JP6767681B2 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP6767681B2
JP6767681B2 JP2018556708A JP2018556708A JP6767681B2 JP 6767681 B2 JP6767681 B2 JP 6767681B2 JP 2018556708 A JP2018556708 A JP 2018556708A JP 2018556708 A JP2018556708 A JP 2018556708A JP 6767681 B2 JP6767681 B2 JP 6767681B2
Authority
JP
Japan
Prior art keywords
layer
solar cell
surface substrate
back surface
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556708A
Other languages
English (en)
Other versions
JPWO2018110582A1 (ja
Inventor
元彦 杉山
元彦 杉山
直樹 栗副
直樹 栗副
剛士 植田
剛士 植田
善光 生駒
善光 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2018110582A1 publication Critical patent/JPWO2018110582A1/ja
Application granted granted Critical
Publication of JP6767681B2 publication Critical patent/JP6767681B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池モジュールに関する。詳細には、本発明は、熱伸縮により光電変換部が破損しにくい太陽電池モジュールに関する。
近年、環境保護の観点から、光エネルギーを電気エネルギーに変換する太陽光発電が注目されており、様々な形態の太陽電池モジュールが提案されている。
例えば、特許文献1では、フロントシートと、表面側充填剤層と、光起電力素子としての太陽電池素子と、裏面側充填剤層と、バックシートとがこの順に積層されている太陽電池モジュールが提案されている。
特開2013−145807号公報
しかしながら、特許文献1に記載されたフロントシート、表面側充填剤層、裏面側充填剤層及びバックシートは、主に樹脂材料により形成されている。そのため、太陽光の照射熱などにより、これらの樹脂材料が熱伸縮した場合、太陽電池素子や太陽電池素子同士を接続する接続部材にこれらの熱応力が加わり、太陽電池素子の破損や接続タブの切断が生じてしまうおそれがあった。
本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、熱伸縮による光電変換部の破損を抑制する太陽電池モジュールを提供することにある。
上記課題を解決するために、本発明の態様に係る太陽電池モジュールは、表面基板と、表面基板の下に配置され、光電変換部を封止する封止層と、封止層の下に配置された低熱伸縮層と、低熱伸縮層の下に配置された裏面基板と、を備える。さらに、太陽電池モジュールは、低熱伸縮層と裏面基板との間に配置された応力緩和樹脂層を備える。そして、低熱伸縮層の線膨張率は、裏面基板の線膨張率よりも小さく、応力緩和樹脂層の引張弾性率は、低熱伸縮層及び裏面基板の引張弾性率よりも小さい。
図1は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図2は、本実施形態に係る太陽電池モジュールの一例を示す上面図である。 図3は、低熱伸縮層にスリットを入れた一例を示す上面から見た模式図である。 図4は、図3の太陽電池モジュールのA−A線における断面を示す図である。 図5は、封止層の一部を応力緩和樹脂層と接着するように配置させた一例を示す上面から見た模式図である。 図6は、図5の太陽電池モジュールのB−B線における断面を示す図である。 図7は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図8は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図9は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図10は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図11は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図12は、本実施形態に係る太陽電池モジュールの一例を示す断面図である。 図13は、実施例7〜実施例10の太陽電池モジュールの概略を示す上面図である。 図14は、実施例11〜実施例15の太陽電池モジュールの概略を示す上面図である。 図15は、120℃から30℃へ熱負荷を変化させた場合における、低熱伸縮層の面積率と太陽電池セル間の距離の変化量を示すグラフである。
以下、図面を用いて本実施形態に係る太陽電池モジュールについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。また、図面は、便宜上、x軸、y軸、z軸からなる直角座標系を規定して説明しており、それぞれ矢印の方向を正の方向とする。
図1は、本実施形態に係る太陽電池モジュール100の一例を示した断面図を示している。本実施形態において、太陽電池モジュール100は、表面基板10と、表面基板10の下に配置され、光電変換部20を封止する封止層30と、封止層30の下に配置された低熱伸縮層40と、低熱伸縮層40の下に配置された裏面基板50と、を備える。
また、本実施形態においては、低熱伸縮層40の線膨張率は、裏面基板50の線膨張率よりも小さい。ここで、以下の式(1)に示すように、熱応力は線膨張率に比例して大きくなる。
[数1]
σ=EαΔT (1)
上記式(1)中、σは熱応力(Pa)、Eは引張弾性率(ヤング率)(Pa)、αは線膨張率(K−1)、ΔTは変化した温度差(K)を示す。
そのため、裏面基板50に温度差が生じた場合であっても、低熱伸縮層40の熱伸縮が小さいため、裏面基板50の熱伸縮を少なくし、封止層30を介して伝わる裏面基板50の熱応力を小さくすることができる。
ただ、裏面基板50は、太陽電池モジュール100の剛性を保つ必要があるため、引張弾性率が大きくなる傾向にあり、それに伴って裏面基板50の熱応力が大きくなる傾向にある。そうすると、低熱伸縮層40が裏面基板50の熱伸縮に引きずられて熱伸縮してしまい、裏面基板50の熱応力を低熱伸縮層40で十分に緩和できないおそれがある。
そのため、本実施形態に係る太陽電池モジュール100は、低熱伸縮層40と裏面基板50との間に配置された応力緩和樹脂層60をさらに備える。そして、応力緩和樹脂層60の引張弾性率は、低熱伸縮層40及び裏面基板50の引張弾性率よりも小さい。このような応力緩和樹脂層60により、応力緩和樹脂層60は裏面基板50の熱応力を緩和するクッション材の役割を果たし、裏面基板50の熱伸縮の影響を低熱伸縮層40に伝えるのを抑制することができる。そのため、光電変換部20の破損を抑制することができる。以下において、これらの構成要素の説明を行う。
<表面基板10>
表面基板10は太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。本実施形態においては、便宜上、表面基板10を受光面側と呼び、裏面基板50を受光面と反対側と呼ぶこともあるが、用途に応じて表面基板10及び裏面基板50の外層に他の層を設けることもできる。表面基板10の形状は、太陽電池モジュール100の表面を保護する役割を果たす限り、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、例えば図1の実施形態では、断面形状が矩形の表面基板10が示されているが、太陽電池モジュール100の各層の積層方向に湾曲していてもよい。
表面基板10を形成する材料は特に限定されず、例えば、ガラス、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選択される少なくとも1つを用いることができる。これらの中でも、表面基板10はガラス、ポリカーボネート(PC)を用いることがより好ましい。ガラス、ポリカーボネート(PC)は、耐衝撃性および透光性に優れるため、太陽電池モジュール100の表面を保護するのに好ましい。なお、軽量化の観点からは、表面基板10はポリカーボネート(PC)を用いることがさらに好ましい。
表面基板10の厚みは、太陽電池モジュール100の表面を保護する役割を果たす限り特に限定されないが、0.1mm〜15mmとすることが好ましく、0.5mm〜10mmとすることがより好ましい。このような範囲とすることによって、太陽電池モジュール100を適切に保護し、光を光電変換部20に効率よく到達させることができる。
表面基板10の引張弾性率は特に限定されないが、1.0GPa以上10.0GPa以下であることが好ましく、2.3GPa以上2.5GPa以下であることがより好ましい。表面基板10の引張弾性率をこのような範囲とすることにより、太陽電池モジュール100の表面を外部の衝撃から適切に保護することができる。引張弾性率は、例えば、次の式(2)のように、日本工業規格JIS K7161−1(プラスチック−引張特性の求め方−第1部:通則)に従って、試験温度25℃、試験速度100mm/分で測定することができる。
[数2]
=(σ−σ)/(ε−ε) (2)
上記式(2)において、Eは引張弾性率(Pa)、σはひずみε=0.0005における応力(Pa)、σはひずみε=0.0025における応力(Pa)を示す。
表面基板10の全光線透過率は特に限定されないが、80%〜100%であることが好ましく、85%〜95%であることがより好ましい。表面基板10の全光線透過率をこのような範囲とすることにより、光を効率よく光電変換部20へ到達させることができる。全光線透過率は、例えばJIS K7361−1(プラスチック−透明材料の全光線透過率の試験方法−第1部:シングルビーム法)などの方法により測定することができる。
<光電変換部20>
光電変換部20は、光エネルギーを電気エネルギーに変換するものであれば特に限定されない。そのため、本実施形態において、光電変換部20は、太陽電池セル22とすることもできるし、太陽電池セルストリング28とすることもできる。また、太陽電池セルストリング28と接続配線26との組合せを光電変換部20とすることもできる。
太陽電池セル22としては、例えば、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などが挙げられる。シリコン系太陽電池としては、単結晶シリコン系太陽電池、多結晶シリコン系太陽電池、微結晶シリコン系太陽電池、アモルファスシリコン系太陽電池などが挙げられる。化合物系太陽電池としては、GaAs系太陽電池、CIS系太陽電池、SIGS系太陽電池、CdTe系太陽電池などが挙げられる。有機系太陽電池としては、色素増感太陽電池、有機薄膜太陽電池などが挙げられる。また、太陽電池セル22として、ヘテロ接合型太陽電池や多接合型太陽電池を用いることもできる。
太陽電池セル22の形状は、特に限定されないが、表面部、裏面部及び側面部を有する平板状とすることができる。ここで、表面部とは、例えば、表面基板10と対向する受光面側の面とすることができる。また、裏面部とは、例えば、裏面基板50と対向する受光面と反対側の面とすることができる。また、側面部とは、表面と裏面とで挟まれ、側部を形成する面とすることができる。具体的な形状の例としては、太陽電池セル22を矩形状の平板とすることが挙げられるが、特に限定されない。
隣接した太陽電池セル22は接続部材24で互いに電気的に接続することができ、太陽電池セルストリング28を形成することができる。図1及び図2では、太陽電池セルストリング28は、隣接した太陽電池セル22のうち、一方の受光面側のバスバー電極と、受光面と反対側のバスバー電極とを、接続部材24により電気的に接続することにより形成されている。また、接続配線26は、隣接した2つの太陽電池セルストリング28を電気的に接続することができる。
図2の実施形態では、一例として、y軸方向に並んで配置される5つの太陽電池セル22が、接続部材24によって直列に接続され、1つの太陽電池セルストリング28が形成されることを示している。また、図2の実施形態では、一例として、x軸方向に平行に並んで配置される4つの太陽電池セルストリング28が、接続配線26によって電気的に接続されることを示している。なお、図2では一例を示したが、太陽電池セル22の数や配置などは限定されない。
接続部材24は、太陽電池セル22を互いに電気的に接続するものであれば、形状や材料は特に限定されないが、例えば、細長い金属箔により形成されたタブ配線とすることができる。接続部材24を形成する材料としては、例えば、銅などを用いることができる。また、接続部材24は、ハンダや銀などをコーティングして用いることもできる。
接続部材24とバスバー電極との接続には樹脂を使用することができる。この樹脂は導電性、非導電性いずれでもよい。非導電性樹脂の場合はタブ配線とバスバー電極とが直接接続されることで電気的に接続される。また、接続部材24とバスバー電極との接続には、樹脂ではなくハンダを用いてもよい。
なお、図面では省略しているが、各太陽電池セル22の受光面側及び受光面と反対側の面には、互いに平行にx軸方向に延びる複数のフィンガー電極を備えることができる。y軸方向に延びるバスバー電極は、複数のフィンガー電極と直交して接続することができる。
<封止層30>
封止層30は、表面基板10の下に配置され、光電変換部20を封止する。このような構成を有することにより、外部の衝撃などから光電変換部20を保護することができる。封止層30は、表面基板10との間に他の部材を設けず、表面基板10と直接接触させてもよく、封止層30と表面基板10との間に、接着層や機能層など他の層を設けてもよい。封止層30の形状は、表面基板10と同様に、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、表面基板10と同様に、封止層30の断面形状は矩形であっても、太陽電池モジュール100の各層の積層方向(z軸方向)に湾曲していてもよい。
封止層30を形成する材料は特に限定されず、例えば、エチレン−酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、ポリイミド(PI)などの熱可塑性樹脂、エポキシ、ウレタン及びポリイミドなどの熱硬化性樹脂、シリコーンゲル、アクリルゲル及びウレタンゲルなどのゲルからなる群より選択される少なくとも1つを用いることができる。これらの樹脂は変性樹脂を用いることもでき、それぞれの組合せとして用いることもできる。なかでも、光電変換部20の保護の観点から、封止層30はエチレン−酢酸ビニル共重合体(EVA)又はポリオレフィン(PO)を含有することが好ましい。
封止層30の引張弾性率は特に限定されないが、表面基板10の引張弾性率よりも小さいことが好ましい。具体的には、封止層30の引張弾性率は0.005GPa以上1.0GPa未満であることが好ましく、0.01GPa以上0.5GPa未満であることがより好ましい。封止層30の引張弾性率の下限をこのような値とすることによって、光電変換部20の位置ずれを抑制することができる。また、封止層30の引張弾性率の上限をこのような値とすることによって、封止層30の熱伸縮による光電変換部20や接続部材24の破損を抑制することができる。引張弾性率は、表面基板10と同様に、例えば、JIS K7161−1などにより、測定することができる。
封止層30の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上1.0mm以下であることがより好ましい。封止層30の厚みをこのような範囲とすることによって、封止層30が光電変換部20を適切に保護し、光を光電変換部20に効率よく到達させることができる。
封止層30の全光線透過率は特に限定されないが、60%〜100%であることが好ましく、70%〜95%であることがより好ましい。また、封止層30の全光線透過率は80%〜95%であることがさらに好ましい。封止層30の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部20へ到達させることができる。全光線透過率は、例えば、JIS K7361−1などの方法により測定することができる。
なお、封止層30は2種以上の異なる材料により形成されていてもよく、例えば光電変換部20を基準として受光面側の封止層と受光面と反対側の封止層とにより形成されていてもよい。この場合、受光面側の封止層の引張弾性率は受光面と反対側の封止層の引張弾性率よりも小さいことが好ましい。このような封止層を用いることで、ヒョウなどの外部衝撃を受光面側の封止層で吸収しつつ、光電変換部20を受光面と反対側の封止層で強固に固定することができる。
<低熱伸縮層40>
低熱伸縮層40は、封止層30の下に配置される。低熱伸縮層40の線膨張率は、裏面基板50の線膨張率よりも小さい。本実施形態の太陽電池モジュール100は、このような低熱伸縮層40を備えることによって、封止層30を含む太陽電池モジュール100の熱伸縮を抑え、熱応力による光電変換部20の破損を抑制することができる。なお、線膨張率は、日本工業規格JIS K7197:2012(プラスチックの熱機械分析による線膨脹率試験方法)に従って測定することができる。なお、低熱伸縮層40の線膨張率は、封止層30及び裏面基板50の線膨張率よりも小さいことが好ましい。
低熱伸縮層40の線膨張率は、20×10−6−1以下であることが好ましい。低熱伸縮層40の線膨張率をこのような範囲とすることにより、熱応力による光電変換部20の破損を効果的に抑制することができる。なお、低熱伸縮層40の線膨張率は、0K−1超10×10−6−1以下であることがより好ましく、0K−1超7×10−6−1以下であることがさらに好ましい。
光電変換部20は、隣接した太陽電池セル22が接続部材24で互いに電気的に接続された太陽電池セルストリング28であることが好ましい。そして、低熱伸縮層40と裏面基板50の積層方向から見て、隣接した太陽電池セル22の接続方向における低熱伸縮層40の線膨張率は20×10−6−1以下であることが好ましい。これにより、低熱伸縮層40が異方性であり、低熱伸縮層40と裏面基板50の積層方向から見て、太陽電池セル22の接続方向と低熱伸縮層40の低熱伸縮の方向が異なっていた場合であっても、熱応力による光電変換部20の破損を抑制することができる。なお、低熱伸縮層40が異方性の場合とは、例えば低熱伸縮層40が一方向に配列された繊維に樹脂を含浸させた繊維強化プラスチックである場合などが挙げられる。
低熱伸縮層40は、封止層30との間に他の部材を設けず、封止層30と直接接触させてもよく、封止層30と低熱伸縮層40との間に、接着層や機能層など他の層を設けてもよい。低熱伸縮層40の形状は、表面基板10と同様に、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。また、表面基板10と同様に、低熱伸縮層40の断面形状は矩形であっても、太陽電池モジュール100の各層の積層方向(z軸方向)に湾曲していてもよい。
低熱伸縮層40を形成する材料は特に限定されないが、例えば、比較的線膨張率が小さい炭素材料、セルロース、ガラス及びセラミックなどを含む材料であることが好ましい。炭素材料を含む材料としては、例えば炭素繊維強化プラスチック(CFRP)、炭素系フィラー含有樹脂などが挙げられる。セルロースを含む材料としては、例えば紙、セルロースナノファイバ(CNF)含有樹脂などが挙げられる。ガラスを含む材料としては、例えばガラス板、ガラス繊維含有樹脂などが挙げられる。セラミックを含む材料としては、例えばセラミックシートなどが挙げられる。これらのなかでも、線膨張率と強度の観点より、低熱伸縮層40は、炭素繊維強化プラスチック、ガラス、セルロースナノファイバからなる群より選択される少なくとも1つを含むことが好ましい。また、線膨張率及び強度の観点より、低熱伸縮層40は、炭素繊維強化プラスチック、ガラス繊維含有樹脂及びセルロースナノファイバからなる群より選択される少なくとも1つを含むことがより好ましい。
低熱伸縮層40の引張弾性率は特に限定されないが、表面基板10の引張弾性率よりも大きいことが好ましい。具体的には、低熱伸縮層40の引張弾性率は20GPa〜250GPaであることが好ましく、40GPa〜140GPaであることがより好ましい。低熱伸縮層40の引張弾性率をこのような範囲とすることにより、低熱伸縮層40が封止層30などから剥離するのを抑制し、かつ、封止層30に伝わる裏面基板50の熱応力をより小さくすることができる。引張弾性率は、表面基板10と同様に、例えばJIS K7161−1などの規定に従い測定することができる。
低熱伸縮層40の厚みは、特に限定されないが、0.05mm以上0.5mm以下であることが好ましく、0.1mm以上0.2mm以下であることがより好ましい。低熱伸縮層40の厚みをこのような範囲とすることによって、コストの上昇を抑えつつ封止層30に伝わる裏面基板50の熱応力を小さくすることができる。
図3及び図4に示すように、低熱伸縮層40は、封止層30から応力緩和樹脂層60に向かって貫通して形成されたスリット32を有していてもよい。図3及び図4の実施形態では、隣接した太陽電池セル22の接続方向(y軸方向)に伸張するスリット32が互いに略平行に複数配置されている。そのため、低熱伸縮層40の柔軟性が低い場合であったとしても、例えばx軸方向又はy軸方向などのような一軸方向だけでなく、x軸−y軸平面で自由自在に裏面基板50を湾曲させることが容易になる。したがって、太陽電池モジュール100の設置の自由度を向上させることができる。なお、スリット32の数や配置は特に限定されず、必要に応じて適宜変更することができる。
図5及び図6の実施形態に示すように、封止層30の少なくとも一部が、応力緩和樹脂層60と接着するように配置されていてもよい。一般的に、封止層30は低熱伸縮層40と比較して柔軟性が高いことから、封止層30の少なくとも一部を応力緩和樹脂層60と接着させることにより、太陽電池モジュール100全体の柔軟性をより向上させることができる。そのため、例えばx軸方向又はy軸方向などのような一軸方向だけでなく、x軸−y軸平面で自由自在に裏面基板50を湾曲させることが容易になる。なお、封止層30の少なくとも一部が応力緩和樹脂層60と接着する態様は特に限定されず、封止層30が応力緩和樹脂層60と直接接していてもよく、封止層30が接着層などのような層を介して応力緩和樹脂層60と間接的に接していてもよい。
なお、封止層30の少なくとも一部が、応力緩和樹脂層60と接着するように配置されている場合、低熱伸縮層40と裏面基板50の積層方向から見て、裏面基板50全体の面積に対する低熱伸縮層40の面積の割合は40%以上90%以下であることが好ましい。裏面基板50全体の面積に対する低熱伸縮層40の面積の割合(低熱伸縮層40の面積率)を40%以上とすることにより、熱応力による光電変換部20の破損を抑制することができる。また、低熱伸縮層40の面積率を90%以下とすることにより、x軸−y軸平面で裏面基板50をより容易に湾曲させることができる。また、低熱伸縮層40の面積率を90%以下とすることにより、比較的高価な低熱伸縮層40の使用量を減らして太陽電池モジュール100の製造コストを低下させることもできる。なお、低熱伸縮層40の面積率は50%以上80%以下であることがより好ましく、65%以上75%以下であることがさらに好ましい。
図5及び図6の実施形態に示すように、光電変換部20は、隣接した太陽電池セル22が接続部材24で互いに電気的に接続された太陽電池セルストリング28とすることができる。そして、封止層30の少なくとも一部が、応力緩和樹脂層60と接着するように配置されている場合、低熱伸縮層40と裏面基板50の積層方向から見て、低熱伸縮層40が隣接した太陽電池セル22の間を跨って覆うように配置されていることが好ましい。このように、低熱伸縮層40が太陽電池セル22間に跨って配置されることにより、熱伸縮による太陽電池セル22の移動を抑制することができる。したがって、熱伸縮による接続部材24の切断を抑制することができる。
光電変換部20は、隣接した太陽電池セル22が接続部材24で互いに電気的に接続された太陽電池セルストリング28であることが好ましい。そして、低熱伸縮層40と裏面基板50の積層方向から見て、低熱伸縮層40が接続部材24の全体を覆うよう配置されていることが好ましい。すなわち、低熱伸縮層40と裏面基板50の積層方向から見て、太陽電池セル22の接続方向に対して垂直方向(x軸方向)における低熱伸縮層40の長さが、裏面基板50の長さより短いことが好ましい(図13参照)。このような配置とすることにより、低熱伸縮層40の面積率が同じ場合であっても、熱伸縮による太陽電池セル22の移動をより抑制することができ、熱伸縮による接続部材24の切断を抑制することができる。
<裏面基板50>
裏面基板50は低熱伸縮層40の下に配置される。裏面基板50は、太陽電池モジュール100の受光面と反対側の面を保護することができる。
裏面基板50を形成する材料は特に限定されず、例えば、ガラスなどの無機材料、アルミニウムなどの金属、ポリイミド(PI)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)などのプラスチック及び繊維強化プラスチック(FRP)からなる群より選択される少なくとも1つを用いることができる。繊維強化プラスチック(FRP)としては、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、アラミド繊維強化プラスチック(AFRP)、セルロース繊維強化プラスチックなどが挙げられる。ガラス繊維強化プラスチック(GFRP)としては、ガラスエポキシなどが挙げられる。なお、裏面基板50は、ガラス繊維強化プラスチックにより形成されていることが好ましい。ガラス繊維強化プラスチック(GFRP)はたわみが生じにくく、軽量であるためである。
また、裏面基板50は、ハニカム構造体、発泡体及び多孔質体からなる群より選択される少なくとも1つであることがより好ましい。このような構造体は、剛性を維持しつつ、太陽電池モジュール100を軽量化することができる。ハニカム構造体、発泡体及び多孔質体を形成する材料は特に限定されず、上述のような材料を用いることができる。なお、剛性及び軽量化の観点より、ハニカム構造体は、アルミニウム、セルロースを含む材料により形成されていることが好ましい。また、発泡体及び多孔質体の少なくともいずれか一方は、ポリウレタン、ポリオレフィン、ポリエステル、ポリアミド、ポリエーテルなどの樹脂材料により形成されていることが好ましい。
裏面基板50の線膨張率は、低熱伸縮層40の線膨張率よりも大きければ特に限定されないが、10×10−6−1超70×10−6−1以下であることが好ましい。裏面基板50の線膨張率をこのような範囲とすることにより、温度差が生じた場合の裏面基板50の熱応力を低減することができる。なお、裏面基板50の線膨張率は、10×10−6−1超50×10−6−1以下であることがより好ましく、10×10−6−1超30×10−6−1以下であることがさらに好ましい。
裏面基板50の引張弾性率は、特に限定されないが、封止層30及び後述する応力緩和樹脂層60の引張弾性率よりも大きいことが好ましい。裏面基板50の引張弾性率をこのようにすることで、太陽電池モジュール100がたわむのを抑制することができる。具体的には、裏面基板50の引張弾性率は、1.0GPa以上50.0GPa以下であることが好ましく、20GPa以上30GPa以下であることがより好ましい。引張弾性率は、表面基板10と同様に、例えばJIS K7161−1などの規定に従い測定することができる。
裏面基板50の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上5.0mm以下であることがより好ましい。裏面基板50の厚みをこのような範囲とすることによって、裏面基板50のたわみを抑制し、太陽電池モジュール100をより軽量化することができる。
裏面基板50は曲面を形成していてもよい。接地面の形状が曲面を有する形状であっても、裏面基板50が曲面を形成可能な場合、接地面の形状によらずに太陽電池モジュール100を設置することができる。なお、上述したように、低熱伸縮層40がスリットを有していたり、封止層30の少なくとも一部が応力緩和樹脂層60と接着するように配置されたりしていてもよい。この場合、上述したように、例えばx軸方向又はy軸方向などのような一軸方向だけでなく、x軸−y軸平面で自由自在に裏面基板50を湾曲させることが容易になる。
<応力緩和樹脂層60>
応力緩和樹脂層60は、低熱伸縮層40と裏面基板50との間に配置される。応力緩和樹脂層60の引張弾性率は、低熱伸縮層40及び裏面基板50の引張弾性率よりも小さい。そのため、熱応力による光電変換部20の破損をさらに抑制することができる。
応力緩和樹脂層60を形成する材料は特に限定されず、例えば、エチレン−酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリオレフィン(PO)、ウレタン、並びにシリコーンゲル、アクリルゲル及びウレタンゲルなどのゲルからなる群より選択される少なくとも1つを用いることができる。これらのなかでも、隣接する層との接着性や応力緩和性の観点から、応力緩和樹脂層60を形成する材料は、ポリオレフィン(PO)を用いることが好ましい。
応力緩和樹脂層60の線膨張率は、特に限定されないが、50×10−6−1超500×10−6−1以下であることが好ましい。応力緩和樹脂層60の線膨張率をこのような範囲とすることにより、裏面基板50の熱応力を効果的に抑制することができる。なお、応力緩和樹脂層60の線膨張率は、100×10−6−1超300×10−6−1以下であることがより好ましい。
応力緩和樹脂層60の引張弾性率は、低熱伸縮層40及び裏面基板50の引張弾性率よりも小さければ特に限定されないが、0.005GPa以上0.5GPa以下であることが好ましい。応力緩和樹脂層60の引張弾性率をこのような範囲とすることにより、裏面基板50の熱応力を効果的に緩和することができる。なお、応力緩和樹脂層60の引張弾性率は、0.01GPa以上0.25GPa以下であることがより好ましい。なお、応力緩和樹脂層60の引張弾性率は、表面基板10の引張弾性率よりも小さいことが好ましい。引張弾性率は、表面基板10と同様に、例えばJIS K7161−1などの規定に従い測定することができる。
応力緩和樹脂層60の厚みは、特に限定されないが、0.05mm以上1.0mm以下であることが好ましく、0.1mm以上0.3mm以下であることがより好ましい。応力緩和樹脂層60の厚みをこのような範囲とすることにより、他の層との接着性を維持し、裏面基板50の熱応力を効果的に抑制することができる。
応力緩和樹脂層60はガスバリア性を有することが好ましい。具体的には、応力緩和樹脂層60の酸素透過度及び水蒸気透過度の少なくともいずれか一方が裏面基板50よりも小さいことが好ましい。応力緩和樹脂層60がこのような特性を有することにより、酸素や水蒸気等による光電変換部20の劣化を抑制することができる。
応力緩和樹脂層60の水蒸気透過度は特に限定されないが、0g/(m・day)超0.1g/(m・day)以下であることが好ましい。応力緩和樹脂層60の水蒸気透過度をこのような範囲とすることにより、光電変換部20に進入する水分を低減することができ、光電変換部20の劣化を抑制することができる。水蒸気透過度は、例えば、JIS K7129:2008(プラスチック−フィルム及びシート−水蒸気透過度の求め方(機器測定法))の付属書Bに規定された赤外線センサ法により求めることができる。なお、水蒸気透過度は、測定温度40℃、測定湿度90%RHで測定することができる。
応力緩和樹脂層60の酸素透過度は特に限定されないが、裏面基板50の酸素透過度よりも小さい方が好ましい。応力緩和樹脂層60の酸素透過度は、0g/(m・day)超200cm/(m・day)以下であることが好ましい。応力緩和樹脂層60の酸素透過度をこのような範囲とすることにより、光電変換部20に進入する酸素を低減することができ、光電変換部20の劣化を抑制することができる。また、酸素透過度は、JIS K7126−2(プラスチック−フィルム及びシート−ガス透過度試験方法−第2部:等圧法)の規定に従って測定することができる。なお、酸素透過度は、測定温度23℃、測定湿度90%RHで測定することができる。
太陽電池モジュール100は、本実施形態の効果を損なわない範囲で、フレーム、ガスバリア層70及び絶縁層90などをさらに備えることが好ましい。なお、フレームは、太陽電池モジュール100の端縁部を保護するとともに、太陽電池モジュール100を屋根等に設置する際に利用される。
<ガスバリア層70>
図7に示すように、本実施形態の太陽電池モジュール100は、応力緩和樹脂層60と裏面基板50との間に配置され、裏面基板50よりも小さい酸素透過度及び水蒸気透過度の少なくともいずれか一方を有するガスバリア層70をさらに備えることが好ましい。太陽電池モジュール100がこのようなガスバリア層70を備えることにより、酸素や水蒸気等による光電変換部20の劣化を抑制することができる。なお、上述のように応力緩和樹脂層60がガスバリア性を有する場合、ガスバリア性の観点から、太陽電池モジュール100はガスバリア層70を備えていても備えていなくてもよい。そのため、ガスバリア性及び製造コストの観点から、太陽電池モジュール100はガスバリア層70をさらに備え、又は、応力緩和樹脂層60の酸素透過度及び水蒸気透過度の少なくともいずれか一方が裏面基板50よりも小さいことが好ましい。
ガスバリア層70の水蒸気透過度は裏面基板50の水蒸気透過度よりも小さければ特に限定されないが、0g/(m・day)超0.1g/(m・day)以下であることが好ましい。ガスバリア層70の水蒸気透過度をこのような範囲とすることにより、光電変換部20に進入する水分を低減することができ、光電変換部20の劣化を抑制することができる。水蒸気透過度は、例えば、JIS K7129:2008(プラスチック−フィルム及びシート−水蒸気透過度の求め方(機器測定法))の付属書Bに規定された赤外線センサ法により求めることができる。なお、水蒸気透過度は、測定温度40℃、測定湿度90%RHで測定することができる。
ガスバリア層70の酸素透過度は裏面基板50の酸素透過度よりも小さければ特に限定されないが、0g/(m・day)超200cm/(m・day)以下であることが好ましい。ガスバリア層70の酸素透過度をこのような範囲とすることにより、光電変換部20に進入する酸素を低減することができ、光電変換部20の劣化を抑制することができる。また、酸素透過度は、JIS K7126−2(プラスチック−フィルム及びシート−ガス透過度試験方法−第2部:等圧法)の規定に従って測定することができる。なお、酸素透過度は、測定温度23℃、測定湿度90%RHで測定することができる。
ガスバリア層70の厚みは特に限定されないが、0.05mm以上1.0mm以下であることが好ましく、0.1mm以上0.3mm以下であることがより好ましい。このような範囲とすることによって、コストの上昇を抑えつつバリア性を良好に保つことができる。
<反り防止層80>
図8に示すように、本実施形態の太陽電池モジュール100は、反り防止層80をさらに備えることが好ましい。反り防止層80は、裏面基板50の一方の面に配置された層と熱伸縮が均等になるように配置することができる。具体的には、例えば、反り防止層80は低熱伸縮層40及び応力緩和樹脂層60を備え、裏面基板50の両面にそれぞれ低熱伸縮層40及び応力緩和樹脂層60を配置することができる。すなわち、低熱伸縮層40及び応力緩和樹脂層60は、裏面基板50を中心として積層方向において対称に配置されることが好ましい。具体的には、上から順に、低熱伸縮層40、応力緩和樹脂層60、裏面基板50、応力緩和樹脂層60及び低熱伸縮層40が配置される。このような反り防止層80により、低熱伸縮層40、応力緩和樹脂層60及び裏面基板50を含む積層基板を、成形後の熱収縮により反りにくくすることができる。特に、低熱伸縮層40、応力緩和樹脂層60及び裏面基板50を備える積層基板を、表面基板10及び封止層30を別の部品として作製した場合に、積層基板の反りが生じにくいため、製造時のハンドリングが容易になるため好ましい。なお、太陽電池モジュール100は、平板状でも湾曲板でもよいため、ここでいう反りとは、湾曲を含めた意図する形状に対して変形することと解するべきである。
<絶縁層90>
本実施形態の太陽電池モジュール100は、低熱伸縮層40の下かつ裏面基板50の上にさらに絶縁層90を備えることができる。より具体的には、図9に示すように、本実施形態の太陽電池モジュール100は、低熱伸縮層40と応力緩和樹脂層60との間に配置された絶縁層90をさらに備えることができる。または、図10に示すように、本実施形態の太陽電池モジュール100は、応力緩和樹脂層60と裏面基板50との間に配置された絶縁層90をさらに備えることができる。絶縁層90をこのような配置とすることにより、受光面と反対側、すなわち太陽電池モジュール100の設置面側と太陽電池モジュール100との絶縁性を保つことができる。例えば、低熱伸縮層40が導電性の炭素材料により形成されている場合、太陽電池モジュール100の設置面側の絶縁性を保つことができないが、絶縁層90を配置することにより設置面側の絶縁性を保つことができる。一方、図11に示すように、本実施形態の太陽電池モジュール100は、封止層30の下かつ低熱伸縮層40の上にさらに絶縁層90を備えることもできる。絶縁層90をこのような配置とすることにより、例えば、低熱伸縮層40が炭素材料により形成されている場合であっても、光電変換部20と低熱伸縮層40との絶縁性を保つことができる。
絶縁層90の絶縁抵抗は特に限定されないが、JIS C8990:2009(地上設置の結晶シリコン太陽電池(PV)モジュール−設計適格性確認及び形式認証のための要求事項)に規定された絶縁試験の要求事項を満たしていることが好ましい。具体的には、面積が0.1m未満のモジュールの場合、絶縁抵抗は400MΩ以上であることが好ましい。また、面積が0.1m以上のモジュールの場合、測定した絶縁抵抗とモジュール面積との積は、40MΩ・m以上であることが好ましい。
絶縁層90を形成する材料は、電気的な絶縁性を有していれば特に限定されず、樹脂、ガラス、セルロースなどを用いることができる。また、絶縁層90の厚みは特に限定されないが、0.05mm以上0.2mm以下であることが好ましく、0.1mm以上0.2mm以下であることがより好ましい。
<保護シート15>
本実施形態の太陽電池モジュール100は、表面基板10の下かつ封止層30の上に、さらに保護シート15を備えていてもよい。この場合、図12に示すように、表面基板10と保護シート15との間には、空間が設けられていることが好ましい。すなわち、表面基板10と保護シート15との間に空気層が設けられていることが好ましい。したがって、表面基板10と保護シート15は直接接しない場合がある。太陽電池モジュールがこのような構成を有する場合、空気層が外部からの衝撃に対するクッション層として機能するため、光電変換部20の保護性を高めることができる。
保護シート15を形成する材料は特に限定されないが、表面基板10と同様の材料を用いることができる。また、保護シート15の厚みは特に限定されないが、0.02mm〜0.3mmであることが好ましく、0.05mm〜0.2mmであることがより好ましい。
以上の通り、本実施形態に係る太陽電池モジュール100は、表面基板10と、表面基板10の下に配置され、光電変換部20を封止する封止層30と、封止層30の下に配置された低熱伸縮層40と、低熱伸縮層40の下に配置された裏面基板50と、を備える。さらに、太陽電池モジュール100は、低熱伸縮層40と裏面基板50との間に配置された応力緩和樹脂層60を備える。そして、低熱伸縮層40の線膨張率は、裏面基板50の線膨張率よりも小さく、応力緩和樹脂層60の引張弾性率は、低熱伸縮層40及び裏面基板50の引張弾性率よりも小さい。そのため、太陽電池モジュール100の光電変換部20が熱応力により破損することを抑制することができる。
<太陽電池モジュール100の製造方法>
本実施形態に係る太陽電池モジュール100は公知の方法を用いて作製することができる。例えば、表面基板10、封止層30、低熱伸縮層40、応力緩和樹脂層60、裏面基板50を順番に積層して、加熱しながら圧縮することで成形することができる。この時、光電変換部20は、受光面側の封止層と裏面基板50側の封止層との間に配置してもよい。
ただし、各層を数工程に分けて圧縮成形するなど、詳細な工程については特に限定されず、目的に応じた成形をすることができる。例えば、低熱伸縮層40、応力緩和樹脂層60及び裏面基板50をこの順番に積層して、加熱及び圧縮成形し、積層基板を作製した後、封止層30及び表面基板10をこの積層基板の上に順番に積層して加熱及び圧縮成形してもよい。なお、低熱伸縮層40及び応力緩和樹脂層60の熱収縮により積層基板が反り返らないように、太陽電池モジュール100は反り防止層80をさらに備えることが好ましい。
加熱条件は特に限定されないが、例えば、真空状態で150℃程度に加熱することができる。真空条件で加熱した場合は、泡抜け性がさらに向上するため好ましい。真空加熱の後、大気圧下において、各層を加圧しながらヒーターなどにより加熱して、樹脂成分を架橋することもできる。また、加熱により得られた積層体には、フレームなどを取り付けることもできる。
以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。
[実施例1]
厚さ0.1mmの低熱伸縮層、厚さ1.0mmの応力緩和樹脂層、厚さ2mmの裏面基板、厚さ1.0mmの応力緩和樹脂層、厚さ0.1mmの低熱伸縮層を上から順に積層した構造についてシミュレーションを行った。低熱伸縮層は、線膨張率が2.5×10−6−1及び引張弾性率が60GPaの炭素繊維強化プラスチック(CFRP)を用いた。応力緩和樹脂層は、引張弾性率が0.02GPaのポリオレフィンを用いた。裏面基板は、線膨張率が20×10−6−1及び引張弾性率が20GPaのガラスエポキシを用いた。
[実施例2]
応力緩和樹脂層の厚みを0.6mmにした以外は、実施例1と同様にして積層基板を作製した。
[実施例3]
応力緩和樹脂層の厚みを0.3mmにした以外は、実施例1と同様にして積層基板を作製した。
[実施例4]
応力緩和樹脂層の厚みを0.1mmにした以外は、実施例1と同様にして積層基板を作製した。
[実施例5]
応力緩和樹脂層の厚みを0.05mmにした以外は、実施例1と同様にして積層基板を作製した。
[比較例1]
応力緩和樹脂層の厚みを0mmにした以外は、実施例1と同様にして積層基板を作製した。
[評価]
(実質線膨張率)
低熱伸縮層表面の実質線膨張率を測定することで、裏面基板の熱伸縮により封止層や太陽電池セルに与える影響を評価した。実質線膨張率は、一番上の低熱伸縮層の再表面をシミュレーションにて計算している。この結果を表1に示す。
Figure 0006767681
表1の結果より、応力緩和樹脂層がない比較例1は、裏面基板の線膨張率が大きいため、裏面基板の熱伸縮に伴い低熱伸縮層表面の実質線膨張率が大きくなる傾向にある。しかし、実施例1〜5のように、応力緩和樹脂層の厚みを大きくすることで、実質線膨張率が低下した。すなわち、応力緩和樹脂層の厚みを大きくすることで、封止層や光電変換部が熱伸縮の影響を受けにくくなることが推測される。
次に、応力緩和樹脂層を設けることにより、光電変換部の破損が生じないか確認した。
[実施例6]
厚さ1mmの表面基板、厚さ1mmのゲル、光電変換部を封止した厚さ0.6mmの受光面側の封止層、厚さ0.6mmの裏面基板側の封止層、実施例3で作製した積層基板を上から順に積層して145℃で圧縮加熱することにより太陽電池モジュールを作製した。表面基板は、ポリカーボネート(PC)を用いた。光電変換部は、太陽電池セルを接続タブ(接続部材)で互いに接続したものを用いた。受光面側の封止層はポリオレフィン(PO)を用い、裏面基板側の封止層はエチレン−酢酸ビニル共重合体(EVA)を用いた。
[比較例2]
実施例6で用いた実施例3の積層基板に代え、比較例1の積層基板を用いた以外は、実施例6と同様にして太陽電池モジュールを作製した。
[評価]
(耐熱衝撃性)
耐熱衝撃性は、JIS C8990:2009(IEC61215:2005)(地上設置の結晶シリコン太陽電池(PV)モジュール−設計適格性確認及び形式認証のための要求事項)の温度サイクル試験に準じ、以下のような試験条件にて試験を実施した。すなわち、各実施例の太陽電池モジュールを試験槽内に設置し、太陽電池モジュールの温度を−40℃±2℃と+85℃±2℃との間で周期的に変化させた。このような温度サイクル試験を200サイクル行った後、目視にて太陽電池セルを互いに接続する接続部材を確認した。そして、200サイクルで接続部材が切断したか否かを確認した。なお、下限と上限との間の温度変化速度を約1.4℃/時間、下限温度の保持時間を60分、上限温度の保持時間を1時間20分とし、1サイクルの時間を5時間20分とした。また、温度サイクル試験は少なくとも3回実施した。
Figure 0006767681
実施例6及び比較例2の耐熱衝撃性を温度サイクル試験により評価したところ、表2のように、実施例6の太陽電池モジュールにおいては、200サイクル後であっても接続部材は切断しなかった。一方、比較例2の太陽電池モジュールにおいては、200サイクル後において接続部材が切断した。そのため、太陽電池モジュールが応力緩和樹脂層を備えることによって、光電変換部の破損を抑制することができることを確認できた。
次に、低熱伸縮層と裏面基板の積層方向から見て、裏面基板全体の面積に対する低熱伸縮層の面積の割合を変化させることにより、光電変換部がどのように変化するか確認した。
[実施例7]
表面基板、封止層、低熱伸縮層、応力緩和樹脂層、裏面基板を上から順番に積層させ、145℃で圧縮加熱することにより太陽電池モジュールを作製した。なお、表面基板は、厚さ2mmのポリカーボネート(PC)を用いた。封止層は、厚さ1mmのゲル、厚さ0.02mmのポリエチレンテレフタレート(PET)、厚さ0.6mmのエチレン−酢酸ビニル共重合体(EVA)、厚さ0.6mmのエチレン−酢酸ビニル共重合体(EVA)を上から順に積層させたものを用いた。光電変換部は、それぞれ厚さ0.15mmの2枚の太陽電池セルを接続部材で互いに電気的に接続した太陽電池セルストリングを用い、厚さ0.6mmのEVA層の間に配置した。低熱伸縮層は、厚さ0.1mmの一方向炭素繊維強化プラスチック(UD−CFRP)を用いた。応力緩和樹脂層は、厚さ0.2mmのエチレン−酢酸ビニル共重合体(EVA)を用いた。裏面基板は、厚さ2mmのガラスエポキシを用いた。
なお、低熱伸縮層と裏面基板の積層方向から見て、裏面基板全体の面積に対する低熱伸縮層の面積の割合(低熱伸縮層の面積率)を100%とした。
[実施例8]
低熱伸縮層の面積率を70%とした以外は、実施例7と同様にして太陽電池モジュールを作製した。また、図13に示すように、低熱伸縮層は、低熱伸縮層と裏面基板の積層方向(z軸方向)から見て、太陽電池セルの接続方向(y軸方向)に伸張し、実施例7と比較して太陽電池セルの接続方向に対して垂直方向(x軸方向)に短くなるように配置されている。具体的には、低熱伸縮層と裏面基板の積層方向から見て、太陽電池セルの接続方向に対して垂直方向(x軸方向)における低熱伸縮層の長さが、裏面基板の長さより短くなるように低熱伸縮層を配置した。
[実施例9]
低熱伸縮層の面積率を50%とした以外は、実施例8と同様にして太陽電池モジュールを作製した。
[実施例10]
低熱伸縮層の面積率を20%とした以外は、実施例8と同様にして太陽電池モジュールを作製した。
[実施例11]
低熱伸縮層の面積率を99%とした。また、図14に示すように、低熱伸縮層は、低熱伸縮層と裏面基板の積層方向(z軸方向)から見て、太陽電池セルの接続方向に対して垂直方向(x軸方向)に伸張し、実施例7と比較して太陽電池セルの接続方向(y軸方向)に短くなるように配置されている。具体的には、低熱伸縮層と裏面基板の積層方向から見て、太陽電池セルの接続方向(y軸方向)おける低熱伸縮層の長さが、裏面基板の長さより短くなるように低熱伸縮層を配置した。上記以外は、実施例7と同様にして太陽電池モジュールを作製した。
[実施例12]
低熱伸縮層の面積率を93%とした以外は、実施例11と同様にして太陽電池モジュールを作製した。
[実施例13]
低熱伸縮層の面積率を70%とした以外は、実施例11と同様にして太陽電池モジュールを作製した。
[実施例14]
低熱伸縮層の面積率を50%とした以外は、実施例11と同様にして太陽電池モジュールを作製した。
[実施例15]
低熱伸縮層の面積率を20%とした以外は、実施例11と同様にして太陽電池モジュールを作製した。
[評価]
(太陽電池セル間の距離の変化量)
ムラタソフトウェア株式会社製のFemtet(登録商標)を用い、熱負荷を変化させた場合において、接続方向における太陽電池セル間の距離の変化量(μm)を解析した。なお、解析条件は以下の通りである。結果を表3及び図15に示す。
(解析条件)
モデル:平面応力モデル
太陽電池セルの接続方向(y軸方向)の幅:140mm(1/2対称による解析)
境界条件:全ての部位において固定なし
熱負荷:120℃から30℃に変化させる
Figure 0006767681
図15は、各例の太陽電池モジュールの温度を120℃から30℃に変化させた時の太陽電池セル間の距離の変化量を解析したグラフである。図15のグラフ中、x軸は、低熱伸縮層と裏面基板の積層方向から見た、裏面基板の面積全体に対する低熱伸縮層の面積の割合(低熱伸縮層の面積率)(%)を示す。また、図15のグラフ中、y軸は、太陽電池セル間の距離の変化量(μm)を示す。なお、太陽電池セル間の距離は、太陽電池セル同士が隣接する辺の間の距離である。また、太陽電池セル間の距離の変化量は、太陽電池セル同士が離れる方向に移動する場合は正の値となり、太陽電池セル同士が近づく方向に移動する場合は負の値となる。
図15に示すように、太陽電池セル間の距離の変化量は、低熱膨張層の面積率が小さくなるにつれて大きくなる傾向にある。しかしながら、低熱膨張層の面積率が同じである場合、実施例7〜実施例10(図15のy軸方向)は、実施例11〜実施例15(図15のx軸方向)と比較して、太陽電池セル間の距離の変化量が小さい傾向にある。これは、太陽電池セルの接続方向に沿って、光電変換部が低熱膨張層に被覆されているため、低熱伸縮層によって熱伸縮による太陽電池セルの移動をより抑制することができたためと考えられる。
特願2016−243171号(出願日:2016年12月15日)及び特願2017−159400号(出願日:2017年8月22日)の全内容は、ここに援用される。
以上、本主題を実施形態によって説明したが、本主題はこれらに限定されるものではなく、本主題の要旨の範囲内で種々の変形が可能である。
本発明によれば、太陽電池モジュールの光電変換部が熱応力により破損することを抑制することができる。
10 表面基板
20 光電変換部
30 封止層
32 スリット
40 低熱伸縮層
50 裏面基板
60 応力緩和樹脂層
100 太陽電池モジュール

Claims (10)

  1. 表面基板と、
    前記表面基板の下に配置され、光電変換部を封止する封止層と、
    前記封止層の下に配置された低熱伸縮層と、
    前記低熱伸縮層の下に配置された裏面基板と、
    前記低熱伸縮層と前記裏面基板との間に配置された応力緩和樹脂層と、
    を備え、
    前記低熱伸縮層の線膨張率は、前記裏面基板の線膨張率よりも小さく、
    前記応力緩和樹脂層の引張弾性率は、前記低熱伸縮層及び前記裏面基板の引張弾性率よりも小さく、
    前記低熱伸縮層は前記封止層から前記応力緩和樹脂層に向かって貫通して形成された隙間を有しており、前記封止層の少なくとも一部が前記応力緩和樹脂層と前期隙間を通じて直接接着するように配置されている太陽電池モジュール。
  2. 前記低熱伸縮層の線膨張率は、20×10−6−1以下である請求項1に記載の太陽電池モジュール。
  3. 前記裏面基板は、ハニカム構造体、発泡体及び多孔質体からなる群より選択される少なくとも1つである請求項1又は2に記載の太陽電池モジュール。
  4. 前記低熱伸縮層及び前記応力緩和樹脂層は、前記裏面基板を中心として積層方向において対称に配置される請求項1〜3のいずれか1項に記載の太陽電池モジュール。
  5. 前記低熱伸縮層と前記裏面基板の積層方向から見て、前記裏面基板全体の面積に対する前記低熱伸縮層の面積の割合は40%以上90%以下である請求項1〜4のいずれか1項に記載の太陽電池モジュール。
  6. 前記光電変換部は、隣接した太陽電池セルが接続部材で互いに電気的に接続された太陽電池セルストリングであり、
    前記低熱伸縮層と前記裏面基板の積層方向から見て、前記低熱伸縮層が前記隣接した太陽電池セルの間を跨って覆うように配置されている請求項1〜5のいずれか1項に記載の太陽電池モジュール。
  7. 前記光電変換部は、隣接した太陽電池セルが接続部材で互いに電気的に接続された太陽電池セルストリングであり、
    前記低熱伸縮層と前記裏面基板の積層方向から見て、前記低熱伸縮層が前記接続部材の全体を覆うよう配置されている請求項1〜6のいずれか1項に記載の太陽電池モジュール。
  8. 前記裏面基板は曲面を形成している請求項1〜7のいずれか1項に記載の太陽電池モジュール。
  9. 前記低熱伸縮層は、炭素繊維強化プラスチック、ガラス繊維含有樹脂及びセルロースナノファイバからなる群より選択される少なくとも1つを含む請求項1〜8のいずれか1項に記載の太陽電池モジュール。
  10. 前記光電変換部は、隣接した太陽電池セルが接続部材で互いに電気的に接続された太陽電池セルストリングであり、
    前記低熱伸縮層と前記裏面基板の積層方向から見て、前記隣接した太陽電池セルの接続方向における低熱伸縮層の線膨張率は20×10−6−1以下である請求項1〜9のいずれか1項に記載の太陽電池モジュール。
JP2018556708A 2016-12-15 2017-12-13 太陽電池モジュール Active JP6767681B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016243171 2016-12-15
JP2016243171 2016-12-15
JP2017159400 2017-08-22
JP2017159400 2017-08-22
PCT/JP2017/044658 WO2018110582A1 (ja) 2016-12-15 2017-12-13 太陽電池モジュール

Publications (2)

Publication Number Publication Date
JPWO2018110582A1 JPWO2018110582A1 (ja) 2019-08-08
JP6767681B2 true JP6767681B2 (ja) 2020-10-14

Family

ID=62559448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556708A Active JP6767681B2 (ja) 2016-12-15 2017-12-13 太陽電池モジュール

Country Status (4)

Country Link
US (1) US20190312164A1 (ja)
JP (1) JP6767681B2 (ja)
CN (1) CN110073501A (ja)
WO (1) WO2018110582A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633738A1 (en) * 2018-10-01 2020-04-08 Panasonic Intellectual Property Management Co., Ltd. Solar cell module, transport, and method of manufacturing solar cell module
JP2021016278A (ja) * 2019-07-16 2021-02-12 株式会社豊田自動織機 車載用太陽電池モジュール
CN114503286A (zh) * 2019-10-11 2022-05-13 京瓷株式会社 太阳能电池模块
JP7377701B2 (ja) 2019-12-24 2023-11-10 株式会社カネカ 太陽電池モジュール
CN115039236A (zh) * 2020-02-12 2022-09-09 京瓷株式会社 太阳能电池模块
FR3116650B1 (fr) * 2020-11-23 2022-11-25 Commissariat Energie Atomique Module photovoltaïque léger et flexible amélioré
FR3126810A1 (fr) 2021-09-07 2023-03-10 Commissariat à l'énergie atomique et aux énergies alternatives Module photovoltaïque flexible
CN116046024B (zh) * 2023-03-31 2023-06-23 中国船舶集团有限公司第七〇七研究所 基于弹性模量差分的光纤陀螺漂移控制方法及光纤陀螺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244490A (ja) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp 太陽エネルギー利用装置およびその組み立て方法
WO2007088892A1 (ja) * 2006-02-02 2007-08-09 Mitsui Chemicals, Inc. 太陽電池モジュール用裏面保護基板、並びに、太陽電池モジュール及び発電装置
US20160172512A1 (en) * 2010-08-05 2016-06-16 Solexel, Inc. Laminated backplane for solar cells
JP2012064789A (ja) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp 太陽電池モジュール
US9525090B2 (en) * 2011-06-15 2016-12-20 Dow Global Technologies Llc Flexible photovoltaic articles
JP5556769B2 (ja) * 2011-08-29 2014-07-23 トヨタ自動車株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
JP2014042009A (ja) * 2012-07-27 2014-03-06 Mitsubishi Chemicals Corp 太陽電池モジュール
CN103396572A (zh) * 2013-08-19 2013-11-20 南京林业大学 一种木质纤维素纳米纤维/丙烯酸树脂复合膜的制备方法

Also Published As

Publication number Publication date
JPWO2018110582A1 (ja) 2019-08-08
US20190312164A1 (en) 2019-10-10
CN110073501A (zh) 2019-07-30
WO2018110582A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6767681B2 (ja) 太陽電池モジュール
AU2014336133B2 (en) Photovoltaic panel and method for producing same
JP6395020B1 (ja) 太陽電池モジュール
KR20100133962A (ko) 태양 전지 시스템
JP6767708B2 (ja) 太陽電池モジュール
JP2015057811A (ja) 太陽電池モジュール
JP6308471B2 (ja) 太陽電池モジュール
JPWO2017208793A1 (ja) 太陽電池モジュール及びその製造方法
WO2016077402A1 (en) Impact resistant lightweight photovoltaic modules
JP2014042009A (ja) 太陽電池モジュール
JP5506295B2 (ja) 太陽電池モジュールおよびその製造方法
JP6057113B1 (ja) 太陽電池モジュール及びその製造方法
JP2011210861A (ja) 太陽電池モジュール
JP2013030734A (ja) 太陽電池モジュール
WO2018150794A1 (ja) 太陽電池モジュール
JP6655828B2 (ja) 太陽電池モジュール
WO2017150045A1 (ja) 太陽電池モジュール
WO2017145663A1 (ja) 太陽電池モジュール
JP2015185680A (ja) 太陽電池モジュール
JP2018098406A (ja) 太陽電池モジュール
JP2019062088A (ja) 太陽電池モジュール
WO2019031378A1 (ja) 太陽電池モジュール及び太陽電池モジュールの中間製品
WO2019087801A1 (ja) 太陽電池モジュール
WO2019087802A1 (ja) 太陽電池モジュール
JP2014175564A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R151 Written notification of patent or utility model registration

Ref document number: 6767681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151