JP2024045814A - 二次電池の自己放電検査方法、及び、二次電池の製造方法 - Google Patents

二次電池の自己放電検査方法、及び、二次電池の製造方法 Download PDF

Info

Publication number
JP2024045814A
JP2024045814A JP2022150810A JP2022150810A JP2024045814A JP 2024045814 A JP2024045814 A JP 2024045814A JP 2022150810 A JP2022150810 A JP 2022150810A JP 2022150810 A JP2022150810 A JP 2022150810A JP 2024045814 A JP2024045814 A JP 2024045814A
Authority
JP
Japan
Prior art keywords
battery
voltage
self
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022150810A
Other languages
English (en)
Inventor
博昭 池田
俊樹 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Primearth EV Energy Co Ltd
Prime Planet Energy and Solutions Inc
Original Assignee
Toyota Motor Corp
Primearth EV Energy Co Ltd
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Primearth EV Energy Co Ltd, Prime Planet Energy and Solutions Inc filed Critical Toyota Motor Corp
Priority to JP2022150810A priority Critical patent/JP2024045814A/ja
Priority to US18/451,842 priority patent/US20240103086A1/en
Priority to CN202311057834.1A priority patent/CN117741459A/zh
Publication of JP2024045814A publication Critical patent/JP2024045814A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】二次電池を第1電池電圧に調整した後、短い待機時間で自己放電検査に移行できる二次電池の自己放電検査方法、これを用いた二次電池の製造方法を提供すること。【解決手段】電池10の自己放電検査方法は、正極活物質層312を含む正極板31と、負極活物質層322を含む負極板32とを有する電極体30を備え、負極活物質層は、正極活物質層に対向する対向部322F及び対向しない非対向部322Nを含み、電池電圧VBを第1電池電圧VB1に調整する電圧調整工程S4と、電池を所定期間IHに亘り端子開放状態に保持し、所定期間に生じた電池電圧の変化から、電池の自己放電の状態を検査する自己放電検査工程S5とを備える。電圧調整工程S4は、第1電池電圧を、対向部のLi濃度である対向部濃度CFと非対向部のLi濃度である非対向部濃度CNとの濃度差ΔCを緩和するLi拡散による電池電圧の変動量ΔVの変動収束時間KTCが、調整完了時Tcから17時間以内となる大きさとする。【選択図】図4

Description

本発明は、二次電池の自己放電検査方法、及び、二次電池の製造方法に関する。
二次電池を製造するに当たり、自己放電の大きさを検知したり短絡の有無を判定する自己放電検査が行われている。例えば,特許文献1には、初期活性化工程で初期充電された二次電池(以下、電池ともいう)を放電してSOCの値を調整するSOC調整工程と、SOC調整された電池を、即ち、所定の電池電圧に調整された電池を放置等して自己放電させる自己放電工程と、を備え、自己放電工程における電池の電圧降下量に基づいて短絡の有無を検出する二次電池の短絡検査方法が示されている。短絡している電池は、短絡していない電池に比して、同じ自己放電工程の期間に、大きな電圧降下量を生じるからである。
特開2014-134395号公報
ところで、電池を所定の電池電圧とし、その後に放置すると、上述したように、短絡している電池は、短絡していない電池に比して、同じ期間に、大きく電池電圧が低下する。電池内の短絡部位を介して、電池に蓄えられている電荷が放電される自己放電が起こるからである。なお、この場合には、短絡部分の抵抗値が時間的に変化しないとすると、概ね定電流放電となるので、電池のSOCが低い場合(例えばSOC10%以下の場合)など蓄積電荷量に対して電池電圧が非線形に変化する範囲を除いて、短絡している電池の電池電圧は概ね一定の割合で低下する。但し、短絡部分の抵抗値が小さいほど、低下の割合が大きくなることは言うまでもない。
しかしながら、電池を所定の電池電圧VBに調整し、その後に放置した場合に生じる電池電圧の変化の原因は、上述の自己放電による電池電圧の低下のみではない。以下に説明する。
まず、電池を所定の電池電圧VBに調整するに当たり、CCCV充電で目標電圧に調整する場合を考える。この場合には、電池電圧VBが目標電圧(カット電圧値)に達するまでCC充電(定電流充電)を行う。電池電圧VBが目標電圧に達すると、CV充電(定電圧充電)に切り換える。すると、電池を流れる電池電流IBが時間と共に徐々に減少する。そして、電池電流IBがカット電流値に達した時点でCV充電を終了する。これにより、電池を目標電池電圧に充電したとするのである。しかし、このCCCV充電の終期には、電池にカット電流値の大きさの電池電流IBが流れている。
電池を等価回路(後述する図3参照)で表現すると、電池容量Csと、この電池容量Csに並列に接続され電池容量Csの絶縁抵抗に相当する並列抵抗Rpと、これらの並列回路に直列に接続し電池の各部の抵抗分を示す直列抵抗Rsとで表される。このように、電池には直列抵抗Rsが含まれているため、電池に電池電流IBが流れる場合には、見掛けの電池電圧VBは、電池容量Csの有する電池容量電圧VCs(開放電池電圧に相当)よりも、直列抵抗Rsに生じた電圧降下分だけ、大きく見えることになる。逆に、CCCV充電を終了する直前には、電池電圧VBは目標電池電圧に等しかったが、CCCV充電の完了直後には、電池電圧VBは直列抵抗Rsに生じていた電圧分だけ低下する。CCCV充電の終了により電池電流IBが外部から供給されなくなる(IB=0)からである。この電池電流IBを流さなくすることによる電圧変化(充電の場合には電池電圧VBの低下、放電の場合には電池電圧VBの上昇)は、CCCV充電などによる電池電圧VBの調整の完了以降、速やかに、例えば、数秒~数分以内に生じる。
加えて、電池の製造の段階では、短絡を生じていない(良品の)電池を初充電する。その後、容量検査などのため充放電を行う。さらにCCCV充電などの充電により電池電圧VBを所定の値に調整し、その後さらに放置して、電池の自己放電検査を行って短絡の有無などを検査する場合がある。この場合、前述した直列抵抗Rsの存在により、電池電圧VBの調整を完了した直後に、電池電圧VBが低下する。
しかし、その後も、時間の経過と共に電圧低下が続く。但し、100日~数100日程度掛けて、徐々に電圧低下の速度が緩やかになり、ついには概ね一定の電池電圧値になる挙動を取る。
この長期に亘る電圧低下の挙動は、活物質粒子と電解液との反応による活物質粒子表面へのSEI被膜形成が時間と共に鈍化し、このような被膜形成による電池電圧の低下が収まるためであると考えられる。つまり、初充電及び充放電を経て電池を製造するに当たっては、充電又は放電により所定の電池電圧に調整を完了してから自己放電検査や短絡検査を開始するまでの経過時間の長短により、この検査期間に生じる電池電圧の低下量の大きさが変化する。また、放置前の電圧測定から放置後の電圧測定までの期間(放置期間)の長さによっても、電池電圧の低下量の大きさが変化する。
これらのほかに、負極活物質層内における電荷担体原子(例えば、Li原子)の拡散による負極電位の変動に伴う電池電圧VBの変化も考えられる。電池では、正極活物質層よりも負極活物質層を広面積とし、正極活物質層のいずれの部分についても、対向する負極活物質層が存在するように、正極板と負極板を配置する。充電時に正極活物質層から放出されたLiイオンを、負極活物質層で確実に受け止めるためである。従って、負極板の負極活物質層には、セパレータを介して正極活物質層に対向する対向部のほか、この対向部の周囲に位置し、正極活物質層に対向しない非対向部が存在する。しかしこのようにすると、例えば充電時には、負極活物質層のうち、対向部にはLiが挿入されるが、非対向部にはLiが挿入されない。このため、対向部と非対向部とで単位面積(或いは単位体積)当たりのLiの量(Li濃度)に差異(Li濃度差)が生じると共に、局所的な負極電位も互いに異なる場合が生じる。具体的には、Li濃度の高い対向部の負極電位は低くなる、一方、Li濃度の低い非対向部の負極電位は相対的に高くなる。なお、負極板に生じる負極電位は、主に対向部の負極電位で決まるが、非対向部の負極電位とも総合した電位となる。また、外から観察される電池電圧VBは、正極電位と総合的な負極電位との差として得られる。
但し、負極活物質層の対向部と非対向部との間に生じたLi濃度差は、Li拡散により時間の経過と共に徐々に緩和され、十分な時間が経過した後にはLi濃度差は解消され、対向部と非対向部とは同じLi濃度となる。これに伴い、対向部及び非対向部の局所的な負極電位の差も徐々に解消され、負極板の負極電位の変化(上昇或いは低下)、及び、電池電圧VBの変化(低下或いは上昇)も、時間の経過と共に小さくなる。このようなLi拡散による電池電圧の変化は、電池の温度やLi濃度差の大きさ等にもよるが、例えば、電池を常温に放置した場合には、概ね、数日~1週間以内に解消する。
このため、CCCV充電などにより電池電圧VBを所定の大きさにする電圧調整を行った上で、電池の自己放電検査を行おうとした場合、電圧調整の後、直ちに電池の自己放電検査を行うことができない。即ち、対向部と非対向部との間のLi拡散による電池電圧VBの変化が或る程度収まるまで、電圧調整完了から1~数日に亘って、自己放電検査の開始を待つ必要があった。自己放電検査において、電池電圧VBの低下率などから電池の短絡の有無や自己放電の状態を検知するに当たり、Li拡散に伴う電池電圧VBの変化をも生じていると、適切に自己放電の状態を検知できなかったり、検知精度が低下する虞があるためである。
なお、前述のSEI被膜生成に起因する電圧変化は、電池の初充電以降の製造段階における電圧変化である。また前述のように、このSEI被膜生成に起因する電圧変化が生じなくなるまでに100日以上の期間を要するので、電圧調整完了から数日以内に自己放電検査を開始する場合には、概ね直線的な電圧低下を生じると見做すことができ、自己放電検査に対する影響は少ない。
本発明は、かかる現状に鑑みてなされたものであって、二次電池を第1電池電圧に調整した後、短い待機時間で自己放電検査に移行できる二次電池の自己放電検査方法、及び、この検査方法を用いた二次電池の製造方法を提供するものである。
(1)上記課題を解決するための本発明の一態様は、正極活物質層を含む正極板と負極活物質層を含む負極板とを有する電極体を備え、前記負極活物質層は、前記正極活物質層に対向している対向部及び対向していない非対向部を含む二次電池の自己放電検査方法であって、二次電池を充電又は放電して電池電圧を第1電池電圧に調整する電圧調整工程と、前記二次電池を所定期間に亘り端子開放状態に保持し、前記所定期間に生じた前記電池電圧の変化から、前記二次電池の自己放電の状態を検査する自己放電検査工程と、を備え、前記電圧調整工程は、前記第1電池電圧を、前記負極活物質層のうち、前記対向部に存在する電荷担体原子の濃度である対向部濃度と前記非対向部に存在する前記電荷担体原子の濃度である非対向部濃度との濃度差を緩和する前記電荷担体原子の拡散による前記電池電圧の変動量の変動収束時間が、前記電池電圧を前記第1電池電圧とした調整完了時から17時間以内となる大きさとする二次電池の自己放電検査方法である。
この二次電池の自己放電検査方法では、電圧調整工程における第1電池電圧の大きさを、Li等の電荷担体原子の拡散による電池電圧の変動量の変動収束時間が調整完了時から17時間以内(約0.7日以内)となる大きさとしている。このような第1電池電圧の大きさにすることで、変動収束時間が、24時間以上(例えば、1日~数日)となる場合に比して、Li等の拡散による電池電圧の変動の総量を小さくできる上、変動収束時間を17時間以下に短くできる。
このため、電池電圧の低下量や低下率から、自己放電の大きさを測定したり短絡の有無を判断したりする自己放電検査工程を、電圧調整完了の直後から開始させる場合には、電荷担体原子の拡散による電池電圧の変動による影響を小さくして、正確に自己放電検査を行うことができる。或いは、電荷担体原子の拡散による電池電圧の変動が十分小さくなってから自己放電検査工程を開始させる場合には、より早期に自己放電検査工程を開始させることができ、より早期に自己放電検査を終えることができる。
なお、電池電圧VBの変動量の変動収束時間は、例えば、以下のようにして決定することができる。即ち、電圧調整工程で電池電圧VBを第1電池電圧に調整した調整完了時から、電池電圧VBが直線に沿って低下するようになるまで、電池電圧VBの変化を調査する。次いで、上述の直線を調整完了時まで、時間を遡るように延ばし、調整完了時から1時間経過後における電池電圧(1時間後電圧)と直線L上の値(1時間後直線値)との差である1時間後解離量を取得する。そして、取得した電池電圧VBと上述の直線L上の値(直線値)との解離量が、1時間後解離量の10%の大きさにまで減少した経過時間を、変動収束時間とする。
「二次電池」としては、例えば、リチウムイオン二次電池、ナトリウムイオン二次電池等が挙げられる。また、「電荷担体原子」は、例えば、リチウムイオン二次電池ではLi原子であり、ナトリウムイオン二次電池ではNa原子である。
「負極活物質層」としては、Li原子などの電荷担体原子を挿入可能な,黒鉛などの炭素系物質からなる負極活物質を含む層が挙げられる。
また、「自己放電検査」は、電池の自己放電の大きさ即ち前述の並列抵抗Rpの大きさを測定したり、電池の短絡の有無を判断したり、自己放電の大きさに応じて電池をランクに層別する検査などが挙げられる。
「電荷担体原子の拡散」には、負極活物質層の対向部から非対向部に向けてLi等の電荷担体原子が移動する順拡散のほか、非対向部から対向部に向けてLi等の電荷担体原子が移動する逆拡散のいずれをも含む。
(2)(1)二次電池の自己放電検査方法であって、前記電圧調整工程は、前記第1電池電圧を、前記変動収束時間が、前記調整完了時から5時間以内となる大きさとする二次電池の自己放電検査方法とすると良い。
この二次電池の自己放電検査方法では、第1電池電圧を、変動収束時間が5時間以内(約0.2日以内)となる大きさとしている。このため、自己放電検査工程を、電圧調整完了の直後から開始させた場合には、さらに正確に自己放電検査を行い得る。或いは、自己放電検査工程を、より早期に自己放電検査工程を開始させ得る。
(3)或いは(1)又は(2)に記載の二次電池の自己放電検査方法であって、前記自己放電検査工程は、前記二次電池の放置前電池電圧を測定する放置前電圧測定工程と、前記放置前電池電圧を測定した前記二次電池を、前記所定期間に亘り、端子開放状態で放置する放置工程と、前記放置工程の後に、前記二次電池の放置後電池電圧を測定する放置後電圧測定工程と、前記二次電池の前記放置前電池電圧と前記放置後電池電圧との間の実測電圧低下率を得る実測工程と、前記二次電池の前記実測電圧低下率を用いて、当該二次電池の自己放電の大きさを判定する自己放電判定工程と、を有する二次電池の自己放電検査方法とすると良い。
上述の二次電池の自己放電検査方法では、電池電圧を第1電池電圧に調整する電圧調整工程とは別に、放置前電池電圧を測定した上で、実測電圧低下率を実測しているので、電池の短絡の有無や、自己放電の大きさなどを適切に検知することができる。
(4)あるいは、前記二次電池を初期電圧に初充電する初充電工程と、(1)~(3)のいずれかに記載の二次電池の自己放電検査方法により、前記二次電池の自己放電の大きさを検査する調整検査工程と、前記自己放電検査工程で短絡と判定された前記二次電池を排出する排出工程と、を備える二次電池の製造方法とすると良い。
この二次電池の製造方法では、初充電を行った上で、調整検査工程において、自己放電検査を行い、排出工程では短絡と判定された電池を排出する。かくして、短絡を生じていないと判定された電池のみを製造できる。
実施形態に係る電池の説明図である。 実施形態に係り、捲回により積層された正極板と負極板の対向位置関係を説明する説明図である。 実施形態に係る電池の等価回路である。 実施形態に係る電池の製造工程を示すフローチャートである。 実施例1,2及び比較例1,2の電池に係り、短絡を生じていない電池の、電圧調整工程後の電池電圧の変化例を示すグラフである。 実施例1,2及び比較例1,2の電池の正極活物質層及び負極活物質層におけるLiの濃度及び拡散移動を説明する説明図表であり、(a)欄は初充電前、(b)欄は初充電完了時、(c)欄は高温エージング後、(d)欄は調整完了時、(e)欄は調整完了後を示す説明図表である。
(実施形態)
以下、本発明の実施形態を、図面を参照しつつ説明する。図1に本実施形態(後述する実施例1,2のほか比較例1,2)に係る電池10の縦断面図を示す。この電池10は、例えば、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両やドローン、各種機器に搭載される角型で密閉型のリチウムイオン二次電池である。
電池10は、ケース11と、ケース11の内部に収容された電極体30と、ケース11に支持され、ケース11の内部で電極体30に接続すると共に、ケース11の外部(図1において上方)に突出する正極端子21及び負極端子25等から構成されている。
このうちケース11は、金属(本実施形態ではアルミニウム)からなる直方体箱状である。このケース11は、電池高さ方向AHの上方AHUに開口12Pを有する有底角筒状のケース本体12と、開口12Pを封口する矩形板状の蓋体15とを有する。なお、電池高さ方向AH、電池幅方向BH、及び 電池厚み方向CHを、図1に示す方向として説明する。
蓋体15には、アルミニウムからなる正極端子21が、正極絶縁部材24によって蓋体15と絶縁された状態で固設されている。具体的には、正極端子21のうち、正極内部端子部材22が、電極体30の正極集電部35(後述する)に接続部22Cで接続する一方、蓋体15を貫通して、正極外部端子部材23に導通接続している。
また蓋体15には、銅からなる負極端子25が、負極絶縁部材28によって蓋体15と絶縁された状態で固設されている。具体的には、負極端子25のうち、負極内部端子部材26が、電極体30の負極集電部36(後述する)に接続部26Cで接続する一方、蓋体15を貫通して、負極外部端子部材27に導通接続している。
またケース11内には、電極体30と共に電解液40が収容されており、その一部は電極体30内に含浸され、一部はケース11の底部に溜まっている。また電極体30は、電池高さ方向AHの上方AHUが開口した有底角袋状の絶縁フィルム50に覆われている。
電極体30は、概略、扁平な直方体状であり、帯状の正極板31と、帯状の負極板32とを、これらの間に介在する樹脂製多孔質膜からなる2枚の帯状のセパレータ33と共に軸線30Xの周りに捲回し、押し潰して扁平化した扁平捲回型の電極体である。このため、図2に示すように、正極板31と負極板32とがセパレータ33を介して交互に積層されている。
帯状の正極板31は、矩形状のアルミニウム箔からなる正極集電箔311の両主面上にそれぞれ正極活物質層312を有する。また帯状の負極板32は、矩形状の銅箔からなる負極集電箔321の両主面上にそれぞれ負極活物質である黒鉛粒子(図示しない)を含む負極活物質層322を有する。また、帯状の正極板31は、正極集電箔311の両主面上にそれぞれ正極活物質層312が重なる正極板本体部31Mのほか、正極集電箔311が電極幅方向WHの一方側WH1(図2において右側)に延びて露出する正極板集電部31Sを有している。また、帯状の負極板32は、負極集電箔321の両主面上にそれぞれ負極活物質層322が重なる負極板本体部32Mのほか、負極集電箔321が電極幅方向WHの他方側WH2(図2において左側)に延びて露出する正極板集電部31Sを有している。
さらに、図2に示すように、正極板31の正極板本体部31M(正極活物質層312)の幅方向寸法よりも、負極板32の負極板本体部32M(負極活物質層322)の幅方向寸法が大きくされている。しかも、正極板31は、その正極活物質層312が、セパレータ33を介して、必ず、負極板32の負極活物質層322に対向するように配置されている。即ち、負極板32の負極活物質層322は、正極活物質層312に対向する対向部322Fのほか、対向部322Fの電極幅方向WHの両側(図2において左右)に位置し、正極活物質層312に対向しない非対向部322Nを有している。
電極体30のうち、軸線30Xに沿う電池幅方向BHの一方側BH1(図1において右方)には、正極板31の正極板集電部31Sが渦巻き状に巻かれつつ露出した正極集電部35が、他方側BH2(図1において左方)には、負極板32の負極板集電部32Sが渦巻き状に巻かれつつ露出した負極集電部36が設けられている。正極集電部35と負極集電部36の間に挟まれた,軸線30Xの中央の部位が、正極板本体部31Mと負極板本体部32Mとが重なって捲回された本体部34である。
本実施形態では、電極体30の正極集電部35は、接続部35Cにおいて、電池厚み方向CHに互いに密着して、正極内部端子部材22の接続部22Cにレーザ溶接され、正極端子21をなす正極内部端子部材22及び正極外部端子部材23により、電池10外の回路部材と電気的に接続可能とされている。また、電極体30の負極集電部36は、接続部36Cにおいて、電池厚み方向CHに互いに密着して、負極内部端子部材26の接続部26Cにレーザ溶接され、負極端子25をなす負極内部端子部材26及び負極外部端子部材27により、電池10外の回路部材と電気的に接続可能とされている。
加えて、電極体30は、正極端子21及び負極端子25を介して、蓋体15に支持されている。
なお、電極体30の正極集電部35の接続部35Cと正極内部端子部材22の接続部22Cとの接続や、負極集電部36の接続部36Cと負極内部端子部材26の接続部26Cとの接続は、他の手法、例えば、超音波溶接や、カシメ圧着などの手法を採用することもできる。
電池10は、直流的には、図3に示す等価回路で表される。即ち、電池10の等価回路は、電池10の電池容量Csと、電池容量Csと並列回路を構成し電池10の絶縁抵抗に対応する並列抵抗Rpと、電池容量Cs及び並列抵抗Rpからなる並列回路に直列に接続され電池各部の抵抗分に対応する直列抵抗Rsとからなる。このため、電池10に電池電流IBを流さない場合には、電池電圧VB(開放電圧)は、電池容量Csに生じる電池容量電圧VCsに等しくなる。一方、電池10に向けて充電電流IBcを流している場合には、見掛けの電池電圧VBは、電池容量電圧VCsに、充電電流IBcにより直列抵抗Rsに生じる電圧(電圧降下)が加わった大きさとなる。逆に、電池10から放電電流IBdを流している場合には、見掛けの電池電圧VBは、電池容量電圧VCsから、放電電流IBdにより直列抵抗Rsに生じる電圧(電圧降下)を差し引いた大きさとなる。なお、並列抵抗Rpの大きさは、電池10が短絡している場合には、短絡していない場合よりも小さな値となり、電池容量Csに蓄積された電荷は、並列抵抗Rpを通じた自己放電により徐々に放電され、電池電圧VBが徐々に低下する。
次いで、電池10の製造について、図4を参照して説明する。先ず、未充電の電池10を製造する。直方体状のケース11を有する密閉型の電池10の製造については、公知であるので説明を省略する。
初充電工程S1(図4参照)では、まず未充電の電池10に対し、常温下でCCCV充電により、初期電圧VB0をVB0=3.800Vとする初充電を行う。本実施形態では、例えば、25℃の環境下で、定電流7C、カット電圧3.800V、カット電流0.3CのCCCV充電により、初期充電を行い、電池10を初期電圧VB0=3.800Vとする。
次いで、高温エージング工程S2では、初充電した各電池10を開放状態で、50~80℃の環境下で10~200時間に亘り放置する高温エージング(本実施形態では、例えば70℃の環境下に18時間)を行う。高温エージング工程S2の後、電池10を冷却した上で、容量検査工程S3では、電池10をSOC100%まで充電し、その後、SOC0%まで電池10を放電させて電池10の容量(上述の手法による場合は放電容量)を測定する。
ついで、電圧調整工程S4で、各電池10の電池電圧VBを常温下で第1電圧VB1まで充電する。この際、第1電圧VB1を、初充電工程S1の初期電圧VB0よりもやや小さな値とする。本実施形態(実施例1に対応)では、例えば、25℃の環境下で、定電流7C、カット電圧3.750V、カット電流0.3CのCCCV充電を行う。即ち、初充電の後、高温エージングを経た電池10の電池電圧VBを、一旦、第1電圧VB1(本実施形態では、VB1=3.750V)に揃える。
続いて自己放電検査工程S5では、電圧調整工程S4を行った後の電池10について自己放電検査を行う。具体的にはまず、放置前電圧測定工程S51で、当該時点での電池10の電池電圧VBである放置前第2電圧VB2aを測定する。なお、前述したように、電圧調整工程S4で、CCCV充電により電池10の電池電圧VBを、一旦、第1電圧VB1とした。しかし、CCCV充電を完了直後、調整完了時Tcからの経過時間KTが数秒~数分以内に電池電圧VBが低下する(例えば、1~5mV程度)。CCCV充電の終期に流されていたカット電流の大きさの電池電流IBが、CV充電の完了により流されなくなる。これにより、等価回路(図3参照)における直列抵抗Rsに生じていた電圧降下が生じなくなるため、電池電圧VBが低下するのである。このほか、電池10が短絡していない場合でも、前述した、正極活物質層におけるSEI生成や、負極活物質層322の対向部322Fと非対向部322Nとの間で生じるLiの拡散により、時間の経過と共に、電池電圧VBは変動する(図5参照)。このため、次述する放置工程S52に先立ち、電池10の放置前第2電圧VB2aを測定しておく。
なお、供試された電池10が短絡(微短絡)していた場合には、電池10(電池容量Cs:図3参照)に蓄えられている電荷が、短絡部位(図示しない)に生じる低抵抗の並列抵抗Rpを介して放電される。このため、短絡部分(並列抵抗Rp)の抵抗値が変化しないとすると、概ね定電流放電となり、電池10の電池電圧VBは概ね一定の割合で低下する。つまり、電池10が短絡していた場合には、前述の電池10が短絡していない場合の電池電圧VBの変動(図5参照)に、短絡部分の定電流放電による電池電圧VBの一定割合での低下が加わった変化となる。
次いで、放置工程S52において、正極端子21及び負極端子25を開放状態とした電池10を、無拘束或いは僅かに拘束した状態として、25℃の環境下で所定の放置期間IH(本実施形態1では、IH≧5.0日(IH≧120時間))に亘り放置する。その後、放置後電圧測定工程S53で、放置後の電池10の電池電圧VBである放置後第2電圧VB2bを測定する。
続く低下率取得工程S54では、放置前第2電圧VB2aと放置後第2電圧VB2bとの差電圧(第2電圧低下量ΔVB2)を実際の放置期間IHで除して、単位時間当たり(例えば、1日当たりの、或いは1時間当たり)の第2電圧低下量である第2電圧低下率DVB2(=ΔVB2/IH)を算出する。
放置期間IHの長さは、放置期間IH内に週末を含むか否か、放置後電圧測定工程S53の遅延の有無などにより、放置工程S52のロット毎に放置後電圧測定工程S53を行い得るタイミングが異なり、放置期間IHの長さが変動する場合があり得る。このため、後述する短絡判定工程S55において、放置前第2電圧VB2aと放置後第2電圧VB2bとの差電圧(第2電圧低下量ΔVB2)を用いるよりも、第2電圧低下率DVB2などの低下率を用いた方が、判定基準との比較がしやすいからである。
そして、短絡判定工程S55では、電池10について取得した第2電圧低下率DVB2により、電池10の短絡の有無を判定する。具体的には、第2電圧低下率DVB2がしきい低下率THD2よりも大きい(DVB2>THD2)か否かを判断する。Noの場合、即ち、第2電圧低下率DVB2がしきい低下率THD2よりも小さい(DVB2<THD2)場合には、電池10には短絡が生じていないとする。かくして、短絡判定工程S55を終了し、電池10を完成する。
なお、短絡判定工程S55でYes、即ち、第2電圧低下率DVB2がしきい低下率THD2よりも大きい(DVB2>THD2)の場合には、電池10は短絡していると判断し、排出工程S6に移行する。排出工程S6では、短絡していると判断された不良電池10Nを製造工程から排出する。
また、短絡判定工程S55では、第2電圧低下率DVB2をしきい低下率THD2と比較して、電池10の短絡の有無のみを判定した。しかし、第2電圧低下率DVB2の大きさから、自己放電の大きさを3つ以上のランクに層別することもできる。
上述の電池10の製造方法及び自己放電検査方法では、電池電圧VBを第1電圧VB1に調整する電圧調整工程S4とは別に、放置前第2電圧VB2aを測定した上で、第2電圧低下率DVB2を実測しているので、電池10の短絡の有無や、自己放電の大きさなどを適切に検知することができる。
また、この電池10の製造方法では、初充電を行った上で、調整検査工程(電圧調整工程S4及び自己放電検査工程S5)において、自己放電検査を行い、排出工程S6では短絡と判定された電池10を排出する。かくして、短絡を生じていないと判定された電池10のみを製造できる。
次いで、初充電工程S1で電池10を初期充電した初期電圧VB0及び電圧調整工程S4で到達させた第1電圧VB1(本実施形態(実施例1)では、VB0=3.800V、VB1=3.750V)と、電圧調整工程S4以降(調整完了時Tc以降)の電池電圧VBの変化との関係について検討する。
電圧調整工程S4で到達させた第1電圧VB1を互いに同じ(VB1=3.750V)とする一方、初充電工程S1の初期電圧VB0を異ならせた各例の、電圧調整工程S4以降(調整完了時Tc以降)の電池電圧VBの変化を、図5及び図6を参照して説明する。ここで、比較例1では、初期電圧VB0=3.750(VB1と同じ)とした。また、上述の実施形態に相当する実施例1では、初期電圧VB0=3.800(VB1よりも0.050V=50mV高い)とした。実施例2では、初期電圧VB0=3.900(VB1よりも0.150V=150mV高い)とした。さらに、比較例2では、初期電圧VB0=4.000(VB1よりも0.250V=250mV高い)とした。
図5に、各例における、調整完了時Tc以降の経過時間KTに対する第1電圧VB1(VB1=3.750V)からの電圧低下量ΔVB1の変化のグラフを示す。この図5において長破線で示す比較例1(VB0=3.750V、VB1=3.750V)の電池10では、調整完了時Tc以降、ごく短時間(経過時間KTが数分以内)に電圧低下量ΔVB1=-1.3mV程度低下した。さらに、経過時間KTが1時間(KT=1hr)で、概ね電圧低下量ΔVB1=-1.8mVまで低下した。その後も、急激に電池電圧VBが低下したが、時間の経過と共に電池電圧VBの低下は徐々に緩やかになり、概ね経過時間KTが72時間以降は、電池電圧VBがほぼ直線的に低下したことが判る。
また、図5において実線で示す実施例1(実施形態と同じ、VB0=3.800V、VB1=3.750V)の電池10でも、調整完了時Tc以降、ごく短時間(経過時間KTが数分以内)に電圧低下量ΔVB1=-1.3mV程度低下する。さらに、経過時間KTが1時間(KT=1hr)で、電圧低下量ΔVB1=-2.1mV程度まで低下した。その後も、急激に電池電圧VBが低下したが、比較例1に比して電圧低下量ΔVB1は小さい。そして、時間の経過と共に電池電圧VBの低下は徐々に緩やかになり、概ね経過時間KTが48時間以降は、電池電圧VBがほぼ直線的に低下したことが判る。
図5において一点鎖線で示す実施例2(VB0=3.900V、VB1=3.750V)の電池10でも、調整完了時Tc以降、ごく短時間(経過時間KTが数分以内)に電圧低下量ΔVB1=-1.3mV程度低下した。さらに、経過時間KTが1時間(KT=1hr)で、電圧低下量ΔVB1=-1.5mV程度まで低下した。但し、比較例1及び実施例1と異なり、概ね経過時間KTが2時間以降は、電池電圧VBがほぼ直線的に低下したことが判る。即ち、この実施例2の電池10では、比較例1及び実施例1の電池10のように、時間の経過と共に電池電圧VBの低下は徐々に緩やかになる期間は殆ど存在しなかったことが判る。
さらに、図5において短破線で示す比較例2(VB0=4.000V、VB1=3.750V)の電池10でも、調整完了時Tc以降、ごく短時間(経過時間KTが数分以内)に電圧低下量ΔVB1=-1.3mV程度低下した。また、経過時間KTが1時間(KT=1hr)で、電圧低下量ΔVB1=-1.5mV程度まで低下した。但し、上述の3例とは異なり、それ以降、経過時間KTが概ね24時間になるまで、逆に電池電圧VBが増加した(電圧低下量ΔVB1が上昇する)。そして、概ね一定の電池電圧VBを保った後、概ね経過時間KTが60時間以降には、電池電圧VBがほぼ直線的に低下したことが判る。
まず、比較例1の電池10における調整完了時Tc以降の電池電圧VB(電圧低下量ΔVB1)の挙動について考察する。第1電圧VB1に調整完了時Tc直後の数分以内に電池電圧VBが大きく低下するのは、前述した、CCCV充電の完了により、直列抵抗Rsに電池電流IBが流されなくなったことによるものと解される。この変化は、他の3例(実施例1,2及び比較例2)においても同様と考えられる。
一方、比較例1の電池10において、経過時間KT=72時間以降に電池電圧VBがほぼ直線的に低下するのは、前述した活物質粒子表面へのSEI被膜形成に起因する電圧低下によると解される。このSEI被膜形成による電圧低下は、数10日~数100日程度に亘る電圧低下であるため、調整完了時Tc以降の数日~1週間(~170時間)程度の期間においては、概ね直線的な電圧低下に見えるからである。実施例1の電池10における経過時間KT=48時間以降の直線的な電圧低下、実施例2の電池10における経過時間KT=2時間以降の直線的な電圧低下、比較例2の電池10における経過時間KT=60時間以降の直線的な電圧低下も、同様に前述したSEI被膜形成に起因する電圧低下であると考えられる。
他方、比較例1の電池10において、調整完了時Tcから数分経過した以降、72時間経過(KT=72hrs)する前までに生じる電圧低下のうち、上述のSEI被膜形成に起因する電圧低下の影響を除いた分は、前述した負極活物質層322の対向部322Fと非対向部322Nとの間のLi濃度の変動(Li拡散)によると解される。このLi濃度の変動について、図6を用いて説明する。図6は、各電池10の正極活物質層312及び負極活物質層322におけるLi濃度及びLi拡散を説明する説明図表である。このうち(a)欄は初充電前、(b)欄は初充電完了時、(c)欄は高温エージング後、(d)欄は調整完了時、(e)欄は調整完了後の、正極活物質層312と、負極活物質層322の対向部322F及び非対向部322NにおけるLi濃度を示す。
まず、比較例1の電池10のうち、(a)欄に示す初充電前は、正極活物質層312にはLiが存在するが、負極活物質層322には存在しない。しかし、(b)欄に示す、電池電圧VBを初期電圧VB0(比較例1ではVB0=3.750V)とする初充電工程S1を行った後(初充電後)は、正極活物質層312中のLiの一部が、負極活物質層322のうち正極活物質層312に対向する対向部322Fに移動し負極活物質内に挿入されている。但しこの時点では、負極活物質層322のうち正極活物質層312に対向していない非対向部322NにはLiは存在しない。即ち、対向部322FにおけるLi濃度である対向部濃度CFと、非対向部322NにおけるLi濃度である非対向部濃度CNとの間には、濃度差ΔCが生じるので、外向きの矢印で示すように、この濃度差ΔCを緩和するように、対向部322Fから非対向部322Nに向けてLi原子が順拡散する。このため、(c)欄に示す高温下に電池10を放置する高温エージング工程S2を行った後(高温エージング後)は、Li順拡散により、対向部322Fの対向部濃度CFと、非対向部322Nの非対向部濃度CNとは概ね等しくなり、濃度差ΔCは解消される。この時点(高温エージング後)での非対向部濃度CNは、(b)欄に示す初充電後の対向部濃度CFよりもやや低い濃度となる。
その後、前述のように容量検査工程S3を経て電圧調整工程S4を行い、電池電圧VBを初期電圧VB0に等しい第1電圧VB1(比較例1ではVB1=VB0=3.750V)に充電すると、対向部322Fには正極活物質層312からLiが供給されて、(d)欄に示す調整完了時Tcには、(b)欄に示す初充電後と同程度の対向部濃度CFとなる。一方、非対向部322NにはLiは供給されないので、(c)欄に示す高温エージング後の非対向部濃度CNが維持される。即ち、(d)欄に示す電圧調整完了時Tcには、対向部濃度CFは、非対向部濃度CNよりもやや濃度が高い状態となり、濃度差ΔCが生じる。すると、調整完了時Tc以降、この濃度差ΔCを解消するべく、(e)欄に外向きの矢印で示すように、対向部322Fから非対向部322Nに向けてLi原子が順拡散する。これにより、対向部濃度CFは徐々に低下する一方、非対向部濃度CNは徐々に上昇し、ついには対向部濃度CFと非対向部濃度CNが等しくされる。
なお、負極活物質層322の各部位における局所的な負極電位は、当該部位におけるLi濃度に影響される。即ち、Li濃度が高いほど、当該部位における局所的な負極電位は低くなる。負極板32の負極電位は、各部位の局所的な負極電位を総合した電位である。但し、本実施形態の電池10の負極活物質層322では、非対向部322Nの面積に比して、対向部322Fの面積の方が大きい(図2参照)ことから、負極板32の負極電位は、概ね、対向部322Fの負極電位に等しい。そして、電池電圧VBは、正極板31(正極活物質層312)の正極電位と、負極板32の負極電位との差電圧である。
このため、電圧調整工程S4において第1電圧VB1にした調整完了時Tc以降、経過時間KTの経過と共に、Li順拡散によって対向部濃度CFが徐々に低下することに伴い、対向部322Fの負極電位、さらには、負極板32の負極電位が徐々に上昇し、電池電圧VBが徐々に低下する。なお、このLi拡散による電池電圧VBの低下は、比較例1では、図5において長破線で示すように、調整完了時Tc以降、概ね、72時間経過後(KT=72hrs)には終了する。
この比較例1の(e)欄に示す調整完了時Tc以降に、Li順拡散によって電池電圧VBの低下が生じるのは、初期電圧VB0を第1電圧VB1と等しい値としていたことにより、(d)欄に示す調整完了時Tcにおいて、非対向部濃度CNが、対向部濃度CFよりも低いLi濃度となっていたためであるとも言える。
次いで、実施例1,2の電池10における電池電圧VB(電圧低下量ΔVB1)の挙動について考察する。調整完了時Tc直後の電池電圧VBの低下、及び、実施例1の電池10の経過時間KT=48時間以降の直線的な電圧低下、及び、実施例2の電池10の経過時間KT=2時間以降の直線的な電圧低下については、既に述べた。
一方、実施例1,2の電池10において、調整完了時Tcから数分経過した以降、48時間或いは2時間経過する前までに生じる電圧低下のうち、上述のSEI被膜形成に起因する電圧低下の影響を除いた分は、前述した負極活物質層322の対向部322F及び非対向部322NにおけるLi濃度の変動によると解される。この実施例1,2の電池10におけるLi濃度の変動についても、図6を用いて説明する。
まず、実施例1,2の電池10のうち、図6(a)欄に示す初充電前は、比較例1と同じく、正極活物質層312にはLiが存在するが、負極活物質層322には存在しない。しかし、(b)欄に示す、電池電圧VBを初期電圧VB0(実施例1ではVB0=3.800V、実施例2ではVB0=3.900V)とする初充電工程S1を行った後(初充電後)は、対向部322Fの負極活物質内にLiが挿入されている。なお、この時点では、負極活物質層322のうち正極活物質層312に対向していない非対向部322NにはLiは存在しない。但し、比較例1に比して、初期電圧VB0を高くした分、対向部322FにおけるLi濃度(対向部濃度CF)が高くされている。
その後、濃度差ΔCを緩和するべく、対向部322Fから非対向部322Nに向けてLi原子が順拡散する。このため、(c)欄に示す高温エージング工程S2を行った後(高温エージング後)は、Li順拡散により、対向部322Fの対向部濃度CFと、非対向部322Nの非対向部濃度CNとは概ね等しくなり、濃度差ΔCは解消される。この時点(高温エージング後)での非対向部濃度CNは、(b)欄に示す初充電後の対向部濃度CFよりもやや低い濃度となる。但し、比較例1と比較すると、実施例1,2の電池10の非対向部濃度CNは、比較的高い濃度となっている。
その後、前述のように容量検査工程S3を経て電圧調整工程S4を行い、電池電圧VBを第1電圧VB1(実施例1,2でも比較例1と同じくVB1=3.750V)に充電する。すると、対向部322Fには正極活物質層312からLiが供給されて、(d)欄に示す調整完了時Tcには、(b)欄に示す初充電後と同程度の対向部濃度CFとなる。一方、非対向部322NにはLiは供給されないので、(c)欄に示す高温エージング後の非対向部濃度CNが維持される。但し、比較例1と異なり、(d)欄に示す調整完了時Tcには、対向部濃度CFは非対向部濃度CNとほぼ同程度の濃度となっている。即ち、比較例1に比して、電圧調整完了時Tcの濃度差ΔCは小さい(実施例1)、或いは殆ど生じていない(実施例2)。このため、実施例1,2では、調整完了時Tc以降、(e)欄に矢印を示していないことから判るように、対向部322Fと非対向部322Nとの間のLi原子の拡散移動は、比較例1に比して小さい(実施例1)或いは殆ど生じない(実施例2)。
このため、電圧調整工程S4での調整完了時Tc以降、図5において実線で示す実施例1では、長破線で示す比較例1に比して、Li順拡散に伴う電池電圧VBの低下は短時間(概ね、48時間経過後(KT=48hrs))で終了する。また、図5において一点鎖線で示す実施例2では、Li順拡散に伴う電池電圧VBの低下が殆ど生じず、ごく短時間(2時間以内(KT≦2hrs))で終了する。
これら実施例1,2において、調整完了時Tc以降にLi拡散による電圧低下量ΔVB1の変動が余り生じないのは、初期電圧VB0を第1電圧VB1よりも適度に大きくしたことにより、(d)欄に示す調整完了時Tcにおいて、非対向部濃度CNが、対向部濃度CFとほぼ同程度のLi濃度となっていたためであるとも言える。
次いで、比較例2の電池10における電池電圧VB(電圧低下量ΔVB1)の挙動について考察する。調整完了時Tc直後の電池電圧VBの低下、及び、比較例2の電池10の経過時間KT=60時間以降の直線的な電圧低下については、既に述べた。
一方、比較例2の電池10において、調整完了時Tcから数分経過した以降、60時間経過する前までに生じる電圧低下量ΔVB1の上昇(即ち、電池電圧VBの増加)及び保持のうち、上述のSEI被膜形成に起因する電圧低下の影響を除いた分も、前述した負極活物質層322の対向部322F及び非対向部322NにおけるLi濃度の変動によると解される。この比較例2の電池10におけるLi濃度の変動についても、図6を用いて説明する。
まず、比較例2の電池10のうち、図6(a)欄に示す初充電前は、比較例1及び実施例1,2と同じく、正極活物質層312にはLiが存在するが、負極活物質層322には存在しない。しかし、(b)欄に示す、電池電圧VBを初期電圧VB0(比較例2ではVB0=4.000V)とする初充電工程S1を行った後(初充電後)は、対向部322Fの負極活物質内にLiが挿入される。なお、この時点では、負極活物質層322のうち非対向部322NにはLiは存在しない。但し、比較例1及び実施例1,2に比して、初期電圧VB0をさらに高くした分、対向部322FにおけるLi濃度(対向部濃度CF)がさらに高くされている。
そして、濃度差ΔCを緩和するべく、対向部322Fから非対向部322Nに向けてLi原子が順拡散する。このため、(c)欄に示す高温下に電池10を放置する高温エージング工程S2を行った後(高温エージング後)は、Li順拡散により、対向部322Fの対向部濃度CFと、非対向部322Nの非対向部濃度CNとは概ね等しくなり、濃度差ΔCは解消される。この時点(高温エージング後)での非対向部濃度CNは、(b)欄に示す初充電後の対向部濃度CFよりもやや低い濃度となる。但し、他の3例と比較すると、比較例の電池10の非対向部濃度CNは、さらに高い濃度となる。
その後、前述のように容量検査工程S3を経て電圧調整工程S4を行い、電池電圧VBを第1電圧VB1(比較例2でも他の3例と同じくVB1=3.750V)に充電する。すると、対向部322Fには正極活物質層312からLiが供給されて、(d)欄に示す調整完了時Tcには、(b)欄に示す初充電後と同程度の対向部濃度CFとなる。一方、非対向部322NにはLiは供給されないので、(c)欄に示す高温エージング後の非対向部濃度CNが維持される。但し、他の3例と異なり、(d)欄に示す調整完了時Tcには、対向部濃度CFは非対向部濃度CNよりも「低い」濃度となる。即ち、電圧調整完了時Tcには、他の3例とは逆(負)の濃度差ΔCを生じている。このため、この比較例2では、調整完了時Tc以降、(e)欄には内向き矢印で示すように、非対向部322Nから対向部322Fに向けてLi原子の逆拡散が生じる。
このため比較例2では、電圧調整工程S4での調整完了時Tc以降、経過時間KTの経過と共に、Li逆拡散によって対向部濃度CFが徐々に上昇することに伴い、対向部322Fの負極電位、さらには、負極板32の負極電位が徐々に低下し、電池電圧VBが徐々に増大し、電圧低下量ΔVB1も上昇する。なお、図5において、比較例2の電池10の電池電圧VBの増加は、概ね24時間経過後には収まるが、前述のSEI被膜形成による電圧低下の影響が含まれているためであり、このLi逆拡散による電池電圧VBの増加は、図5において短破線で示すように、調整完了時Tc以降、概ね、60時間経過(KT=60hrs)程度で終了する。
そして、比較例2において、調整完了時Tc以降にこのLi逆拡散によって電圧低下量ΔVB1の上昇(電池電圧VBの増加)が生じるのは、初期電圧VB0を第1電圧VB1よりも大きくし過ぎたことにより、(d)欄に示す調整完了時Tcにおいて、非対向部濃度CNが、対向部濃度CFよりも高いLi濃度となっていたためであるとも言える。
そこで、上述のような対向部322Fと非対向部322Nとの間のLi拡散移動による電池電圧VBの解離量(変動量)ΔVの変動収束時間KTCを、図5に示すような、調整完了時Tc以降の経過時間KTにおける電圧低下量ΔVB1(或いは第1電圧VB1)の変化を示すグラフを利用し、以下のようにして定める。先ずは、電圧調整工程S4で電池電圧VBを第1電圧VB1に調整した調整完了時Tcから、電池電圧VBが直線L(図5では、比較例1,2及び実施例1,2の直線La~Ld)に沿って低下するようになるまで(例えば、経過時間KT=144時間に亘って)、電池電圧VBの変化を調査する。次いで、上述の直線L(直線La~Ld)を調整完了時Tc(経過時間KT=0)まで時間を遡るように(図5において左側に)延ばす。次いで、調整完了時Tcから1時間経過後(KT=1時間)における電池電圧VB(以下、1時間後電圧V1hとする。)と直線L上の値(以下、1時間後直線値VL1hとする。)との差である1時間後解離量ΔV1h(=V1h-VL1h,ΔV1ha~ΔV1hd)を取得する。なお、1時間後解離量ΔV1hについて、図5では記載の都合上、比較例1についての1時間後電圧V1ha、1時間後直線値VL1h1a、及び、1時間後解離量ΔV1haのみ例示する。そして、取得した電池電圧VBと上述の直線L上の値(以下、直線値VLとする。VLa~VLd)との解離量ΔV(=VB-VL、ΔVa~ΔVd)が、1時間後解離量ΔV1h(ΔV1ha~ΔV1hd)の10%の大きさにまで減少した経過時間KTを、変動収束時間KTC(KTCa~KTCd)とする。
なお、図5に示すように、比較例1の電池10の変動収束時間KTCaは24.5時間(KTCa=24.5hrs)であった。実施例1の電池10の変動収束時間KTCbは13.2時間(KTCb=13.2hrs)であった。実施例2の電池10の変動収束時間KTCcは1.8時間(KTCb=1.8hrs)であった。さらに、比較例2の電池10の変動収束時間KTCdは38.7時間(KTCd=38.7hrs)であった。
このようにして、同一品番や同一ロットの先行サンプルの電池10について予め変動収束時間KTCを得ておき、例えば、収束時間KTCが17.0時間以下(KTC≦17.0hrs)となる初期電圧VB0を選択する。例えば図5に示す比較例1,2及び実施例1,2によれば、第1電圧VB1=3.750Vに対し、初期電圧VB0=3.78~3.95Vの範囲内の値にすることで、変動収束時間KTCを17.0時間以内にできる。
このように、電圧調整工程S4で電池電圧VBを第1電圧VB1に調整するに当たり、第1電圧VB1の大きさを、Li拡散による電池電圧VBの変動量ΔVの変動収束時間KTCが調整完了時Tcから17時間以内(約0.7日以内)となる大きさとする。すると、自己放電検査工程S5を、調整完了時Tcの直後から開始させる場合には、Li拡散による電池電圧VBの変動による影響を小さくして、正確に自己放電検査を行うことができる。或いは、Li拡散による電池電圧VBの変動が十分小さくなってから自己放電検査工程S5を開始させる場合には、例えば調整完了時Tcから1日後など、より早期に自己放電検査工程S5を開始させることができ、より早期に自己放電検査を終えることができる。
また例えば、変動収束時間KTCが5.0時間以下(KTC≦5.0hrs)となる初期電圧VB0を選択しても良い。例えば図5に示す比較例1,2及び実施例1,2によれば、第1電圧VB1=3.750Vに対し、初期電圧VB0=3.84~3.92Vの範囲内の値にすることで、収束時間KTCを5.0時間以内にできる。
このように、第1電圧VB1を、変動収束時間KTCが5時間以内(約0.2日以内)となる大きさとする。すると、自己放電検査工程S5を、調整完了時Tcの直後から開始させる場合には、さらに正確に自己放電検査を行い得る。或いは、自己放電検査工程S5を、より早期に自己放電検査工程を開始させ得る。
以上において、本発明を実施形態(実施例1,2)に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施例1,2及び比較例1,2では、電圧調整工程S4で調整する第1電圧VB1を固定(VB1=3.750V)する一方、それに先立つ初充電工程S1における初期電圧VB0を各例で異ならせて、変動収束時間KTCが例えば17.0時間以内や5.0時間以下とするのに適切な初期電圧VB0の範囲を得て、この範囲内の初期電圧VB0を選択するようにした。
しかしながら、電圧調整工程S4の第1電圧VB1を、上述の変動収束時間KTCが短時間になる大きさ、例えば17.0時間以内(KTC≦17.0hrs)や、5.0時間以内(KTC≦5.0hrs)となる大きさとすれば良い。
従って、実施例1,2等とは逆に、先行するサンプルの電池10において、初期電圧VB0を固定(例えば、VB0=3.750V)とする一方、電圧調整工程S4における第1電圧VB1を各例で異ならせて、変動収束時間KTCが、例えば17.0時間以内や5.0時間以下とするのに適切な第1電圧VB1の範囲を得て、この範囲内から電圧調整工程S4に設定する第1電圧VB1を選択しても良い。
また、実施形態では、電池10の製造工程において、容量検査工程S3で、電池10をSOC100%まで充電し、その後、SOC0%まで電池10を放電させて電池10の容量を測定し、その後、電圧調整工程S4で、充電により電池電圧VBを第1電圧VB1とした。しかし、容量検査工程で、電池10をSOC0%まで放電させ、その後、SOC100%まで電池10を充電して電池10の充電容量を測定し、その後、電圧調整工程S4で、放電により電池電圧VBを第1電圧VB1としても良い。
実施形態等では、電池10の製造過程において、自己放電検査工程S5に先だって行う電圧調整工程S4の第1電圧VB1と初充電工程S1の初期電圧VB0の関係を考察した。しかし、製造工程を終えて既に市場に出された電池10、例えば、既に車両等の機器に使用している電池10や、市場から回収したリユース用の電池10について、適用することもできる。即ち、このような電池10について自己放電検査を行うに当たり、自己放電検査工程に先立つ電圧調整工程で調整する第1電圧VB1を、対向部322Fと非対向部322Nの間のLi拡散による電池電圧VBの変動量ΔVの変動収束時間KTCが、例えば17.0時間以内や、5.0時間以内などとなる大きさとすれば良い。
10 電池(二次電池)
10N 不良電池(短絡と判定された二次電池)
21 正極端子
25 負極端子
30 電極体
31 正極板
312 正極活物質層
32 負極板
322 負極活物質層
322F 対向部
322N 非対向部
CF 対向部濃度
CN 非対向部濃度
ΔC 濃度差
34 本体部
Cs (電池の)電池容量
VCs 電池容量電圧
Rs (電池の)直列抵抗
Rp (電池の)並列抵抗
IB 電池電流
IBc 充電電流
IBd 放電電流
VB 電池電圧
VB0 初期電圧
VB1 第1電圧(第1電池電圧)
ΔVB1 電圧低下量
ΔV,ΔVa~ΔVd 解離量(電荷担体原子の拡散による電池電圧の変動量)
ΔV1h,ΔV1ha~ΔV1hd 1時間後解離量
VB2a 放置前第2電圧(放置前電池電圧)
VB2b 放置後第2電圧(放置後電池電圧)
DVB2 第2電圧低下率(実測電圧低下率)
Tc 調整完了時
KT 経過時間
KTC,KTCa~KTCd 変動収束時間
S1 初充電工程
S4 電圧調整工程(調整検査工程)
S5 自己放電検査工程(調整検査工程)
S51 放置前電圧測定工程
S52 放置工程
IH 放置期間(所定期間)
S53 放置後電圧測定工程
S54 低下量算出工程(実測工程)
S55 短絡判定工程(自己放電判定工程)
S6 排出工程

Claims (4)

  1. 正極活物質層を含む正極板と負極活物質層を含む負極板とを有する電極体を備え、
    前記負極活物質層は、前記正極活物質層に対向している対向部及び対向していない非対向部を含む
    二次電池の自己放電検査方法であって、
    二次電池を充電又は放電して電池電圧を第1電池電圧に調整する電圧調整工程と、
    前記二次電池を所定期間に亘り端子開放状態に保持し、前記所定期間に生じた前記電池電圧の変化から、前記二次電池の自己放電の状態を検査する自己放電検査工程と、を備え、
    前記電圧調整工程は、
    前記第1電池電圧を、
    前記負極活物質層のうち、前記対向部に存在する電荷担体原子の濃度である対向部濃度と前記非対向部に存在する前記電荷担体原子の濃度である非対向部濃度との濃度差を緩和する前記電荷担体原子の拡散による前記電池電圧の変動量の変動収束時間が、前記電池電圧を前記第1電池電圧とした調整完了時から17時間以内となる大きさとする
    二次電池の自己放電検査方法。
  2. 請求項1に記載の二次電池の自己放電検査方法であって、
    前記電圧調整工程は、
    前記第1電池電圧を、
    前記変動収束時間が、前記調整完了時から5時間以内となる大きさとする
    二次電池の自己放電検査方法。
  3. 請求項1に記載の二次電池の自己放電検査方法であって、
    前記自己放電検査工程は、
    前記二次電池の放置前電池電圧を測定する放置前電圧測定工程と、
    前記放置前電池電圧を測定した前記二次電池を、前記所定期間に亘り、端子開放状態で放置する放置工程と、
    前記放置工程の後に、前記二次電池の放置後電池電圧を測定する放置後電圧測定工程と、
    前記二次電池の前記放置前電池電圧と前記放置後電池電圧との間の実測電圧低下率を得る実測工程と、
    前記二次電池の前記実測電圧低下率を用いて、当該二次電池の自己放電の大きさを判定する自己放電判定工程と、を有する
    二次電池の自己放電検査方法。
  4. 前記二次電池を初期電圧に初充電する初充電工程と、
    請求項1~請求項3のいずれか1項に記載の二次電池の自己放電検査方法により、前記二次電池の自己放電の大きさを検査する調整検査工程と、
    前記自己放電検査工程で短絡と判定された前記二次電池を排出する排出工程と、を備える
    二次電池の製造方法。
JP2022150810A 2022-09-22 2022-09-22 二次電池の自己放電検査方法、及び、二次電池の製造方法 Pending JP2024045814A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022150810A JP2024045814A (ja) 2022-09-22 2022-09-22 二次電池の自己放電検査方法、及び、二次電池の製造方法
US18/451,842 US20240103086A1 (en) 2022-09-22 2023-08-18 Method of self-discharge test for secondary battery and manufacturing method for secondary battery
CN202311057834.1A CN117741459A (zh) 2022-09-22 2023-08-21 二次电池的自放电检查方法和二次电池的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022150810A JP2024045814A (ja) 2022-09-22 2022-09-22 二次電池の自己放電検査方法、及び、二次電池の製造方法

Publications (1)

Publication Number Publication Date
JP2024045814A true JP2024045814A (ja) 2024-04-03

Family

ID=90276425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022150810A Pending JP2024045814A (ja) 2022-09-22 2022-09-22 二次電池の自己放電検査方法、及び、二次電池の製造方法

Country Status (3)

Country Link
US (1) US20240103086A1 (ja)
JP (1) JP2024045814A (ja)
CN (1) CN117741459A (ja)

Also Published As

Publication number Publication date
CN117741459A (zh) 2024-03-22
US20240103086A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
KR102106949B1 (ko) 축전 디바이스의 단락 검사 방법 및 축전 디바이스의 제조 방법
JP5464119B2 (ja) リチウムイオン二次電池の製造方法
JP5464116B2 (ja) リチウムイオン二次電池の製造方法
JP2014222603A (ja) 電池の検査方法
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
JP4529364B2 (ja) 円筒形電池の検査方法
JP5464117B2 (ja) リチウムイオン二次電池の製造方法
JP5985280B2 (ja) リチウムイオン二次電池の検査方法
CN112213650A (zh) 蓄电设备的检查方法及制造方法
JP2024045814A (ja) 二次電池の自己放電検査方法、及び、二次電池の製造方法
JP2018067498A (ja) 電池の製造方法
JP2017126539A (ja) 二次電池の製造方法
JP6058968B2 (ja) 二次電池の製造方法
JP2012221782A (ja) 非水電解質二次電池の製造方法
JP2964745B2 (ja) 密閉形鉛蓄電池の検査法
US11609260B2 (en) Method for inspecting insulation of a secondary battery
JP7222308B2 (ja) 検査方法
JP6693393B2 (ja) 電池の製造方法
JP2017199577A (ja) 二次電池の製造方法
US20240103095A1 (en) Method for inspecting a power storage device for short circuit, method for manufacturing the power storate device, and method for manufacturing a connected restrained-device module
US20240012061A1 (en) Method for evaluating a power storage device and method for producing the power storage device
US20240103096A1 (en) Method for inspecting a power storage device, method for manufacturing a power storage device, and method for manufacturing a device stack
JP7242735B2 (ja) 再生リチウムイオン二次電池の製造方法
JP2018055878A (ja) 電池の製造方法
US20220302494A1 (en) Lithium ion secondary battery and method for producing the lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922