JP6932979B2 - 工作機械システム - Google Patents

工作機械システム Download PDF

Info

Publication number
JP6932979B2
JP6932979B2 JP2017086842A JP2017086842A JP6932979B2 JP 6932979 B2 JP6932979 B2 JP 6932979B2 JP 2017086842 A JP2017086842 A JP 2017086842A JP 2017086842 A JP2017086842 A JP 2017086842A JP 6932979 B2 JP6932979 B2 JP 6932979B2
Authority
JP
Japan
Prior art keywords
workpiece
machine tool
air
tool system
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017086842A
Other languages
English (en)
Other versions
JP2017201308A5 (ja
JP2017201308A (ja
Inventor
森田 浩
浩 森田
英二 福田
英二 福田
光晴 石原
光晴 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Publication of JP2017201308A publication Critical patent/JP2017201308A/ja
Publication of JP2017201308A5 publication Critical patent/JP2017201308A5/ja
Application granted granted Critical
Publication of JP6932979B2 publication Critical patent/JP6932979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、工作機械システムに関する。
非接触式のセンサを用いて工作物の形状を検出する技術が知られている。特許文献1には、非接触センサが取り付けられるヘッドに気体流供給路を形成し、その気体流供給路からクリーンエアーを噴出することにより、非接触センサに塵やオイルミストが付着することを防止する計測装置が記載されている。
特開2010−44042号公報
しかしながら、特許文献1に記載の技術では、計測装置によって被検物の形状を計測するにあたり、加工機械による加工が終了した被検物を計測装置のステージ上へ搬送する必要がある。特に、被検物が大型である場合には、加工機械から計測装置への移動に時間を要するため、効率的でない。
本発明は、工作物の表面粗さの検出を効率よく行うことができる工作機械システムを提供することを目的とする。
本発明の工作機械システムは、工作物を回転可能に支持する工作物支持装置と、前記工作物を加工する工具と、前記工作物の表面粗さを検出するセンサと、を備え、前記センサは、棒状に形成された本体と、前記本体の先端側に固定され、前記工作物との間の検出領域を介して前記工作物の表面粗さを非接触で検出可能な検出部と、前記検出部の周囲に形成された複数の流出口を備え、供給源から供給されたエアを、前記複数の流出口のそれぞれから前記工作物に向けて、且つ、前記検出領域から離れる方向へ向けて放出する第一エア放出部と、を備える。
本発明の工作機械システムによれば、センサは、棒状に形成された本体の先端側に検出部が固定されているので、センサの小型化を図ることができる。よって、センサによる工作物の表面粗さの検出を、工作物が主軸台に支持された状態のまま行うことができる。即ち、表面粗さの検出を行うために、主軸台に支持された工作物を別の位置へ搬送する、といった作業が不要となるので、工作機械システムは、センサによるセンシングを行う際の作業効率の向上を図ることができる。
また、センサは、検出領域へ向けてエアを放出する第一エア放出部を備えるので、工作物に付着した異物が検出部へ向けて飛散することを防止できる。さらに、センサは、切粉等を含むミストが検出領域に進入することを抑制できる。よって、工作機械システムは、工作物の表面粗さを検出にあたり、その検出精度を維持することができる。
本発明の第一実施形態における研削盤の平面図である。 センサを用いて研削加工中の工作物の表面粗さを検出する様子を表した図である。 検出部の断面図である。 本発明の第二実施形態を示す図であり、研削加工中の工作物の表面粗さをセンサにより検出する様子を示す。 本発明の第三実施形態におけるマシニングセンタの斜視図である。 センサを用いて工作物の表面粗さを検出する様子を表した図である。
<1.第一実施形態>
以下、本発明に係る工作機械システムの各実施形態について、図面を参照しながら説明する。まず、第一実施形態では、本発明を適用した工作機械システムの一例である研削盤1について、図1から図4を参照しながら説明する。
(1−1.研削盤1の概略構成)
図1に示すように、工作機械システムは、円筒状の工作物Wを回転させながら研削加工を行う1台のテーブルトラバース型の研削盤1から構成される。工作機械システムとしての研削盤1は、ベッド2と、テーブル10と、工作物支持装置としての主軸台20と、心押台30と、砥石台40と、工具としての砥石車50と、ツルア60と、クーラント供給装置70と、定寸装置80と、エア供給装置90と、センサ100と、を備える。
ベッド2は、研削盤1の基台となる部位である。ベッド2には、研削条件等に関する各種パラメータが入力される操作盤3が設けられ、操作盤3は、作業者により操作される。テーブル10は、ベッド2上において、Z軸方向へ移動可能に設けられる。テーブル10は、Z軸モータ11を有するねじ送り装置12を駆動させることにより、Z軸方向へ往復移動する。
主軸台20は、工作物Wを回転可能に支持する工作物支持装置であり、テーブル10上に固定される。主軸台20は、Z軸方向に平行な軸回りに回転する主軸21と、主軸21を回転させるための駆動力を付与する主軸モータ22とを備える。主軸台20は、主軸21により工作物Wの一端を回転可能に支持し、主軸モータ22により工作物Wを回転駆動する。心押台30は、テーブル10上において主軸台20と対向する位置に設けられ、工作物Wの他端を支持する。
砥石台40は、ベッド2上においてX軸方向へ移動可能に設けられる。砥石台40は、X軸モータ41を有するねじ送り機構42を駆動させることにより、X軸方向へ往復移動する。砥石車50は、工作物Wを加工する工具であり、砥石台40に対してZ軸方向に平行な軸回りに回転自在に支持される。砥石車50は、砥石台40に固定された砥石車モータ51から駆動力を付与されることで回転し、工作物Wの外周面を研削する。ツルア60は、主軸台20に対し、Z軸に平行な軸まわりに回転自在に支持される。ツルア60は、主軸台20に設けられたツルアモータ61から付与される駆動力により回転し、砥石車50のツルーイング(形状成形及び目立て)を行う。
クーラント供給装置70は、ベッド2上に設けられる。クーラント供給装置70は、砥石台40に設けられたクーラントノズル71(図2参照)を介して、砥石車50による工作物Wの研削加工が行われる加工位置にクーラントを供給する。定寸装置80は、テーブル10を挟んだ砥石車50の反対側において、工作物Wに接触可能に設けられる。定寸装置80は、砥石車50により研削された工作物Wの外径を計測する。
エア供給装置90は、テーブル10を挟んだ砥石車50の反対側に設けられる。エア供給装置90は、工作物Wへ向けて放出するエアを供給する供給源である。エア供給装置90には、2つのエア供給部91,92(図2参照)が設けられ、エア供給装置90から供給されるエアは、2つのエア供給部91,92から外部へ放出される。なお、本実施形態では、エア供給装置90からエアが供給されているが、エアの代わりに、工作物Wに対する加工に影響を与えない不活性ガス等をエア供給装置90から供給してもよい。
センサ100は、テーブル10を挟んだ砥石車50の反対側において、X軸方向へ移動可能に設けられる。センサ100は、研削加工後の工作物Wのセンシングを行い、工作物Wの表面粗さを検出する。センサ100によるセンシングは、工作物Wに対する研削加工が終了した後、工作物Wが主軸台20及び心押台30に支持された状態で行う。従って、研削盤1は、センサ100によるセンシングを行う際、主軸台20及び心押台30に支持された工作物Wを別の位置へ搬送する必要がある場合と比べて、表面粗さを検出する際の作業効率を向上させることができる。
また、センサ100は、砥石車50による工作物Wの研削加工中において、工作物Wから離れた位置で待機し、研削加工が終了すると、工作物Wに近づく。これにより、研削盤1は、研削加工中に飛散するクーラント等の異物がセンサ100に付着することを防止できる。
(1−2.センサ100の構成)
次に、図2及び図3を参照して、センサ100の構成を説明する。図2に示すように、センサ100は、本体110と、検出部120と、演算部130と、本体カバー140と、第一エア放出部150と、エア流路160と、第二エア放出部170と、風切板180と、を備える。なお、演算部130は、センサ100の内部に配置してもよく、センサ100の外部に配置し、ケーブル等により本体110に接続してもよい。
図3に示すように、本体110は、長尺の棒状に形成され、本体110の先端側(図2右側)における一外側面上には、検出部120が固定される。検出部120は、測定対象物である工作物Wの表面粗さを非接触で検出する。検出部120は、基板121と、発光素子122と、第一受光素子123及び第二受光素子124と、蓋部125と、3つのレンズ125a〜125cとを備える。
基板121は、半導体材料(N型、P型、バイポーラ型など)から構成され、本体110の一外側面(図3において下方を向く表面)上に装着される。発光素子122は、基板121に装着される発光ダイオードであり、本体110の一外側面の法線方向(図2下方向)へ向けて発光する。第一受光素子123及び第二受光素子124は、基板121に装着されたフォトダイオードであり、発光素子122の近傍に配置される。発光素子122、第一受光素子123及び第二受光素子124は、本体110の長手方向(図3左右方向)に沿って直線状に並設され、発光素子122は、第一受光素子123と第二受光素子124との間に配置される。なお、基板121上に配置された発光素子122、第一受光素子123及び第二受光素子124は、仕切板126により仕切られている。従って、検出部120は、発光素子122からの発光及び第一受光素子123及び第二受光素子124への受光を効率的に行うことができる。
また、本実施形態では、発光素子122として発光ダイオードを用いる場合を例に挙げて説明したが、発光ダイオードの代わりに、エレクトロルミネッセンスやレーザー素子等を発光素子122として用いてもよい。また、本実施形態では、第一受光素子123及び第二受光素子124としてフォトダイオードを用いる場合を例に挙げて説明したが、フォトダイオードの代わりに、CCDやCMOS素子等を第一受光素子123及び第二受光素子124として用いてもよい。
蓋部125は、基板121、発光素子122、第一受光素子123及び第二受光素子124を覆う。蓋部125には、発光素子122、第一受光素子123及び第二受光素子124のそれぞれと対向する位置にレンズ125a〜125cが一つずつ保持される。3つのレンズ125a〜125cは、非球面レンズでもよく、検出し易くするためにレンズ形状を変更して、レンズの焦点位置や焦点深度を調整してもよい。
3つのレンズ125a〜125cのうち、発光素子122と対向する位置に配置されるレンズ125aには、発光素子122から照射される光が入射する。レンズ125aは、発光素子122から照射された光を屈曲させ、その屈曲させた光を特定の位置Pに導く。
3つのレンズ125a〜125cのうち、第一受光素子123及び第二受光素子124と対向する位置に配置される2つのレンズ125b、125cは、特定の位置Pから入射する光を屈曲させ、その屈曲させた光を第一受光素子123又は第二受光素子124に導く。
ここで、発光素子122から光を照射した場合、特定の位置Pにおける表面粗さが小さいほど光が散乱しにくいため、第一受光素子123及び第二受光素子124により検出される光量が大きくなる。そして、演算部130は、発光素子122から光を照射した際に第一受光素子123及び第二受光素子124が検出する光量に基づき、特定の位置Pにおける表面粗さの演算を行う。即ち、発光素子122から光を照射した場合、第一受光素子123及び第二受光素子124が検出した光量が多ければ、表面粗さが小さいとの演算結果が示され、第一受光素子123及び第二受光素子124が検出した光量が少なければ、表面粗さが大きいとの演算結果が示される。
なお、実際には、特定の位置Pへの入射光と特定の位置からの反射光は広がりを持っており、入射角及び反射角は角度の広がりを有する。従って、演算部130は、入射光の分布のうち、最も強度の強いピーク位置における入射角と、反射光の分布のうち、最も強度の高いピーク位置における反射角とが等しい場合、或いは、入射光の広がり分布と反射光の広がり分布とが相似関係にある場合に、入射角と反射角とが等しいと判断する。
このように、検出部120は、工作物Wの表面粗さを非接触で検出することができるので、表面粗さの検出に伴って研削加工後の工作物Wに傷がつくことを回避できる。さらに、検出部120は、1つの発光素子122から照射した場合に、特定の位置Pにおいて反射する反射光の変化を、2つの受光素子(第一受光素子123及び第二受光素子124)で確認することができる。よって、検出部120は、高精度に工作物Wの表面粗さを測定することができる。
また、検出部120は、発光素子122、第一受光素子123及び第二受光素子124を1つの基板121に配置することで、発光素子122、第一受光素子123及び第二受光素子124を互いに近接した位置に配置できる。よって、検出部120は、発光素子122、第一受光素子123及び第二受光素子124を別々の基板に形成する場合と比べて、検出部120の小型化を図ることができる。
図2に戻り、センサ100の構成についての説明を続ける。本体カバー140は、本体110の先端側を被覆し、検出部120に他の部材等が直撃することを防止する。本体カバー140の上面には、本体カバー140の内部と外部とに連通する流入口141が貫通形成される。また、本体カバー140の上面には、エア供給装置90に接続されたエア供給部91が連結され、エア供給部91から放出されたエアは、流入口141から本体カバー140の内部へ供給される。
一方、本体カバー140の下面には、検出部120と対向する位置に検出口142が貫通形成される。検出部120は、検出口142を介して測定対象物である工作物Wに対向し、検出部120から発光した光は、検出口142を通過して工作物Wに入射し、反射した光が検出口142を通過して検出部120に入射する。このように、検出部120と工作物Wとの間には、検出部120から工作物Wへ、及び、工作物Wから検出部120へ向かう光が通過する検出領域Aが形成される。
第一エア放出部150は、本体カバー140の下面であって、検出口142の周囲に形成されたノズル状の部位である。第一エア放出部150には、本体カバー140の内部と外部とに連通する複数の流出口151が貫通形成され、エア供給部91から本体カバー140の内部へ供給されるエアは、複数の流出口151から工作物Wへ向けて放出される。
このように、第一エア放出部150は、検出口142の周囲に形成され、検出部120側から工作物Wへ向けてエアを放出する。これにより、センサ100は、飛散した異物が検出部120に付着することを防止できると共に、切粉等を含むミストが検出領域Aに進入することを防止できる。
さらに、複数の流出口151は、本体カバー140の内部側から外部側へ向かうにつれて、検出部120から見て外周側へ広がる放射状に形成される。よって、第一エア放出部150から放出されたエアは、工作物Wに対し、検出領域Aから離れる方向へ向けて吹き付けられる。これにより、センサ100は、第一エア放出部150からエアを吹き付けられた異物が、飛散して検出部120に付着することを防止できる。また、センサ100は、第一エア放出部150から放出するエアによって切粉等を含むミストが検出領域Aに進入することを抑制できる。よって、センサ100は、工作物Wの表面粗さを検出にあたり、その検出精度を維持することができる。
エア流路160は、エア供給装置90からエア供給部91を介して本体カバー140の内部に流入したエアを第一エア放出部150まで導く。エア流路160は、エア流路160は、本体110の外周面と本体カバー140の内周面との間に形成され、第一エア放出部150に連通する。これにより、例えば、センサ100は、エア供給部91から第一エア放出部150までエアを導くためのホース等を本体カバー140の内部に配置する場合と比べて、センサ100の構造を簡素化でき、センサ100の小型化を図ることができる。
なお、本体カバー140は、流入口141よりも第一エア放出部150から離れた位置で本体110の外周面に固定され、本体110の外周面と本体カバー140の内周面との間が、Oリング143によりシールされている。これにより、センサ100は、エア流路160に流入したエアが、第一エア放出部150以外の部位から漏出することを防止できるので、第一エア放出部150から工作物Wへ向けてエアを強く吹き付けることができる。
第二エア放出部170は、エア供給装置90のエア供給部92に一体形成されたノズルである。第二エア放出部170は、砥石車50とセンサ100との間に配置され、工作物Wのうち、砥石車50により研削加工される加工位置から検出領域Aへ向かう部位へ向けてエアを放出する。これにより、センサ100は、工作物Wに付着したクーラント等の異物を第二エア放出部170から放出するエアにより吹き飛ばすことができる。従って、センサ100は、異物が付着した状態で工作物Wが検出領域Aに進入することを防止できる。また、センサ100は、切粉等を含むミストが検出領域Aに進入することを防止できる。よって、センサ100は、表面粗さの検出を行うにあたり、その検出精度を確保することができる。
風切板180は、センサ100と第二エア放出部170との間を仕切る板状の部材であり、本体カバー140に固定される。風切板180の工作物Wを向く端部180aは、第一エア放出部150よりも工作物Wに近接した位置にあり、第二エア放出部170は、風切板180の工作物Wを向く端部180aよりも工作物Wとは離れた位置からエアを放出する。この場合、第二エア放出部170から放出されたエアが、検出領域Aに向けて吹き付けられることを防止するので、センサ100は、第二エア放出部170から吹き付けたエアにより飛散した異物が検出部120に付着することを抑制できる。また、第二エア放出部170から放出したエアが、風切板180に案内されながら工作物Wへ向かうので、第二エア放出部170は、工作物Wに対し、エアを強く吹き付けることができる。よって、センサ100は、工作物Wに付着した異物を取り除きやすくすることができる。
以上説明したように、センサ100は、長尺の棒状に形成された本体110の先端に検出部120が固定されているので、センサ100の小型化を図ることができる。これにより、センサ100は、大型のセンサ装置ではセンシングが困難な狭い領域に位置する測定対象物に対し、検出部120を近づけることができる。よって、研削盤1は、そうした狭い領域に位置する測定対象物の表面粗さを、センサ100により検出することができる。
さらに、研削盤1は、センサ100を小型化することにより、センサ100による測定対象物である工作物Wの表面粗さの検出を、工作物Wが主軸台20に支持された状態のまま行うことができる。即ち、表面粗さの検出を行うために、主軸台20に支持された工作物Wを別の位置へ搬送する、といった作業が不要となるので、研削盤1は、センサ100によるセンシングを行う際の作業効率の向上を図ることができる。
また、センサ100は、検出領域Aへ向けてエアを放出する第一エア放出部150を備えるので、異物や切粉等を含むミスト等が検出領域Aに進入することを防止できる。よって、研削盤1は、センサ100による工作物Wの表面粗さの検出精度を維持することができる。
さらに、センサ100には、検出領域Aへ向けてエアを放出する第一エア放出部150が、検出口142の周囲に形成されている。これにより、センサ100は、研削加工中に飛散する異物が検出部120に付着すること、及び、切粉等を含むミストが検出領域Aに進入することを防止できる。よって、センサ100は、表面粗さを検出するにあたり、その検出精度を維持できる。その結果、研削盤1は、研削加工を行いながら、センサ100による工作物Wの表面粗さの検出を並行して行うことができる。
<2.第二実施形態>
次に、図4を参照して、第二実施形態における研削盤201について説明する。第一実施形態では、検出部120が本体110の外周面に固定される場合について説明したが、第二実施形態では、検出部120が本体110の先端面に固定される。なお、上記した各実施形態と同一の部品には同一の符号を付し、その説明を省略する。
図4に示すように、センサ300では、本体110の先端面に検出部120が固定される。センサ300は、工作物Wに対し、砥石車50と工作物Wとの加工位置とは反対側に位置し、検出部120が固定された本体110の先端面を工作物Wへ向けた状態で配置される。この場合、センサ300は、工作物Wの上方に検出部120を配置する場合と比べて、検出領域Aを加工位置から離れた位置に設けることができる。よって、センサ300は、検出部120への異物の飛散や検出領域へのミストの進入を防止しやすくすることができる。
また、本体110の先端面に検出部120を配置するのに伴い、検出口342が本体カバー340の先端面(図4右側を向く面)に形成され、その検出口342の周囲に第一エア放出部150が形成される。
さらに、第二エア放出部370は、本体カバー340の上面であってエア供給部91よりも工作物Wに近接した位置に配置される。風切板380は、第二エア放出部370と第一エア放出部150との間に配置され、第二エア放出部370は、風切板380の工作物を向く端面380aよりも工作物Wとは離れた位置から、エアを工作物Wへ向けて放射する。
これにより、第二エア放出部370から放出されたエアが、検出領域Aに向けて吹き付けられることを防止できるので、センサ300は、第二エア放出部370から吹き付けたエアにより飛散した異物が検出部120に付着することを抑制できる。また、第二エア放出部370から放出したエアが、風切板380に案内されながら工作物Wへ向かうので、第二エア放出部370は、工作物Wに対し、エアを強く吹き付けることができる。よって、センサ300は、工作物Wに付着した異物を取り除きやすくすることができる。
<3.第三実施形態>
次に、図5及び図6を参照して、第三実施形態について説明する。第一実施形態及び第二実施形態では、工作機械システムの一例である研削盤1,201に本発明を適用した場合について説明した。これに対し、第三実施形態では、マシニングセンタ401に本発明を適用した場合について説明する。
(3−1.マシニングセンタ401の概略構成)
図5に示すように、工作機械システムとしてのマシニングセンタ401は、相互に直交する3つの直線軸(X軸、Y軸及びZ軸)と2つの回転軸(A軸及びC軸)とを駆動軸として有する5軸マシニングセンタである。なお、本実施形態では、マシニングセンタ401が、切削加工により工作物Wに歯車を形成する歯車加工装置である場合を例に挙げて説明するが、歯車加工装置以外のマシニングセンタに本発明を適用することも可能である。
マシニングセンタ401は、ベッド410と、コラム420と、サドル430と、回転主軸440と、テーブル450と、チルトテーブル460と、工作物支持装置としてのターンテーブル470と、制御装置500と、を備える。
ベッド410は、ほぼ矩形状に形成され、床上に配置される。このベッド410の上面には、コラム420がベッド410に対してX軸方向へ移動可能に設けられる。コラム420のX軸に平行な側面には、サドル430がコラム420に対してY軸方向へ移動可能に設けられる。
回転主軸440は、サドル430に対して回転可能に設けられ、加工用工具441を支持する。加工用工具441は、工作物Wを加工する工具である。加工用工具441は、工具ホルダ442に保持されて回転主軸440の先端に固定され、回転主軸440の回転に伴って回転する。また、加工用工具441は、コラム420及びサドル430の移動に伴い、ベッド410に対してX軸方向及びY軸方向へ移動する。
さらに、ベッド410の上面には、テーブル450がベッド410に対してZ軸方向へ移動可能に設けられ、テーブル450の上面には、チルトテーブル460を支持するチルトテーブル支持部461が設けられる。そして、チルトテーブル支持部461には、チルトテーブル460が水平方向のA軸回りに回転(揺動)可能に設けられる。チルトテーブル460には、ターンテーブル470がA軸に直角なC軸回りに相対回転可能に設けられる。ターンテーブル470は、工作物Wを回転可能に支持する工作物支持装置であり、ターンテーブル470には工作物Wがチャッキングされる。
制御装置500は、コラム420、サドル430と、回転主軸440、テーブル450、チルトテーブル460及びターンテーブル470の移動を制御し、工作物Wと加工用工具441とをX軸方向、Y軸方向、Z軸方向、A軸回り及びC軸回りに相対移動させることにより、工作物Wの切削加工を行う。
このように、マシニングセンタ401は、加工用工具441と工作物Wとを高速で同期回転させ、加工用工具441を工作物Wの回転軸線方向に送って切削加工することにより、歯を創成する。
(3−2:表面粗さ検出方法)
図6に示すように、工作物Wに形成された歯車の歯の表面粗さをセンサ100によって検出する場合、マシニングセンタ401は、表面粗さを検出しようとする一部位に検出部120を向ける。そして、マシニングセンタ401は、表面粗さを検出しようとする部位と検出部120との間隔を維持しながら、歯の形状に沿ってセンサ100を変位させる。これにより、マシニングセンタ401は、歯車の歯面の表面粗さを効率よく検出することができる。
このように、センサ100は、棒状に形成された長尺の本体110の先端側に検出部120が設けられているので、大型のセンサ装置ではセンシングが困難な狭い領域に位置する部位に検出部120を近づけることができる。よって、マシニングセンタ401は、そうした狭い領域に位置する部位の表面粗さを、センサ100により検出することができる。
これに加え、マシニングセンタ401は、検出部120を本体110の軸まわりに回転させることにより、工作物Wのうち向きが異なる2以上の部位の表面粗さを検出できる。よって、マシニングセンタ401は、工作物Wの表面粗さの検出を効率よく行うことができる。
<4.その他>
以上、上記各実施形態に基づき本発明を説明したが、本発明は上記各形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の変形改良が可能であることは容易に推察できるものである。
例えば、上記各実施形態では、本体110が本体カバー140に固定される場合について説明したが、本体110が本体カバー140に対し、X軸方向へ相対移動可能に構成されていてもよい。この場合、表面粗さの検出を行わない状態において、検出部120を検出口142から露出しない位置に移動させることができるので、センサ100は、検出部120に異物が付着することを確実に防止することができる。
なお、上記各実施形態において、工作機械システムが1台の研削盤1,201又は1台のマシニングセンタ401から構成される場合について説明したが、これに限られるものではない。例えば、工作機械システムが、複数の研削盤又は複数のマシニングセンタと、研削盤及びマシニングセンタの外部であって、それら複数の研削盤又は複数のマシニングセンタが接続されるネットワーク上に設けられる解析装置と、を備え、上記各実施形態においてセンサ100,300に設けられていた演算部130を、解析装置に設けてもよい。この場合、解析装置は、工作物Wのセンシングを行ったセンサ100,300から送信された検出結果に基づいた高度な解析を行い、表面粗さを導き出すことができる。よって、工作機械システムは、工作物Wの表面粗さを検出するにあたり、その検出精度を高めることができる。
<5.効果>
以上説明したように、工作機械システムとしての研削盤1,201及びマシニングセンタ401は、工作物Wを回転可能に支持する工作物支持装置としての主軸台20又はターンテーブル470と、工作物Wを加工する工具としての砥石車50又は加工用工具441と、工作物Wの表面粗さを検出するセンサ100,300と、を備え、センサ100,300は、棒状に形成された本体110と、本体110の先端側に固定され、工作物Wの表面粗さを非接触で検出可能な検出部120と、検出部120と工作物Wとの間に形成される検出領域Aへ向けて、供給源としてのエア供給装置90から供給されたエアを放出する第一エア放出部150と、を備える。
これら工作機械システムとしての研削盤1,201及びマシニングセンタ401によれば、センサ100,300は、棒状に形成された本体110の先端側に検出部120が固定されているので、センサ100,300の小型化を図ることができる。よって、工作機械システムは、センサ100,300による工作物Wの表面粗さの検出を、工作物Wが主軸台20に支持された状態のまま行うことができる。即ち、表面粗さの検出を行うために、主軸台20に支持された工作物Wを別の位置へ搬送する、といった作業が不要となるので、工作機械システムは、センサ100,300によるセンシングを行う際の作業効率の向上を図ることができる。
また、センサ100,300は、検出領域Aへ向けてエアを放出する第一エア放出部150を備えるので、工作物Wに付着した異物が検出部120へ向けて飛散することを防止できる。また、センサ100,300は、切粉等を含むミストが検出領域Aに進入することを抑制できる。よって、工作機械システムは、工作物Wの表面粗さの検出にあたり、その検出精度を維持することができる。
上記した工作機械システムにおいて、第一エア放出部150は、検出領域Aから離れる方向へ向けてエアを放出する。この工作機械システムは、第一エア放出部150から放出したエアにより飛散する異物及び切粉等を含むミストが、検出領域Aへ飛散することを防止できる。よって、工作機械システムは、センサ100,300による工作物Wの表面粗さの検出精度を維持することができる。
上記した工作機械システムにおいて、センサ100,300は、本体110の少なくとも一部を被覆する本体カバー140,340と、本体カバー140,340に形成され、検出部120に対向する位置に配置される検出口142,342と、を備え、第一エア放出部150は、検出口142,342の周囲に形成される。この工作機械システムは、飛散した異物が検出部120に付着することを防止できると共に、切粉等を含むミストが検出領域Aに進入することを防止できる。
上記した工作機械システムにおいて、工作機械システムは、本体110の外周面と本体カバー140,340の内周面とにより形成され、供給源としてのエア供給装置90から供給されたエアを流入するエア流路160を備え、第一エア放出部150は、エア流路160に連通する。この工作機械システムは、センサ100,300の構造を簡素化できるので、センサ100,300の小型化を図ることができる。
上記した工作機械システムにおいて、工作機械システムは、工具としての砥石車50又は加工用工具441に加工される加工位置から検出領域Aへ向かう部位へ向けてエアを放出する第二エア放出部170,370を備える。この工作機械システムは、加工時に工作物Wに付着した異物を、第二エア放出部170,370から放出するエアにより吹き飛ばすことができる。よって、工作機械システムは、異物に付着した状態で工作物Wが検出領域Aに進入することを防止できる。
上記した工作機械システムは、検出領域Aと第二エア放出部170,370との間を仕切る風切板180,380を備え、第二エア放出部170,370は、風切板180,380の工作物Wを向く端部よりも、工作物Wから離れた位置からエアを供給する。
この工作機械システムは、第二エア放出部170,370から放出されたエアが、検出領域Aに向けて吹き付けられることを防止できる。よって、工作機械システムは、第二エア放出部170,370から吹き付けたエアにより飛散した異物が検出部120に付着することを抑制できる。また、第二エア放出部170,370から放出したエアが、風切板180,380に案内されながら工作物Wへ向かうので、第二エア放出部170,370は、工作物Wに対し、エアを強く吹き付けることができる。よって、工作機械システムは、工作物Wに付着した異物を取り除きやすくすることができる。
上記した工作機械システムにおいて、センサ100は、基板121と、基板121上に装着され、工作物Wに向けて発光する発光素子と、基板121上において発光素子の近傍に装着され、工作物Wからの反射光を受光可能な第一受光素子123及び第二受光素子124としての受光素子と、受光素子の受光量に基づいて表面粗さを演算する演算部130と、を備える。この工作機械システムは、工作物Wの表面粗さを非接触で検出することができるので、表面粗さの検出に伴って研削加工後の工作物Wに傷がつくことを回避できる。
1,201:研削盤(工作機械システム)、 20:主軸台、 50:砥石車(工具)、 90:エア供給装置(供給源)、 100,300:センサ、 110:本体、 120:検出部、 121:基板、 122:発光素子、 123:第一受光素子(受光素子)、 124:第二受光素子(受光素子)、 130:演算部、 140,340:本体カバー、 142,342:検出口、 150:第一エア放出部、 160:エア流路、 170,370:第二エア放出部、 180,380:風切板、 180a:(風切板の)端部、 401:マシニングセンタ(工作機械システム)、 441:加工用工具(工具)、 470:ターンテーブル、 A:検出領域、 W:工作物

Claims (8)

  1. 工作物を回転可能に支持する工作物支持装置と、
    前記工作物を加工する工具と、
    前記工作物の表面粗さを検出するセンサと、
    を備え、
    前記センサは、
    棒状に形成された本体と、
    前記本体の先端側に固定され、前記工作物との間の検出領域を介して前記工作物の表面粗さを非接触で検出可能な検出部と、
    前記検出部の周囲に形成された複数の流出口を備え、供給源から供給されたエアを、前記複数の流出口のそれぞれから前記工作物に向けて、且つ、前記検出領域から離れる方向へ向けて放出する第一エア放出部と、
    を備え
    前記複数の流出口のそれぞれから放出されたエアは、前記工作物の表面において前記検出領域から離れる方向へ流通する、工作機械システム。
  2. 前記複数の流出口は、前記検出部から見て外周側へ広がる放射状に形成される、請求項1に記載の工作機械システム。
  3. 前記センサは、前記本体の少なくとも一部を被覆する本体カバーと、
    前記本体カバーに形成され、前記検出部に対向する位置に配置される検出口と、
    を備え、
    前記第一エア放出部の前記複数の流出口は、前記検出口の周囲に形成される、請求項1又は2に記載の工作機械システム。
  4. 前記センサは、前記本体の外周面と前記本体カバーの内周面とにより形成され、前記供給源から供給されたエアを流入するエア流路を備え、
    前記第一エア放出部は、前記エア流路に連通する、請求項3に記載の工作機械システム。
  5. 前記工作機械システムは、前記工作物の回転方向において、前記工具に加工される加工位置よりも下流側であって前記検出領域よりも上流側の部位へ向けてエアを放出する第二エア放出部を備える、請求項1−4の何れか一項に記載の工作機械システム。
  6. 前記工作機械システムは、前記検出領域と前記第二エア放出部との間を仕切る風切板を備え、
    前記第二エア放出部は、前記風切板の前記工作物を向く端部よりも、前記工作物から離れた位置からエアを供給し、
    前記風切板は、前記第二エア放出部から放出されたエアが前記検出領域に向けて吹き付けられることを抑制する、請求項5に記載の工作機械システム。
  7. 前記センサは、
    基板と、
    前記基板上に装着され、前記工作物に向けて発光する発光素子と、
    前記基板上において前記発光素子の近傍に装着され、前記工作物からの反射光を受光可能な受光素子と、
    を備え、
    前記工作機械システムは、前記受光素子の受光量に基づいて表面粗さを演算する演算部を備える、請求項1−6の何れか一項に記載の工作機械システム。
  8. 前記工作機械システムは、
    前記工作物支持装置、前記工具及び前記センサを備える複数の工作機械と、前記複数の工作機械が接続されるネットワーク上に設けられる解析装置とを備え、
    前記演算部は、前記解析装置に設けられ、前記複数の工作機械における前記センサから送信された検出結果に基づいて表面粗さを演算する、請求項7に記載の工作機械システム。
JP2017086842A 2016-04-28 2017-04-26 工作機械システム Active JP6932979B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016091859 2016-04-28
JP2016091859 2016-04-28

Publications (3)

Publication Number Publication Date
JP2017201308A JP2017201308A (ja) 2017-11-09
JP2017201308A5 JP2017201308A5 (ja) 2020-07-09
JP6932979B2 true JP6932979B2 (ja) 2021-09-08

Family

ID=60265102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017086842A Active JP6932979B2 (ja) 2016-04-28 2017-04-26 工作機械システム

Country Status (1)

Country Link
JP (1) JP6932979B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311954A (zh) * 2018-03-30 2018-07-24 湖州剑力金属制品有限公司 汽车零部件管材的自动倒角机的管料检测机构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889489A (ja) * 1972-02-28 1973-11-22
JPH0236052A (ja) * 1988-07-26 1990-02-06 Fanuc Ltd Nc工作機械の工具破損検知装置
US5757496A (en) * 1997-03-07 1998-05-26 Mitutoyo Corporation Method of surface roughness measurement using a fiber-optic probe
JPH1144634A (ja) * 1997-07-29 1999-02-16 Asahi Glass Co Ltd 検出器のエアパージ機構
JPH11138391A (ja) * 1997-10-31 1999-05-25 Agency Of Ind Science & Technol 表面粗さの計測方法及び装置
JP4056617B2 (ja) * 1998-04-03 2008-03-05 株式会社ミツトヨ インプロセス計測機能付き加工装置および光計測方法
JP4568621B2 (ja) * 2005-02-28 2010-10-27 株式会社ミツトヨ 表面性状測定機の真直度補正方法および表面性状測定機

Also Published As

Publication number Publication date
JP2017201308A (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
CN109070297B (zh) 机床系统以及表面粗糙度检测方法
JP5459484B2 (ja) ダイシング装置及びダイシング方法
JPH09300178A (ja) 工具の刃先位置測定機能を備えたnc工作機械
CN108857086B (zh) 激光加工方法
KR20180119124A (ko) 레이저 가공 방법
JP5604489B2 (ja) 薄板状ワーク研削装置及び薄板状部材の製造方法
JP2015036170A (ja) 研削装置
JP6932979B2 (ja) 工作機械システム
JP6950262B2 (ja) 工作機械システムのクーラント液の汚濁評価装置
JP6938853B2 (ja) 研削盤
JPH1199450A (ja) 工作機械の工具長測定方法及び装置
JP2018024079A (ja) 測定機能を有する工作機械システム
JP6888396B2 (ja) 研削盤システム
JP5792928B2 (ja) 工具洗浄方法および装置
JP6888397B2 (ja) 工作機械システム
CN109759915A (zh) 磨削装置
JP6262593B2 (ja) 研削装置
JP6224462B2 (ja) レーザー加工装置における加工送り機構の作動特性検出方法およびレーザー加工装置
JP2012148387A (ja) 加工装置
JP2017201309A (ja) 表面粗さ検出方法及び工作機械システム
JP6938852B2 (ja) 研削盤
JP2017200722A (ja) 研削盤システム
JP6926626B2 (ja) 研削盤システム
JP2012111003A (ja) 切削ブレード検出機構
JP6537423B2 (ja) 切削ブレードの屈折検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6932979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150