JP2017126539A - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
JP2017126539A
JP2017126539A JP2016006583A JP2016006583A JP2017126539A JP 2017126539 A JP2017126539 A JP 2017126539A JP 2016006583 A JP2016006583 A JP 2016006583A JP 2016006583 A JP2016006583 A JP 2016006583A JP 2017126539 A JP2017126539 A JP 2017126539A
Authority
JP
Japan
Prior art keywords
battery
soc
short circuit
charging
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016006583A
Other languages
English (en)
Inventor
潤一郎 大村
Junichiro Omura
潤一郎 大村
久尚 小島
Hisanao Kojima
小島  久尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016006583A priority Critical patent/JP2017126539A/ja
Publication of JP2017126539A publication Critical patent/JP2017126539A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】短絡が生じている電池を短絡検査工程で正確に検出可能であり、かつエージング工程の後、短絡検査工程を終えるまでの時間を短くできる二次電池の製造方法を提供すること。【解決手段】二次電池1の製造方法は、二次電池1を初充電する第1充電工程S2、この後、二次電池1を放置するエージング工程S3と、この後、二次電池1を充電する第2充電工程S4と、これに続いて、端子開放した状態で二次電池1を放置し、放置前後の電池電圧の電圧降下量αの多寡に基づいて、内部短絡の有無を判定する短絡検査工程S5とを備える。【選択図】図3

Description

本発明は、短絡検査工程を備える二次電池の製造方法に関する。
リチウムイオン二次電池などの二次電池(以下、単に電池ともいう)の製造過程において、電池に初充電し、例えば高温下で放置してエージングした後に、電池に内部短絡(以下、単に短絡ともいう)が生じているか否かの短絡検査を行う検査手法が知られている。
従来、この短絡検査は、例えば特許文献1に開示された方法により行っていた(特許文献1の段落(0011)〜(0015)等を参照)。即ち、組み立てた電池を例えばSOC80%以上まで初充電した後(初充電工程)、例えば40〜85℃下で放置しエージングする(エージング工程)。その後、この電池を強制放電させる(放電工程)。
その後、短絡検査工程を行う。具体的には、常温下で所定時間にわたり電池を放置して自己放電させ(端子開放した状態で放電させ)、この自己放電前後にそれぞれ測定した電池電圧から自己放電による電圧降下量を求める。そして、この電圧降下量が閾値(基準電圧降下量)よりも大きい場合に、その電池に短絡が生じていると判定する。
特開2014−134395号公報
しかしながら、放電工程後には、電池電圧のいわゆる跳ね返り現象(電池電圧が再上昇する現象)が生じるため、放電工程後に直ちに短絡検査工程を行うと、短絡検査工程を行っている間に跳ね返り現象によって電池電圧がむしろ大きくなる場合が生じる。しかも、跳ね返り現象による電池電圧の上昇の大きさには、個々の電池によってバラツキがあるため、短絡検査工程で測定する電圧降下量のバラツキも大きくなる。このため、短絡が生じている電池と正常な電池とを正確に区別するのが難しくなる。
なお、電池電圧の跳ね返り現象は、強制放電時に電極板内で不均一となった伝導イオンの濃度分布が(例えばリチウムイオン二次電池においては、強制放電時に負極板内でリチウムイオンの濃度分布が不均一になる)、強制放電後に均一な状態に戻ろうとするために生じると考えられる。
この問題を解決するには、放電工程を行った後、電池電圧の跳ね返り現象が治まるまで(電池電圧の再上昇が治まるまで)端子開放した状態で電池を放置してから、短絡検査工程を行うようにすれば良い。しかし、その分、短絡検査工程を終えるまでの時間が長く掛かる。
本発明は、かかる現状に鑑みてなされたものであって、短絡が生じている電池を短絡検査工程で正確に検出可能であり、かつ、エージング工程の後、短絡検査工程を終えるまでの時間を短くできる二次電池の製造方法を提供することを目的とする。
上記課題を解決するための本発明の一態様は、二次電池を初充電する第1充電工程と、上記第1充電工程の後、上記二次電池を放置するエージング工程と、上記エージング工程の後、上記二次電池を充電する第2充電工程と、上記第2充電工程に続いて、端子開放した状態で上記二次電池を放置し、上記放置前後の電池電圧の電圧降下量の多寡に基づいて、上記二次電池の内部短絡の有無を判定する短絡検査工程と、を備える二次電池の製造方法である。
上述の二次電池の製造方法によれば、エージング工程の後、短絡検査工程の前に、第2充電工程を行って電池を充電する。この第2充電工程を行うと、短絡検査工程において、短絡を生じている電池で測定される電圧降下量が大きくなるので、第2充電工程を行わない場合に比して、短絡が生じている電池と正常な電池とを正確に区別できる。従って、短絡が生じている電池を短絡検査工程で正確に検出できる。
加えて、上述の二次電池の製造方法では、エージング工程の後、短絡検査工程に先立ち、放電工程を行わないので、放電工程を行うことに起因する電池電圧の跳ね返り現象が生じない。このため、短絡検査工程を行うにあたり、電池電圧の跳ね返り現象が治まるまで待つ必要がないため、エージング工程の後、短絡検査工程を終えるまでの時間を短くできる。
なお、短絡検査工程において「放置前後の電池電圧の電圧降下量の多寡に基づいて、二次電池の内部短絡の有無を判定する」具体的な手法としては、例えば、検査した電池の電圧降下量が、予め決めておいた基準電圧降下量よりも大きい場合に、その電池に短絡が生じていると判定する方法が挙げられる。また、検査した電池の電圧降下量を、同じ製造ロットの複数の電池から求めた電圧降下量の平均値や度数分布と比較して、その電池に短絡が生じているか否かを判定する方法も挙げられる。
「第1充電工程」では、例えばSOC10%以上のSOC(以下、第1SOCともいう)まで電池を初充電するのが好ましい。この第1SOCの値が低いほど、電池のエージングが進み難くなるため、エージング工程における温度を高く、また、放置時間を長くする必要がある。一方、第1SOCの値が高いほど、第1充電工程に掛かる時間が長くなる。従って、これらを考慮して第1充電工程の第1SOCの値を設定するのが好ましい。
また、第1充電工程を行う「温度」は、0〜50℃の範囲内とするのが好ましい。例えば室温下で第1充電工程を行うと、電池を加熱または冷却しなくて済み、生産コストを低減できる。
エージング工程を行う「温度」は、50〜85℃の範囲内とするのが好ましい。
また、エージング工程における「放置時間」は、例えば8〜48時間とするのが好ましい。この放置時間は、第1充電工程のSOCの値やエージング工程を行う温度などを考慮して設定するのが好ましい。
また、エージング工程における「放置」は、電池を端子開放した状態で行ってもよいし、電池に電源を接続し定電圧に維持した状態で行ってもよい。
第2充電工程を行う「温度」は、0〜50℃の範囲内とするのが好ましい。例えば室温下で第2充電工程を行うと、電池を加熱または冷却しなくて済み、生産コストを低減できる。
なお、第2充電工程における「SOC(以下、第2SOCともいう)」は、後述するように、充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)が、Ba≧0.3を満たす値とするのが好ましい。
短絡検査工程を行う「温度」は、5〜23℃の範囲内とするのが好ましい。短絡検査工程を行う温度を23℃以下とすると、短絡検査工程を行っている間に電池のエージングが進行することによる電圧変動を抑制できるので、電池が短絡している場合に生じる電圧降下量を精度良く測定できる。一方、短絡検査工程を行う温度を5℃以上とすると、電池を冷却するための設備や生産コストを抑制できる。
更に、上記の二次電池の製造方法であって、前記第2充電工程は、前記二次電池の充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)が、Ba≧0.3を満たすSOCまで、上記二次電池を充電する工程である二次電池の製造方法とするのが好ましい。
上述の二次電池の製造方法によれば、第2充電工程において、上記のようにBa≧0.3を満たすSOC(第2SOC)まで電池を充電するので、電池に短絡が生じた場合、僅かな放電によるSOCの低下が生じても、短絡検査工程で電池を放置した前後に電圧降下量が大きく生じる。従って、短絡が生じている電池と正常な電池とをより正確に区別できる。
実施形態1に係る二次電池の斜視図である。 実施形態1に係る二次電池の縦断面図である。 実施形態1に係る二次電池の製造工程を示すフローチャートである。 実施形態1に係り、二次電池のSOCと電池電圧との関係を示すグラフ(充電曲線)、及び、SOCとBa(充電曲線の傾きを電池容量で割った値)との関係を示すグラフである。 実施形態2に係り、二次電池のSOCと電池電圧との関係を示すグラフ(充電曲線)、及び、SOCとBa(充電曲線の傾きを電池容量で割った値)との関係を示すグラフである。 実施例及び比較例1〜7について、「安定化時間」+「放置時間」を示すグラフである。
(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態1に係る二次電池(以下、単に「電池」ともいう)1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッド自動車や電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される。また、電池ケース10内には、非水電解液19が収容されており、その一部は電極体20内に含浸されている。
このうち電池ケース10は、直方体箱状で金属(本実施形態1ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20の正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20の負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。
電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体17が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。この正極活物質層には、正極活物質として、スピネル系材料(LiM24 :「M]は遷移金属元素)の1つであるLiNi0.5Mn1.54 が含まれる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を設けてなる。また、セパレータ41は、樹脂からなる多孔質膜であり、帯状でフィルム状をなす。
次いで、上記電池1の製造方法について説明する(図3参照)。まず、「組立工程S1」において、電池1を組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体17を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。その後、非水電解液19を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、注液孔13hを封止する。
次に、「第1充電工程S2」において、この電池1をSOC10%以上の第1SOC(本実施形態1ではSOC100%)まで初充電する。具体的には、室温下(本実施形態1では25±5℃)において、定電流定電圧充電(CCCV充電)により、SOC100%まで電池1を初充電する。
次に、「エージング工程S3」において、この電池1を50〜85℃の範囲内の温度(本実施形態1では63±3℃)下で放置しエージングする。具体的には、電池1を端子開放した状態で加熱室内に収容し、加熱室内の温度を63±3℃として、8〜48時間(本実施形態1では20時間)電池1を放置する。その後、エージング工程S3を終えた電池1を加熱室から取り出す。なお、このエージング工程S3を行うと、電池電圧が第1充電工程S2を終えたときの電池電圧から低下する。即ち、電池1のSOCが第1SOC(SOC100%)から低下する。
次に、「第2充電工程S4」において、この電池1を第2SOC(本実施形態1ではSOC100%)まで更に充電する。具体的には、室温下(本実施形態1では25±5℃)において、定電流定電圧充電(CCCV充電)により、SOC100%まで電池1を充電する。
なお、第2充電工程S4における「第2SOC」は、以下のようにして設定した(図4参照)。即ち、二次電池1を別途用意し、図4に示すように、横軸をSOC(%)、縦軸を電池電圧(V)とする充電曲線を得る。次に、図4に示すように、この充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)のグラフを作成する。そして、この値Baが、高SOC側において閾値0.3(V/SOC・Ah)以上となるSOCを求める。本実施形態1では、SOC96%以上で、Ba≧0.3(V/SOC・Ah)を満たす。従って、第2SOCは、SOC96%以上に設定するのが好ましい。本実施形態1では、上述のように第2SOCをSOC100%とした。
次に、「短絡検査工程S5」において、端子開放した状態で電池1を放置し、この放置前後の電池電圧の電圧降下量αの多寡に基づいて、電池1の内部短絡の有無を判定する。具体的には、室温下(本実施形態1では20±3℃)で「短絡検査工程S5」を行う。まず、「第1電圧測定工程S51」において、放置前の電池電圧V1を測定する。その後、「放置工程S52」において、この電池1を1.1日間、放置し自己放電させる。その後、「第2電圧測定工程S53」において、放置後の電池電圧V2を測定する。
次に、「判定工程S54」において、放置前の電池電圧V1と放置後の電池電圧V2から、放電前後の電圧降下量α(=V1−V2)を算出し、この電圧降下量αを予め決めておいた基準電圧降下量βと比較する。測定された電圧降下量αが基準電圧降下量βより大きい場合(α>β)には、その電池1に短絡が生じている(不良品)と判定し、その電池1を排除する。一方、測定された電圧降下量αが基準電圧降下量β以下の場合(α≦β)には、その電池1を良品と判定する。かくして、電池1が完成する。
(実施形態2)
次いで、第2の実施形態について説明する。実施形態1の電池1では、正極活物質として、スピネル系材料(LiM24 )の1つであるLiNi0.5Mn1.54 を用いた。これに対し、本実施形態2の電池100では、正極活物質として、オリビン系材料(LiMPO4 :「M]は遷移金属元素)の1つであるLiFePO4 を用いる点が異なる。それ以外は、実施形態1の電池1と同じである。
本実施形態1の電池100は、以下のようにして製造する。即ち、正極活物質としてLiFePO4 を用いる以外は、実施形態1と同様に組立工程S1を行う。その後、第1充電工程S2を行い、電池100を第1SOC(本実施形態2ではSOC100%)まで初充電する。その後、実施形態1と同様にエージング工程S3を行う。なお、エージング工程S3を行うと、電池電圧が第1充電工程S2を終えたときの電池電圧から低下する。即ち、電池1のSOCが第1SOC(SOC100%)から低下する。
次に、第2充電工程S4において、この電池100を第2SOC(本実施形態2ではSOC100%)まで、実施形態1と同様に充電する。
なお、第2充電工程S4における「第2SOC」は、以下のようにして設定した(図5参照)。即ち、本実施形態2の二次電池100を別途用意し、図5に示すように、横軸をSOC(%)、縦軸を電池電圧(V)とする充電曲線を得る。次に、図5に示すように、この充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)のグラフを作成する。そして、この値Baが閾値0.3(V/SOC・Ah)以上となるSOCを求める。本実施形態2では、SOC94%以上で、Ba≧0.3(V/SOC・Ah)を満たす。従って、第2SOCは、SOC94%以上に設定するのが好ましい。本実施形態2では、上述のように第2SOCをSOC100%とした。
その後は、実施形態1と同様に短絡検査工程S5を行い、電池100を得る。
(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する(図6参照)。まず、短絡検査工程S5を行ったときに、短絡を生じた電池1(実施形態1の電池)と同様に大きな電圧降下量αが生じるように作製したサンプル電池(短絡模擬電池)を複数用意した。
そして、実施例として、この短絡模擬電池について、実施形態1と同様に第1充電工程S2から短絡検査工程S5までを行った。短絡検査工程S5の放置工程S52において必要とされる「放置時間」は、前述のように、1.1日である(図6参照)。
一方、比較例1として、短絡模擬電池について、実施形態1と同様に第1充電工程S2及びエージング工程S3を行った後、第2充電工程S4を行わずに、エージング工程S3に続いて短絡検査工程S5を行った。この比較例1では、短絡検査工程S5の放置工程S52において必要とされる「放置時間」(電圧降下量αが実施例の場合と同じ値になるまでに要する時間)は、20.0日であった(図6参照)。
また、比較例2〜7として、短絡模擬電池について、実施形態1と同様に第1充電工程S2及びエージング工程S3を行った後、第2充電工程S4を行う代わりに「放電工程」を行い、その後に短絡検査工程S5を行った。この「放電工程」は、短絡模擬電池を、室温下(25±5℃)において、定電流定電圧放電(CCCV放電)により、各比較例2〜7毎に予め決めた所定SOCまで強制放電させる。具体的には、比較例2では、SOC47%まで強制放電させた。また、比較例3ではSOC36%まで、比較例4ではSOC18%まで、比較例5ではSOC14%まで、比較例6ではSOC10%まで、比較例7ではSOC0%まで、それぞれ強制放電させた。
これら比較例2〜7では、放電工程を行った後に電池電圧の跳ね返り現象(電池電圧が再上昇する現象)が生じるため、電池電圧の跳ね返り現象が治まるを待ってから(以下、この時間を「安定化時間」ともいう)、短絡検査工程S5を行った。その結果、比較例2では、「安定化時間」+「放置時間」が15.3日であった。また、比較例3では8.3日、比較例4では6.2日、比較例5では5.0日、比較例6では3.5日、比較例7では3.9日であった。これらの結果を図6に示す。
図6から明らかなように、実施例では、「安定化時間」が必要なく、「放置時間」は1.1日であり、「安定化時間」+「放置時間」が、最も短かった。その理由は、実施例では、エージング工程S3の後、短絡検査工程S5の前に、「放電工程」を行わないので、電池電圧の跳ね返り現象が生じない。このため、短絡検査工程S5を行うにあたり、電池電圧の跳ね返り現象が治まるまで待つ必要がないので、「安定化時間」が存在しない。加えて、実施例では、第2充電工程における第2SOCを、充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)がBa≧0.3を満たす値としている。このため、僅かな放電によるSOCの低下が生じても、短絡検査工程S5で短絡模擬電池を放置した前後に電圧降下量αが大きく生じるので、「放置時間」を短くできたと考えられる。
これに対し、比較例1では、「安定化時間」が必要なく、「放置時間」は20.0日であり、「安定化時間」+「放置時間」が。最も長かった。その理由は、比較例1では、エージング工程S3の後、短絡検査工程S5の前に、「放電工程」を行わないので、電池電圧の跳ね返り現象が生じない。このため、短絡検査工程S5を行うにあたり、電池電圧の跳ね返り現象が治まるまで待つ必要がないので、「安定化時間」が存在しない。しかし、比較例1では、第2充電工程S4を行うことなく、エージング工程S3に続いて短絡検査工程S5を行っている。このため、放置時間の単位時間当たりの電圧降下量αが小さいので、電圧降下量αを十分に大きくするには、放置時間を長くする必要がある。このため、「放置時間」が長くなったと考えられる。
次に、比較例2〜7では、エージング工程S3の後、短絡検査工程S5の前の「放電工程」で短絡模擬電池を多く放電させるほど、「安定化時間」が長くなる一方、「放置時間」が短くなることが判る。その理由は、「放電工程」で短絡模擬電池を多く放電させるほど、電池電圧の跳ね返り現象が大きく生じ、電池電圧の跳ね返り現象が治まるまでの時間も長くなる。このため、「放電工程」で多く放電させるほど、「安定化時間」が長くなる。一方、放電工程で短絡模擬電池を多く放電させるほど、充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)が大きくなる(図4において、SOC47%(比較例2)以下では、SOCの値が小さいほど、Baが大きくなっている)。値Baが大きいほど、僅かな放電によるSOCの低下が生じても、短絡検査工程S5で短絡模擬電池を放置した前後に電圧降下量αが大きく生じるので、「放置時間」を短くできたと考えられる。
以上で説明したように、電池1,100の製造方法によれば、エージング工程S3の後、短絡検査工程S5の前に、第2充電工程S4を行って電池1,100を更に充電する。この第2充電工程S4を行うと、短絡検査工程S5において、短絡を生じている電池1,100で測定される電圧降下量αが大きくなるので、第2充電工程S4を行わない場合に比して、短絡が生じている電池1,100と正常な電池1,100とを正確に区別できる。従って、短絡が生じている電池1,100を短絡検査工程S5で正確に検出できる。
加えて、電池1,100の製造方法では、エージング工程S3の後、短絡検査工程S5に先立ち、放電工程を行わないので、放電工程を行うことに起因する電池電圧の跳ね返り現象が生じない。このため、短絡検査工程S5を行うにあたり、電池電圧の跳ね返り現象が治まるまで待つ必要がないため、エージング工程S3の後、短絡検査工程S5を終えるまでの時間を短くできる。
更に実施形態1,2では、第2充電工程S4における第2SOCを、充電曲線の傾き(V/SOC)を電池容量(Ah)で割った値Ba(V/SOC・Ah)がBa≧0.3を満たす値としている。このため、電池1,100に短絡が生じた場合、僅かな放電によるSOCの低下が生じても、短絡検査工程S5で電池1,100を放置した前後に電圧降下量αが大きく生じる。従って、短絡が生じている電池1,100と正常な電池1,100とをより正確に区別できる。
以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,2では、第1充電工程S2における第1SOCをSOC100%とし、第2充電工程S4における第2SOCもSOC100%と同じ値にしているが、例えば第1SOCをSOC90%、第2SOCをSOC100%など、第1SOCと第2SOCを異なる値にしてもよい。また、第2SOCをSOC100%を越える値としてもよい。
また、実施形態1,2では、個々の電池1,100について単独の状態で、第1充電工程S2から短絡検査工程S5までを行っているが、これに限られない。例えば、第1充電工程S2後に複数の電池1,100を拘束して組電池を作製し、この組電池の状態で、その後のエージング工程S3から短絡検査工程S5までを行ってもよい。
また、実施形態1では、スピネル系材料の正極活物質として、LiNi0.5Mn1.54 を用いたが、LiMn24 など、他のスピネル系材料を正極活物質に用いてもよい。
1,100 電池
10 電池ケース
20 電極体
50 正極端子部材
60 負極端子部材
S1 組立工程
S2 第1充電工程
S3 エージング工程
S4 第2充電工程
S5 短絡検査工程

Claims (1)

  1. 二次電池を初充電する第1充電工程と、
    上記第1充電工程の後、上記二次電池を放置するエージング工程と、
    上記エージング工程の後、上記二次電池を充電する第2充電工程と、
    上記第2充電工程に続いて、端子開放した状態で上記二次電池を放置し、上記放置前後の電池電圧の電圧降下量の多寡に基づいて、上記二次電池の内部短絡の有無を判定する短絡検査工程と、を備える
    二次電池の製造方法。
JP2016006583A 2016-01-15 2016-01-15 二次電池の製造方法 Pending JP2017126539A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006583A JP2017126539A (ja) 2016-01-15 2016-01-15 二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006583A JP2017126539A (ja) 2016-01-15 2016-01-15 二次電池の製造方法

Publications (1)

Publication Number Publication Date
JP2017126539A true JP2017126539A (ja) 2017-07-20

Family

ID=59365319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006583A Pending JP2017126539A (ja) 2016-01-15 2016-01-15 二次電池の製造方法

Country Status (1)

Country Link
JP (1) JP2017126539A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433162A (zh) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 一种锂离子电池老化方法
CN113675489A (zh) * 2021-07-01 2021-11-19 宁波维科电池有限公司 一种化成筛选不良电芯的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433162A (zh) * 2020-10-26 2021-03-02 惠州市豪鹏科技有限公司 一种锂离子电池老化方法
CN112433162B (zh) * 2020-10-26 2023-09-01 惠州市豪鹏科技有限公司 一种锂离子电池老化方法
CN113675489A (zh) * 2021-07-01 2021-11-19 宁波维科电池有限公司 一种化成筛选不良电芯的方法

Similar Documents

Publication Publication Date Title
CN109581240B (zh) 基于交流阻抗法的锂离子电池失效分析方法
US10794960B2 (en) Method and apparatus for detecting low voltage defect of secondary battery
KR102010989B1 (ko) 이차 전지 수명 평가 방법 및 장치
JP2017106867A (ja) 二次電池の製造方法
JP2014222603A (ja) 電池の検査方法
KR102194845B1 (ko) 이차 전지의 저전압 불량 검사 장치 및 방법
JP2009145137A (ja) 二次電池の検査方法
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
JP2012003863A (ja) リチウムデンドライトの析出検出方法及びリチウムデンドライトの析出検出装置
JP2014006205A (ja) 二次電池の検査方法
JP4529364B2 (ja) 円筒形電池の検査方法
WO2017150416A1 (ja) 劣化判定方法及び蓄電システム
JP4233073B2 (ja) 非水電解液電池の不良選別方法
KR101471775B1 (ko) 리튬 이온 2차 전지의 검사 방법
JP2017126539A (ja) 二次電池の製造方法
JP2012252839A (ja) 非水電解質二次電池の製造方法
JP6032485B2 (ja) 非水電解質二次電池の検査方法
JP2012221648A (ja) 非水電解質二次電池の製造方法
JP2014192015A (ja) リチウムイオン二次電池の検査方法およびリチウムイオン二次電池の製造方法
KR20200054013A (ko) 단자 단선 전지 검출 방법
JP6374193B2 (ja) 非水電解質二次電池の自己放電検査方法
JP2016225167A (ja) 車両搭載用組電池の製造方法
US20230402666A1 (en) Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program
JP2018067498A (ja) 電池の製造方法
JP2012221782A (ja) 非水電解質二次電池の製造方法