイ部240には、二次元格子状に複数の画素が配列される。
DAC210は、DA(Digital to Analog)変換により、スロープ状に変化するアナログの参照信号を生成するものである。このDAC210は、参照信号を画素アレイ部240に供給する。
時刻コード発生部220は、時刻コードを発生するものである。この時刻コードは、参照信号がスロープ状に変化する期間内の時刻を示す。時刻コード発生部220は、発生した時刻コードを画素アレイ部240に供給する。
タイミング生成回路260は、様々なタイミング信号を生成して垂直駆動回路230や出力部270などに供給するものである。
垂直駆動回路230は、タイミング信号に同期して画素内で生成された画素データを出力部270に出力させる制御を行うものである。画素駆動回路250は、画素を駆動するものである。
出力部270は、画素データに対して、CDS処理を含む信号処理を実行するものである。この出力部270は、処理後の画素データをDSP回路120に出力する。
[画素アレイ部の構成例]
図3は、本技術の第1の実施の形態における画素アレイ部240の一構成例を示すブロック図である。この画素アレイ部240は、複数の時刻コード転送部241と、複数の画素300とを備える。時刻コード転送部241は、時刻コード発生部220ごとに配置される。また、画素300は、二次元格子状に配列される。
時刻コード転送部241は、対応する時刻コード発生部220からの時刻コードを転送するものである。この時刻コード転送部241は、対応する時刻コード発生部220からの時刻コードを画素300へ転送し、また、画素300からの時刻コードを画素データとして出力部270に転送する。画素300は、画素データを生成するものである。
[画素の構成例]
図4は、本技術の第1の実施の形態における画素300の一構成例を示すブロック図である。この画素300は、画素回路310およびADC320を備える。ADC320は、比較回路321およびデータ記憶部360を備える。また、比較回路321は、差動入力回路330、電圧変換回路340および正帰還回路350を備える。
画素回路310は、光電変換によりリセットレベルまたは信号レベルを画素信号SIGとして生成するものである。ここで、リセットレベルは、露光開始時以降にFD(Floating Diffusion)が初期化された時の電圧であり、信号レベルは、露光終了時の露光量に応じた電圧である。画素回路310は、リセットレベルおよび信号レベルを順に差動入力回路330に供給する。
ADC320は、画素信号SIG(リセットレベルまたは信号レベル)をデジタルデータにAD変換するものである。リセットレベルをAD変換したデータを以下、「P相データ」と称する。また、信号レベルをAD変換したデータを以下、「D相データ」と称する。なお、P相データは、特許請求の範囲に記載のリセットデータの一例であり、D相データは、特許請求の範囲に記載の信号データの一例である。
ADC320内の差動入力回路330は、DAC210からの参照信号REFと、画素回路310からの画素信号SIGとを比較するものである。この差動入力回路330は、比較結果を示す比較結果信号を電圧変換回路340に供給する。
電圧変換回路340は、差動入力回路330からの比較結果信号の電圧を変換して正帰還回路350に出力するものである。
正帰還回路350は、出力の一部を入力(比較結果信号)に加算し、出力信号VCOとしてデータ記憶部360に出力するものである。
データ記憶部360は、出力信号VCOが反転したときの時刻コードを保持するものである。このデータ記憶部360は、リセットレベルに対応する時刻コードをP相データとして出力し、信号レベルに対応する時刻コードをD相データとして出力する。
なお、画素回路310ごとにADC320を配置しているが、複数の画素回路310ごとにADC320を配置してもよい。
図5は、本技術の第1の実施の形態における画素回路310、差動入力回路330、電圧変換回路340および正帰還回路350の一構成例を示す回路図である。
画素回路310は、リセットトランジスタ311、FD312、転送トランジスタ314、フォトダイオード315および排出トランジスタ316とを備える。リセットトランジスタ311、転送トランジスタ314および排出トランジスタ316として、例えば、N型のMOS(Metal-Oxide-Semiconductor)トランジスタが用いられる。
フォトダイオード315は、光電変換により電荷を生成するものである。排出トランジスタ316は、画素駆動回路250からの駆動信号OFGに従ってフォトダイオード315に蓄積された電荷を排出させるものである。
転送トランジスタ314は、画素駆動回路250からの転送信号TXに従って、フォトダイオード315からFD312へ電荷を転送するものである。
FD312は、転送された電荷を蓄積して蓄積した電荷量に応じた電圧を生成するものである。なお、FD312は、特許請求の範囲に記載の電荷蓄積部の一例である。
リセットトランジスタ311は、画素駆動回路250からのリセット信号RSTに従って、FD312を初期化するものである。
差動入力回路330は、PMOS(Positive channel MOS)トランジスタ331、334および336と、NMOS(Negative channel MOS)トランジスタ332、333および335とを備える。
NMOSトランジスタ332および335は、差動対を構成し、これらのトランジスタのソースは、NMOSトランジスタ333のドレインに共通に接続される。また、NMOSトランジスタ332のドレインは、PMOSトランジスタ331のドレインとPMOSトランジスタ331および334のゲートとに接続される。NMOSトランジスタ335のドレインは、PMOSトランジスタ334のドレインとPMOSトランジスタ336のゲートとリセットトランジスタ311のドレインとに接続される。また、NMOSトランジスタ332のゲートには、参照信号REFが入力される。
NMOSトランジスタ333のゲートには、所定のバイアス電圧Vbが印加され、NMOSトランジスタ333のソースには、所定の接地電圧が印加される。この接地電圧VSSは、画素回路310内のNMOSトランジスタの基板電位よりも高い。
PMOSトランジスタ331および334は、カレントミラー回路を構成する。PMOSトランジスタ331、334および336のソースには、電源電圧VDDHが印加される。この電源電圧VDDHは、電源電圧VDDLよりも高い。また、PMOSトランジスタ336のドレインは、電圧変換回路340に接続される。
電圧変換回路340は、NMOSトランジスタ341を備える。このNMOSトランジスタ341のゲートには電源電圧VDDLが印加される。また、NMOSトランジスタ341のドレインは、PMOSトランジスタ336のドレインに接続され、ソースは、正帰還回路350に接続される。
正帰還回路350はPMOSトランジスタ351、352、355および356と、NMOSトランジスタ353、354および357とを備える。PMOSトランジスタ351および352は、電源電圧VDDLに直列に接続される。また、PMOSトランジスタ351のゲートには、垂直駆動回路230からの駆動信号INI2が入力される。PMOSトランジスタ352のドレインは、NMOSトランジスタ341のソースとNMOSトランジスタ353のドレインと、PMOSトランジスタ355およびNMOSトランジスタ354のゲートとに接続される。
NMOSトランジスタ353のソースには接地電圧が印加され、ゲートには、垂直駆動回路230からの駆動信号INI1が入力される。
PMOSトランジスタ355および356は、電源電圧VDDLに直列に接続される。また、PMOSトランジスタ356のドレインは、PMOSトランジスタ352のゲートと、NMOSトランジスタ354および357のドレインとに接続される。PMOSトランジスタ356およびNMOSトランジスタ357のゲートには、垂直駆動回路230からの制御信号TESTVCOが入力される。
NMOSトランジスタ354および357のドレインからは、出力信号VCOが出力される。また、NMOSトランジスタ354および357のソースには、接地電圧が印加される。
なお、画素回路310、差動入力回路330、電圧変換回路340および正帰還回路350のそれぞれは、図4で説明した機能を持つのであれば、図5に例示した回路に限定されない。
[データ記憶部の構成例]
図6は、本技術の第1の実施の形態におけるデータ記憶部360の一構成例を示すブロック図である。このデータ記憶部360は、ラッチ制御回路370と、D相データのビット数D(Dは、整数)と同じ個数のラッチ回路380と、D個の双方向バッファ390と、リピータ361とを備える。ラッチ制御回路370は、垂直駆動回路230からの制御信号xWORDに従って、出力信号VCOの値(論理値「0」または「1」)をラッチ回路380のいずれかに保持させるものである。制御信号xWORDは、制御信号WORDを反転した信号である。
ラッチ回路380は、ラッチ制御回路370の制御に従って、出力信号VCOの値を保持するものである。双方向バッファ390は、垂直駆動回路230からの制御信号xPRC、ライトイネーブルWENおよびリードイネーブルRENに従って、対応するラッチ回路380とリピータ361との間でデータを双方向に転送するものである。
リピータ361は、双方向バッファ390と時刻コード転送部241との間で時刻コードを転送するものである。
[ラッチ制御回路の構成例]
図7は、本技術の第1の実施の形態におけるラッチ制御回路370の一構成例を示すブロック図である。このラッチ制御回路370は、NORゲート371と、インバータ372、373および374とを備える。
NORゲート371は、制御信号xWORDおよび出力信号VCOの否定論理和(NOR)をインバータ372に出力するものである。インバータ372は、NORゲート371からの出力値を反転してラッチ制御信号Tとしてラッチ回路380に出力するものである。
インバータ373は、出力信号VCOを反転してインバータ374に出力するものである。インバータ374は、インバータ373の出力値を反転してラッチ入力信号Lとしてラッチ回路380に出力するものである。
なお、ラッチ制御回路370は、同等の機能を持つものであれば、図7に例示した回路に限定されない。
[ラッチ回路および双方向バッファの構成例]
図8は、本技術の第1の実施の形態におけるラッチ回路380および双方向バッファ390の一構成例を示すブロック図である。ラッチ回路380は、スイッチ381と、インバータ382および383を備える。
スイッチ381は、ラッチ制御回路370からのラッチ制御信号Tに従って、インバータ382と、ビット線LBLとの間の経路を開閉するものである。このビット線LBLは、双方向バッファ390に接続される。
インバータ382は、ラッチ制御回路370からのラッチ入力信号Lに従って、インバータ383からの信号を反転するものである。このインバータ382は、反転した信号をインバータ383の入力端子とスイッチ381とに出力する。
インバータ383は、インバータ382からの信号を反転してインバータ382の入力端子に出力するものである。
双方向バッファ390は、NMOSトランジスタ391と、インバータ392と、バッファ393とを備える。
NMOSトランジスタ391のゲートには、垂直駆動回路230からの制御信号xPRCが入力される。また、NMOSトランジスタ391のドレインは電源に接続され、ソースはビット線LBLに接続される。この制御信号xPRCには、双方向バッファ390にデータを転送させる場合にローレベルが設定され、ビット線LBLは一旦ハイレベルになる。その後にラッチ回路380より信号が読み出される。
インバータ392は、リードイネーブルRENに従って、ビット線LBLからの信号を反転し、ビット線MBLとバッファ393の入力端子とに出力するものである。このビット線MBLは、リピータ361に接続される。
バッファ393は、ライトイネーブルWENに従って、インバータ392またはビット線MBLからの信号をビット線LBLとインバータ392の入力端子とに出力するものである。
なお、ラッチ回路380および双方向バッファ390は、同等の機能を持つものであれば、図8に例示された回路に限定されない。
[出力部の構成例]
図9は、本技術の第1の実施の形態における出力部270の一構成例を示すブロック図である。この出力部270は、演算部271およびメモリアレイ272を備える。この演算部271には、画素300ごとに演算回路280が配置される。また、メモリアレイ272には、画素300ごとにメモリ273が設けられる。水平方向の画素300の個数をH(Hは2以上の整数)とし、垂直方向の画素300の個数をV(Vは2以上の整数)とすると、演算回路280およびメモリ273のそれぞれの個数はH×Vである。演算回路280のそれぞれは、互いに異なる画素300と1対1で対応付けられる。また、メモリ273も互いに異なる画素300と1対1で対応付けられる。
演算回路280は、対応する画素300からのデジタルデータ(P相データまたはD相データ)に対してCDS処理を行うものである。この演算回路280は、CDS処理において、対応するメモリ273にデータを保持させる。メモリ273は、保持したデータを画素データとしてDSP回路120に出力する。
また、メモリ273のメモリ容量は、次の式により表される。
Cm=ROUNDUP(logN)+B
上式において、Cmはメモリ容量であり、単位は、例えば、ビットである。Bは、P相データおよびD相データの差分(すなわち、正味の画素データ)のビット数である。Nは、信号レベルのサンプリング回数である。ROUNDUP()は、端数を切り上げて整数値を返す関数である。
例えば、画素データのデータサイズBを14ビット、サンプリング回数Nを2回とすると、メモリ容量Cmは、上式より15ビットとなる。また、画素300の個数をH×V個とすると、メモリアレイ272全体の総容量は、Cm×H×Vビットである。
なお、K(Kは、2以上の整数)個の画素回路310ごとにADC320を配置する場合には、演算回路280およびメモリ273も、K画素毎に設けられる。
[演算回路およびメモリの構成例]
図10は、本技術の第1の実施の形態における演算回路280およびメモリ273の一構成例を示すブロック図である。演算回路280は、セレクタ281と、複数段の加算回路282とを備える。サンプリング回数Nが2である場合、加算回路282の段数は、画素データのビット数B(例えば、14)と同数である。メモリ273は、1ビットを保持する複数のメモリセル274を備える。メモリセル274の個数は、B+1個である。なお、サンプリング回数Nが3回以上である場合には、その回数に応じて加算回路282の段数と、メモリ273のメモリ容量とが増加する。
セレクタ281は、タイミング生成回路260からの減算制御信号SUBに従って、論理値「1」および「0」のいずれかを選択して桁上げ入力信号Xin[0]として初段の加算回路282に出力するものである。
加算回路282は、加算処理を行うものである。初段の加算回路282には、セレクタ281からの桁上げ入力信号Xin[0]と、対応する画素300からのDATAの0ビット目のDATA[0]とが入力される。b(bは0乃至B-1の整数)段目の加算回路282には、前段からの桁上げ出力信号Cout[b]とbビット目のDATA[b]とが入力される。また、全ての加算回路282には、タイミング生成回路260からの初期化信号INIおよび減算制御信号SUBが入力される。
b段目の加算回路282は、b個目のメモリセル274に出力信号Sout[b]を保持させる。また、b段目の加算回路282は、後段の加算回路282に桁上げ信号Cout[b]を出力する。そして、最終段の加算回路282は、最後のメモリセル274に桁上げ出力信号Cout[B-1]を保持させる。
[加算回路の構成例]
図11は、本技術の第1の実施の形態における加算回路282の一構成例を示す回路図である。この加算回路282は、インバータ283と、セレクタ284および286と、全加算器285とを備える。
インバータ283は、DATA[0]を反転してセレクタ284に供給するものである。セレクタ284は、減算制御信号SUBに従って、DATA[0]とインバータ283からの反転値とのいずれかを選択して全加算器285の入力端子Aに入力するものである。
セレクタ286は、初期化信号INIに従って、対応するメモリセル274に保持されたSout[0]と論理値「0」とのいずれかを選択して全加算器285の入力端子Bに入力するものである。
全加算器285は、桁上げを考慮して2進数の同じ桁同士の加算を行うものである。全加算器285には、前述の入力端子A、Bと、入力端子Xと、出力端子SおよびCとが設けられる。入力端子Xには、桁上げ入力信号Xin[0]が入力される。また、出力端子Sからは、出力信号Sout[0]が、対応するメモリセル274へ出力される。出力端子Cからは、桁上げ出力信号Cout[0]が後段の全加算器285の入力端子Xへ出力される。全加算器285の真理値表は、一般的な全加算器と同様である。また、2段目以降の加算回路282の構成は、初段と同様である。
図10および図11に例示した構成により、初期化信号INIおよび減算制御信号SUBに従って演算回路280は、最初のP相データ(リセットレベル)の符号を反転してメモリ273に保持させる。そして、減算制御信号SUBに従って演算回路280は、2回目以降のP相データの符号を反転して、その反転値とメモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。
そして、演算回路280は、1回目のD相データ(信号レベル)と、メモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。ここで、P相データの符号は、反転されているため、1回目のD相データとP相データとの差分が演算される。P相データは、固定パターンノイズやリセットノイズを含むため、差分の演算により、これらを除去することができる。
続いて演算回路280は、2回目以降のD相データと、メモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。この加算により、2回のCDS処理のそれぞれの結果を平均した値と等価な値が得られる。なお、演算回路280は、上述の機能を持つ回路であれば、図10および図11に例示した回路に限定されない。
[固体撮像素子の動作例]
図12は、本技術の第1の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。1V期間の開始タイミングt10の直後のタイミングt11において、画素駆動回路250は、リセット信号RSTを供給する。これにより、FDが初期化される。ここで、1V期間は、垂直同期信号の周期である。また、この1V期間の直前において、全画素の露光が開始されているものとする。
タイミングt11の直後のタイミングt12において、垂直駆動回路230は、駆動信号INI2およびINI1を順に供給する。また、出力信号VCOの供給が開始される。
タイミングt12の後のタイミングt13からタイミングt14に亘って、DAC210は、参照信号REFをスロープ状に減少させる。また、この期間に亘って、垂直駆動回路230は、制御信号TESTVCOをローレベルにし、タイミング生成回路260は、イネーブルに設定したライトイネーブルWENを供給する。このような制御により、1回目のリセットレベルがAD変換(言い換えれば、サンプリング)される。
また、正帰還回路350は、参照信号REFとリセットレベルとの比較結果に基づいて出力信号VCOを出力する。出力信号VCOの値は、D相データのビット数D(例えば、15)個と同じ個数のラッチ回路380に順に保持される。それらの保持値が、D本のビット線LBLを介して双方向バッファ390に転送される。ビット線LBL上の黒塗りの部分は、出力信号VCOが反転したときのデータを示す。
タイミングt14の後のタイミングt15において、タイミング生成回路260は、制御信号WORDを出力し、また、イネーブルに設定したリードイネーブルRENを出力する。これにより、D本のビット線MBLを介して双方向バッファ390からリピータ361にP相データが転送される。
そして、1回目と同様の制御により、タイミングt16からタイミングt17までの間において、2回目のリセットレベルがAD変換される。
図13は、本技術の第1の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。
リセットレベル変換後のタイミングt21において、垂直駆動回路230は、駆動信号INI2およびINI1を順に供給する。また、その直後のタイミングt22において、画素駆動回路250は、全画素に転送信号TXを供給する。これにより、露光が終了する。
タイミングt22の後のタイミングt23からタイミングt24に亘って、DAC210は、参照信号REFをスロープ状に減少させる。また、この期間に亘って、垂直駆動回路230は、制御信号TESTVCOをローレベルにし、タイミング生成回路260は、イネーブルに設定したライトイネーブルWENを供給する。このような制御により、1回目の信号レベルがAD変換(言い換えれば、サンプリング)される。
また、正帰還回路350は、参照信号REFと信号レベルとの比較結果に基づいて出力信号VCOを出力する。出力信号VCOの値は、D個のラッチ回路380に順に保持される。それらの保持値が、D本のビット線LBLを介して双方向バッファ390に転送される。ビット線LBL上の黒塗りの部分は、出力信号VCOが反転したときのデータを示す。
タイミングt24の後のタイミングt25において、タイミング生成回路260は、制御信号WORDを出力し、また、イネーブルに設定したリードイネーブルRENを出力する。これにより、D本のビット線MBLを介して双方向バッファ390からリピータ361にD相データが転送される。
そして、1回目と同様の制御により、タイミングt26からタイミングt27までの間において、2回目の信号レベルがAD変換される。その後のタイミングt28において画素駆動回路250は、全画素に駆動信号OFGを供給する。これにより、次の露光が開始される。
図12および図13に例示したように、リセットレベルおよび信号レベルは、それぞれ2回ずつサンプリングされる。なお、サンプリングの回数は2回に限定されず、3回以上であってもよい。
図14は、本技術の第1の実施の形態における画素300および出力部270の一構成例を示すブロック図である。画素300内の画素回路310は、リセットレベルと信号レベルとのそれぞれをN(例えば、「2」)回ずつ順に生成する。画素300内のADC320は、それらのリセットレベルおよび信号レベルをP相データおよびD相データに変換して出力部270に出力する。
出力部270内の演算回路280は、最初のP相データの符号を反転してメモリ273に保持させる。そして、演算回路280は、2回目以降のP相データの符号を反転して、その反転値とメモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。
そして、演算回路280は、1回目のD相データと、メモリ273に保持されたデータとを加算し、その加算値(すなわち、P相データとD相データとの差分)によりメモリ273を更新する。続いて演算回路280は、2回目以降のD相データと、メモリ273に保持されたデータ(差分)とを加算し、その加算値によりメモリ273を更新する。そして、その加算値が、CDS処理後の画素データとして画素300から出力される。
P相データのデータサイズを、例えば、13ビットとし、D相データのデータサイズを、例えば、15ビットとする。また、リセットレベルおよび信号レベルのそれぞれのサンプリング回数Nを例えば、2とする。この場合、最初のP相データと最初のD相データとの差分のデータサイズは、14ビットとなる。2回目の差分も同様である。メモリ273は、それらの差分の加算値を保持するため、そのメモリ容量は15ビットである。
図15は、本技術の第1の実施の形態と比較例とのそれぞれにおけるCDS処理を説明するための図である。同図におけるaは、本技術の第1の実施の形態におけるCDS処理を説明するための図であり、同図におけるbは、比較例におけるCDS処理を説明するための図である。この比較例では、演算回路は、1回目のP相データおよびD相データと、2回目のP相データおよびD相データとを互いに異なるメモリに書き込むものとする。
図15におけるaに例示するように、演算回路280は、最初のP相データの符号を反転してメモリ273に保持させる。そして、演算回路280は、2回目のP相データの符号を反転して、その反転値とメモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。そして、演算回路280は、1回目のD相データと、メモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。続いて演算回路280は、2回目のD相データと、メモリ273に保持されたデータとを加算し、その加算値によりメモリ273を更新する。
このように、演算回路280は、1回目および2回目のP相データの反転値を加算した値と、1回目および2回目のD相データの加算値とをメモリ273に保持している。言い換えれば、1回目のP相データおよびD相データの差分と、2回目の差分とを加算した値がメモリ273に保持される。この構成では、差分のビット数を14ビットとすると、画素毎のメモリ容量は15ビットで済む。
一方、図15におけるbに例示するように、比較例では、演算回路が、最初のP相データの符号を反転してメモリM1に保持させ、2回目のP相データの符号を反転してメモリM2に保持させる。そして、演算回路は、1回目のD相データと、メモリM1に保持されたデータとを加算し、その加算値(差分)によりメモリM1を更新する。続いて演算回路は、2回目のD相データと、メモリM2に保持されたデータとを加算し、その加算値(差分)によりメモリM2を更新する。そして、演算回路は、メモリM1に保持された差分とメモリM2に保持された差分とを加算して画素データとして出力する。このように、1回目の差分(14ビット)をメモリM1に保持させ、2回目の差分(14ビット)をメモリM2に保持させるため、それぞれのメモリのメモリ容量は14ビットである。すなわち、画素毎のメモリの総容量は、28ビットも必要になる。
したがって、画素数をH×Vとすると、比較例ではH×V×28ビットのメモリ容量が必要であるのに対し、出力部270では、H×V×15ビットのメモリ容量で十分である。このように、メモリ容量を大幅に削減することができる。
図16は、本技術の第1の実施の形態におけるCDS処理の一例を示すフローチャートである。このCDS処理は、例えば、垂直同期信号が立ち上がったときに開始される。画素300は、1回目のリセットレベルを生成してP相データに変換する(ステップS901)。出力部270は、そのP相データの符号を反転してメモリ273に保持する(ステップS902)。そして、画素300は、2回目のリセットレベルを生成してP相データに変換する(ステップS903)。出力部270は、2回目のP相データの符号を反転して、メモリ273の保持データと加算し、その加算値によりメモリ273を更新する(ステップS904)。
そして、画素300は、1回目の信号レベルを生成してD相データに変換する(ステップS905)。出力部270は、1回目のD相データと、メモリ273の保持データとを加算し、その加算値によりメモリ273を更新する(ステップS906)。続いて画素300は、2回目の信号レベルを生成してD相データに変換する(ステップS907)。出力部270は、2回目のD相データと、メモリ273の保持データとを加算し、その加算値によりメモリ273を更新する。この加算値が画素データとして出力される(ステップS908)。ステップS908の後に固体撮像素子200は、CDS処理を終了する。
このように、本技術の第1の実施の形態では、固体撮像素子200は、Bビットの差分をN回加算した値をメモリに保持するため、画素当たりのメモリ容量をB+logNビットに抑制することができる。
<2.第2の実施の形態>
上述の第1の実施の形態では、フォトダイオードごとにFDを設けていたが、フォトダイオードの個数の増大に伴ってFDの個数も増大する。FD数の増大を抑制するには、例えば、複数のフォトダイオードが1つのFDを共有する構成とすればよい。この第2の実施の形態の固体撮像素子200は、複数のフォトダイオードが1つのFDを共有する点において第1の実施の形態と異なる。
図17は、本技術の第2の実施の形態における画素回路310の一構成例を示す回路図である。この画素回路310は、リセットトランジスタ311およびFD312と、4つのサブ画素回路313とを備える。リセットトランジスタ311およびFD312は、これらのサブ画素回路313により共有される。サブ画素回路313のそれぞれは、転送トランジスタ314、フォトダイオード315および排出トランジスタ316を備える。これらのサブ画素回路313をサブ画素a、b、cおよびdとする。サブ画素aには、画素駆動回路250からの転送信号TXaおよび駆動信号OFGaが入力される。サブ画素bは、転送信号TXbおよび駆動信号OFGbが入力され、サブ画素cには、転送信号TXcおよび駆動信号OFGcが入力される。サブ画素dは、転送信号TXdおよび駆動信号OFGdが入力される。サブ画素回路313内の転送トランジスタ314は、対応する転送信号に従って、電荷をFD312に転送する。なお、4つの転送トランジスタ314からなる回路は、特許請求の範囲に記載の転送部の一例である。
画素駆動回路250は、露光開始時に全画素へ駆動信号OFGa、OFGb、OFGcおよびOFGdを順に供給し、リセット信号RSTを供給する。また、画素駆動回路250は、露光終了時に全画素へ転送信号TXa、TXb、TXcおよびTXdを順に供給する。それぞれのサブ画素回路313の露光時間は、同一であるものとする。
なお、4つのサブ画素回路313で1つのFD312を共有しているが、FD312を共有するサブ画素回路313の個数は4つに限定されず、2つなどであってもよい。
このように、本技術の第2の実施の形態では、複数のフォトダイオード315が1つのFD312を共有するため、FD312の個数の増大を抑制することができる。
<3.第3の実施の形態>
上述の第2の実施の形態では、サブ画素回路313のそれぞれの露光時間を同一としていたが、自然光の下などでは、ダイナミックレンジが不足するおそれがある。ダイナミックレンジを広くするには、例えば、4つのサブ画素回路313を互いに異なる露光時間により露光させて、露光時間の長い画素データと、露光時間の短い画素データとを合成すればよい。このような合成は、ハイダイナミックレンジ合成と呼ばれる。この第3の実施の形態の固体撮像素子200は、ハイダイナミックレンジ合成を行う点において第2の実施の形態と異なる。
図18は、本技術の第3の実施の形態における演算回路280およびメモリ273の一構成例を示すブロック図である。この第3の実施の形態の演算回路280は、シフタ290をさらに備える点において第2の実施の形態と異なる。
シフタ290は、タイミング生成回路260からのシフト制御信号SHに従って、画素アレイ部240からのデータDATAinを左シフト(言い換えれば、2のべき乗で乗算)するものである。シフト量には、露光時間の比率(露光比)に応じた値が設定される。シフタ290は、シフト後のデータをDATAoutとして加算回路282に出力する。
ここで、サブ画素a、b、cおよびdのそれぞれの露光時間をEa、Eb、EcおよびEdとする。これらの露光時間には、例えば、次の式を満たす値が設定されるものとする。
Ec=2×Ed
Eb=2×Ec=4×Ed
Ea=2×Eb=8×Rd
このように、最小の露光時間に対する他の露光時間の比率(露光比)を2のべき乗(2、4および8)に設定した場合、乗算をシフト演算により行うことができる。例えば、サブ画素bからのDATAinは、1ビット分、左シフトされる。また、サブ画素cからのDATAinは、2ビット分、左シフトされ、サブ画素dからのDATAinは、3ビット分、左シフトされる。一方、サブ画素aからのDATAinは、シフトされない。
なお、露光比を2のべき乗としているが、露光比を2のべき乗以外の値に設定してもよい。露光比が2のべき乗でない場合に演算回路280は、シフタ290の代わりに、乗算器を備え、露光比を乗算すればよい。
図19は、本技術の第3の実施の形態におけるシフタ290の一構成例を示す回路図である。シフタ290は、3ビットまでのシフトを行うことができるが、ここでは、1ビットのシフトのみを行う回路例について説明する。シフタ290は、B(例えば、15)個のセレクタ291を備える。b(bは0乃至B-1の整数)個目のセレクタ291は、DATAinのbビット目に対応付けられる。
0ビット目に対応するセレクタ291は、シフト制御信号SHに従って、論理値「0」とDATAin[0]とのいずれかを選択して、DATAout[0]として出力する。bビット目に対応するセレクタ291は、シフト制御信号SHに従って、DATAin[b-1]とDATAin[b]とのいずれかを選択して、DATAout[b]として出力する。なお、左シフトでは、LSB(least significant bit)を右端として左にビットをシフトするが、図19では、記載の便宜上、LSBを左端に記載している。
例えば、シフト制御信号SHは、1ビット分、左シフトさせるか否かを示す。シフトさせない場合に、bビット目に対応するセレクタ291は、DATAin[b]を選択してDATAout[b]として出力する。一方、シフトさせる場合に、bビット目に対応するセレクタ291は、DATAin[b-1]または「0」を選択してDATAout[b]として出力する。
図20は、本技術の第3の実施の形態における画素300の駆動例を示すタイミングチャートである。画素駆動回路250は、サブ画素aの露光開始のタイミングt41において駆動信号OFGaを出力する。その後のタイミングt42、t43およびt44において、画素駆動回路250は、駆動信号OFGb、OFGcおよびOFGdを順に出力する。これにより、サブ画素a、b、cおよびdの順で露光が開始される。
そして、画素駆動回路250は、タイミングt44の後のサブ画素dの露光終了のタイミングt45において駆動信号TXdを出力する。その後のタイミングt46、t47およびt48において、画素駆動回路250は、駆動信号TXc、TXbおよびTXdを順に出力する。これにより、サブ画素d、c、bおよびaの順で露光が終了する。
また、ADC320は、サブ画素d、c、bおよびaの順でP相データおよびD相データを出力する。
図21は、本技術の第3の実施の形態における1回目および2回目のCDS処理を説明するための図である。最小の露光時間Edが設定されたサブ画素dからのP相データが入力されると、シフタ290は、そのデータを3ビット左シフト(言い換えれば、8を乗算)し、加算器292は、そのシフト後のデータの符号を反転してメモリ273に保持させる。ここで、加算器292は、B個の加算回路282からなる演算器である。次にサブ画素dからのD相データが入力されると、シフタ290は、そのデータを3ビット左シフトし、加算器292は、そのシフト後のデータと、メモリ273の保持データとを加算して、その加算値(差分)によりメモリ273を更新する。
そして、露光時間Ecが設定されたサブ画素cからのP相データが入力されると、シフタ290は、そのデータを2ビット左シフトする。加算器292は、そのシフト後のデータの符号を反転し、その反転値と、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。次にサブ画素cからのD相データが入力されると、シフタ290は、そのデータを2ビット左シフトし、加算器292は、そのシフト後のデータと、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。
図22は、本技術の第3の実施の形態における3回目および4回目のCDS処理を説明するための図である。露光時間Ebが設定されたサブ画素bからのP相データが入力されると、シフタ290は、そのデータを1ビット左シフトする。加算器292は、そのシフト後のデータの符号を反転し、その反転値と、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。次にサブ画素bからのD相データが入力されると、シフタ290は、そのデータを1ビット左シフトし、加算器292は、そのシフト後のデータと、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。
そして、最大の露光時間Eaが設定されたサブ画素aからのP相データが入力されると、シフタ290は、そのデータをシフトせずに加算器292に出力する。加算器292は、そのデータの符号を反転し、その反転値と、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。次にサブ画素aからのD相データが入力されると、シフタ290は、そのデータをシフトせずに加算器292に出力する。加算器292は、そのデータと、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。
図23は、本技術の第3の実施の形態と比較例とのそれぞれにおけるCDS処理を説明するための図である。同図におけるaは、第3の実施の形態におけるCDS処理を説明するための図である。ここでは、説明を簡易にするために、FDを共有するサブ画素がaおよびdの2つしかないものとしている。同図におけるbは、比較例におけるCDS処理を説明するための図である。
図23におけるaに例示するように、露光時間の短い方のサブ画素dからのP相データが入力されると、シフタ290は、露光比(例えば、「8」)でP相データを乗算し、加算器292には、その乗算値の符号を反転してメモリ273に保持する。次にサブ画素dからのD相データが入力されると、シフタ290は、露光比でD相データを乗算する。加算器292には、その乗算値とメモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。
そして、露光時間の長い方のサブ画素aからのP相データが入力されると、加算器292には、そのP相データの符号を反転し、その反転値とメモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。次にサブ画素aからのD相データが入力されると、加算器292には、そのD相データとメモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。
このように、加算器292には、露光時間の短い方のP相データおよびD相データの差分と、露光時間の長い方の差分とを加算して同じメモリ273に保持させる。これにより、ダイナミックレンジの広い画素データが得られる。差分のデータサイズを14ビットとすると、信号レベルのサンプリング回数Nが2であるため、上式より、画素毎のメモリ容量は、15ビットで済む。
一方、図23におけるbに例示するように、比較例では、露光時間の短い方のP相データおよびD相データの差分を演算回路がメモリM1に保持させ、露光時間の長い方の差分を演算回路がメモリM2に保持させる。そして、演算回路は、メモリM1の保持データに露光比を乗算し、メモリM2の保持データと加算し、画素データとして出力する。この構成では、差分のデータサイズを14ビットとすると、画素毎に、28ビットのメモリ容量が必要となる。
したがって、画素数をH×Vとすると、比較例ではH×V×28ビットのメモリ容量が必要であるのに対し、出力部270では、H×V×15ビットのメモリ容量で十分である。このように、メモリ容量を大幅に削減することができる。
このように、本技術の第3の実施の形態では、露光時間の異なるN回の露光のうち最初のBビットの差分と、2回目以降の差分とを加算してメモリ273に保持させるため、B+logNの値に画素当たりのメモリ容量を抑制することができる。
<4.第4の実施の形態>
上述の第1の実施の形態では、固体撮像素子200が信号レベルのサンプリングの回数と同じ回数に亘ってリセットレベルのサンプリングを行っていた。しかし、この構成では、信号レベルのサンプリング回数の増大に伴ってリセットレベルのサンプリング回数も増大し、消費電力が大きくなってしまう。ここで、2回目以降の信号レベルに対応する露光時間を1回目より長くした場合、その信号レベルは、高照度の光を光電変換した値となり、ショットノイズが支配的になる。このため、2回目以降の信号レベルにおいては、1回目のリセットレベルとの間で固定パターンノイズの相関があるものの、リセットノイズとの相関は乏しい。したがって、リセットレベルのサンプリングを1回としても画質に対する影響は少ない。この第4の実施の形態の固体撮像素子200は、リセットレベルのサンプリングを1回のみ行う点において第1の実施の形態と異なる。
図24は、本技術の第4の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。タイミングt10から、タイミングt15までの最初のリセットレベルの変換動作は、第1の実施の形態と同様である。ただし、2回目以降のリセットレベルは生成されない。
図25は、本技術の第4の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。タイミングt21からタイミングt25までの1回目の信号レベルの変換動作は、第1の実施の形態と同様である。
タイミングt25の後のタイミングt26において、画素駆動回路250は、リセット信号RSTを出力する。そして、タイミングt27において画素駆動回路250は、転送信号TXを供給する。ここで、1回目の露光時間は、前の1V期間の駆動信号OFGの出力時点からタイミングt22までである。2回目の露光時間は、タイミングt22からタイミングt27までである。この2回目の露光時間は、1回目よりも長いものとする。
そして、タイミングt28からタイミングt29までの間に2回目の信号レベルがAD変換される。この2回目の信号レベルの変換では、参照信号REFのスロープの傾きは1回目と同じであるが、タイミング生成回路260は、出力部270を動作させるクロック信号の動作周波数を露光比に応じて1回目よりも低下させるものとする。これにより、AD変換の1LSBに対応する電圧値が、1回目よりも大きくなる。すなわち、AD変換における分解能が低くなる。
なお、クロック信号の動作周波数を低くする場合、パルス幅を維持したまま低下させてもよいし、低下させる際にパルス幅を変更してもよい。パルス幅を維持する際には、動作周波数の低下によりクロック信号のデューティ比も変化する。
図26は、本技術の第4の実施の形態におけるCDS処理を含む演算処理を説明するための図である。第4の実施の形態の演算回路280は、第3の実施の形態と同様にシフタ290および加算器292を備える。1回目のP相データが入力されると、演算回路280は、そのP相データの符号を反転し、かつ、D相を読む回数(N回)分、この符号反転したP相データに乗算器290でゲイン(N倍)をかけてメモリ273に保持する。次に1回目のD相データが入力されると、加算器292は、そのD相データとメモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。
続いて分解能の低い2回目のD相データが入力されると、シフタ290は、分解能を低くした分だけ左シフトする。通常であれば、分解能の異なるデータ(ここでは、1回目および2回目のD相データ)は、デジタル値が飛ばないようにディザ処理などを行う必要がある。しかし、リセットレベルのAD変換時の分解能を高くしたため、自然とディザがかかり、デジタル値が歯抜けになることが無い。したがって、ディザ処理等が不要となる。
加算器292は、シフト後のD相データとメモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。この2回目のP相データは、2回目よりも露光時間が長いため、ショットノイズが支配的となり、リセットノイズとの相関が乏しい。このため、2回目のリセットサンプリングを行う必要がなくなり、リセットサンプリングが1回のみで済む。
なお、信号レベルのサンプリング回数を2回としているが、3回以上としてもよい。その際に演算回路280は、P相データの入力前のゲインとして、サンプリング回数分かける処理を行う。
このように、本技術の第4の実施の形態では、固体撮像素子200は、2回目の露光時間を1回目よりも長くするため、リセットレベルのサンプリング回数を削減することができる。これにより、固体撮像素子200の消費電力を小さくすることができる。
<5.第5の実施の形態>
上述の第1の実施の形態では、ADC320は、複数の信号レベルを同一の露光時間によりAD変換していたが、自然光の下などでは、ダイナミックレンジが不足するおそれがある。ダイナミックレンジを拡大するには、一般的に、短時間露光の画素データと長時間露光の画素データとを生成し、それらを合成する方法が用いられる。しかし、この方法では、長時間露光と短時間露光との合計の露光時間が長くなってしまうという問題がある。この第5の実施の形態の固体撮像素子200は、露光時間の増大を抑制しつつ、ダイナミックレンジを拡大した点において第1の実施の形態と異なる。
図27は、本技術の第5の実施の形態における出力部270の一構成例を示すブロック図である。この第5の実施の形態の出力部270は、共有メモリ295をさらに具備する点において第1の実施の形態と異なる。この共有メモリ295は、画素毎に設けられた演算回路280の全てにより共有される。
図28は、本技術の第5の実施の形態における出力部270の処理を説明するための図である。画素回路310は、リセットレベルおよび信号レベルのそれぞれを2回ずつ生成する。信号レベルのそれぞれの露光時間は同一である。
ADC320は、1回目のリセットレベルを所定の分解能RLによりP相データに変換する。そして、ADC320は、2回目のリセットレベルと1回目の信号レベルとを分解能RLより高いRHによりP相データおよびD相データに変換する。続いてADC320は、2回目の信号レベルを分解能RLによりD相データに変換する。
出力部270は、CDS処理部296および飽和判定部297を備える。CDS処理部296は、1回目のP相データの符号を反転してメモリ273に保持し、2回目のP相データの符号を反転して共有メモリ295に保持する。
そして、CDS処理部296は、1回目のD相データと、共有メモリ295の保持データとを加算して、その加算値により共有メモリ295を更新する。これにより、2回目のP相データと1回目のD相データとの差分(画素データ)が共有メモリ295に保持される。なお、共有メモリ295は、特許請求の範囲に記載の第2メモリの一例である。
続いてCDS処理部296は、2回目のD相データと、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。これにより、1回目のP相データと2回目のD相データとの差分(画素データ)がメモリ273に保持される。なお、メモリ273は、特許請求の範囲に記載の第1メモリの一例である。
飽和判定部297は、共有メモリ295の保持データ(画素データ)がフルスケールを越える(言い換えれば、飽和している)か否かを判定する。飽和している場合には飽和判定部297は、共有メモリ295を初期化し、メモリ273の保持データを最終的な画素データとして出力させる。一方、飽和していない場合には飽和判定部297は、共有メモリ295の保持データによりメモリ273を更新し、更新後のメモリ273のデータを最終的な画素データとして出力させる。なお、飽和判定部297は、共有メモリ295の保持データがフルスケールを越えるか否かを判定しているが、フルスケール未満の所定値を越えるか否かを判定してもよい。また、飽和判定部297は、特許請求の範囲に記載の判定部の一例である。
メモリ273および共有メモリ295のそれぞれには、B(例えば、14)ビットの画素データが保持されるため、それぞれのメモリ容量は、Bビットで済む。また、メモリ273は画素ごとに設けられ、共有メモリ295は全画素で共有される。このため、画素数をH×Vとすると、出力部270全体のメモリの総容量Ctotalは、次の式により表される。
total=H×V×B+B
図29は、本技術の第5の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。第5の実施の形態におけるタイミングt10からt17までの1回目および2回目のリセットレベルの変換動作は、第1の実施の形態と同様である。ただし、2回目のリセットレベルのAD変換において、DAC210は、参照信号REFのスロープの傾きを1回目よりも緩やかにする。これにより、2回目のリセットレベルは、1回目よりも高い分解能によりAD変換される。
図30は、本技術の第5の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。第5の実施の形態におけるタイミングt21からt28までの1回目および2回目の信号レベルの変換動作は、第1の実施の形態と同様である。ただし、1回目の信号レベルのAD変換において、DAC210は、参照信号REFのスロープの傾きを2回目よりも緩やかにする。これにより、1回目の信号レベルは、2回目よりも高い分解能によりAD変換される。
図31は、本技術の第5の実施の形態におけるスロープの傾きについて説明するための図である。前述したように、参照信号がスロープ状に変化している期間において、ADC320は、参照信号と画素信号とを比較する動作をクロック信号に同期して繰り返す。このため、クロック信号の周波数を一定にしたままで、参照信号のスロープの傾きを緩やかにすると、LSBに対応する電圧値が小さくなる。すなわち、ADC320の分解能が高くなる。また、分解能が高いと、分解能が低い場合よりも変換後のデジタル値が大きくなる。したがって、照度の比較的低い画素が分解能の高い(すなわち、デジタル値の大きな)画素データを出力し、照度の比較的高い画素が分解能の低い画素データを出力すれば、画像データ全体のダイナミックレンジを広くすることができる。
図32は、本技術の第5の実施の形態におけるCDS処理を説明するための図である。同図におけるaは、低照度時のCDS処理を説明するための図であり、同図におけるbは高照度時のCDS処理を説明するための図である。
図32におけるaに例示するように、演算回路280は、1回目の低分解能のP相データの符号を反転してメモリ273に保持し、2回目の高分解能のP相データの符号を反転して共有メモリ295に保持する。
そして、演算回路280は、1回目のD相データと、共有メモリ295の保持データとを加算して、その加算値により共有メモリ295を更新する。これにより、2回目のP相データと1回目のD相データとの差分(正味の画素データTEMP)が共有メモリ295に保持される。
続いてCDS処理部296は、2回目のD相データと、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。これにより、1回目のP相データと2回目のD相データとの差分がメモリ273に保持される。なお、メモリ273は、特許請求の範囲に記載の第1メモリの一例である。
演算回路280は、共有メモリ295の画素データTEMPがフルスケールFSを越える(飽和している)か否かを判定する。飽和していない場合に演算回路280は、図32におけるaに例示するように、共有メモリ295の保持データによりメモリ273を更新する。更新後の高分解能のデータが最終的な画素データとして出力される。一方、飽和している場合には演算回路280は、同図におけるbに例示するように共有メモリ295を初期化し、メモリ273の低分解能の保持データを最終的な画素データとして出力させる。
このように、分解能を切り替える方式によれば、画素300の露光は1回でよく、長時間露光と短時間露光との両方を行わずに済むため、露光時間の増大を抑制することができる。
図33は、本技術の第5の実施の形態におけるCDS処理の一例を示すフローチャートである。画素300は、1回目のリセットレベルを生成してP相データに変換する(ステップS911)。出力部270は、そのP相データの符号を反転してメモリ273に保持する(ステップS912)。そして、画素300は、2回目のリセットレベルを生成し、スロープを緩やかにしてP相データに変換する(ステップS913)。出力部270は、2回目のP相データの符号を反転して、共有メモリ295に保持する(ステップS914)。
画素300は、1回目の信号レベルを生成し、スロープを緩やかにしてD相データに変換する(ステップS915)。出力部270は、そのD相データを、共有メモリ295の保持データと加算し、加算値により共有メモリ295を更新する(ステップS916)。続いて画素300は、2回目の信号レベルを生成してD相データに変換する(ステップS917)。出力部270は、そのD相データを、メモリ273の保持データと加算し、加算値によりメモリ273を更新する(ステップS918)。
出力部270は、共有メモリ295の保持値が飽和しているか否かを判定する(ステップS919)。飽和している場合に(ステップS919:Yes)、出力部270は、共有メモリ295を初期化し、メモリ273の値を画素データとして出力する(ステップS920)。一方、飽和していない場合に(ステップS919:No)、出力部270は、共有メモリ295の保持値によりメモリ273を更新し、その更新後の値を画素データとして出力する(ステップS921)。ステップS920またはS921の後に、固体撮像素子200は、CDS処理を終了する。
このように、本技術の第5の実施の形態では、高照度時に低分解能の画素データを出力し、低照度時に高分解能の画素データを出力するため、1回の露光によりダイナミックレンジを拡大することができる。
<6.第6の実施の形態>
上述の第5の実施の形態では、画素回路310は、FDで生成した電圧を増幅せずに出力していたが、照度が高い場合などに取扱い飽和信号量が不足するおそれがある。取扱い飽和信号量が不足する際は、FDで生成した電圧を低減して低電圧化したデータを出力することが望ましい。この第6の実施の形態の画素回路310は、FDで生成したアナログの電圧を低減する点において第5の実施の形態と異なる。
図34は、本技術の第6の実施の形態における画素回路310および差動入力回路330の一構成例を示す回路図である。この第6の実施の形態の画素回路310は、ゲイン制御トランジスタ317および容量318をさらに備える点において第5の実施の形態と異なる。ゲイン制御トランジスタ317として、例えば、N型のMOSトランジスタが用いられる。
ゲイン制御トランジスタ317のゲートには、画素駆動回路250からのゲイン制御信号FDGが入力される。また、ゲイン制御トランジスタ317のドレインは、容量318の一端とリセットトランジスタ311のドレインとに接続される。ゲイン制御トランジスタ317のソースは、PMOSトランジスタ334およびNMOSトランジスタ335のドレインとPMOSトランジスタ336のゲートとに接続される。また、容量318の他端には、基板電圧が印加される。
上述の構成により、画素駆動回路250がハイレベルのゲイン制御信号FDGを供給すれば、画素300は、FD312の電圧を所定のアナログゲインにより低減して出力することができる。これにより、画素300の取扱い信号量、すなわち飽和信号量が拡大する。
図35は、本技術の第6の実施の形態におけるリセットレベルのサンプリング処理の一例を示すタイミングチャートである。画素駆動回路250は、1回目のリセットレベル変換時のタイミングt10からt16までの間において、ハイレベルのゲイン制御信号FDGを供給する。そして、画素駆動回路250は、2回目のリセットレベル変換時のタイミングt16以降において、ローレベルのゲイン制御信号FDGを供給する。
図36は、本技術の第6の実施の形態における信号レベルのサンプリング処理の一例を示すタイミングチャートである。画素駆動回路250は、1回目の信号レベル変換時のタイミングt21からt27までの間において、ローレベルのゲイン制御信号FDGを供給する。そして、画素駆動回路250は、2回目の信号レベル変換時のタイミングt27以降において、ハイレベルのゲイン制御信号FDGを供給する。
図37は、本技術の第6の実施の形態におけるCDS処理を説明するための図である。同図におけるaは、低照度時のCDS処理を説明するための図であり、同図におけるbは高照度時のCDS処理を説明するための図である。第6の実施の形態のCDS処理部296は、乗算器293および加算器292を備える。
図37におけるaに例示するように、加算器292は、1回目の低分解能のP相データの符号を反転してメモリ273に保持する。
また、乗算器293は、1回目の高分解能のP相データの符号に対してデジタル値Agを乗算する。このデジタル値Agには、スロープの傾きによる分解能の比率とアナログゲインとに応じた値が設定される。デジタル値Agを2のべき乗とすれば、乗算器293は、第3の実施の形態のようにシフタにより実現することができる。加算器292は、乗算後のP相データの符号を反転して共有メモリ295に保持する。
そして、乗算器293は、2回目のD相データに対してデジタル値Agを乗算する。加算器292は、乗算後のD相データと、共有メモリ295の保持データとを加算して、その加算値により共有メモリ295を更新する。これにより、2回目のP相データと1回目のD相データとの差分(正味の画素データTEMP)が共有メモリ295に保持される。
続いて加算器292は、2回目のD相データと、メモリ273の保持データとを加算して、その加算値によりメモリ273を更新する。これにより、1回目のP相データと2回目のD相データとの差分(正味の画素データ)がメモリ273に保持される。
飽和判定部297は、共有メモリ295の画素データTEMPがフルスケールFSを越える(飽和している)か否かを判定する。第6の実施の形態の飽和判定後の処理は、第5の実施の形態と同様である。
このように、本技術の第6の実施の形態では、出力部270が、FDの電圧の低減により感度を低減させるため、飽和信号量の不足を抑制することができる。
<7.第7の実施の形態>
上述の第1の実施の形態では、1つの半導体基板に、画素回路310、ADC320およびメモリ273を配置していたが、積層した複数の半導体基板に、それらを分散して配置することもできる。この第7の実施の形態の固体撮像素子200は、積層した複数の半導体基板に、画素回路310などを分散して配置した点において第1の実施の形態と異なる。
図38は、本技術の第7の実施の形態における固体撮像素子200の積層構造の一例を示す斜視図である。この第7の実施の形態の固体撮像素子200は、積層された上側基板202および下側基板204を備える。それぞれの基板の貼り合わせは、Cu-Cu接合や、TSV(Through-Silicon Via)技術などにより行われる。
上側基板202には、画素回路310が二次元格子状に配列される。また、下側基板204には、画素回路310と同じ個数のADC320およびメモリ273が配列される。画素回路310、ADC320およびメモリ273以外の回路や素子は、省略されている。上側基板202の「上」は、光学部110に近い方を示す。
このように、本技術の第7の実施の形態では、積層された上側基板202および下側基板204に画素回路310、ADC320およびメモリ273を分散して配置するため、固体撮像素子200の実装密度や集積度を向上させることができる。
[第1の変形例]
上述の第7の実施の形態では、メモリ273を下側基板204に配置していたが、上側基板202に配置することもできる。この第7の実施の形態の第1の変形例の固体撮像素子200は、上側基板202にメモリ273を配置した点において第7の実施の形態と異なる。
図39は、本技術の第7の実施の形態の第1の変形例における固体撮像素子200の積層構造の一例を示す斜視図である。この第7の実施の形態の第1の変形例では、画素回路310およびメモリ273が上側基板202に配置され、ADC320が下側基板204に配置される。画素回路310、ADC320およびメモリ273以外の回路や素子は、省略されている。
このように、本技術の第7の実施の形態の第1の変形例では、上側基板202に画素回路310およびメモリ273を配置し、下側基板204にADC320を配置したため、固体撮像素子200の実装密度や集積度を向上させることができる。
[第2の変形例]
上述の第7の実施の形態では、積層した2つの半導体基板に、画素回路310、ADC320およびメモリ273を配置していたが、それらを、3つの半導体基板に分散して配置することもできる。この第7の実施の形態の第2の変形例の固体撮像素子200は、積層した3つの半導体基板に、画素回路310などを分散して配置した点において第7の実施の形態と異なる。
図40は、本技術の第7の実施の形態の第2の変形例における固体撮像素子200の積層構造の一例を示す斜視図である。この第7の実施の形態の第2の変形例の固体撮像素子200は、積層された上側基板202、中間基板203および下側基板204を備える。
上側基板202には、画素回路310が二次元格子状に配列される。また、中間基板203には、画素回路310と同じ個数のADC320が配列される。下側基板204には、画素回路310と同じ個数のメモリ273が配列される。画素回路310、ADC320およびメモリ273以外の回路や素子は、省略されている。
このように、本技術の第7の実施の形態の第2の変形例では、積層された3枚の半導体基板に画素回路310、ADC320およびメモリ273を分散して配置するため、固体撮像素子200の実装密度や集積度をさらに向上させることができる。
<8.移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図41は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図41に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図41の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図42は、撮像部12031の設置位置の例を示す図である。
図42では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図42には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12101ないし12104内の固体撮像素子に適用され得る。具体的には、固体撮像素子内の出力部は、1回目の差分と2回目以降のD相データとの加算値をメモリに保持する。撮像部12101ないし12104とに本開示に係る技術を適用することにより、固体撮像素子のメモリ容量の増大を抑制することができるため、撮像部のコストを削減することができる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
なお、本技術は以下のような構成もとることができる。
(1)所定のリセットレベルと露光量に応じた複数の信号レベルとのそれぞれを順に生成する画素回路と、
前記所定のリセットレベルをデジタルデータに変換してリセットデータとして出力した後に前記複数の信号データのそれぞれをデジタルデータに変換して信号データとして出力するアナログデジタル変換器と、
保持データを保持するメモリと、
前記リセットデータと最初に出力された前記信号データとの差分を前記保持データとして前記メモリに保持させた後に当該保持させた保持データと2回目以降に出力された前記信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算回路と
を具備する固体撮像素子。
(2)前記アナログデジタル変換器は、所定数の前記信号レベルのそれぞれを前記信号データに変換し、
前記メモリの容量は、底を2とする前記所定数の対数と前記差分のデータサイズとの和である
前記(1)記載の固体撮像素子。
(3)前記画素回路は、前記複数の信号レベルと同じ個数の前記リセットレベルを生成し、
前記演算回路は、前記リセットデータが出力されるたびに前記リセットデータと前記保持データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる
前記(1)または(2)に記載の固体撮像素子。
(4)前記複数の信号レベルのそれぞれに対応する露光時間は異なり、
前記画素回路は、1つの前記リセットレベルを生成する
前記(1)または(2)に記載の固体撮像素子。
(5)前記アナログデジタル変換器は、前記露光時間の比率に応じた動作周波数により前記信号レベルを変換する
前記(4)記載の固体撮像素子。
(6)前記画素回路は、
転送された電荷を蓄積して当該蓄積された電荷量に応じた電圧を生成する電荷蓄積部と、
前記電荷蓄積部を共有する複数のフォトダイオードと
前記複数のフォトダイオードのそれぞれにおいて光電変換により生成された前記電荷を前記電荷蓄積部に転送する転送部と
を備える
前記(1)から(5)のいずれかに記載の固体撮像素子。
(7)前記複数の信号レベルのそれぞれに対応する露光時間は異なり、
前記演算回路は、前記露光時間のそれぞれの比率により前記リセットデータおよび前記信号データを乗算した後に前記差分の演算を行う
前記(1)から(6)のいずれかに記載の固体撮像素子。
(8)前記露光時間のそれぞれの比率は2のべき乗であり、
前記演算回路は、前記リセットデータおよび前記信号データに対してシフト演算を行う
前記(7)記載の固体撮像素子。
(9)前記画素回路は2次元格子状に配列され、
前記アナログデジタル変換器は、前記画素回路ごとに設けられる
前記(1)から(8)のいずれかに記載の固体撮像素子。
(10)積層された2つの半導体基板をさらに具備し、
前記画素回路は、前記2つの半導体基板の一方に配置され、
前記アナログデジタル変換器および前記メモリは、前記2つの半導体基板の他方に配置される
前記(1)から(9)のいずれかに記載の固体撮像素子。
(11)積層された2つの半導体基板をさらに具備し、
前記画素回路および前記メモリは、前記2つの半導体基板の一方に配置され、
前記アナログデジタル変換器は、前記2つの半導体基板の他方に配置される
前記(1)から(9)のいずれかに記載の固体撮像素子。
(12)積層された第1、第2および第3の半導体基板をさらに具備し、
前記画素回路は、前記第1の半導体基板に配置され、
前記アナログデジタル変換器は、前記第2の半導体基板に配置され、
前記メモリは、前記第3の半導体基板に配置される
前記(1)から(9)のいずれかに記載の固体撮像素子。
(13)第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順に生成する画素回路と、
前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを前記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換器と、
前記第1のリセットデータと前記第2の信号データとの差分を第1の画素データとして求め、前記第2のリセットデータと前記第1の信号データとの差分を前記第2の画素データとして求める相関二重サンプリング処理部と、
前記第1の画素データを保持する第1メモリと、
前記第2の画素データを保持する第2メモリと、
前記保持された第2の画素データの値が所定値より高いか否かを判定して前記第2の画素データの値が前記所定値より高い場合には前記保持された第1の画素データを出力させ、前記第2の画素データの値が前記所定値に満たない場合には前記第2の画素データを出力させる判定部と
を具備する固体撮像素子。
(14)前記第1のリセットレベルと前記第2の信号レベルとを所定の感度により前記画素回路に生成させ、前記第2のリセットレベルと前記第1の信号レベルとを所定の感度と異なる感度により前記画素回路に生成させる画素駆動部をさらに具備する
前記(13)記載の固体撮像素子。
(15)前記画素回路は、前記第1および第2のリセットレベルと前記第1および第2の信号レベルとのそれぞれを画素信号として生成し、
前記アナログデジタル変換器は、
スロープを持つ所定の参照信号と前記画素信号とを複数回に亘って比較して当該比較結果を出力する比較部と、
前記比較結果のそれぞれからなるデータを前記第1および第2のリセットデータと前記第1および第2の信号データのいずれかとして記憶するデータ記憶部と
を備え、
前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを比較するときの前記スロープの傾きは、前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを比較するときの傾きより緩やかである
前記(13)または(14)に記載の固体撮像素子。
(16) 前記画素回路は、二次元格子状に配列され、
前記アナログデジタル変換器は、前記画素回路ごとに配置され、
前記第2メモリは、前記画素回路の全てに共有される
前記(13)から(15)のいずれかに記載の固体撮像素子。
(17)所定のリセットレベルと露光量に応じた複数の信号レベルとのそれぞれを順に生成する画素回路と、
前記所定のリセットレベルをデジタルデータに変換してリセットデータとして出力した後に前記複数の信号レベルのそれぞれをデジタルデータに変換して信号データとして出力するアナログデジタル変換器と、
保持データを保持するメモリと、
前記リセットデータと最初に出力された前記信号データとの差分を前記保持データとして前記メモリに保持させた後に当該保持させた保持データと2回目以降に出力された前記信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算回路と、
前記保持された保持データに対して所定の信号処理を実行するデジタル信号処理部と
を具備する固体撮像装置。
(18)第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順生成する画素回路と、
前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを前記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換器と、
前記第1のリセットデータと前記第2の信号データとの差分を第1の画素データとして求め、前記第2のリセットデータと前記第1の信号データとの差分を前記第2の画素データとして求める相関二重サンプリング処理部と、
前記第1の画素データを保持する第1メモリと、
前記第2の画素データを保持する第2メモリと、
前記保持された第2の画素データの値が所定値より高いか否かを判定して前記第2の画素データの値が前記所定値より高い場合には前記保持された第1の画素データを出力させ、前記第2の画素データの値が前記所定値に満たない場合には前記第2の画素データを出力させる判定部と、
前記第1および第2の画素データのうち出力されたデータに対して所定の信号処理を実行するデジタル信号処理部と
を具備する固体撮像装置。
(19)所定のリセットレベルと露光量に応じた複数の信号レベルとのそれぞれを順に生成する生成手順と、
前記所定のリセットレベルをデジタルデータに変換してリセットデータとして出力した後に前記複数の信号データのそれぞれをデジタルデータに変換して信号データとして出力するアナログデジタル変換手順と、
前記リセットデータと最初に出力された前記信号データとの差分を前記保持データとしてメモリに保持させた後に当該保持させた保持データと2回目以降に出力された前記信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算手順と
を具備する固体撮像素子の制御方法。
(20)第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順に生成する生成手順と、
前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを前記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換手順と、
前記第1のリセットデータと前記第2の信号データとの差分を第1の画素データとして求めて第1メモリに保持し、前記第2のリセットデータと前記第1の信号データとの差分を前記第2の画素データとして求めて第2メモリに保持する相関二重サンプリング処理手順と、
前記保持された第2の画素データの値が所定値より高いか否かを判定して前記第2の画素データの値が前記所定値より高い場合には前記保持された第1の画素データを出力させ、前記第2の画素データの値が前記所定値に満たない場合には前記第2の画素データを出力させる判定手順と
を具備する固体撮像素子の制御方法。
100 撮像装置
110 光学部
120 DSP回路
130 表示部
140 操作部
150 バス
160 フレームメモリ
170 記憶部
180 電源部
200 固体撮像素子
201 半導体基板
202 上側基板
203 中間基板
204 下側基板
210 DAC
220 時刻コード発生部
230 垂直駆動回路
240 画素アレイ部
241 時刻コード転送部
250 画素駆動回路
260 タイミング生成回路
270 出力部
271 演算部
272 メモリアレイ
273 メモリ
274 メモリセル
280 演算回路
281、284、286、291 セレクタ
282 加算回路
283、372、373、374、382、383、392 インバータ
285 全加算器
290 シフタ
292 加算器
293 乗算器
295 共有メモリ
296 CDS処理部
297 飽和判定部
300 画素
310 画素回路
311 リセットトランジスタ
312 FD
313 サブ画素回路
314 転送トランジスタ
315 フォトダイオード
316 排出トランジスタ
317 ゲイン制御トランジスタ
318 容量
320 ADC
321 比較回路
330 差動入力回路
331、334、336、351、352、355、356 PMOSトランジスタ
332、333、335、341、353、354、357、391 NMOSトランジスタ
340 電圧変換回路
350 正帰還回路
360 データ記憶部
361 リピータ
370 ラッチ制御回路
371 NOR(否定論理和)ゲート
380 ラッチ回路
381 スイッチ
390 双方向バッファ
393 バッファ

Claims (17)

  1. 第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとのそれぞれを順に生成する画素回路と、
    前記第1および第2のリセットレベルのそれぞれをデジタルデータに変換して第1および第2のリセットデータとして出力した後に前記第1および第2の信号レベルのそれぞれをデジタルデータに変換して第1および第2の信号データとして出力するアナログデジタル変換器と、
    保持データを保持するメモリと、
    前記第1および第2のリセットデータの加算値と前第1の信号データとの差分を前記保持データとして前記メモリに保持させた後に当該保持させた保持データと前第2の信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算回路と
    を具備する固体撮像素子。
  2. 前記アナログデジタル変換器は、前記第1および第2の信号レベルを含む所定数の信号レベルのそれぞれを信号データに変換し、
    前記メモリの容量は、底を2とする前記所定数の対数と前記差分のデータサイズとの和である
    請求項1記載の固体撮像素子。
  3. 前記画素回路は、
    転送された電荷を蓄積して当該蓄積された電荷量に応じた電圧を生成する電荷蓄積部と、
    前記電荷蓄積部を共有する複数のフォトダイオードと
    前記複数のフォトダイオードのそれぞれにおいて光電変換により生成された前記電荷を前記電荷蓄積部に転送する転送部と
    を備える
    請求項1記載の固体撮像素子。
  4. 前記画素回路は2次元格子状に配列され、
    前記アナログデジタル変換器は、前記画素回路ごとに設けられる
    請求項1記載の固体撮像素子。
  5. 積層された2つの半導体基板をさらに具備し、
    前記画素回路は、前記2つの半導体基板の一方に配置され、
    前記アナログデジタル変換器および前記メモリは、前記2つの半導体基板の他方に配置される
    請求項1記載の固体撮像素子。
  6. 積層された2つの半導体基板をさらに具備し、
    前記画素回路および前記メモリは、前記2つの半導体基板の一方に配置され、
    前記アナログデジタル変換器は、前記2つの半導体基板の他方に配置される
    請求項1記載の固体撮像素子。
  7. 積層された第1、第2および第3の半導体基板をさらに具備し、
    前記画素回路は、前記第1の半導体基板に配置され、
    前記アナログデジタル変換器は、前記第2の半導体基板に配置され、
    前記メモリは、前記第3の半導体基板に配置される
    請求項1記載の固体撮像素子。
  8. 第1および第2のリセットレベルと対応する露光時間の異なる第1および第2の信号レベルとのそれぞれを順に生成する画素回路と、
    前記第1のリセットレベルと前記第1の信号レベルとのそれぞれをデジタルデータに変換して第1リセットデータおよび第1信号データとして出力した後に前記第2のリセットレベルと前記第2の信号レベルとのそれぞれをデジタルデータに変換して第2リセットデータおよび第2信号データとして出力するアナログデジタル変換器と、
    保持データを保持するメモリと、
    前記露光時間のそれぞれの比率により前記第1リセットデータおよび前記第1信号データのそれぞれを乗算し、乗算後の前記第1リセットデータおよび前記第1信号データの差分を前記保持データとして前記メモリに保持させた後に当該保持させた保持データと前記第2リセットデータおよび前記第2信号データの差分とを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算回路と
    を具備する固体撮像素子。
  9. 所定のリセットレベルと対応する露光時間の異なる複数の信号レベルとのそれぞれを順に生成する画素回路と、
    前記リセットレベルをデジタルデータに変換してリセットデータとして出力した後に異なる動作周波数により前記複数の信号レベルのそれぞれをデジタルデータに変換して第1および第2の信号データとして出力するアナログデジタル変換器と、
    保持データを保持するメモリと、
    前記複数の信号レベルの個数により前記リセットデータを乗算し、乗算後の前記リセットデータと最初に出力された信号データとの差分を前記保持データとして前記メモリに保持させた後に2回目以降に出力された信号データをシフトし、当該保持させた保持データとシフト後の前記信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算回路と
    を具備する固体撮像素子。
  10. 第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順生成する画素回路と、
    前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを前記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換器と、
    前記第1のリセットデータと前記第2の信号データとの差分を第1の画素データとして求め、前記第2のリセットデータと前記第1の信号データとの差分を前記第2の画素データとして求める相関二重サンプリング処理部と、
    前記第1の画素データを保持する第1メモリと、
    前記第2の画素データを保持する第2メモリと、
    前記保持された第2の画素データの値が所定値より高いか否かを判定して前記第2の画素データの値が前記所定値より高い場合には前記保持された第1の画素データを出力させ、前記第2の画素データの値が前記所定値に満たない場合には前記第2の画素データを出力させる判定部と
    を具備する固体撮像素子。
  11. 前記第1のリセットレベルと前記第2の信号レベルとを所定の感度により前記画素回路に生成させ、前記第2のリセットレベルと前記第1の信号レベルとを所定感度と異なる感度により前記画素回路に生成させる画素駆動部をさらに具備する
    請求項10記載の固体撮像素子。
  12. 前記画素回路は、前記第1および第2のリセットレベルと前記第1および第2の信号レベルとのそれぞれを画素信号として生成し、
    前記アナログデジタル変換器は、
    スロープを持つ所定の参照信号と前記画素信号とを複数回に亘って比較して当該比較結果を出力する比較部と、
    前記比較結果のそれぞれからなるデータを前記第1および第2のリセットデータと前記第1および第2の信号データのいずれかとして記憶するデータ記憶部と
    を備え、
    前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを比較するときの前記スロープの傾きは、前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを比較するときの傾きより緩やかである
    請求項10記載の固体撮像素子。
  13. 前記画素回路は、二次元格子状に配列され、
    前記アナログデジタル変換器は、前記画素回路ごとに配置され、
    前記第2メモリは、前記画素回路の全てに共有される
    請求項10記載の固体撮像素子。
  14. 第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとのそれぞれを順に生成する画素回路と、
    前記第1および第2のリセットレベルのそれぞれをデジタルデータに変換して第1および第2のリセットデータとして出力した後に前記第1および第2の信号レベルのそれぞれをデジタルデータに変換して第1および第2の信号データとして出力するアナログデジタル変換器と、
    保持データを保持するメモリと、
    前記第1および第2のリセットデータの加算値と前第1の信号データとの差分を前記保持データとして前記メモリに保持させた後に当該保持させた保持データと前第2の信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算回路と、
    前記保持された保持データに対して所定の信号処理を実行するデジタル信号処理部と
    を具備する固体撮像装置。
  15. 第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順生成する画素回路と、
    前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを前記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換器と、
    前記第1のリセットデータと前記第2の信号データとの差分を第1の画素データとして求め、前記第2のリセットデータと前記第1の信号データとの差分を前記第2の画素データとして求める相関二重サンプリング処理部と、
    前記第1の画素データを保持する第1メモリと、
    前記第2の画素データを保持する第2メモリと、
    前記保持された第2の画素データの値が所定値より高いか否かを判定して前記第2の画素データの値が前記所定値より高い場合には前記保持された第1の画素データを出力させ、前記第2の画素データの値が前記所定値に満たない場合には前記第2の画素データを出力させる判定部と、
    前記第1および第2の画素データのうち出力されたデータに対して所定の信号処理を実行するデジタル信号処理部と
    を具備する固体撮像装置。
  16. 第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとのそれぞれを順に生成する生成手順と、
    前記第1および第2のリセットレベルのそれぞれをデジタルデータに変換して第1および第2のリセットデータとして出力した後に前記第1および第2の信号レベルのそれぞれをデジタルデータに変換して第1および第2の信号データとして出力するアナログデジタル変換手順と、
    前記第1および第2のリセットデータの加算値と前第1の信号データとの差分を前記保持データとしてメモリに保持させた後に当該保持させた保持データと前第2の信号データとを加算して当該加算したデータを新たな保持データとして前記メモリに保持させる演算手順と
    を具備する固体撮像素子の制御方法。
  17. 第1および第2のリセットレベルと露光量に応じた第1および第2の信号レベルとを順に生成する生成手順と、
    前記第1のリセットレベルと前記第2の信号レベルとのそれぞれを所定の分解能により第1のリセットデータと第2の信号データとに変換し、前記第2のリセットレベルと前記第1の信号レベルとのそれぞれを前記所定の分解能より高い分解能により第2のリセットデータと第1の信号データとに変換するアナログデジタル変換手順と、
    前記第1のリセットデータと前記第2の信号データとの差分を第1の画素データとして求めて第1メモリに保持し、前記第2のリセットデータと前記第1の信号データとの差分を前記第2の画素データとして求めて第2メモリに保持する相関二重サンプリング処理手順と、
    前記保持された第2の画素データの値が所定値より高いか否かを判定して前記第2の画素データの値が前記所定値より高い場合には前記保持された第1の画素データを出力させ、前記第2の画素データの値が前記所定値に満たない場合には前記第2の画素データを出力させる判定手順と
    を具備する固体撮像素子の制御方法。
JP2018552450A 2016-11-24 2017-10-10 固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法 Active JP6997720B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016227398 2016-11-24
JP2016227398 2016-11-24
PCT/JP2017/036630 WO2018096813A1 (ja) 2016-11-24 2017-10-10 固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法

Publications (2)

Publication Number Publication Date
JPWO2018096813A1 JPWO2018096813A1 (ja) 2019-10-17
JP6997720B2 true JP6997720B2 (ja) 2022-01-18

Family

ID=62194896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018552450A Active JP6997720B2 (ja) 2016-11-24 2017-10-10 固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法

Country Status (4)

Country Link
US (1) US11039099B2 (ja)
JP (1) JP6997720B2 (ja)
CN (1) CN110024377B (ja)
WO (1) WO2018096813A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198691A1 (ja) * 2017-04-25 2018-11-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2018186478A (ja) * 2017-04-25 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP7059031B2 (ja) * 2018-02-09 2022-04-25 キヤノン株式会社 撮像装置、撮像システム、移動体
KR102601213B1 (ko) * 2018-07-03 2023-11-10 삼성전자주식회사 비휘발성 메모리 장치 및 비휘발성 메모리 장치의 제조 방법
US11631465B2 (en) 2018-07-03 2023-04-18 Samsung Electronics Co., Ltd. Non-volatile memory device
US11164638B2 (en) 2018-07-03 2021-11-02 Samsung Electronics Co., Ltd. Non-volatile memory device
JP2020043504A (ja) * 2018-09-12 2020-03-19 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
KR102587895B1 (ko) * 2018-09-13 2023-10-12 삼성전자주식회사 픽셀 어레이와 메모리 셀 어레이가 병합된 이미지 센서 및 이를 포함하는 전자 장치
DE112020003436T5 (de) * 2019-07-18 2022-04-14 Sony Semiconductor Solutions Corporation Festkörper-Bildgebungselement, Bildgebungseinrichtung und Verfahren zum Steuern eines Festkörper-Bildgebungselements
JP7365823B2 (ja) 2019-08-23 2023-10-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US11368639B2 (en) * 2019-09-30 2022-06-21 Canon Kabushiki Kaisha Photoelectric conversion apparatus, image capturing system, method for driving photoelectric conversion apparatus, and moving object
CN114982222A (zh) * 2020-01-08 2022-08-30 华为技术有限公司 一种图像读取电路、图像传感器以及终端设备
CN111510651B (zh) * 2020-04-26 2022-09-06 Oppo广东移动通信有限公司 一种图像传感电路、图像传感器及终端设备
JP2022144243A (ja) * 2021-03-18 2022-10-03 キヤノン株式会社 光電変換装置および電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024941A (ja) 1999-07-06 2001-01-26 Victor Co Of Japan Ltd 電子カメラ
JP2005191641A (ja) 2003-12-24 2005-07-14 Mitsubishi Electric Corp 画像入力方法および画像入力装置
JP2011211535A (ja) 2010-03-30 2011-10-20 Sony Corp 固体撮像素子およびカメラシステム
WO2013099723A1 (ja) 2011-12-27 2013-07-04 ソニー株式会社 撮像素子、撮像装置、電子機器および撮像方法
JP2015130563A (ja) 2014-01-06 2015-07-16 株式会社リコー 光電変換素子、画像読取装置及び画像形成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136101B2 (en) * 2001-12-24 2006-11-14 Hewlett-Packard Development Company, L.P. Use-controlled exposure method and system with visual feedback
TW201101476A (en) * 2005-06-02 2011-01-01 Sony Corp Semiconductor image sensor module and method of manufacturing the same
JP4289377B2 (ja) * 2006-08-21 2009-07-01 ソニー株式会社 物理量検出装置及び撮像装置
JP5288965B2 (ja) * 2008-09-22 2013-09-11 キヤノン株式会社 固体撮像装置及びその駆動方法
TWI505453B (zh) * 2011-07-12 2015-10-21 Sony Corp 固態成像裝置,用於驅動其之方法,用於製造其之方法,及電子裝置
JP2013251607A (ja) 2012-05-30 2013-12-12 Panasonic Corp 固体撮像装置
CN104704812B (zh) * 2012-10-05 2018-05-25 拉姆伯斯公司 集成电路图像传感器以及在其中操作的方法
KR102025928B1 (ko) * 2013-05-14 2019-09-26 삼성전자주식회사 촬상 장치 및 제어 방법
CN110233978B (zh) * 2014-02-07 2022-03-11 拉姆伯斯公司 馈通补偿图像传感器
US9491442B2 (en) * 2014-04-28 2016-11-08 Samsung Electronics Co., Ltd. Image processing device and mobile computing device having the same
US9686483B2 (en) * 2015-01-07 2017-06-20 Forza Silicon, Inc. Pixel with switchable high gain and high capacity modes
TWI684363B (zh) 2015-02-13 2020-02-01 日商新力股份有限公司 圖像感測器、讀出控制方法、及電子機器
CN105681692B (zh) * 2016-01-11 2018-10-30 珠海艾思克科技有限公司 Cmos图像传感器及其复位噪声评估方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024941A (ja) 1999-07-06 2001-01-26 Victor Co Of Japan Ltd 電子カメラ
JP2005191641A (ja) 2003-12-24 2005-07-14 Mitsubishi Electric Corp 画像入力方法および画像入力装置
JP2011211535A (ja) 2010-03-30 2011-10-20 Sony Corp 固体撮像素子およびカメラシステム
WO2013099723A1 (ja) 2011-12-27 2013-07-04 ソニー株式会社 撮像素子、撮像装置、電子機器および撮像方法
JP2015130563A (ja) 2014-01-06 2015-07-16 株式会社リコー 光電変換素子、画像読取装置及び画像形成装置

Also Published As

Publication number Publication date
US11039099B2 (en) 2021-06-15
US20190273883A1 (en) 2019-09-05
CN110024377A (zh) 2019-07-16
JPWO2018096813A1 (ja) 2019-10-17
CN110024377B (zh) 2022-03-18
WO2018096813A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6997720B2 (ja) 固体撮像素子、固体撮像装置、および、固体撮像素子の制御方法
CN110546945B (zh) 固态摄像元件、摄像装置和固态摄像元件的控制方法
CN113170064B (zh) 固态成像元件、成像装置和用于控制固态成像元件的方法
WO2018198691A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
CN110710197B (zh) 模拟数字转换器、固态成像元件和模拟数字转换器的控制方法
JP2019092143A (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2020072471A (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2020235146A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2019047383A (ja) 撮像装置、および、固体撮像素子の制御方法
JP2019216379A (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2020100427A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2019239670A1 (ja) 信号処理回路、固体撮像素子、および、信号処理回路の制御方法
WO2021090538A1 (ja) センシングデバイス、電子機器およびセンシングデバイスの制御方法
WO2020003646A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP2022123205A (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2020090311A1 (ja) 固体撮像素子
WO2023074522A1 (ja) 物理量検出装置及び撮像装置
WO2022244293A1 (ja) アナログデジタル変換回路、固体撮像素子、および、アナログデジタル変換回路の制御方法
WO2022004125A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2021145033A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2022038903A1 (ja) 固体撮像素子
WO2023112594A1 (ja) 物理量検出装置及び撮像装置
WO2022249736A1 (ja) 撮像装置および電子機器
WO2022270109A1 (ja) 撮像装置及び電子機器
WO2023276199A1 (ja) 固体撮像素子、電子機器、および、固体撮像素子の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211217

R150 Certificate of patent or registration of utility model

Ref document number: 6997720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150