JP6885236B2 - 蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法 - Google Patents

蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法 Download PDF

Info

Publication number
JP6885236B2
JP6885236B2 JP2017134754A JP2017134754A JP6885236B2 JP 6885236 B2 JP6885236 B2 JP 6885236B2 JP 2017134754 A JP2017134754 A JP 2017134754A JP 2017134754 A JP2017134754 A JP 2017134754A JP 6885236 B2 JP6885236 B2 JP 6885236B2
Authority
JP
Japan
Prior art keywords
power storage
storage device
temperature
battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017134754A
Other languages
English (en)
Other versions
JP2019016558A (ja
Inventor
極 小林
極 小林
壮滋 後藤
壮滋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017134754A priority Critical patent/JP6885236B2/ja
Priority to US16/013,421 priority patent/US10656212B2/en
Priority to KR1020180071870A priority patent/KR102106949B1/ko
Priority to EP18179889.3A priority patent/EP3428670A1/en
Priority to CN201810674140.5A priority patent/CN109244573B/zh
Priority to RU2018123497A priority patent/RU2693857C1/ru
Priority to BR102018013695-0A priority patent/BR102018013695A2/pt
Publication of JP2019016558A publication Critical patent/JP2019016558A/ja
Application granted granted Critical
Publication of JP6885236B2 publication Critical patent/JP6885236B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、蓄電デバイスの内部短絡を検査する蓄電デバイスの短絡検査方法、及び、この短絡検査方法を含む蓄電デバイスの製造方法に関する。
リチウムイオン二次電池などの蓄電デバイスの製造に当たっては、電極体等の内部に鉄や銅などの金属異物が混入する場合があり、混入した金属異物に起因して蓄電デバイスに内部短絡(以下、単に短絡とも言う)が生じることがある。このため、蓄電デバイスの製造過程において、蓄電デバイスに内部短絡が生じているか否かを検査することがある。
この内部短絡の検査手法としては、例えば、以下が知られている。即ち、組み立てた蓄電デバイスを初充電した後、蓄電デバイスを高温下で放置しエージングする。その後、蓄電デバイスを放置して自己放電させ(端子開放した状態で放電させ)、この自己放電前後にそれぞれ測定したデバイス電圧から自己放電による電圧低下量ΔVaを求める。そして、この電圧低下量ΔVaが基準低下量ΔVbよりも大きい場合に(ΔVa>ΔVb)、その蓄電デバイスに短絡が生じていると判定する。なお、関連する従来技術として、特許文献1(特許文献1の特許請求の範囲等を参照)が挙げられる。
特開2010−153275号公報
しかしながら、上述のように電圧低下量ΔVaの多寡に基づいて内部短絡の有無を検知する手法では、電圧計の測定分解能(例えば10μV)などを考慮すると、内部短絡を生じていない蓄電デバイス(良品)と内部短絡を生じている蓄電デバイス(不良品)とを適切に区別するには、良品の電圧低下量ΔVaと不良品の電圧低下量ΔVaとの差が、電圧測定の測定分解能に対して十分に大きくなるまで、例えば20倍以上(200μV以上)となるまで待つ必要がある。しかるに、蓄電デバイスの容量が大きい場合や許容する短絡電流が小さい場合などでは、電圧低下量ΔVaの測定時間(自己放電させる時間)を長期間、例えば数日以上要する場合があり、内部短絡の検査時間及び蓄電デバイスの製造時間が長く掛かるなど、上述の電圧低下量ΔVaによって蓄電デバイスの短絡を検知する手法には限界が生じており、新たな検査手法が求められていた。
本発明は、かかる現状に鑑みてなされたものであって、新たな手法により蓄電デバイスの内部短絡を検査できる蓄電デバイスの短絡検査方法、及び、この短絡検査方法を含む蓄電デバイスの製造方法を提供することを目的とする。
上記課題を解決するための本発明の一態様は、蓄電デバイスの内部短絡を検査する蓄電デバイスの短絡検査方法であって、予め充電された上記蓄電デバイスの検知前デバイス電圧VB1を測定する電圧測定工程と、外部電源から、上記検知前デバイス電圧VB1に等しい出力電圧VS(VS=VB1)を、上記蓄電デバイスに印加し続けて、上記外部電源から上記蓄電デバイスに流れる電流IBの経時変化または安定時電流値IBsを検知する電流検知工程と、検知した上記電流IBの経時変化または上記安定時電流値IBsに基づいて、上記蓄電デバイスの内部短絡を判定する判定工程と、を備え、上記電圧測定工程は、上記外部電源の一対のプローブを上記蓄電デバイスの一対の端子部材にそれぞれ接触させ、上記電流IB=0の条件下で、上記蓄電デバイスの上記検知前デバイス電圧VB1を測定し、上記電流検知工程は、上記電圧測定工程における、上記外部電源の上記一対のプローブと上記蓄電デバイスの上記一対の端子部材との接触状態を維持して、0から電圧印加時間の経過と共に徐々に増加し、その後に一定の上記安定時電流値IBsとなる上記電流IBの経時変化または上記安定時電流値IBsを検知する蓄電デバイスの短絡検査方法である。
上述の蓄電デバイスの短絡検査方法では、上述の電圧測定工程、電流検知工程及び判定工程を行い、電圧低下量ΔVaではなく、電流IBの経時変化または安定時電流値IBsに基づいて、蓄電デバイスの内部短絡を判定する。かくして、外部電源から蓄電デバイスに流れる電流IBを用いる新たな手法によって、蓄電デバイスの内部短絡を検査できる。
なお、上述の蓄電デバイスの短絡検査方法は、後述するように、蓄電デバイスの製造過程において行うことができるほか、自動車等に搭載された或いは単独で市場に置かれた以降の使用済の蓄電デバイスに対して行うこともできる。
「蓄電デバイス」としては、例えば、リチウムイオン二次電池等の電池、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタが挙げられる。
「判定工程」において、「安定時電流値IBs」に基づいて内部短絡を判定する手法としては、例えば、検査した蓄電デバイスの安定時電流値IBsが、基準電流値IKよりも大きい場合に(IBs>IK)、その蓄電デバイスを不良品と判定する手法が挙げられる。また、安定時電流値IBsの大きさに基づいて、その蓄電デバイスの内部短絡の程度をランク分けする判定手法も挙げられる。
また、「電流IBの経時変化」に基づいて内部短絡を判定する手法としては、所定の検知期間QTに増加した電流IBの電流増加量ΔIBが基準増加量ΔIBkよりも大きい場合に(ΔIB>ΔIBk)、その蓄電デバイスを不良品と判定する手法が挙げられる。また、この電流増加量ΔIBの大きさに基づいて、その蓄電デバイスの内部短絡の程度をランク分けする判定手法も挙げられる。
「予め充電された蓄電デバイス」としては、例えば、SOC70%以上に充電された蓄電デバイスであることが好ましく、更には、SOC90%以上に充電された蓄電デバイスであることが特に好ましい。このように充電状態を高く(デバイス電圧VBを高く)しておくと、電流検知工程で検知される電流IB或いは安定時電流値IBsの値も大きくなるため、判定工程で電流IBの経時変化または安定時電流値IBsに基づいた内部短絡の判定をより適切に行うことができる。
更に、上記の蓄電デバイスの短絡検査方法であって、前記電圧測定工程及び前記電流検知工程を、上記蓄電デバイスのデバイス温度TBが定温のデバイス検査温度TB1である条件下で行う蓄電デバイスの短絡検査方法とすると良い。
デバイス温度TBが変化すると、デバイス電圧VB、並びに、電流検知工程で検知される電流IB及び安定時電流値IBsも変化することが判ってきた。このため、電圧測定工程及び電流検知工程におけるデバイス温度TBの変動が大き過ぎると、判定工程で適切に内部短絡を判定できなくなるおそれがある。これに対し、上述の短絡検査方法では、電圧測定工程及び電流検知工程を定温のデバイス検査温度TB1下で行っているので、上述の問題が生じ得ず、判定工程で適切に内部短絡の判定を行うことができる。
なお、「定温のデバイス検査温度TB1」は、電圧測定工程及び電流検知工程を行ういずれの蓄電デバイスも、予め定めた温度(例えば20℃)であること、つまり蓄電デバイス相互に同じ温度である必要はない。即ち、蓄電デバイス毎に、例えば19℃、21℃など、異なるデバイス検査温度TB1であってもよいが、1つの蓄電デバイスについて見れば、電圧測定工程及び電流検知工程を通じて、一定のデバイス検査温度TB1であることが望ましい。
また、デバイス検査温度TB1として、電圧測定工程及び電流検知工程の間、厳密に同一温度を維持することは困難である。短絡検知の妨げとならない程度のデバイス温度の温度変動は許容されるから、「定温」とは、実質的に同一温度と見なし得る許容温度変動範囲DTB内のデバイス温度(例えば、20℃±0.5℃以内)であることをいう。
また、「デバイス検査温度TB1」は、0〜30℃の温度範囲から選択した温度の定温とするのが好ましい。常温或いは常温に近く、蓄電デバイスの冷却や加熱が不要、或いは冷却や加熱のための電力等のエネルギを抑制できるからである。
更に、上記の蓄電デバイスの短絡検査方法であって、前記電圧測定工程の前、並びに、上記電圧測定工程及び前記電流検知工程の途中にこれらの工程と並行して、上記蓄電デバイスのデバイス温度TB(n)(nは自然数)を、間隔を空けて複数回測定し、得られた上記デバイス温度TB(n)の変動が許容温度変動範囲DTB内の場合に、上記電圧測定工程及び上記電流検知工程を継続する、デバイス温度チェック工程を備える蓄電デバイスの短絡検査方法とすると良い。
上述の短絡検査方法は、上述のデバイス温度チェック工程を備えるため、デバイス温度TB(n)の変動が許容温度変動範囲DTB内に収まっている場合にのみ、電圧測定工程及び電流検知工程を継続できる。かくして、蓄電デバイスのデバイス温度TBを前述のように定温のデバイス検査温度TB1として、電圧測定工程及び電流検知工程を行うことができる。
更に、上記のいずれかに記載の蓄電デバイスの短絡検査方法であって、前記電圧測定工程の前、並びに、上記電圧測定工程及び前記電流検知工程の途中にこれらの工程と並行して、上記蓄電デバイスの環境温度TK(n)(nは自然数)を、間隔を空けて複数回測定し、得られた上記環境温度TK(n)の変動が許容温度変動範囲DTK内の場合に、上記電圧測定工程及び上記電流検知工程を継続する、環境温度チェック工程を備える蓄電デバイスの短絡検査方法とすると良い。
前述したように、電圧測定工程及び電流検知工程におけるデバイス温度TBの変動が大き過ぎると、判定工程で適切に内部短絡を判定できなくなるおそれがある。一方、環境温度TKは、デバイス温度TBほどには直接的な影響はない。しかし、環境温度TKに変動が生じると、遅れてデバイス温度TBにも変動が現れることから、環境温度TKの変動も判定工程での内部短絡の判定に影響を及ぼす場合がある。これに対し、上述の短絡検査方法では、上述の環境温度チェック工程を備え、環境温度TK(n)の変動が許容温度変動範囲DTK内の場合に、電圧測定工程及び電流検知工程を継続するので、その後の判定工程において適切に内部短絡の判定を行うことができる。
なお、環境温度TKは、いずれの蓄電デバイスについても、蓄電デバイス相互に同じ温度である必要はない。即ち、蓄電デバイス毎に、例えば19℃、21℃など、異なる環境温度TKであってもよく、その場合、蓄電デバイス毎に、環境温度TK(n)の変動が許容温度変動範囲DTK内であることが求められる。
更に、上記のいずれかに記載の蓄電デバイスの短絡検査方法であって、前記電圧測定工程の前に、予め定めた放置時間PTにわたり、予め充電された上記蓄電デバイスを40〜85℃の環境温度TK下に放置する高温エージング工程と、上記高温エージング工程の後、強制冷却または放置冷却により、上記蓄電デバイスのデバイス温度TBを前記デバイス検査温度TB1とする冷却工程と、を備える蓄電デバイスの短絡検査方法とすると良い。
電圧測定工程を行うにあたり、蓄電デバイスのデバイス電圧VBが不安定であるのは好ましくない。これに対し、上述の短絡検査方法では、電圧測定工程の前に、上述の高温エージング工程を備える。高温エージング工程を行うことにより、デバイス電圧VBの安定化を促進できるので、これを行わない場合に比して早期に、電圧測定工程及び電流検知工程を行うことができる。また、高温エージング工程の後に冷却工程を行って、蓄電デバイスのデバイス温度TBをデバイス検査温度TB1としているので、デバイス検査温度TB1とした蓄電デバイスについて電圧測定工程を行うことができる。
なお、高温エージング工程では、この高温エージング工程における環境温度TK及び高温放置時間の長さを、高温エージング工程及び冷却工程終了後の電池について、電流検知工程の期間中(例えば本実施形態では、3時間)に生じ得る電池電圧の変動の大きさが、許容できる範囲(例えば、電圧計の検知精度)以下になると見込まれる温度及び長さに設定すると良い。
更に、上記のいずれかに記載の蓄電デバイスの短絡検査方法であって、前記電圧測定工程の前に、予め充電された上記蓄電デバイスを、前記デバイス検査温度TB1と同じ環境温度TK(TK=TB1)下に放置して、上記蓄電デバイスの前記デバイス温度TBを上記デバイス検査温度TB1とする放置工程を備える蓄電デバイスの短絡検査方法とすると良い。
前述したように、電圧測定工程を行うにあたり、蓄電デバイスのデバイス電圧VBが不安定であるのは好ましくない。これに対し、上述の短絡検査方法では、電圧測定工程の前に放置工程を行うことにより、デバイス電圧VBを安定化できるので、デバイス電圧VBが安定となった蓄電デバイスについて電圧測定工程を行うことができる。また、放置工程で蓄電デバイスのデバイス温度TBをデバイス検査温度TB1としているので、デバイス検査温度TB1とした蓄電デバイスについて電圧測定工程を行うことができる。
なお、放置工程では、放置時間の長さを、放置工程終了後の電池について、電流検知工程の期間中(例えば本実施形態では、3時間)に生じ得る電池電圧の変動の大きさが、許容できる範囲(例えば、電圧計の検知精度)以下になると見込まれる長さに設定すると良い。
更に、上記のいずれかに記載の蓄電デバイスの短絡検査方法であって、前記電圧測定工程及び前記電流検知工程を、上記蓄電デバイスの正極板と負極板とこれらの間に介在するセパレータとを、上記蓄電デバイスの外部から予め定めた圧縮力で、上記セパレータの厚み方向に圧縮した状態で行う蓄電デバイスの短絡検査方法とすると良い。
電圧測定工程及び電流検知工程を行うにあたり、蓄電デバイスの正極板、セパレータ及び負極板を上述のように圧縮すると、正極板と負極板との間隔が狭くなって、正極板と負極板との間に存在している金属異物が、より確実に正極板や負極板に接触する。これにより、金属異物に起因した内部短絡によって蓄電デバイスに流れる電流IBをより適切に測定できる。
なお、「セパレータの厚み方向に圧縮する」とは、蓄電デバイスが、矩形状等の複数の正極板及び複数の負極板がそれぞれセパレータを介して積層された積層型の電極体を備える場合には、正極板、セパレータ及び負極板の積層方向に圧縮することを指す。また、蓄電デバイスが、帯状のセパレータを介して互いに重なった帯状の正極板及び帯状の負極板が扁平状の捲回された扁平状捲回型の電極体を備える場合には、帯状のセパレータの大半をその厚み方向に圧縮する、扁平捲回体の厚み方向への圧縮を指す。
また、他の態様は、組み立てた未充電の蓄電デバイスを予め定めた充電状態まで初充電して、予め充電された蓄電デバイスとする初充電工程と、上記のいずれか一項に記載の蓄電デバイスの短絡検査方法により、上記蓄電デバイスの内部短絡を検査する検査工程と、を備える蓄電デバイスの製造方法である。
上述の蓄電デバイスの製造方法では、初充電工程の後に、電圧測定工程及び電流検知工程を備える短絡検査方法による検査工程を行うので、蓄電デバイスの初期段階における短絡の有無や程度を適切に検査した蓄電デバイスを製造できる。
なお、「初充電工程」では、蓄電デバイスをSOC70%以上に充電するのが好ましく、更には、SOC90%以上に充電するのが特に好ましい。このように充電状態を高く(デバイス電圧VBを高く)すると、電流検知工程で検知される電流IB或いは安定時電流値IBsの値も大きくなるため、判定工程で電流IBの経時変化または安定時電流値IBsに基づいた内部短絡の判定をより適切に行うことができる。
実施形態1に係る電池の斜視図である。 実施形態1に係る電池の縦断面図である。 実施形態1及び変形形態1,2に係る電池の短絡検査方法を含む電池の製造方法のフローチャートである。 実施形態1に係り、電池を電池厚み方向に圧縮した様子を示す説明図である。 実施形態1に係る電池の短絡検査方法に関し、電池に外部電源を接続した状態の回路図である。 良品及び不良品の各電池について、電圧印加時間tと出力電圧VS、電池電圧VB及び電流IBとの関係を模式的に示すグラフである。 電池電圧VBと安定時電流値IBsとの関係を示すグラフである。 電池温度TBと安定時電流値IBsとの関係を示すグラフである。 回路抵抗RcがRc=2.5Ωの場合における、電圧印加時間tと電流IBとの関係を示すグラフである。 回路抵抗RcがRc=5.0Ωの場合における、電圧印加時間tと電流IBとの関係を示すグラフである。 実施形態2に係る電池の短絡検査方法のフローチャートである。
(実施形態1)
以下、本発明の第1の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態1に係る電池(蓄電デバイス)1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1の電池容量は、5.0Ahである。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、電解液17が収容されており、その一部は電極体20内に含浸されている。
このうち電池ケース10は、直方体箱状で金属(本実施形態1ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。
電極体20は、扁平状の捲回型電極体であり、軸線を横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状で樹脂製の多孔質膜からなる一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質、導電材及び結着剤からなる正極活物質層を帯状に設けてなる。本実施形態1では、正極活物質として、リチウム遷移金属複合酸化物、具体的には、リチウムニッケルコバルトマンガン系複合酸化物を用いている。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質、結着剤及び増粘剤からなる負極活物質層を帯状に設けてなる。本実施形態1では、負極活物質として、炭素材料、具体的には、黒鉛を用いている。
次いで、上記電池1の短絡検査方法を含む電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、未充電の電池(未充電の蓄電デバイス)1xを組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。別途、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設しておく(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、電解液17を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材15で注液孔13hを封止して、未充電の電池1xを完成させる。
次に、「初充電工程S2」を行うのに先立ち、組み立てた未充電の電池1xについて、正極板21、負極板31及びこれらの間に介在するセパレータ41,41(電極体20)を、電池1xの外部から予め定めた圧縮力で、セパレータ41の厚み方向SHに圧縮する。
この電池1の圧縮は、拘束治具100を用いて行う(図4参照)。この拘束治具100は、電池厚み方向DH(セパレータ41の厚み方向SH)に列置された複数の電池1について、その列置方向FHに圧縮力を加えた状態で拘束する治具である。
拘束治具100は、列置方向FHの両端に位置する第1エンドプレート110及び第2エンドプレート120と、これらの間を連結する複数の板状の連結部材130と、第1エンドプレート110と第2エンドプレート120との間に位置して列置方向FHに移動可能とされた可動プレート140と、可動プレート140を固定するボルト150と、複数のスペーサ160とを備える。第2エンドプレート120の中央には、これを厚み方向に貫通する雌ネジ孔121が形成されており、これにボルト150の雄ネジ部151が螺合する形態で、雌ネジ孔121内にボルト150が挿入されている。
この拘束治具100を用いた電池1の圧縮は、次のようにして行う。まず、第1エンドプレート110と可動プレート140との間に、複数の電池1とスペーサ160とを交互に電池厚み方向DH(列置方向FH)に列置する。その後、ボルト150の頭部153を回転させて、ボルト150の雄ネジ部151を第2エンドプレート120の雌ネジ孔121に螺合させつつ、ボルト150を第1列置方向FH1に移動させる。そして、ボルト150の雄ネジ部151の先端を可動プレート140に当接させて可動プレート140を固定する。この可動プレート140は、第1エンドプレート110との間で、列置された複数の電池1及びスペーサ160を挟み、各電池1を列置方向FHに所定圧力で押圧して、各電池1をそれぞれ圧縮する。これにより、電極体20がセパレータ41の厚み方向SH(電極体20の厚み方向)に圧縮される。
なお、本実施形態1では、以下に説明する「初充電工程S2」から「電流検知工程S6」までを、このように電池1x(電池1)を圧縮した状態で行う。
次に、「初充電工程S2」において、この組み立てた未充電の電池1xを、予め定めた充電状態まで初充電する。具体的には、電池1xに充放電装置(不図示)を接続して、環境温度TK=25℃下において、定電流定電圧(CCCV)充電により、SOC100%に相当する電池電圧(デバイス電圧)VB=4.1Vまで電池1xを初充電する。なお、本実施形態1では、1Cの定電流で電池電圧VB=4.1Vになるまで充電した後、充電電流値が1/10になるまでこの電池電圧VB=4.1Vを維持した。
ここで、図7に示すように、電池電圧VBが高いほど、後述する電流検知工程S6で検知される安定時電流値IBsの値も大きくなる。安定時電流値IBsが大きいと、後述する判定工程S9で安定時電流値IBsに基づいた内部短絡の判定をより適切に行うことができる。このような理由から、この初充電工程S2では、電池1xをSOC70%以上、更にはSOC90%以上に充電するのが好ましい。
次に、「高温エージング工程S3」において、充電された電池1を、環境温度TK=40〜85℃の温度下で、予め定めた放置時間PTにわたり放置して高温エージングする。具体的には、初充電後の電池1を、環境温度TK=60℃下において、端子開放した状態でPT=20時間にわたり放置して高温エージングする。
一般に、充電直後の電池1の電池電圧VBは不安定で、安定になるまで時間を要する。これに対し、この高温エージング工程S3を行うことにより、電池電圧VBの安定化を促進できるので、単に放置した場合に比して短時間で、後述する電圧測定工程S5において、安定となった電池電圧VB(検知前電池電圧VB1)を測定可能となる。
次に、「冷却工程S4」において、上記電池1を電池検査温度(デバイス検査温度)TB1(本実施形態1では、TB1=20℃)に等しい環境温度TK=20℃下に放置して、放置冷却することにより、電池1の電池温度(デバイス温度)TBを電池検査温度TB1=20℃とする。
高温エージング工程S3の後にこのような冷却工程S4を行って、電池1の電池温度TBを電池検査温度TB1=20℃とすることで、後述する電圧測定工程S5を電池検査温度TB1=20℃で行うことができる。また、電池検査温度TB1を、電池検査温度TB1を0〜30℃の温度範囲から選択した温度の定温(本実施形態1では、TB1=20℃)とすることにより、電池1の冷却や加熱が不要となる、或いは電池1の冷却や加熱のための電力等のエネルギを抑制できる。
次に、後述する「電圧測定工程S5」に先立ち、「デバイス温度チェック工程S7」において、電池1のn=1回目の電池温度TB(1)を測定する。このデバイス温度チェック工程S7では、電圧測定工程S5の前に電池温度TB(1)を測定するほか、後述する電圧測定工程S5及び電流検知工程S6の途中にこれらの工程と並行して定期的に電池温度TB(n)を測定する。具体的には、n=1回目の電池温度TB(1)を測定した以降は、電圧測定工程S5及び電流検知工程S6と並行して、1秒毎にn=2回目以降の電池温度TB(n)を測定する。なお、電池温度TB(n)は、温度センサSTを電池ケース10の所定位置に接触させて、温度検知装置STSで検知する(図5参照)。
更に、このデバイス温度チェック工程S7では、電池温度TB(1)に対する電池温度TB(n)の変動が許容温度変動範囲DTB内であるか否かをチェックする。具体的には、本実施形態1では、1回目に測定した電池温度TB(1)に対して2回目以降に測定した電池温度TB(n)が±0.5℃の範囲内に収まっているか否かをチェックする。そして、許容温度変動範囲DTB内であるときは、電圧測定工程S5或いは電流検知工程S6を継続する。一方、電池温度TB(n)の変動が許容温度変動範囲DTBを越えている場合、本実施形態1で言えば、1回目に測定した電池温度TB(1)に対して2回目以降に測定した電池温度TB(n)が±0.5℃の範囲を越えた場合には、電圧測定工程S5或いは電流検知工程S6の実行を中止し、この短絡検査を終了する。何らかの理由で電池温度TBが変動したため、適切に短絡検査を行えないからである。
なお、電池温度TBが変化すると、電圧測定工程S5で検知される検知前電池電圧(検知前デバイス電圧)VB1などのデバイス電圧VB、並びに、電流検知工程S6で検知される電流IB及び安定時電流値IBsも変化することが判っている。例えば、図8に示すように、電池温度TBが高いほど、安定時電流値IBsが大きくなる。このため、電圧測定工程S5及び電流検知工程S6における電池温度TBの変動が大き過ぎると、後述する判定工程S9で適切に内部短絡を判定できなくなるおそれがある。これに対し、本実施形態1では、前述のデバイス温度チェック工程S7を備えるので、上述の問題が生じ得ず、判定工程S9で適切に内部短絡の判定を行うことができる。
一方、「電圧測定工程S5」では、まず、図5に示すように、電池1に外部電源EPを接続し、電池1の検知前電池電圧(検知前デバイス電圧)VB1を測定する。具体的には、外部電源EPの一対のプローブP1,P2を電池1の正極端子部材50及び負極端子部材60にそれぞれ接触させる。なお、この接触状態を維持して(プローブP1,P2を接続し直すことなく)、この電圧測定工程S5から後述する電流検知工程S6までを行う。プローブP1,P2の接触状態の違いにより、プローブP1,P2と正極端子部材50及び負極端子部材60との間にそれぞれ生じる接触抵抗R1,R2の大きさが変動するのを避けるためである。
なお、図5において、配線抵抗Rwは、外部電源EP内、及び、外部電源EPからプローブP1,P2までに分布する配線抵抗を示す。また、接触抵抗R1は、外部電源EPの一方のプローブP1と電池1の正極端子部材50との接触抵抗であり、接触抵抗R2は、外部電源EPの他方のプローブP2と電池1の負極端子部材60との接触抵抗である。また、電池抵抗Rsは、電池1の直流抵抗であり、短絡抵抗Rpは、電池1の内部短絡によって生じる抵抗である。また、電流IBは、外部電源EPから電池1に流れる電流であり、電流IDは、自己放電に伴って電池1内を流れる自己放電電流である。また、外部電源EPは、自身の直流電源EPEが発生する出力電圧VSを可変かつ高精度に制御できるほか、直流電源EPEから外部に流れ出る電流IBを高精度に計測可能に構成された精密直流電源である。
環境温度TK=20℃下において、電池1に外部電源EPを接続した後、電流IB=0の条件下で、外部電源EPに含まれる電圧計EPVにより電池1の電池電圧VB、即ち検知前電池電圧VB1(開放電圧)を測定する。本実施形態1では、検知前電池電圧VB1として、4.0V近傍の値が計測される。なお、この外部電源EPは、電池電圧VBを測定可能な電圧計EPVのほか、外部電源EPから電池1に流れる電流IBを測定可能な電流計EPIも有している。
次に、「電流検知工程S6」において、外部電源EPの直流電源EPEを用いて、前述の電圧測定工程S5で測定された検知前電池電圧VB1に等しい出力電圧VS(VS=VB1)を電池1に印加し続けて、外部電源EPから電池1に流れる電流IBの安定時電流値IBsを検知する。本実施形態1では、環境温度TK=20℃下において、外部電源EPから検知前電池電圧VB1に等しい出力電圧VSを電池1に、電圧印加時間t=3.0時間印加し続けた時点(t=3.0h)の電流IBを検知して、安定時電流値IBsとする。
ここで、良品及び不良品の各電池1について、電流検知工程S6における電圧印加時間tと、出力電圧VS、電池電圧VB及び電流IBとの関係を図6に示す。
外部電源EPから電池1に印加する出力電圧VSは、電圧印加時間tの経過に拘わらず、電圧測定工程S5で測定された検知前電池電圧VB1に等しい大きさにされる。
一方、電池電圧VBは、電流検知工程S6開始時の検知前電池電圧VB1から、電圧印加時間tの経過と共に徐々に低下した後、電圧印加時間t=ta以降は、一定の値(安定時電池電圧VB2)となる。但し、良品の電池1に比べて不良品の電池1は、電池電圧VBが大きく低下するため、安定時電池電圧VB2が低い値となる。
このように電池電圧VBが変化する理由は、以下である。電池1では、自己放電により電池1内を電流IDが流れることによって、電池電圧VBが徐々に低下していく。その際、不良品の電池1は、良品の電池1に比べて自己放電に伴う電流IDが大きいため、電池電圧VBも大きく低下していく。
一方、電池電圧VBが出力電圧VSよりも低く(VS<VB)なると、外部電源EPから電池1に向けて電圧差ΔV=VS−VBの大きさに応じた電流IBが流れて、電池1が充電される。電圧差ΔV=VS−VBが小さいうちは、電流IBも小さいため、外部電源EPから電池1に流れ込む電流IBよりも、電池1内を流れる自己放電による電流IDが大きく、電池電圧VBが徐々に低下する。しかし、電池電圧VBが更に低下し、電流IBが増加して電流IDの大きさに等しく(IB=ID)なると(図6中、電圧印加時間t=taにおいて)、電池電圧VBの低下が止まり、これ以降、電池電圧VBは安定時電池電圧VB2に維持される。
他方、外部電源EPから電池1に流れる電流IBは、0(零)から電圧印加時間tの経過と共に徐々に増加するが、電圧印加時間t=ta以降は、一定の値(安定時電流値IBs)となる。このように電流IBが変化する理由は、以下である。
まず、電圧印加の開始時t=0は、電池電圧VBと出力電圧VSの大きさが等しい(VS=VB)ため、外部電源EPから電池1に向けて電流IBは流れない(IB=0)。しかし、自己放電により電池電圧VBが低下して、電池電圧VBが出力電圧VSよりも低く(VS<VB)なると、その電圧差ΔV=VS−VBの大きさに応じた電流IBが外部電源EPから電池1に流れる。その際、不良品の電池1は、良品の電池1に比べて自己放電に伴う電流IDが大きく、電池電圧VBが大きく低下するため、外部電源EPから電池1に流れる電流IBも大きくなる。但し、電圧印加時間t=ta以降は、電池電圧VBが安定時電池電圧VB2の一定値となるため、電流IBも安定時電流値IBsの一定値となって安定化する。
また、回路抵抗Rcが大きいほど、外部電源EPから電池1に流れる電流IBが安定時電流値IBsとなるまでに掛かる電圧印加時間taが長くなることが判っている(図9及び図10参照)。なお、回路抵抗Rcとは、図5に示した前述の配線抵抗Rwと、接触抵抗R1,R2と、電池抵抗(電池1の直流抵抗)Rsとの和(Rc=Rw+R1+R2+Rs)である。
同じ電池1を測定した場合でも、接触抵抗R1,R2が低く、例えば回路抵抗RcがRc=2.5Ωであった場合には、図9に示すように、電圧印加時間tが約2時間経過した以降(t≧2h)には、電流IBは安定した安定時電流値IBsとなる。一方、例えば回路抵抗Rcが5.0Ωであった場合には、図10に示すように、電圧印加時間tが約3時間経過した以降(t≧3h)には、電流IBは安定した安定時電流値IBsとなる。
なお、本発明者の調査により、本実施形態1の電池1については、回路抵抗Rcは最大でRc=5.0Ωであることが判っている。従って、少なくとも電圧印加時間t=3h経過以降は、電流IBは安定時電流値IBsとなると見込まれるので、前述のように、電流検知工程S6における安定時電流値IBsの検知タイミングを3.0時間としている。
なお、この電流検知工程S6を終えた後に、拘束治具100による電池1の圧縮を解除する。
次に、「判定工程S9」において、電流検知工程S6で検知した安定時電流値IBsの大きさに基づいて、電池1の内部短絡を判定する。具体的には、検査した電池1の安定時電流値IBsが基準電流値IK(図6参照)よりも大きい場合に(IBs>IK)、当該電池1を不良品と判定し、当該電池1を除去する。一方、安定時電流値IBsが基準電流値IK以下の場合に(IBs≦IK)、その電池1を良品と判定する。かくして、電池1が完成する。
なお、本実施形態1では、高温エージング工程S3から判定工程S9までの各工程が、電池1の製造において、電池1の内部短絡を検査する前述の「検査工程」に該当する。
以上で説明したように、上述した電池1の短絡検査方法では、前述の電圧測定工程S5、電流検知工程S6及び判定工程S9を行い、電圧低下量ΔVaではなく、安定時電流値IBsに基づいて、電池1の内部短絡を判定している。かくして、外部電源EPから電池1に流れる電流IBを用いる新たな手法によって、電池1の内部短絡を検査できる。
しかも、従来の電圧低下量ΔVaに基づいて内部短絡を判定する短絡検査では、適切な大きさの電圧低下量ΔVaを得るのに数日以上の期間が必要であったのに対し、本実施形態1では、安定時電流値IBsを得るのに3時間程度しか掛からない。このため、電池1の短絡検査時間を短くし、電池1の製造時間を短くできる。
前述したように、検知前電池電圧VB1及び安定時電流値IBsは、電池温度TBの違いによって異なる値になるため、電圧測定工程S5及び電流検知工程S6における電池温度TBの変動が大き過ぎると、判定工程S9で適切に内部短絡を判定できなくなるおそれがある。これに対し、本実施形態1の短絡検査方法では、電圧測定工程S5及び電流検知工程S6を定温の電池検査温度TB1(本実施形態1では、TB1=20℃)下で行っているので、上述の問題が生じ得ず、判定工程S9で適切に内部短絡の判定を行うことができる。
更に、本実施形態1では、デバイス温度チェック工程S7を備えるため、デバイス温度TB(n)の変動が許容温度変動範囲DTB内に収まっている場合にのみ、電圧測定工程S5及び電流検知工程S6を継続できる。かくして、電池温度TBを定温の電池検査温度TB1として、電圧測定工程S5及び電流検知工程S6を行うことができる。
また、電圧測定工程S5を行うにあたり、電池1の電池電圧VBが不安定であるのは好ましくない。これに対し、本実施形態1では、電圧測定工程S5の前に高温エージング工程S3を行うことにより、電池電圧VBの安定化を促進できるので、これを行わない場合に比して早期に、電圧測定工程S5及び電流検知工程S6を行うことができる。また、高温エージング工程S3の後に冷却工程S4を行って、電池温度TBを電池検査温度TB1としているので、電池検査温度TB1とした電池1について電圧測定工程S5を行うことができる。
また、本実施形態1では、電池1の正極板21、セパレータ41,41及び負極板31をセパレータ41の厚み方向SHに圧縮しているので、正極板21と負極板31との間隔が狭くなって、正極板21と負極板31との間に存在している金属異物が、より確実に正極板21や負極板31に接触する。これにより、金属異物に起因した内部短絡によって電池1に流れる電流IBをより適切に測定できる。
また、本実施形態1の電池1の製造方法は、前述のように、未充電の電池1xを初充電する初充電工程S2と、電池1の内部短絡を検査する検査工程S3〜S9とを備える。このように、初充電工程S2の後に検査工程S3〜S9を行うことで、電池1の初期段階における内部短絡を適切に検査した電池1を製造できる
(変形形態1)
次いで、上記実施形態1の第1の変形形態について説明する。実施形態1では、電流検知工程S6において、外部電源EPから電池1に流れる電流IBの安定時電流値IBsを検知し、判定工程S9で、この安定時電流値IBsに基づいて電池1の内部短絡を判定した。これに対し、本変形形態1では、外部電源EPから電池1に流れる電流IBの経時変化に基づいて、電池1の内部短絡を判定する。
本変形形態1では、電流検知工程S6において、外部電源EPから電池1に流れる電流IBの安定時電流値IBsを検知するのではなく、電流IBの経時変化を検知する。具体的には、電流IBの経時変化を検知して、図9に示すように、電圧印加時間t=0.5時間からt=1.0時間までの所定の検知期間QTに増加した電流IBの電流増加量ΔIBを求める。そして、判定工程S9において、この電流増加量ΔIBが基準増加量ΔIBkよりも大きい場合に(ΔIB>ΔIBk)、その電池1を不良品と判定し、電流増加量ΔIBが基準増加量ΔIBk以下である場合に(ΔIB≦ΔIBk)、その電池1を良品と判定する。
このように 外部電源EPから電池1に流れる電流IBの経時変化に基づいて、電池1の内部短絡を判定することもできる。かくして、本変形形態1の短絡検査方法も、電流IBを用いる新たな手法によって、電池1の内部短絡を検査できる。加えて、本変形形態1では、前述の電流増加量ΔIBを求めるのに、電圧印加時間t=1.0時間まで出力電圧VSを印加すれば足りるので、電池1の短絡検査時間を更に短くし、電池1の製造時間を更に短くできる。
(変形形態2)
次いで、実施形態1の第2の変形形態について説明する(図3参照)。実施形態1に係る電池1の短絡検査方法及び電池1の製造方法では、電池1に接して電池温度TBを検知する温度センサST及び温度検知装置STSを用い、電圧測定工程S5の前、並びに、電圧測定工程S5及び電流検知工程S6の途中にこれらと並行して、デバイス温度チェック工程S7を行った。そして、得られた電池温度TB(n)の変動に基づいて、電圧測定工程S5及び電流検知工程S6を継続するか否かを判断した。
これに対し、本変形形態2では、デバイス温度チェック工程S7を行う代わりに、「環境温度チェック工程S8」を行って、得られた環境温度TK(n)の変動に基づいて、電圧測定工程S5及び電流検知工程S6を継続するか否かを判断する。
具体的には、電圧測定工程S5に先立ち、図5に破線で示す、電池1の周囲の環境温度TKを検知するサーミスタからなる温度センサKT及び温度検知装置KTSを用いて、環境温度チェック工程S8において、n=1回目の環境温度TK(1)を測定する。その後は、電圧測定工程S5及び電流検知工程S6と並行して、1秒毎にn=2回目以降の環境温度TK(n)を測定する。
更に、この環境温度チェック工程S8では、環境温度TK(1)に対する環境温度TK(n)の変動が許容温度変動範囲DTK内であるか否かをチェックする。具体的には、本変形形態2では、1回目に測定した環境温度TK(1)に対して2回目以降に測定した環境温度TK(n)が±0.5℃の範囲内に収まっているか否かをチェックする。そして、許容温度変動範囲DTK内であるときは、電圧測定工程S5或いは電流検知工程S6を継続する。一方、許容温度変動範囲DTKを越えた場合には、電圧測定工程S5或いは電流検知工程S6の実行を中止し、この短絡検査を終了する。
前述したように、電圧測定工程S5及び電流検知工程S6における電池温度TBの変動が大き過ぎると、判定工程S9で適切に内部短絡を判定できなくなるおそれがある。一方、環境温度TKは、電池温度TBほどには直接的な影響はない。しかし、環境温度TKに変動が生じると、遅れて電池温度TBにも変動が現れることから、環境温度TKの変動も判定工程S9での内部短絡の判定に影響を及ぼす場合がある。これに対し、本変形形態2の短絡検査方法では、環境温度チェック工程S8を備え、環境温度TK(n)の変動が許容温度変動範囲DTK内の場合に、電圧測定工程S5及び電流検知工程S6を継続するので、その後の判定工程S9において適切に内部短絡の判定を行うことができる。
(実施形態2)
次いで、第2の実施形態について説明する(図11参照)。実施形態1では、電池1の製造過程において電池1の短絡検査を行ったのに対し、本実施形態2では、製造後に市場に置かれた以降の使用済の電池1について短絡検査を行う点が異なる。また、実施形態1では、高温エージング工程S3及び冷却工程S4を行ったのに対し、本実施形態2では、これらの工程の代わりに放置工程S12を行う点も異なる。なお、実施形態1と同様な部分の説明は、省略または簡略化する。
本実施形態2では、使用済みの電池1を実施形態1と同様に拘束した後、まず「充電工程S11」において、この電池1を予め定めた充電状態まで充電する。具体的には、実施形態1の初充電工程S2と同様に、電池1に充放電装置(不図示)を接続して、環境温度TK=25℃下において、定電流定電圧(CCCV)充電により、SOC100%に相当する電池電圧VB=4.1Vまで、電池1を充電する。
その後、「放置工程S12」において、上記電池1を、電池検査温度TB1(本実施形態2では、TB1=20℃)と同じ環境温度TK=20℃下で放置(本実施形態2では6時間)し、かつ、電池1の電池温度TBを電池検査温度TB1とする。このような放置工程S12により放置期間を確保することにより、電池電圧VBを安定化できるので、電池電圧VBが安定となった電池1について電圧測定工程S5を行うことができる。また、電池温度TBを電池検査温度TB1としているので、電池検査温度TB1とした電池1について電圧測定工程S5を行うことができる。
その後は、実施形態1と同様に、デバイス温度チェック工程S7(または環境温度チェック工程S8)、電圧測定工程S5、電流検知工程S6及び判定工程S9をそれぞれ行う。かくして、電池1の内部短絡検査が終了する。
本実施形態2の電池1の短絡検査方法も、電圧測定工程S5、電流検知工程S6及び判定工程S9を行い、安定時電流値IBsに基づいて、電池1の内部短絡を判定している。かくして、外部電源EPから電池1に流れる電流IBを用いる新たな手法によって、電池1の内部短絡を検査できる。その他、実施形態1または変形形態1,2と同様な部分は、実施形態1または変形形態1,2と同様な作用効果を奏する。
以上において、本発明を実施形態1,2及び変形形態1,2に即して説明したが、本発明は上述の実施形態1,2及び変形形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,2及び変形形態1,2では、判定工程S9において、安定時電流値IBsあるいは電流増加量ΔIBの大きさに基づいて、検査した電池1が良品か不良品かを判定したが、判定手法はこれに限られない。例えば、判定工程S9において、安定時電流値IBsあるいは電流増加量ΔIBの大きさに基づいて、検査した電池1の内部短絡の程度についてランク分けしてもよい。具体的には、電池1を良品と不良品に分けるだけでなく、安定時電流値IBsあるいは電流増加量ΔIBの大きさに基づいて、良品の電池を更に複数のランクに分けることもできる。
また、実施形態1,2等では、デバイス温度チェック工程S7及び環境温度チェック工程S8のいずれか一方の工程のみを行っているが、デバイス温度チェック工程S7及び環境温度チェック工程S8の両方の工程を行うようにしてもよい。
また、実施形態1,2等では、内部短絡の検査対象となる電池として、扁平状捲回型の電極体20を備える電池1を例示したが、これに限られない。積層型の電極体を備える電池を、前述の内部短絡の検査対象とすることもできる。積層型の電極体の場合、正極板、セパレータ及び負極板を圧縮する際には、電池を正極板、セパレータ及び負極板の積層方向に圧縮する。
1 電池(蓄電デバイス)
1x 未充電の電池(未充電の蓄電デバイス)
20 電極体
21 正極板
31 負極板
41 セパレータ
SH (セパレータの)厚み方向
S1 組立工程
S2 初充電工程
S3 高温エージング工程
S4 冷却工程
S5 電圧測定工程
S6 電流検知工程
S7 デバイス温度チェック工程
S8 環境温度チェック工程
S9 判定工程
S11 充電工程
S12 放置工程
TB 電池温度(デバイス温度)
TB1 電池検査温度(デバイス検査温度)
TK 環境温度
DTB (デバイス温度の)許容温度変動範囲
DTK (環境温度の)許容温度変動範囲
PT (高温エージング工程における)放置時間
VB 電池電圧(デバイス電圧)
VB1 検知前電池電圧(検知前デバイス電圧)
EP 外部電源
VS 出力電圧
IB 電流
IBs 安定時電流値

Claims (8)

  1. 蓄電デバイスの内部短絡を検査する蓄電デバイスの短絡検査方法であって、
    予め充電された上記蓄電デバイスの検知前デバイス電圧VB1を測定する電圧測定工程と、
    外部電源から、上記検知前デバイス電圧VB1に等しい出力電圧VS(VS=VB1)を、上記蓄電デバイスに印加し続けて、上記外部電源から上記蓄電デバイスに流れる電流IBの経時変化または安定時電流値IBsを検知する電流検知工程と、
    検知した上記電流IBの経時変化または上記安定時電流値IBsに基づいて、上記蓄電デバイスの内部短絡を判定する判定工程と、を備え
    上記電圧測定工程は、
    上記外部電源の一対のプローブを上記蓄電デバイスの一対の端子部材にそれぞれ接触させ、上記電流IB=0の条件下で、上記蓄電デバイスの上記検知前デバイス電圧VB1を測定し、
    上記電流検知工程は、
    上記電圧測定工程における、上記外部電源の上記一対のプローブと上記蓄電デバイスの上記一対の端子部材との接触状態を維持して、
    0から電圧印加時間の経過と共に徐々に増加し、その後に一定の上記安定時電流値IBsとなる上記電流IBの経時変化または上記安定時電流値IBsを検知する
    蓄電デバイスの短絡検査方法。
  2. 請求項1に記載の蓄電デバイスの短絡検査方法であって、
    前記電圧測定工程及び前記電流検知工程を、上記蓄電デバイスのデバイス温度TBが定温のデバイス検査温度TB1である条件下で行う
    蓄電デバイスの短絡検査方法。
  3. 請求項2に記載の蓄電デバイスの短絡検査方法であって、
    前記電圧測定工程の前、並びに、上記電圧測定工程及び前記電流検知工程の途中にこれらの工程と並行して、上記蓄電デバイスのデバイス温度TB(n)(nは自然数)を、間隔を空けて複数回測定し、得られた上記デバイス温度TB(n)の変動が許容温度変動範囲DTB内の場合に、上記電圧測定工程及び上記電流検知工程を継続する、デバイス温度チェック工程を備える
    蓄電デバイスの短絡検査方法。
  4. 請求項2または請求項3に記載の蓄電デバイスの短絡検査方法であって、
    前記電圧測定工程の前、並びに、上記電圧測定工程及び前記電流検知工程の途中にこれらの工程と並行して、上記蓄電デバイスの環境温度TK(n)(nは自然数)を、間隔を空けて複数回測定し、得られた上記環境温度TK(n)の変動が許容温度変動範囲DTK内の場合に、上記電圧測定工程及び上記電流検知工程を継続する、環境温度チェック工程を備える
    蓄電デバイスの短絡検査方法。
  5. 請求項2〜請求項4のいずれか一項に記載の蓄電デバイスの短絡検査方法であって、
    前記電圧測定工程の前に、予め定めた放置時間PTにわたり、予め充電された上記蓄電デバイスを40〜85℃の環境温度TK下に放置する高温エージング工程と、
    上記高温エージング工程の後、強制冷却または放置冷却により、上記蓄電デバイスのデバイス温度TBを前記デバイス検査温度TB1とする冷却工程と、を備える
    蓄電デバイスの短絡検査方法。
  6. 請求項2〜請求項4のいずれか一項に記載の蓄電デバイスの短絡検査方法であって、
    前記電圧測定工程の前に、予め充電された上記蓄電デバイスを、前記デバイス検査温度TB1と同じ環境温度TK(TK=TB1)下に放置して、上記蓄電デバイスの前記デバイス温度TBを上記デバイス検査温度TB1とする放置工程を備える
    蓄電デバイスの短絡検査方法。
  7. 請求項1〜請求項6のいずれか一項に記載の蓄電デバイスの短絡検査方法であって、
    前記電圧測定工程及び前記電流検知工程を、
    上記蓄電デバイスの正極板と負極板とこれらの間に介在するセパレータとを、上記蓄電デバイスの外部から予め定めた圧縮力で、上記セパレータの厚み方向に圧縮した状態で
    行う
    蓄電デバイスの短絡検査方法。
  8. 組み立てた未充電の蓄電デバイスを予め定めた充電状態まで初充電して、予め充電された蓄電デバイスとする初充電工程と、
    請求項1〜請求項7のいずれか一項に記載の蓄電デバイスの短絡検査方法により、上記蓄電デバイスの短絡検査を検査する検査工程と、を備える
    蓄電デバイスの製造方法。
JP2017134754A 2017-07-10 2017-07-10 蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法 Active JP6885236B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017134754A JP6885236B2 (ja) 2017-07-10 2017-07-10 蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法
US16/013,421 US10656212B2 (en) 2017-07-10 2018-06-20 Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
KR1020180071870A KR102106949B1 (ko) 2017-07-10 2018-06-22 축전 디바이스의 단락 검사 방법 및 축전 디바이스의 제조 방법
EP18179889.3A EP3428670A1 (en) 2017-07-10 2018-06-26 Method of inspecting electric power storage device for short circuit and method of manufacturing electric power storage device
CN201810674140.5A CN109244573B (zh) 2017-07-10 2018-06-27 蓄电设备的短路检查方法和蓄电设备的制造方法
RU2018123497A RU2693857C1 (ru) 2017-07-10 2018-06-28 Способ осмотра устройства аккумулирования электроэнергии на наличие короткого замыкания и способ изготовления устройства аккумулирования электроэнергии
BR102018013695-0A BR102018013695A2 (pt) 2017-07-10 2018-07-04 método de inspeção de dispositivo de armazenamento de energia elétrica para curto-circuito e método de fabricação de dispositivo de armazenamento de energia elétrica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017134754A JP6885236B2 (ja) 2017-07-10 2017-07-10 蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2019016558A JP2019016558A (ja) 2019-01-31
JP6885236B2 true JP6885236B2 (ja) 2021-06-09

Family

ID=62791621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134754A Active JP6885236B2 (ja) 2017-07-10 2017-07-10 蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法

Country Status (7)

Country Link
US (1) US10656212B2 (ja)
EP (1) EP3428670A1 (ja)
JP (1) JP6885236B2 (ja)
KR (1) KR102106949B1 (ja)
CN (1) CN109244573B (ja)
BR (1) BR102018013695A2 (ja)
RU (1) RU2693857C1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD773989S1 (en) * 2013-09-26 2016-12-13 Altria Client Services Llc Electronic smoking article charger
JP6907790B2 (ja) * 2017-08-07 2021-07-21 トヨタ自動車株式会社 蓄電デバイスの検査方法および製造方法
WO2019058613A1 (ja) * 2017-09-21 2019-03-28 古河電気工業株式会社 充電可能電池短絡予測装置および充電可能電池短絡予測方法
JP7000847B2 (ja) * 2017-12-25 2022-01-19 トヨタ自動車株式会社 蓄電デバイスの検査方法および製造方法
JP7040369B2 (ja) * 2018-09-07 2022-03-23 トヨタ自動車株式会社 蓄電デバイスの検査方法
JP6951608B2 (ja) * 2019-03-12 2021-10-20 株式会社東芝 拘束冶具及び電池の製造方法
JP7099381B2 (ja) * 2019-03-18 2022-07-12 トヨタ自動車株式会社 電池の製造方法
JP7099382B2 (ja) * 2019-03-20 2022-07-12 トヨタ自動車株式会社 電池の製造方法
CN109884542B (zh) * 2019-04-08 2021-01-05 洛阳理工学院 磷酸铁锂动力电池并联模组内微短路故障单体的检测方法
KR20200129518A (ko) * 2019-05-09 2020-11-18 주식회사 엘지화학 이차전지의 제조방법
JP2020201081A (ja) * 2019-06-07 2020-12-17 本田技研工業株式会社 リチウムイオン二次電池の微小短絡判定方法
JP7218684B2 (ja) 2019-07-11 2023-02-07 トヨタ自動車株式会社 蓄電デバイスの検査方法および製造方法
JP7172891B2 (ja) * 2019-07-15 2022-11-16 トヨタ自動車株式会社 二次電池の製造方法
JP7074731B2 (ja) * 2019-08-29 2022-05-24 プライムアースEvエナジー株式会社 蓄電デバイスの検査方法及び蓄電デバイスの製造方法
JP7271382B2 (ja) * 2019-09-25 2023-05-11 プライムアースEvエナジー株式会社 蓄電デバイスの検査装置、検査方法及び製造方法
JP2021089207A (ja) * 2019-12-04 2021-06-10 トヨタ自動車株式会社 蓄電デバイスの検査方法および製造方法
JP7146358B2 (ja) 2020-08-07 2022-10-04 プライムプラネットエナジー&ソリューションズ株式会社 二次電池の絶縁検査方法
JP7278312B2 (ja) * 2021-01-25 2023-05-19 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスの自己放電検査方法及び蓄電デバイスの製造方法
JP7209450B2 (ja) 2021-02-15 2023-01-20 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスの自己放電検査方法及び蓄電デバイスの製造方法
JP7267331B2 (ja) * 2021-02-26 2023-05-01 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスの自己放電検査方法及び蓄電デバイスの製造方法
JP7350796B2 (ja) 2021-02-26 2023-09-26 プライムプラネットエナジー&ソリューションズ株式会社 蓄電デバイスのデバイス電圧調整方法
CN113533966B (zh) * 2021-07-21 2024-04-09 欣旺达动力科技股份有限公司 电池内短路阻值的测量方法、装置与计算机可读存储介质
FR3124271A1 (fr) * 2022-07-19 2022-12-23 Verkor Appareil et procédé d’inspection d’une cellule secondaire
FR3124270A1 (fr) * 2022-07-19 2022-12-23 Verkor Appareil et procédé d’inspection d’une cellule secondaire
CN116830355A (zh) * 2022-09-07 2023-09-29 宁德时代新能源科技股份有限公司 电芯自放电检测方法、装置、设备、存储介质和程序产品
CN116754947A (zh) * 2023-08-21 2023-09-15 宁德时代新能源科技股份有限公司 电池稳定性评估方法、装置、设备、存储介质及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1417079A1 (ru) * 1986-09-10 1988-08-15 Специальное Проектно-Конструкторское Бюро Технологического Оборудования Для Промышленных Источников Тока Устройство дл проверки качества моноблока аккумул торной батареи
US7239147B2 (en) * 2002-08-29 2007-07-03 Matsushita Electric Industrial Co., Ltd. Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
RU2326473C1 (ru) 2006-12-18 2008-06-10 Виктор Александрович Дзензерский Электрический способ контроля качества аккумуляторных батарей
JP5349810B2 (ja) 2007-02-08 2013-11-20 プライムアースEvエナジー株式会社 蓄電装置の異常検出装置及び方法並びにプログラム
JP2008243440A (ja) * 2007-03-26 2008-10-09 Nissan Motor Co Ltd 二次電池の異常検出装置および電池の異常検出方法
JP4995643B2 (ja) * 2007-06-11 2012-08-08 パナソニック株式会社 非水系電解質二次電池の内部短絡検知方法および装置
JP2009049005A (ja) * 2007-07-26 2009-03-05 Panasonic Corp 電池の内部短絡検知装置および方法、電池パック並びに電子機器システム
JP2009032506A (ja) * 2007-07-26 2009-02-12 Panasonic Corp 非水系電解質二次電池の内部短絡検知方法および装置
JP2010032346A (ja) * 2008-07-29 2010-02-12 Panasonic Corp 二次電池用電極群の検査方法
JP2010060300A (ja) * 2008-09-01 2010-03-18 Panasonic Corp 2次電池の充電状態検出方法、充電状態検出装置およびこの装置を備えた機器
JP2010153275A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp 2次電池の良否判定方法および製造方法
JP2011069775A (ja) 2009-09-28 2011-04-07 Nissan Motor Co Ltd 二次電池検査方法
JP2013134843A (ja) * 2011-12-26 2013-07-08 Panasonic Corp 二次電池の検査方法
JP5662968B2 (ja) 2012-06-19 2015-02-04 株式会社日立製作所 二次電池の検査システム、充放電機、及び検査方法
JP5692183B2 (ja) * 2012-07-27 2015-04-01 トヨタ自動車株式会社 二次電池の出荷前検査方法
JP6029002B2 (ja) * 2012-11-13 2016-11-24 トヨタ自動車株式会社 二次電池とその製造方法
JP2014222603A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 電池の検査方法
WO2015029831A1 (ja) * 2013-08-30 2015-03-05 日本碍子株式会社 二次電池システムの異常発生部位を特定する装置、方法及びプログラム
KR101708885B1 (ko) 2013-10-14 2017-02-21 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 상태 추정 장치 및 그 방법
JP5705382B1 (ja) * 2013-11-22 2015-04-22 三菱電機株式会社 絶縁検出器及び電気機器
JP6252439B2 (ja) * 2014-11-07 2017-12-27 トヨタ自動車株式会社 二次電池の異常検出方法及び異常検出装置

Also Published As

Publication number Publication date
EP3428670A1 (en) 2019-01-16
KR102106949B1 (ko) 2020-05-06
CN109244573B (zh) 2021-11-05
RU2693857C1 (ru) 2019-07-05
CN109244573A (zh) 2019-01-18
US10656212B2 (en) 2020-05-19
US20190011502A1 (en) 2019-01-10
BR102018013695A2 (pt) 2019-01-22
JP2019016558A (ja) 2019-01-31
KR20190006436A (ko) 2019-01-18

Similar Documents

Publication Publication Date Title
JP6885236B2 (ja) 蓄電デバイスの短絡検査方法及び蓄電デバイスの製造方法
JP6973045B2 (ja) 蓄電デバイスの自己放電検査方法
JP6794974B2 (ja) 蓄電デバイスの自己放電検査方法
CN110850306B (zh) 蓄电设备的检查方法和制造方法
US10847849B2 (en) Inspection method of electrical storage device and manufacturing method thereof
KR101574969B1 (ko) 충방전기의 충전 전류 정밀도 검출 장치
US11221371B2 (en) Power storage device inspecting method and power storage device manufacturing method
JP7074731B2 (ja) 蓄電デバイスの検査方法及び蓄電デバイスの製造方法
JP7271382B2 (ja) 蓄電デバイスの検査装置、検査方法及び製造方法
JP7267331B2 (ja) 蓄電デバイスの自己放電検査方法及び蓄電デバイスの製造方法
KR101398477B1 (ko) 충방전기의 충전 전압 정밀도 검출 장치
JP7350796B2 (ja) 蓄電デバイスのデバイス電圧調整方法
JP6743758B2 (ja) 電池の製造方法
CN112213650B (zh) 蓄电设备的检查方法及制造方法
US11609260B2 (en) Method for inspecting insulation of a secondary battery
US20210173013A1 (en) Test method and manufacturing method for electrical storage device
JP2018055878A (ja) 電池の製造方法
JP2017199577A (ja) 二次電池の製造方法
JP2024045814A (ja) 二次電池の自己放電検査方法、及び、二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151