CN112433162A - 一种锂离子电池老化方法 - Google Patents

一种锂离子电池老化方法 Download PDF

Info

Publication number
CN112433162A
CN112433162A CN202011156222.4A CN202011156222A CN112433162A CN 112433162 A CN112433162 A CN 112433162A CN 202011156222 A CN202011156222 A CN 202011156222A CN 112433162 A CN112433162 A CN 112433162A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
voltage
time
temperature environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011156222.4A
Other languages
English (en)
Other versions
CN112433162B (zh
Inventor
李名英
利凯文
卢国杰
姜玉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Highpower Technology Co Ltd
Original Assignee
Huizhou Highpower Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Highpower Technology Co Ltd filed Critical Huizhou Highpower Technology Co Ltd
Priority to CN202011156222.4A priority Critical patent/CN112433162B/zh
Publication of CN112433162A publication Critical patent/CN112433162A/zh
Application granted granted Critical
Publication of CN112433162B publication Critical patent/CN112433162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种锂离子电池老化方法,其特征在于,包括以下操作步骤:步骤一:将锂离子电池预充电至预设电压后放置入高温环境下,待锂离子电池的电压稳定后,记录锂离子电池放入高温环境至电压稳定的时间T1;步骤二:将锂离子电池转移至常温环境下,待锂离子电池的电压稳定后,记录锂离子电池放入常温环境至电压稳定的时间T2和锂离子电池电压稳定后的电压U1;步骤三:锂离子电池电压稳定后,记录锂离子电池在常温环境下持续静置时间T3后的电压U2,依照得到的K值确定锂离子电池是否存在微短路和自放电的问题。本发明提供的锂离子电池老化方法能够有效缩短老化时间,也避免了锂离子电池在高温条件下的存放时间过程导致的锂离子电池胀气等问题。

Description

一种锂离子电池老化方法
技术领域
本发明属于锂离子电池测试方法,具体涉及一种锂离子电池老化方法。
背景技术
锂离子电池的生产工艺都包含老化步骤,老化的一般操作就是在电池装配注液完成后,第一次充放电化成后进行高温和常温放置,主要目的是稳定电芯电压,挑出K值不良的电芯;同时电池经过预化成工序后,电池内部石墨电极会形成一定量的SEI膜,但是此时SEI膜的结构紧密且孔隙小,将电池在高温下进行老化,将有助于SEI结构重组,形成宽松多孔的膜。
K值不良的电芯主要是电芯内部存在微短路,自放电大,容易造成低压不良,严重的具有爆炸的危险,一旦流入市场中,后果不堪设想。目前通常采用的老化方法是,将电芯充电至3.9V,然后在45℃下放置2天,再在常温下冷却2天,再存储2天。采用此种老化方法,存在着电芯电压下降过大的缺点,同时为了保证电池的充分老化,通常电池在高温条件下均放置较长的时间,由于在高温条件下的放置过长,容易导致电池胀气,不利于电池的后续使用。
发明内容
针对现有电池老化存在老化时间长和电池损耗的问题,本发明提供了一种锂离子电池老化方法。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种锂离子电池老化方法,包括以下操作步骤:
步骤一:将锂离子电池预充电至预设电压后放置入高温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入高温环境至电压稳定的时间T1;
步骤二:将锂离子电池转移至常温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入常温环境至电压稳定的时间T2和锂离子电池电压稳定后的电压U1;
步骤三:锂离子电池电压稳定后,记录锂离子电池在常温环境下持续静置时间T3后的电压U2,此时K值=(U2-U1)/T3,依照得到的K值确定锂离子电池是否存在微短路和自放电的问题。
可选的,所述步骤一中,高温环境的温度为40℃~50℃。
可选的,所述步骤一中,锂离子电池的预充电条件为:充电电流为0.5C,满充电压4.4V或4.2V;截止电流0.01C、0.02C或0.05C。
可选的,所述步骤一中,判断锂离子电池电压稳定的条件为:单位时间的电压变化不超过±0.003V/s。
可选的,所述步骤二中,常温环境的温度为20℃~30℃。
可选的,所述步骤二中,判断锂离子电池电压稳定的条件为:单位时间的电压变化不超过±0.003V/s。
可选的,所述步骤三中,锂离子电池在常温环境下持续静置时间T3为44~52h。
可选的,所述步骤三中,当K值大于0.1时,则判定锂离子电池存在微短路和自放电的问题;当K值小于0.1时,则判定锂离子电池合格。
根据本发明提供的锂离子电池老化方法,将电池进行预充电后置于高温环境下,通过电压的稳定性变化确定电池是否已经完成了高温老化的过程,与现有设置固定老化时间的操作相比,本发明能够有效缩短老化时间,同时也避免了锂离子电池在高温条件下的存放时间过程导致的锂离子电池胀气等问题,另一方面,高温老化后将锂离子电池置于常温条件下后,待锂离子电池的电压稳定后再开始进行K值的测试,可避免温度变化对K值的影响,提高K值检测与锂离子电池自身缺陷的相关性,进而提高不良品判断的准确性。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种锂离子电池老化方法,包括以下操作步骤:
步骤一:将锂离子电池预充电至预设电压后放置入高温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入高温环境至电压稳定的时间T1;
步骤二:将锂离子电池转移至常温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入常温环境至电压稳定的时间T2和锂离子电池电压稳定后的电压U1;
步骤三:锂离子电池电压稳定后,记录锂离子电池在常温环境下持续静置时间T3后的电压U2,此时K值=(U2-U1)/T3,依照得到的K值确定锂离子电池是否存在微短路和自放电的问题。
根据本发明提供的锂离子电池老化方法,将电池进行预充电后置于高温环境下,通过电压的稳定性变化确定电池是否已经完成了高温老化的过程,与现有设置固定老化时间的操作相比,本发明能够有效缩短老化时间,同时也避免了锂离子电池在高温条件下的存放时间过程导致的锂离子电池胀气等问题,另一方面,高温老化后将锂离子电池置于常温条件下后,待锂离子电池的电压稳定后再开始进行K值的测试,可避免温度变化对K值的影响,提高K值检测与锂离子电池自身缺陷的相关性,进而提高不良品判断的准确性。
在一些实施例中,所述步骤一中,高温环境的温度为40℃~50℃。
若所述高温环境的温度过低,则难以起到高温老化的作用,影响SEI膜的重组;若所述高温环境的温度过高,则易引起锂离子电池的电解液和锂盐发生不可逆的分解,导致胀气和电池容量损失。
在一些实施例中,所述步骤一中,锂离子电池的预充电条件为:充电电流为0.5C,满充电压4.4V或4.2V;截止电流0.01C、0.02C或0.05C。
在一些实施例中,所述步骤一中,判断锂离子电池电压稳定的条件为:单位时间的电压变化不超过±0.003V/s。
在一些实施例中,所述步骤二中,常温环境的温度为20℃~30℃。
需要说明的是,所述常温环境根据锂离子电池所处的环境温度确定,具有较大的可选择范围。
在一些实施例中,所述步骤二中,判断锂离子电池电压稳定的条件为:单位时间的电压变化不超过±0.003V/s。
在一些实施例中,所述步骤三中,锂离子电池在常温环境下持续静置时间T3为44~52h。
若所述静置时间T3过长,则会导致老化时间的时间相应延长,不利于提高生产效率;若所述静置时间T3过短,则在计算K值的时候,由于分母部分过小导致电压的波动误差被放大,从而无法得到准确的K值,造成K值误判。
在一些实施例中,所述步骤三中,当K值大于0.1时,则判定锂离子电池存在微短路和自放电的问题;当K值小于0.1时,则判定锂离子电池合格。以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的锂离子电池老化方法,包括以下操作步骤:
步骤一:将多个锂离子电池预充电至3.9V后放置入45℃的高温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入高温环境至电压稳定的时间T1;
步骤二:将锂离子电池转移至25℃常温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入常温环境至电压稳定的时间T2和锂离子电池电压稳定后的电压U1;
步骤三:锂离子电池电压稳定后,记录锂离子电池在常温环境下持续静置时间T3后的电压U2,此时K值=(U2-U1)/T3,依照得到的K值确定锂离子电池是否存在微短路和自放电的问题,当K值大于0.1时,则判定锂离子电池存在微短路和自放电的问题;当K值小于0.1时,则判定锂离子电池合格。
实施例2
本实施例用于说明本发明公开的锂离子电池老化方法,包括实施例1大部分操作步骤,其不同之处在于:
步骤一中,将多个锂离子电池预充电至3.9V后放置入50℃的高温环境下;
步骤二中,将锂离子电池转移至20℃常温环境下。
实施例3
本实施例用于说明本发明公开的锂离子电池老化方法,包括实施例1大部分操作步骤,其不同之处在于:
本实施例用于说明本发明公开的锂离子电池老化方法,包括实施例1大部分操作步骤,其不同之处在于:
步骤一中,将多个锂离子电池预充电至3.9V后放置入55℃的高温环境下;
步骤二中,将锂离子电池转移至25℃常温环境下。
对比例1
本对比例用于对比说明本发明公开的锂离子电池老化方法,包括以下操作步骤:
步骤一:将多个锂离子电池预充电至3.9V后放置入45℃的高温环境下,持续放置2天;
步骤二:将锂离子电池转移至25℃常温环境下,持续放置2天,记录锂离子电池在常温环境下持续静置时间2天后的电压U1,再持续静置时间2天后的电压U2,此时K值=(U2-U1)/2d,依照得到的K值确定锂离子电池是否存在微短路和自放电的问题,当K值大于0.1时,则判定锂离子电池存在微短路和自放电的问题;当K值小于0.1时,则判定锂离子电池合格。
对比例2
本对比例用于对比说明本发明公开的锂离子电池老化方法,包括对比例2中大部分的操作步骤,其不同之处在于:
步骤一中,将多个锂离子电池预充电至3.9V后放置入55℃的高温环境下,持续放置2天。
性能测试
挑选出上述实施例1~3和对比例1、2中老化测试合格的锂离子电池进行如下性能测试:
将实施例1~3得到的良品锂离子电池的T1、T2和T3分别得到平均值,将T1、T2和T3相加得到老化的平均时间T4。
将实施例1~3和对比例1、2得到的良品锂离子电池进行电池循环测试,得到各组电池经过100周、500周充放电循环的平均容量保持率。
得到的测试结果填入表1。
表1
Figure BDA0002742866750000051
Figure BDA0002742866750000061
从表1的测试结果可以看出,采用本发明提供的老化方法能够有效缩短老化时间,同时,由于在高温条件下的老化时间缩短,能够减少锂离子电池不可逆容量的减少,得到的良品电池具有较好的循环性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种锂离子电池老化方法,其特征在于,包括以下操作步骤:
步骤一:将锂离子电池预充电至预设电压后放置入高温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入高温环境至电压稳定的时间T1;
步骤二:将锂离子电池转移至常温环境下,持续监测锂离子电池的电压,待锂离子电池的电压稳定后,记录锂离子电池放入常温环境至电压稳定的时间T2和锂离子电池电压稳定后的电压U1;
步骤三:锂离子电池电压稳定后,记录锂离子电池在常温环境下持续静置时间T3后的电压U2,此时K值=(U2-U1)/T3,依照得到的K值确定锂离子电池是否存在微短路和自放电的问题。
2.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤一中,高温环境的温度为40℃~50℃。
3.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤一中,锂离子电池的预充电条件为:充电电流为0.5C,满充电压4.4V或4.2V;截止电流0.01C、0.02C或0.05C。
4.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤一中,判断锂离子电池电压稳定的条件为:单位时间的电压变化不超过±0.003V/s。
5.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤二中,常温环境的温度为20℃~30℃。
6.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤二中,判断锂离子电池电压稳定的条件为:单位时间的电压变化不超过±0.003V/s。
7.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤三中,锂离子电池在常温环境下持续静置时间T3为44~52h。
8.根据权利要求1所述的锂离子电池老化方法,其特征在于,所述步骤三中,当K值大于0.1时,则判定锂离子电池存在微短路和自放电的问题;当K值小于0.1时,则判定锂离子电池合格。
CN202011156222.4A 2020-10-26 2020-10-26 一种锂离子电池老化方法 Active CN112433162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011156222.4A CN112433162B (zh) 2020-10-26 2020-10-26 一种锂离子电池老化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011156222.4A CN112433162B (zh) 2020-10-26 2020-10-26 一种锂离子电池老化方法

Publications (2)

Publication Number Publication Date
CN112433162A true CN112433162A (zh) 2021-03-02
CN112433162B CN112433162B (zh) 2023-09-01

Family

ID=74696053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011156222.4A Active CN112433162B (zh) 2020-10-26 2020-10-26 一种锂离子电池老化方法

Country Status (1)

Country Link
CN (1) CN112433162B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085309A (zh) * 2022-05-26 2022-09-20 上海玫克生储能科技有限公司 锂电池均衡管理方法、存储介质、电子设备及装置
CN116165557A (zh) * 2023-04-18 2023-05-26 深圳市思远半导体有限公司 电池检测方法及装置、电子设备与可读存储介质

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126214A (ja) * 1994-10-26 1996-05-17 Nippon Telegr & Teleph Corp <Ntt> 蓄電池容量測定方法及び回路
JP2002298925A (ja) * 2001-03-30 2002-10-11 Toyota Motor Corp リチウム二次電池のエージング処理方法およびそれを含むリチウム二次電池の製造方法
JP2009252459A (ja) * 2008-04-03 2009-10-29 Panasonic Corp アルカリ蓄電池の検査方法
CN103430372A (zh) * 2011-01-20 2013-12-04 原子能和代替能源委员会 用于估计锂电池的自放电的方法
CN104466277A (zh) * 2014-12-05 2015-03-25 江苏天鹏电源有限公司 一种锂离子电池自放电筛选方法
CN105706288A (zh) * 2013-11-11 2016-06-22 丰田自动车株式会社 制造非水二次电池的方法
CN106164690A (zh) * 2014-04-11 2016-11-23 丰田自动车株式会社 二次电池的检查方法和制造方法
CN106842051A (zh) * 2017-01-25 2017-06-13 天津市捷威动力工业有限公司 一种三元体系锂离子动力电池自放电的筛选方法
JP2017126539A (ja) * 2016-01-15 2017-07-20 トヨタ自動車株式会社 二次電池の製造方法
CN107091991A (zh) * 2017-04-28 2017-08-25 天津力神电池股份有限公司 锂离子电池电压一致性筛选方法
CN108120940A (zh) * 2017-12-28 2018-06-05 佛山市实达科技有限公司 一种锂离子电池电芯老化筛选方法
CN108387849A (zh) * 2018-04-20 2018-08-10 清华大学 锂离子电池自放电的快速检测方法及装置
CN108682908A (zh) * 2018-05-17 2018-10-19 惠州拓邦电气技术有限公司 一种锂离子电池自放电的筛选方法
WO2018194225A1 (ko) * 2017-04-20 2018-10-25 이정환 배터리 모니터링 및 보호 시스템
CN111679208A (zh) * 2020-06-09 2020-09-18 捷威动力工业嘉兴有限公司 一种锂离子电池自放电检测的静置方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126214A (ja) * 1994-10-26 1996-05-17 Nippon Telegr & Teleph Corp <Ntt> 蓄電池容量測定方法及び回路
JP2002298925A (ja) * 2001-03-30 2002-10-11 Toyota Motor Corp リチウム二次電池のエージング処理方法およびそれを含むリチウム二次電池の製造方法
JP2009252459A (ja) * 2008-04-03 2009-10-29 Panasonic Corp アルカリ蓄電池の検査方法
CN103430372A (zh) * 2011-01-20 2013-12-04 原子能和代替能源委员会 用于估计锂电池的自放电的方法
CN105706288A (zh) * 2013-11-11 2016-06-22 丰田自动车株式会社 制造非水二次电池的方法
CN106164690A (zh) * 2014-04-11 2016-11-23 丰田自动车株式会社 二次电池的检查方法和制造方法
CN104466277A (zh) * 2014-12-05 2015-03-25 江苏天鹏电源有限公司 一种锂离子电池自放电筛选方法
JP2017126539A (ja) * 2016-01-15 2017-07-20 トヨタ自動車株式会社 二次電池の製造方法
CN106842051A (zh) * 2017-01-25 2017-06-13 天津市捷威动力工业有限公司 一种三元体系锂离子动力电池自放电的筛选方法
WO2018194225A1 (ko) * 2017-04-20 2018-10-25 이정환 배터리 모니터링 및 보호 시스템
CN107091991A (zh) * 2017-04-28 2017-08-25 天津力神电池股份有限公司 锂离子电池电压一致性筛选方法
CN108120940A (zh) * 2017-12-28 2018-06-05 佛山市实达科技有限公司 一种锂离子电池电芯老化筛选方法
CN108387849A (zh) * 2018-04-20 2018-08-10 清华大学 锂离子电池自放电的快速检测方法及装置
CN108682908A (zh) * 2018-05-17 2018-10-19 惠州拓邦电气技术有限公司 一种锂离子电池自放电的筛选方法
CN111679208A (zh) * 2020-06-09 2020-09-18 捷威动力工业嘉兴有限公司 一种锂离子电池自放电检测的静置方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085309A (zh) * 2022-05-26 2022-09-20 上海玫克生储能科技有限公司 锂电池均衡管理方法、存储介质、电子设备及装置
CN116165557A (zh) * 2023-04-18 2023-05-26 深圳市思远半导体有限公司 电池检测方法及装置、电子设备与可读存储介质

Also Published As

Publication number Publication date
CN112433162B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN110416626B (zh) 一种锂离子电池化成方法
CN110165319B (zh) 一种高容量锂电池自放电性能的分选方法
CN105845983B (zh) 一种电解液及含有该电解液的锂离子电池
WO2019165796A1 (zh) 电池及电池放电后负极极片中剩余活性锂容量的测试方法
CN204269787U (zh) 一种锂离子电池低温性能一致性的检测系统
CN107607874B (zh) 快速充/放电锂离子电池的三点式筛选方法
WO2019165795A1 (zh) 锂离子二次电池及其制备方法
CN104979597B (zh) 锂离子电池自放电的方法
CN112684356B (zh) 一种锂离子电池的循环测试方法
CN112433162B (zh) 一种锂离子电池老化方法
CN107991627A (zh) 一种锂离子电池自放电等级分级方法
CN105977525A (zh) 一种使用非水电解液的锂离子电池
CN109201521A (zh) 一种镍钴锰酸锂锂离子电池自放电筛选工艺
CN104237802A (zh) 一种锂离子电池低温性能一致性的检测方法
CN109841915B (zh) 一种高存储性能的锂离子电池的化成方法
CN116885281A (zh) 一种锂离子电池电解液及其锂离子电池
CN102956932A (zh) 锂离子二次电池电芯老化方法
CN207852740U (zh) 一种磷酸铁锂动力电池组自放电一致性的筛选系统
CN102916224B (zh) 一种锂离子电池化成方法
CN116666789A (zh) 一种磷酸锰铁锂电池的负压化成方法及应用其的电池
CN114883680A (zh) 一种锂离子电池温熵系数测量方法
CN108417915A (zh) 一种设计锂离子电池老化的方案及预测其有效性的方法
CN114335770A (zh) 锂电池冷热交替老化方法
CN113991197A (zh) 一种锂离子电池及其充电方法
CN109411828B (zh) 一种圆柱形锂电池预充电方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant