JP6922560B2 - 空気入りラジアルタイヤ - Google Patents

空気入りラジアルタイヤ Download PDF

Info

Publication number
JP6922560B2
JP6922560B2 JP2017165935A JP2017165935A JP6922560B2 JP 6922560 B2 JP6922560 B2 JP 6922560B2 JP 2017165935 A JP2017165935 A JP 2017165935A JP 2017165935 A JP2017165935 A JP 2017165935A JP 6922560 B2 JP6922560 B2 JP 6922560B2
Authority
JP
Japan
Prior art keywords
tire
land portion
outer shoulder
groove
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017165935A
Other languages
English (en)
Other versions
JP2019043236A (ja
Inventor
智久 栗山
智久 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017165935A priority Critical patent/JP6922560B2/ja
Priority to US16/057,266 priority patent/US20190061430A1/en
Priority to CN201810927832.6A priority patent/CN109421435B/zh
Priority to CN202210331281.3A priority patent/CN114734757B/zh
Priority to EP18190304.8A priority patent/EP3450209B1/en
Publication of JP2019043236A publication Critical patent/JP2019043236A/ja
Application granted granted Critical
Publication of JP6922560B2 publication Critical patent/JP6922560B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、乗用車用の空気入りラジアルタイヤに関し、詳しくは、ウェット性能を維持しつつ四輪自動車の旋回性能を向上させるのに役立つ空気入りラジアルタイヤに関する。
図12には、前輪に操舵機構を有する一般的な四輪自動車の旋回動作の時系列的な変化を示す。先ず、状態Aのように、直進走行中にドライバーによってハンドルが操作されると、前輪のタイヤbにスリップ角が与えられ、前輪のタイヤbがコーナリングフォースを発生する(状態B)。ここで、「スリップ角」は、車体cの進行方向とタイヤbとのなす角度である。また、「コーナリングフォース」は、四輪自動車aが旋回する時にタイヤbの接地面に発生する摩擦力のうち、進行方向に対して横向きに作用する力の成分であり、特にスリップ角が1度のときのコーナリングフォースをコーナリングパワーと呼ぶ場合がある。
前輪のタイヤbで生じたコーナリングフォースは、ヨーを伴った車体cの旋回運動をもたらす。この旋回運動は、後輪のタイヤbにスリップ角を与えるので、後輪のタイヤbもコーナリングフォースを発生する(状態C)。そして、車両の重心点CG回りに関し、前輪タイヤbのコーナリングフォースに基づくモーメントと、後輪タイヤbのコーナリングフォースに基づくモーメントとが実質的に釣り合った場合(状態D)、車体cは、ヨー加速度がほぼゼロで斜めに移動する定常状態(以下、このような走行状態を「公転走行状態」と呼ぶ場合がある)となる。
発明者らは、四輪自動車の旋回性能の向上のためには、旋回操舵後に、車体をできるだけ早く公転走行状態へと移行させることが重要であるとの認識の下で、タイヤに関して、種々の研究を重ねた。
一般に、タイヤが車両に装着された状態において、タイヤが発生するコーナリングパワーは、等価コーナリングパワー(以下、「等価CP」)と呼ばれる。この等価CPは、台上試験等で計測されたタイヤ単体のコーナリングパワー(以下、「台上CP」という。)と、下記の式(1)の関係がある。
等価CP = 台上CP × CP増幅率 …(1)
等価CPは、いわゆるロールステア、コンプライアンスステア等の影響を含めたコーナリングパワーであり、車両のロール特性及びサスペンション特性等をタイヤに取り込んだと仮定した場合のコーナリングパワーである。これらの特性は、CP増幅率で代表される。
図13は、一般的な空気入りラジアルタイヤの台上CPとそれに作用する荷重との関係を示すグラフである。通常、台上CPは、荷重の増加とともに増加してピークを迎えた後、徐々に減少することがわかる。また、このグラフには、旋回中のFFの四輪自動車に装着されたタイヤの大凡の荷重域も示されている。先ず、FFの四輪自動車では、前輪タイヤは、後輪タイヤよりも大きな荷重が作用する傾向がある。また、前輪及び後輪それぞれにおいて、旋回外側のタイヤには、旋回内側のタイヤよりも大きな荷重が作用する傾向がある。そのため、前輪側のタイヤと後輪側のタイヤとの間には、旋回時に生じる平均的な台上CPの値Ff及びFrに関し、比較的大きな差が生じる。
各タイヤへの上述の荷重分布を前提とした場合、車両の旋回動作中に、できるだけ早く公転走行状態に移行させて旋回性能を向上させるためには、前輪のタイヤの等価CPを相対的に下げる一方、後輪のタイヤの等価CPを相対的に高めること、即ち、両者の等価CPを近づけるか、又は、これらが早期に近づくように改善することが有効と考えられる。
発明者らは、前輪のタイヤの等価CPを相対的に下げるために、これまであまり着目されていなかったセルフアライニングトルク(以下、単に「SAT」ということがある。)に着目した。
ここで、SATについて、簡単に述べる。図14には、進行方向Yに対してスリップ角αで旋回中のタイヤbの接地面を、路面側から見た図が示されている。図14に示されるように、接地面Pのトレッドゴムは弾性変形し、横方向のCFが発生する。CFの作用点G(ハッチングされた接地面の図心に相当)が、タイヤの接地面中心Pcよりも後方にある場合、タイヤには、その接地面中心Pcの回りに、スリップ角αを小さくする方向のモーメントであるSATが働く。つまり、SATは、タイヤの接地面中心Pcの回りにスリップ角を小さくする方向に働く。なお、接地面中心PcとCFの作用点Gとの進行方向Yに沿った距離NTは、ニューマチックトレールと定義される。
また、発明者らの種々の実験の結果、上記式(1)のCP増幅率は、SATの逆数にほぼ比例することが判明している。このため、SATの大きいタイヤは、結果的に、等価CPを相対的に下げることになる。
一方、後輪は、操舵機構がなく、SATの影響がないので、タイヤとして、台上CPそのものを高めることで、その等価CPを高めることができる。
以上から明らかなように、四輪自動車、とりわけ前輪により多くの荷重が作用するFFの四輪自動車おいて、旋回走行中に、速やかに公転走行状態に移行させるために、タイヤには、大きなSATを発生させる特性が求められる。
発明者らは、SATとタイヤのトレッドパターンとの関係に関して、さらに研究したところ、車両の外側に位置する外側ショルダー陸部及び外側ミドル陸部の構成を改善することが、SATを高める上で特に有効であるとの知見を得た。
特開2012−017001号公報 特開2009−162482号公報
本発明は、以上のような問題点に鑑み案出なされたもので、ウェット性能を維持しつつ四輪自動車の旋回性能を向上させるのに役立つ空気入りラジアルタイヤを提供することを主たる目的としている。
本発明は、ラジアル構造のカーカスと、前記カーカスの外側に配された少なくとも2枚のベルトプライからなるベルト層と、車両への装着の向きが指定されたトレッドパターンが形成されたトレッド部とを含む乗用車用の空気入りラジアルタイヤであって、前記トレッド部は、車両装着時にそれぞれ車両の外側及び車両の内側に位置する外側トレッド端及び内側トレッド端を有し、前記トレッド部は、タイヤ周方向に連続してのびる複数本の主溝によって、4本又は5本の周方向陸部に区分されており、前記周方向陸部は、前記外側トレッド端を含む外側ショルダー陸部と、前記外側ショルダー陸部に隣接する外側ミドル陸部とを含み、前記外側ショルダー陸部には、前記外側トレッド端からタイヤ軸方向内側にのび、かつ、前記外側ショルダー陸部内で途切れる複数の外側ショルダーラグ溝が設けられており、前記外側ミドル陸部には、前記内側トレッド端側のエッジから前記外側トレッド端側にのび、かつ、前記外側ミドル陸部内で途切れる複数の外側ミドルラグ溝が設けられている。
本発明の空気入りラジアルタイヤにおいて、前記外側ショルダーラグ溝のタイヤ軸方向の長さは、前記外側ショルダー陸部のタイヤ軸方向の幅の0.70〜0.80倍であるのが望ましい。
本発明の空気入りラジアルタイヤにおいて、前記外側ミドルラグ溝のタイヤ軸方向の長さは、前記外側ミドル陸部のタイヤ軸方向の幅の0.70〜0.80倍であるのが望ましい。
本発明の空気入りラジアルタイヤにおいて、前記外側ショルダーラグ溝は、タイヤ軸方向に対して0〜30度の角度で配されているのが望ましい。
本発明の空気入りラジアルタイヤにおいて、前記外側ミドルラグ溝は、タイヤ軸方向に対して0〜20度の角度で配されているのが望ましい。
本発明の空気入りラジアルタイヤにおいて、前記外側ミドルラグ溝の本数は、前記外側ショルダーラグ溝の本数の2.00〜3.50倍であるのが望ましい。
本発明の空気入りラジアルタイヤは、下記の走行条件において、下記式(1)を満足するのが望ましい。
装着リム:正規リム
タイヤ内圧:正規内圧
タイヤに負荷する荷重:正規荷重の70%
速度:10km/h
スリップ角:0.7度
キャンバー角:−(マイナス)1.0度
SAT ≧ 0.18×L×CF …(1)
ここで、"SAT"はセルフアライニングトルク(N・m)、"L"はトレッド部のタイヤ周方向の接地最大長(m)、"CF"は、コーナリングフォース(N)である。
本発明の空気入りラジアルタイヤの外側ショルダー陸部には、外側トレッド端からタイヤ軸方向内側にのび、かつ、外側ショルダー陸部内で途切れる複数の外側ショルダーラグ溝が設けられている。外側ミドル陸部には、内側トレッド端側のエッジから外側トレッド端側にのび、かつ、外側ミドル陸部内で途切れる複数の外側ミドルラグ溝が設けられている。
外側ショルダーラグ溝及び外側ミドルラグ溝は、各陸部の大幅な剛性低下を抑制しつつ、ウェット性能を高めることができる。また、上記各ラグ溝の配置によって、外側ショルダー陸部において陸部分がタイヤ周方向に連続するリブ部分と、外側ミドル陸部において陸部分がタイヤ周方向に連続するリブ部分とが主溝を介して隣接する領域が提供される。これにより、外側トレッド端側において、排水性能を維持しながらタイヤ周方向の剛性が高い領域が得られ、ひいては大きなSATが得られる。従って、本発明の空気入りラジアルタイヤを四輪に装着した四輪自動車は、ウェット性能を維持しつつ、旋回走行中、速やかに公転走行状態に移行させて優れた旋回性能を提供することができる。
本発明の空気入りラジアルタイヤの一実施形態の横断面図である。 図1のタイヤのトレッド部の展開図である。 車両が左旋回しているときの前輪タイヤに作用するSATを示す説明図である。 (a)及び(b)は、陸部の剛性の測定方法の説明図である。 図2の外側ショルダー陸部及び外側ミドル陸部の拡大図である。 (a)は、図5のB−B線断面図であり、(b)は、図5のC−C線断面図である。 図2の内側ショルダー陸部の拡大図である。 図7のD−D線断面図である。 図2の内側ミドル陸部の拡大図である。 図9のE−E線断面図である。 比較例のタイヤのトレッド部の展開図である。 四輪乗用車の旋回動作を示す説明図である。 一般的な空気入りラジアルタイヤの台上CPとそれに作用する荷重との関係を示すグラフである。 車両の旋回時の前輪のタイヤの接地面を示す説明図である。
以下、本発明の実施の一形態が図面に基づき説明される。
図1は、本実施形態の空気入りラジアルタイヤ1(以下、単に「タイヤ」ということがある。)のタイヤ回転軸を含む横断面図である。図2は、図1のタイヤ1のトレッド部2の展開図である。図1は、図2のA−A線断面図に相当する。本実施形態のタイヤ1は、乗用車用の空気入りラジアルタイヤとして構成されている。本実施形態のタイヤ1は、静止状態において、前輪に作用する垂直荷重が後輪に作用する垂直荷重よりも大きい乗用車用として好適であり、とりわけFFの乗用車用として好適に用いられる。
図1に示されるように、本実施形態のタイヤ1は、ラジアル構造のカーカス6及びベルト層7を具えている。
カーカス6は、トレッド部2からサイドウォール部3を経てビード部4のビードコア5に至る。カーカス6は、例えば、1枚のカーカスプライ6Aで形成されている。カーカスプライ6Aは、例えば、タイヤ周方向に対して75〜90度の角度で傾けて配列された有機繊維からなるカーカスコードで構成されている。
ベルト層7は、少なくとも2枚のベルトプライ7A、7Bで構成されている。ベルトプライ7A、7Bは、例えば、タイヤ周方向に対して10〜45度の角度で配列されたスチールコードで構成されている。ベルトプライ7Aは、例えば、隣り合うベルトプライ7Bのスチールコードと逆向きに傾斜するスチールコードで構成されている。ベルト層7の外側に、バンド層等のさらなる補強層が配されても良い。
図2に示されるように、トレッド部2には、車両への装着の向きが指定されたトレッドパターンが形成されている。トレッド部2のトレッドパターンは、例えば、タイヤ赤道Cに関して、非対称形状で形成されている。タイヤ1の車両への装着の向きは、例えば、サイドウォール部3等に、文字又は記号で表示される。
トレッド部2は、外側トレッド端To及び内側トレッド端Tiを有している。外側トレッド端Toは、車両装着時に車両の外側(図2では右側)に位置する。内側トレッド端Tiは、車両装着時に車両の内側(図2では左側)に位置する。
各トレッド端To、Tiは、正規状態のタイヤ1に正規荷重が負荷されキャンバー角0°で平面に接地したときの最もタイヤ軸方向外側の接地位置である。正規状態とは、タイヤが正規リムにリム組みされかつ正規内圧が充填され、しかも、無負荷の状態である。本明細書において、特に断りがない場合、タイヤ各部の寸法等は、前記正規状態で測定された値である。正規状態において、外側トレッド端Toと内側トレッド端Tiとの間のタイヤ軸方向の距離は、トレッド幅TWと定義される。
「正規リム」は、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、JATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim" である。
「正規内圧」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" である。
「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば "最大負荷能力" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY" である。
本実施形態のトレッド部2には、タイヤ周方向に連続してのびる複数本の主溝10によって、4本又は5本の周方向陸部15に区分されている。主溝10は、内側ショルダー主溝11及び外側ショルダー主溝12を含んでいる。本実施形態の主溝10は、さらに、クラウン主溝13を含んでいる。
内側ショルダー主溝11は、例えば、複数本の主溝10の内、最も内側トレッド端Ti側に設けられている。内側ショルダー主溝11は、タイヤ赤道Cよりも内側トレッド端Ti側に設けられている。
外側ショルダー主溝12は、例えば、複数本の主溝10の内、最も外側トレッド端To側に設けられている。外側ショルダー主溝12は、タイヤ赤道Cよりも外側トレッド端To側に設けられている。
クラウン主溝13は、内側ショルダー主溝11と外側ショルダー主溝12との間に設けられている。クラウン主溝13は、例えば、タイヤ赤道C上に1本設けられている。他の態様では、クラウン主溝13は、例えば、タイヤ赤道Cのタイヤ軸方向の各側に1本ずつ設けられても良い。
本実施形態において、主溝10は、例えば、タイヤ周方向に沿って直線状にのびている。他の態様では、主溝10は、例えば、波状やジグザグ状にのびても良い。主溝の溝幅(内側ショルダー主溝11の溝幅W1、外側ショルダー主溝12の溝幅W2、及び、クラウン主溝13の溝幅W3)は、慣例に従って任意に定めることができる。トレッド部2のパターン剛性を維持しながら十分な排水性能を提供するために、前記各溝幅W1、W2及びW3は、例えば、トレッド幅TWの2.5%〜5.0%程度が望ましい。各主溝11乃至13の溝深さは、乗用車用ラジアルタイヤの場合、例えば、5〜10mm程度であるのが望ましい。
本実施形態のトレッド部2には、周方向陸部15として、外側ショルダー陸部16と、外側ミドル陸部17と、内側ショルダー陸部18と内側ミドル陸部19とが含まれている。外側ショルダー陸部16は、外側トレッド端Toを含んでいる。外側ミドル陸部17は、外側ショルダー陸部16に外側ショルダー主溝12を介して隣接している。内側ショルダー陸部18は、内側トレッド端Tiを含んでいる。内側ミドル陸部19は、内側ショルダー陸部18に内側ショルダー主溝11を介して隣接している。
外側ショルダー陸部16には、外側トレッド端Toからタイヤ軸方向内側にのび、かつ、外側ショルダー陸部16内で途切れる複数の外側ショルダーラグ溝20が設けられている。外側ミドル陸部17には、内側トレッド端Ti側のエッジから外側トレッド端To側にのび、かつ、外側ミドル陸部17内で途切れる複数の外側ミドルラグ溝21が設けられている。
本発明では、外側ショルダー陸部16及び外側ミドル陸部17に、上述のラグ溝が設けられていることを特徴事項の一つとする。
上述の通り、四輪自動車の旋回走行中、できるだけ早く車両を公転走行状態に移行させることで旋回性能を向上させるためには、大きなSATを発生させるのが有効である。発明者らは、タイヤの旋回中の接地面の圧力分布を詳細に分析したところ、車両の外側に位置する外側ショルダー陸部16及び外側ミドル陸部17の構成を改善することが、SATを高める上で特に有効であるとの知見を得た。以下、この点について、図3に示されるように、車両が左旋回している場合を例に挙げて説明する。
進行方向に対してスリップ角がついた前輪タイヤは、路面とトレッド面との摩擦によって、反時計回りに周方向陸部が変形する。スリップ角がほぼ一定となったとき、変形した各周方向陸部は、元に戻ろうとし、図中の矢印にように、時計回りに反力、即ちSATを発生する。このSAT、即ち、トレッド部の接地面中心Pcの周りの時計方向のトルクを高めるためには、SATへの寄与が高い旋回外側のタイヤ(右側のタイヤ)の外側ショルダー陸部16及び外側ミドル陸部17の接地域の後方領域X1で大きな駆動方向の力を発生させることが有効である。このような力を発生させるためには、外側ショルダー陸部16及び外側ミドル陸部17のタイヤ周方向剛性を高めることが重要となる。
本発明の外側ショルダーラグ溝20及び外側ミドルラグ溝21は、各陸部の大幅な剛性低下を抑制しつつ、ウェット性能を高めることができる。また、上記各ラグ溝の配置によって、外側ショルダー陸部16において陸部分がタイヤ周方向に連続するリブ部分と、外側ミドル陸部17において陸部分がタイヤ周方向に連続するリブ部分とが主溝を介して隣接する領域が提供される。これにより、外側トレッド端To側において、排水性能を維持しながらタイヤ周方向の剛性が高い領域が得られ、ひいては大きなSATが得られる。従って、本発明の空気入りラジアルタイヤを四輪に装着した四輪自動車は、ウェット性能を維持しつつ、旋回走行中、速やかに公転走行状態に移行させて優れた旋回性能を提供することができる。
他方、内側ショルダー陸部18及び内側ミドル陸部19については、SATを高めるためには、SATへの寄与が高い旋回外側のタイヤ(右側のタイヤ)の内側ショルダー陸部18及び内側ミドル陸部19の接地域の前方領域X2で大きな制動方向の力を発生させることが有効である。このような制動方向の力を発生させるためには、内側ショルダー陸部18及び内側ミドル陸部19は、外側ショルダー陸部16及び外側ミドル陸部17とは逆に、タイヤ周方向剛性を低下させ、路面に対して柔軟に追従する接地性を向上させることが有効である。
また、空気入りラジアルタイヤは、ショルダー陸部において、タイヤ軸方向外側に向かって外径が徐々に小さくなる。このため、前輪の旋回外側のタイヤにおいて、外側ショルダー陸部16は、タイヤのコーナリングフォースとは逆向きの力であるキャンバースラストを発生させる。内側ショルダー陸部18は、タイヤのコーナリングフォースと同じ向きのキャンバースラストを発生させる。このため、外側ショルダー陸部16は、タイヤ軸方向剛性に関して、内側ショルダー陸部18よりも大きく構成されているのが望ましい。これにより、外側ショルダー陸部16は、内側ショルダー陸部18よりも大きなキャンバースラストを発生させる。従って、外側ショルダー陸部16が発生するキャンバースラストは、前輪のタイヤのコーナリングフォースを減じるのに役立ち、ひいては旋回走行中の車両をさらに速やかに公転走行状態に移行させることができる。
好ましい態様では、SATをより大きく発生させながら偏摩耗の発生を防止するために、タイヤ周方向剛性に関し、外側ショルダー陸部16は、内側ショルダー陸部18の1.05〜1.40倍の剛性比σ1を有するのが望ましい。同様に、タイヤ軸方向剛性に関し、外側ショルダー陸部16は、内側ショルダー陸部18の1.05〜1.40倍の剛性比σ2を有するのが望ましい。
各陸部のタイヤ周方向剛性及びタイヤ軸方向剛性は、それぞれの方向に単位変形量を生じさせるのに必要な力で示される。具体的な測定方法としては、以下のものが挙げられる。図4(a)には、陸部の例として、内側ショルダー陸部18を示す。図4(a)に示されるように、タイヤ1から測定対象の内側ショルダー陸部18が2ピッチ以上のタイヤ周方向長さで切り出される。この際、主溝10の溝底10bを通ってトレッド部の接地面と平行な面PS1、及び、内側トレッド端Tiを通ってタイヤ半径方向に沿ってのびる面PS2で陸部試験片TPが切り出される(図4(b)に示す)。次に、この陸部試験片TPの接地面を平坦な試験面に例えば正規荷重で押し付けて接地状態を維持する。次に、試験面を、タイヤ周方向Y又はタイヤ軸方向Xに力Fで移動させ、各方向X又はYの陸部の変位が測定される。そして、前記力Fを陸部試験片TPの各方向の変位量でそれぞれ除して、各方向Y及びXの陸部剛性を求める。
好ましい態様では、タイヤ1は、例えば、台上試験(例えば、フラットベルト式のタイヤ試験機を用いた試験である。)において、下記の走行条件において、下記式(1)を満足するのが望ましい。
装着リム:正規リム
タイヤ内圧:正規内圧
タイヤに負荷する荷重:正規荷重の70%
速度:10km/h
スリップ角:0.7度
キャンバー角:−(マイナス)1.0度
SAT ≧ 0.18×L×CF …(1)
ここで、"SAT"はセルフアライニングトルク(N・m)、"L"はトレッド部のタイヤ周方向の接地最大長(m)、"CF"は、コーナリングフォース(N)である。また、キャンバー角の"マイナス"は、タイヤの上部が車両の中心側に向くような傾きを意味する。
上記測定条件は、四輪自動車で頻繁に発生する傾向がある旋回状態(横加速度0.2G程度)における前輪の状況に基づいている。発明者らは、四輪自動車に各種のセンサーを搭載して、上記旋回状態でのタイヤの状況(荷重、キャンバー角、スリップ角、及び、角度)を測定し、これを台上試験で近似させるものとして、上記走行条件を得た。従って、上記式(1)を満たすタイヤ1は、通常の旋回状態においてSATを確実かつ十分に大きく発生させることができる。即ち、旋回走行中の車両を、より速やかに公転走行状態に移行させることができる。
以下、上述の効果をさらに発揮させ得る本実施形態のさらに具体的な構成が説明される。
[外側ショルダー陸部の構成]
図5には、外側ショルダー陸部16及び外側ミドル陸部17の拡大図が示されている。図5に示されるように、外側ショルダー陸部16は、外側トレッド端Toと外側ショルダー主溝12と間に形成されている。外側ショルダー陸部16は、例えば、トレッド幅TWの0.25〜0.35倍のタイヤ軸方向の幅W4を有している。
外側ショルダーラグ溝20は、例えば、他の溝と連なることなく外側ショルダー陸部16内で途切れている。望ましい態様では、外側ショルダーラグ溝20は、例えば、タイヤ軸方向に対して0〜30度の角度θ1で配されている。本実施形態の外側ショルダーラグ溝20は、例えば、タイヤ軸方向に対して一定の角度で傾斜するように直線状にのびている。
外側ショルダーラグ溝20のタイヤ軸方向の長さL1は、好ましくは外側ショルダー陸部16のタイヤ軸方向の幅W4の0.65〜0.85倍であり、より好ましくは前記幅W4の0.70〜0.80倍である。外側ショルダーラグ溝20の溝幅W5は、例えば、外側ショルダー主溝12の溝幅W2の0.30〜0.50倍であるのが望ましい。本実施形態では、溝幅W5が一定とされているが、変化しても良い。外側ショルダーラグ溝20の長さL1及び溝幅W5を規定した場合、SATを高めつつ、良好なウェット性能を提供することができる。
図6には、外側ショルダーラグ溝20のB−B線断面図が示されている。図6に示されるように、外側ショルダーラグ溝20は、例えば、外側トレッド端Toと外側ショルダー主溝12との間の領域において、外側ショルダー主溝12側に向かって溝深さが漸減している。これにより、外側ショルダーラグ溝20のタイヤ軸方向の内端側の溝容積を大幅に減少させることにより、ポンピングノイズの音圧を低下させることができる。特に好ましい態様では、外側ショルダーラグ溝20の内端での深さd2は、外側ショルダーラグ溝20の外側トレッド端Toでの深さd1の40%〜60%であるのが望ましい。なお、内端の深さd2は、外側ショルダーラグ溝20の内端から、そのタイヤ軸方向の長さL1の25%の長さL2をタイヤ軸方向の外側に隔てた位置で測定されるものとする。
図5に示されるように、外側ショルダー陸部16のタイヤ周方向剛性及びタイヤ軸方向剛性を、好ましい範囲に低下させるために、外側ショルダーラグ溝の本数(合計本数)N1は、例えば、30〜70の範囲であるのが望ましい。
外側ショルダー陸部16は、外側ショルダー主溝12と各外側ショルダーラグ溝20との間の外側ショルダーリブ状部22と、タイヤ周方向で隣り合う外側ショルダーラグ溝間に区分された外側ショルダーブロック片23とを含んでいる。
外側ショルダーリブ状部22は、例えば、溝が設けられておらず、タイヤ周方向に連続してのびている。このような外側ショルダーリブ状部22は、外側ショルダー陸部16のタイヤ軸方向内側領域でのタイヤ周方向剛性を高め、ひいては大きな等価CPを得るのに役立つ。外側ショルダーリブ状部22のタイヤ軸方向の幅W6は、例えば、外側ショルダー陸部16の幅W4の0.20〜0.30倍であるのが望ましい。
外側ショルダーブロック片23は、タイヤ周方向長さSboを有している。本実施形態の外側ショルダーブロック片23のタイヤ周方向長さSboは、例えば、外側ショルダー陸部16のタイヤ1周長さの1.6%〜2.5%であるのが望ましい。より望ましい態様では、外側ショルダーブロック片23は、一定のタイヤ周方向長さSboでタイヤ軸方向に斜めにのびている。
外側ショルダー陸部16は、例えば、85〜95%のランド比を有しているのが望ましい。本明細書において、「ランド比」とは、対象となる陸部に設けられた溝を全て埋めた仮想接地面の全面積Saに対する、実際の陸部の合計接地面積Sbの比Sb/Saとして定義される。
[ミドル陸部の構成]
図2に示されるように、本実施形態では、外側ミドル陸部17及び内側ミドル陸部19は、それぞれ、トレッド幅TWの0.10〜0.20倍のタイヤ軸方向の幅W7及びW8を有する。本実施形態では、W7=W8とされているが、W7>W8とされても良い。
図3に示した発明者らの種々の実験の結果、さらに大きなSATを発生させるために、外側ミドル陸部17のタイヤ周方向剛性及びタイヤ軸方向剛性も、SATへの寄与が大きく、それらを内側ミドル陸部19よりも高めることで、上記とほぼ同様のメカニズムでSATを増加させることを知見した。
好ましい態様では、外側ミドル陸部17は、タイヤ周方向剛性及びタイヤ軸方向剛性に関し、内側ミドル陸部19と同じかそれよりも大きく形成されている。本実施形態では、外側ミドル陸部17は、タイヤ周方向剛性及びタイヤ軸方向剛性に関し、内側ミドル陸部19よりも大きく形成されている。この場合、典型的な態様では、外側ミドル陸部17は、例えば、内側ミドル陸部19よりも大きいランド比を有する。
好ましい態様では、SATをより大きく発生させながら偏摩耗の発生を防止するために、タイヤ周方向剛性に関し、外側ミドル陸部17は、内側ミドル陸部19の1.05〜1.40倍の剛性比σ3を有するのが望ましい。同様に、タイヤ軸方向剛性に関し、外側ミドル陸部17は、内側ミドル陸部19の1.05〜1.40倍の剛性比σ4を有するのが望ましい。以下に、上記のような剛性差を実現しうる具体的なパターンの構成が説明される。
[外側ミドル陸部の構成]
図5に示されるように、外側ミドルラグ溝21は、例えば、他の溝と連なることなく外側ミドル陸部17内で途切れている。外側ミドルラグ溝21は、例えば、タイヤ軸方向に対して0〜20度の角度θ2で配されているのが望ましい。本実施形態の外側ミドルラグ溝21は、例えば、外側ショルダーラグ溝20とは逆向きに傾斜しているのが望ましい。このような外側ミドルラグ溝21は、外側ミドル陸部17のタイヤ軸方向の剛性を十分に維持し、とりわけタイヤ1が車両の後輪に装着されたとき、大きな等価CPを提供することができる。
外側ミドルラグ溝21のタイヤ軸方向の長さL3は、好ましくは外側ミドル陸部17のタイヤ軸方向の幅W7の0.65〜0.85倍であり、より好ましくは前記幅W7の0.70〜0.80倍である。
図6(b)には、外側ミドルラグ溝21のC−C線断面図が示されている。図6(b)に示されるように、外側ミドルラグ溝21の深さd4は、例えば、クラウン主溝13の溝深さd3の0.20〜0.90倍程度が望ましい。
図5に示されるように、外側ミドル陸部17に設けられた外側ミドルラグ溝21の本数(合計本数)N2は、外側ショルダーラグ溝20の本数N1の好ましくは2.00倍以上、より好ましくは2.30倍以上であり、好ましくは3.50倍以下、より好ましくは3.20倍以下である。このような外側ミドルラグ溝21の配置は、外側ミドル陸部17の剛性を外側ショルダー陸部16よりも緩和し、ひいてはSATを高めるのに役立つ。
外側ミドル陸部17は、例えば、外側ショルダー主溝12と各外側ミドルラグ溝21との間の外側ミドルリブ状部24と、タイヤ周方向で隣り合う外側ミドルラグ溝21間に区分された外側ミドルブロック片25とを含んでいる。
外側ミドルリブ状部24は、例えば、溝が設けられておらず、タイヤ周方向に連続してのびている。
外側ミドルブロック片25は、タイヤ周方向長さMboを有している。外側ミドルブロック片25のタイヤ周方向長さMboは、上述のように溝の本数N2が設定されることで、例えば、外側ミドル陸部17のタイヤ1周長さの0.8%〜1.0%程度とされる。
外側ミドル陸部17は、例えば、70〜80%のランド比を有しているのが望ましい。このような外側ミドル陸部17は、ウェット性能と操縦安定性とをバランス良く高めることができる。
[内側ショルダー陸部の構成]
図7には、内側ショルダー陸部18の拡大図が示されている。図7に示されるように、内側ショルダー陸部18は、内側トレッド端Tiと内側ショルダー主溝11と間に形成されている。内側ショルダー陸部18は、例えば、トレッド幅TWの0.25〜0.35倍のタイヤ軸方向の幅W9を有している。望ましい態様として、本実施形態の内側ショルダー陸部18は、外側ショルダー陸部16(図5に示す)と同一の幅で構成されている。
内側ショルダー陸部18には、例えば、複数の内側ショルダーラグ溝28が設けられている。各内側ショルダーラグ溝28は、例えば、内側トレッド端Tiからタイヤ軸方向内側にのび、かつ、内側ショルダー陸部18内で途切れている。本実施形態の内側ショルダーラグ溝28は、他の溝と連なることなく内側ショルダー陸部18内で途切れている。本実施形態では、各内側ショルダーラグ溝28が同一の形状を有しているが、このような態様に限定されるものではない。
内側ショルダーラグ溝28は、例えば、タイヤ軸方向に対して10〜30度の角度θ3でのびている。望ましい態様では、内側ショルダーラグ溝28は、例えば、タイヤ軸方向に対して外側ショルダーラグ溝20よりも大きい角度でのびている。これにより、内側ショルダー陸部18の剛性が低下し、ひいては高いSATが得られる。
内側ショルダーラグ溝28のタイヤ軸方向の長さL4は、例えば、内側ショルダー陸部18の幅W9の0.70〜0.80倍であるのが望ましい。望ましい態様では、内側ショルダーラグ溝28の前記長さL4は、例えば、外側ショルダーラグ溝20のタイヤ軸方向の長さL1よりも大きいのが望ましい。内側ショルダー陸部18の剛性が相対的に低下し、ひいてはSATを高めることができる。
内側ショルダーラグ溝28の溝幅W10は、例えば、内側ショルダー主溝11の溝幅W1の0.30〜0.45倍であるのが望ましい。内側ショルダーラグ溝28の長さL4及び溝幅W10を規定した場合、内側ショルダー陸部18のタイヤ周方向剛性及びタイヤ軸方向剛性を、さらに好ましい範囲で低下させながら、良好なウェット性能を提供することができる。
図8には、内側ショルダーラグ溝28のD−D線断面図が示されている。図8に示されるように、内側ショルダーラグ溝28は、例えば、内側トレッド端Tiからタイヤ軸方向内側に向かって溝深さが漸減している。このような内側ショルダーラグ溝28は、走行中のポンピングノイズを低減させるのに役立つ。特に好ましい態様では、内側ショルダーラグ溝28の内端での深さd6は、内側ショルダーラグ溝28の内側トレッド端Tiでの深さd5の40%〜60%であるのが望ましい。なお、内端の深さd6は、内側ショルダーラグ溝28の内端から、そのタイヤ軸方向の長さL4の25%の長さL5をタイヤ軸方向の外側に隔てた位置で測定されるものとする。
図7に示されるように、内側ショルダー陸部18に設けられた内側ショルダーラグ溝28の本数(合計本数)N3は、例えば、外側ショルダーラグ溝20の本数N1よりも大であることが望ましい。本実施形態では、内側ショルダーラグ溝28の本数N3が、例えば、外側ショルダーラグ溝20の本数N1の1.30〜2.00倍に設定されているのが望ましい。
内側ショルダー陸部18は、例えば、内側ショルダー主溝11と各内側ショルダーラグ溝28との間の内側ショルダーリブ状部31と、タイヤ周方向で隣り合う内側ショルダーラグ溝28間に区分された内側ショルダーブロック片32とを含んでいる。
内側ショルダーリブ状部31は、例えば、溝が設けられておらず、タイヤ周方向に連続してのびている。このような内側ショルダーリブ状部31は、内側ショルダー陸部18のタイヤ周方向剛性を効果的に高めることができる。
内側ショルダーリブ状部31は、例えば、外側ショルダーリブ状部22よりも小さいタイヤ軸方向の幅W11を有しているのが望ましい。内側ショルダーリブ状部31の前記幅W11は、例えば、外側ショルダーリブ状部22の幅W6の0.85〜0.95倍であるのが望ましい。これにより、内側ショルダー陸部18が外側ショルダー陸部16よりも相対的に低い剛性を有し、ひいては高いSATを発生させることができる。
内側ショルダーブロック片32は、タイヤ周方向長さSbiを有している。本実施形態では、内側ショルダーブロック片32のタイヤ周方向長さSbiは、外側ショルダーブロック片23のタイヤ周方向長さSboよりも小さく形成されている。好ましい態様では、内側ショルダーブロック片32と外側ショルダーブロック片23とのタイヤ周方向長さの比Sbi/Sboは、例えば、0.40〜0.60の範囲とされる。これにより、高いSATが得られ、ひいては優れた旋回性能が得られる。
同様の観点から、内側ショルダー陸部18は、例えば、外側ショルダー陸部16よりも小さいランド比を有するのが望ましい。内側ショルダー陸部18のランド比は、例えば、外側ショルダー陸部16のランド比の0.85〜0.95倍の範囲にあるのが望ましい。
[内側ミドル陸部の構成]
図9には、内側ミドル陸部19の拡大図が示されている。図9に示されるように、内側ミドル陸部19には、例えば、複数の内側ミドルラグ溝34が設けられている。各内側ミドルラグ溝34は、内側ミドル陸部19の内側トレッド端Ti側のエッジから外側トレッド端Toに向かってのび、かつ、内側ミドル陸部19内で途切れている。本実施形態の内側ミドルラグ溝34は、例えば、他の溝と連なることなく内側ミドル陸部19内で途切れている。
内側ミドルラグ溝34は、例えば、タイヤ軸方向に対して、内側ショルダーラグ溝28よりも小さい角度θ4(図示省略)でのびている。内側ミドルラグ溝34の前記角度θ4は、例えば、0〜10度が望ましく、本実施形態では、タイヤ軸方向に沿って直線状にのびている(角度θ4=0度)。このような内側ミドルラグ溝34は、内側ミドル陸部19のタイヤ軸方向の剛性を十分に維持し、とりわけタイヤ1が車両の後輪に装着されたとき、大きな等価CPを提供することができる。
内側ミドルラグ溝34のタイヤ軸方向の長さL7は、例えば、内側ミドル陸部19の前記幅W8の0.70〜0.80倍であるのが望ましい。
図10には、図9の内側ミドルラグ溝34のE−E線断面図が示されている。図10に示されるように、内側ミドルラグ溝34の深さd7は、例えば、クラウン主溝13の溝深さd3の0.20〜0.90倍程度が望ましい。望ましい態様では、内側ミドルラグ溝34の溝深さd7は、例えば、外側ミドルラグ溝21の溝深さd4(図6(b)に示す)よりも大きいのが望ましい。
図9に示されるように、内側ミドル陸部19に設けられた内側ミドルラグ溝34の本数(合計本数)N4は、例えば、80〜100本であるのが望ましい。望ましい態様では、内側ミドルラグ溝34の本数N4は、外側ミドルラグ溝21の本数N2よりも大きいのが望ましい。これにより、SATがさらに高められる。
内側ミドル陸部19は、例えば、クラウン主溝13と各内側ミドルラグ溝34との間の内側ミドルリブ状部35と、タイヤ周方向で隣り合う内側ミドルラグ溝34間に区分された内側ミドルブロック片36とを含んでいる。
内側ミドルリブ状部35は、例えば、溝が設けられておらず、タイヤ周方向に連続してのびている。このような内側ミドルリブ状部35は、内側ミドル陸部19のタイヤ赤道側の剛性を高め、ひいてはSATを高めることができる。
内側ミドルブロック片36は、タイヤ周方向長さMbiを有している。内側ミドルブロック片38のタイヤ周方向長さMbiは、例えば、外側ミドルブロック片25のタイヤ周方向長さMboよりも小さいのが望ましい。特に好ましい態様では、内側ミドルブロック片36と外側ミドルブロック片25とのタイヤ周方向長さの比Mbi/Mboは、好ましくは0.85〜0.95の範囲とされる。これにより、内側ミドル陸部19と外側ミドル陸部17との剛性バランスがさらに高められる。
以上、本発明の一実施形態の空気入りラジアルタイヤが詳細に説明されたが、本発明は、上記の具体的な実施形態に限定されることなく、種々の態様に変更して実施され得る。
図2の基本パターンを有するサイズ205/55R16のタイヤが、表1の仕様に基づき試作された。比較例1として、図11に示されるように、外側ミドル陸部に、外側ショルダー主溝からのび陸部内で途切れるラグ溝が設けられたタイヤが試作された。各テストタイヤについて、各種の試験が行われた。
[台上試験]
フラットベルト式のタイヤ試験機を使用して、下記の条件で、SAT、トレッド部のタイヤ周方向の接地最大長L及びCFが測定され、各テストタイヤが下記式(1)を満たすかどうかについて調査された。
装着リム:16×6.5JJ
タイヤ内圧:220kPa
速度:10km/h
スリップ角:0.7度
キャンバー角:−1.0度
タイヤの荷重:正規荷重の70%
SAT ≧ 0.18×L×CF …(1)
<旋回性能>
排気量2000ccのFF乗用車の四輪に、テストタイヤが装着され、ドライバー1名乗車で、ドライ路面上を旋回走行させ、そのときの旋回性能が、運転者の官能により評価された。結果は、比較例1を100とする評点である。数値が大きい程、旋回操舵中に車体が速やかに公転走行状態に移行したことを示す。
<ウェット性能>
上記テスト車両で、水深5mmかつ長さ20mの水たまりが設けられた半径100mのアスファルト路面を走行し、前輪の横加速度(横G)が計測された。結果は、速度50〜80km/hの平均横Gであり、比較例1の値を100とする指数で示されている。数値が大きい程、ウェット性能が優れていることを示す。
テストの結果が表1に示される。
Figure 0006922560
Figure 0006922560
テストの結果、実施例のタイヤは、ウェット性能を維持しつつ優れた旋回性能を発揮しているのが確認できた。
2 トレッド部
6 カーカス
7 ベルト層
10 主溝
15 周方向陸部
16 外側ショルダー陸部
17 外側ミドル陸部
20 外側ショルダーラグ溝
21 外側ミドルラグ溝

Claims (9)

  1. ラジアル構造のカーカスと、前記カーカスの外側に配された少なくとも2枚のベルトプライからなるベルト層と、車両への装着の向きが指定されたトレッドパターンが形成されたトレッド部とを含む乗用車用の空気入りラジアルタイヤであって、
    前記トレッド部は、車両装着時にそれぞれ車両の外側及び車両の内側に位置する外側トレッド端及び内側トレッド端を有し、
    前記トレッド部は、タイヤ周方向に連続してのびる複数本の主溝によって、4本又は5本の周方向陸部に区分されており、
    前記複数本の主溝は、最も前記外側トレッド端側に設けられた外側ショルダー主溝を含み、
    前記周方向陸部は、前記外側トレッド端を含む外側ショルダー陸部と、前記外側ショルダー陸部に前記外側ショルダー主溝を介して隣接する外側ミドル陸部とを含み、
    前記外側ショルダー陸部には、前記外側トレッド端からタイヤ軸方向内側にのび、かつ、前記外側ショルダー陸部内で途切れる複数の外側ショルダーラグ溝が設けられており、
    前記外側ミドル陸部には、前記内側トレッド端側のエッジから前記外側トレッド端側にのび、かつ、前記外側ミドル陸部内で途切れる複数の外側ミドルラグ溝が設けられており、
    前記外側ショルダー陸部は、前記外側ショルダー主溝と前記複数の外側ミドルラグ溝との間の外側ショルダーリブ状部を含み、
    前記外側ショルダーリブ状部には、溝が設けられておらず、
    前記外側ショルダーラグ溝は、他の溝と連なっておらず、
    前記外側ショルダーラグ溝のタイヤ軸方向の長さは、前記外側ショルダー陸部のタイヤ軸方向の幅の0.70〜0.80倍である空気入りラジアルタイヤ。
  2. 前記外側ショルダーラグ溝の溝幅は、前記外側ショルダー主溝の溝幅の0.30〜0.50倍である請求項1記載の空気入りラジアルタイヤ。
  3. 前記外側ミドルラグ溝のタイヤ軸方向の長さは、前記外側ミドル陸部のタイヤ軸方向の幅の0.70〜0.80倍である請求項1又は2記載の空気入りラジアルタイヤ。
  4. 前記外側ショルダーラグ溝は、タイヤ軸方向に対して0〜30度の角度で配されている請求項1乃至3のいずれかに記載の空気入りラジアルタイヤ。
  5. 前記外側ミドルラグ溝は、タイヤ軸方向に対して0〜20度の角度で配されている請求項1乃至4のいずれかに記載の空気入りラジアルタイヤ。
  6. 前記外側ミドルラグ溝の本数は、前記外側ショルダーラグ溝の本数の2.00〜3.50倍である請求項1乃至5のいずれかに記載の空気入りラジアルタイヤ。
  7. 下記の走行条件において、下記式(1)を満足する請求項1乃至6のいずれかに記載の空気入りラジアルタイヤ。
    装着リム:正規リム
    タイヤ内圧:正規内圧
    タイヤに負荷する荷重:正規荷重の70%
    速度:10km/h
    スリップ角:0.7度
    キャンバー角:−(マイナス)1.0度
    SAT ≧ 0.18×L×CF …(1)
    ここで、"SAT"はセルフアライニングトルク(N・m)、"L"はトレッド部のタイヤ周方向の接地最大長(m)、"CF"は、コーナリングフォース(N)である。
  8. 前記外側ショルダーリブ状部のタイヤ軸方向の幅は、前記外側ショルダー陸部のタイヤ軸方向の幅の0.20〜0.30倍である請求項1乃至7のいずれかに記載の空気入りラジアルタイヤ。
  9. 前記外側ショルダーラグ溝のタイヤ軸方向の内端から、前記外側ショルダーラグ溝のタイヤ軸方向の長さの25%の距離をタイヤ軸方向の外側に隔てた位置で測定された前記外側ショルダーラグ溝の深さは、前記外側ショルダーラグ溝の前記外側トレッド端での深さの40%〜60%である、請求項1乃至8のいずれかに記載の空気入りラジアルタイヤ。
JP2017165935A 2017-08-30 2017-08-30 空気入りラジアルタイヤ Active JP6922560B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017165935A JP6922560B2 (ja) 2017-08-30 2017-08-30 空気入りラジアルタイヤ
US16/057,266 US20190061430A1 (en) 2017-08-30 2018-08-07 Pneumatic radial tire
CN201810927832.6A CN109421435B (zh) 2017-08-30 2018-08-15 充气子午线轮胎
CN202210331281.3A CN114734757B (zh) 2017-08-30 2018-08-15 充气子午线轮胎
EP18190304.8A EP3450209B1 (en) 2017-08-30 2018-08-22 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017165935A JP6922560B2 (ja) 2017-08-30 2017-08-30 空気入りラジアルタイヤ

Publications (2)

Publication Number Publication Date
JP2019043236A JP2019043236A (ja) 2019-03-22
JP6922560B2 true JP6922560B2 (ja) 2021-08-18

Family

ID=65813616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017165935A Active JP6922560B2 (ja) 2017-08-30 2017-08-30 空気入りラジアルタイヤ

Country Status (1)

Country Link
JP (1) JP6922560B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835087B1 (en) * 2019-12-10 2023-04-05 Sumitomo Rubber Industries, Ltd. Tire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850972B2 (ja) * 1998-01-21 2006-11-29 住友ゴム工業株式会社 空気入りラジアルタイヤ
JP2003251632A (ja) * 2002-03-04 2003-09-09 Sumitomo Rubber Ind Ltd タイヤ用金型、及びそれによって製造された空気入りタイヤ
JP4173411B2 (ja) * 2003-07-29 2008-10-29 住友ゴム工業株式会社 タイヤの選別方法
JP4954743B2 (ja) * 2007-02-08 2012-06-20 東洋ゴム工業株式会社 空気入りタイヤ
JP5209950B2 (ja) * 2007-12-11 2013-06-12 住友ゴム工業株式会社 タイヤ特性の検出方法
JP2013071633A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP5890853B2 (ja) * 2014-02-14 2016-03-22 住友ゴム工業株式会社 空気入りタイヤ
JP6097238B2 (ja) * 2014-03-11 2017-03-15 住友ゴム工業株式会社 空気入りタイヤ
JP5796655B1 (ja) * 2014-03-28 2015-10-21 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
JP2019043236A (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6786794B2 (ja) 空気入りタイヤ
CN114734757B (zh) 充气子午线轮胎
US11207922B2 (en) Tire
JP6393216B2 (ja) 空気入りタイヤ
JP6819133B2 (ja) タイヤ
JP6988349B2 (ja) タイヤ
JP6848359B2 (ja) タイヤ
US9731560B2 (en) Pneumatic tire
JP6371597B2 (ja) 空気入りタイヤ及びその装着方法
CN106427402B (zh) 充气轮胎
EP3450210B1 (en) Pneumatic radial tire
JP6950371B2 (ja) 空気入りラジアルタイヤ
JP6950367B2 (ja) 空気入りラジアルタイヤ
JP6922560B2 (ja) 空気入りラジアルタイヤ
JP6575660B2 (ja) 空気入りタイヤ
JP6417226B2 (ja) 空気入りタイヤ
JP2018030444A (ja) タイヤ
JP6950369B2 (ja) 空気入りラジアルタイヤ
JP6950370B2 (ja) 空気入りラジアルタイヤ
JP6950368B2 (ja) 空気入りラジアルタイヤ
JP6943107B2 (ja) タイヤ
JP6907823B2 (ja) 空気入りラジアルタイヤ
JP2019043541A (ja) 空気入りラジアルタイヤ
JP2022102635A (ja) タイヤ
JP2022102633A (ja) タイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6922560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150