WO2018150794A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2018150794A1
WO2018150794A1 PCT/JP2018/001359 JP2018001359W WO2018150794A1 WO 2018150794 A1 WO2018150794 A1 WO 2018150794A1 JP 2018001359 W JP2018001359 W JP 2018001359W WO 2018150794 A1 WO2018150794 A1 WO 2018150794A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface protection
solar cell
cell module
back surface
substrate
Prior art date
Application number
PCT/JP2018/001359
Other languages
English (en)
French (fr)
Inventor
長谷川 勲
陽介 石井
厚志 福島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018568052A priority Critical patent/JPWO2018150794A1/ja
Publication of WO2018150794A1 publication Critical patent/WO2018150794A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This disclosure relates to a solar cell module.
  • the solar cell module When installing the solar cell module, it may be desired to make the solar cell module into a curved surface according to the shape of the installation part or the like.
  • the solar cell module may have a curved surface curved in an arc shape in a predetermined direction, or a curved surface curved in an arc shape in each of a predetermined direction and another direction orthogonal to the predetermined direction.
  • the solar cell module has a curved surface, it is difficult to make the distance between the two substrates uniform over the entire surface when providing substrates with low flexibility on both the front and back sides. For this reason, in the structure which couple
  • a solar cell module which is one embodiment of the present disclosure includes a photoelectric conversion unit, a surface protection substrate disposed on a light receiving surface side of the photoelectric conversion unit, a back surface protection substrate disposed on the back side of the photoelectric conversion unit, and a surface protection substrate And a filler disposed between the back surface protection substrate and the back surface protection substrate, wherein the front surface protection substrate is made of a translucent resin material, and the first direction and the second direction are directions along one plane. Of the directions, at least the first direction is curved in an arc shape toward the light receiving surface side, and the back surface protection substrate is divided into a plurality of portions in the first direction.
  • the solar cell module which is 1 aspect of this indication is arrange
  • the back surface protection substrate has a surface area smaller than that of the back surface of the surface protection substrate, and the linear expansion coefficient of the back surface protection substrate is the surface. It is smaller than the linear expansion coefficient of the protective substrate.
  • the solar cell module which is one aspect of the present disclosure includes a photoelectric conversion unit, a surface protection substrate disposed on a light receiving surface side of the photoelectric conversion unit, and a back surface protection substrate disposed on the back side of the photoelectric conversion unit.
  • the surface protection substrate is curved in an arc shape toward the light receiving surface in at least the first direction out of the first direction and the second direction that are directions along one plane, and the back surface protection substrate. Are divided into a plurality in the first direction.
  • a high bonding strength of the back surface protection substrate to the surface protection substrate can be maintained for a long period.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • 3 is a cross-sectional view corresponding to BB in FIG. 2 showing a state where members constituting the solar cell module are separated in FIG.
  • FIG. 3 which has shown the solar cell module of the comparative example.
  • FIG. 3 shows another example of the solar cell module of embodiment.
  • FIG. 3 shows another example of the solar cell module of embodiment.
  • FIG. 2 shows another example of the solar cell module of embodiment.
  • FIG. 2 shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 which shows another example of the solar cell module of embodiment.
  • FIG. 3 shows another example of the solar cell module of embodiment. It is a figure corresponding to FIG. 3 which shows another example of the solar cell module of embodiment. It is a figure corresponding to FIG. 3 which shows another example of the solar cell module of embodiment. It is a figure corresponding to FIG. 3 which shows another example of the solar cell module of embodiment. It is a figure corresponding to FIG. 3 which shows another example of the solar cell module of embodiment. It is a figure corresponding to FIG. 3 which shows another example of the solar cell module of embodiment.
  • the solar cell module that is one embodiment of the present disclosure includes a photoelectric conversion unit, a surface protection substrate, a plurality of back surface protection substrates, and a filler.
  • the surface protection substrate is made of a translucent resin material, and is disposed on the light receiving surface side of the photoelectric conversion unit.
  • the first direction and the second direction that are directions along one plane, at least the light receiving surface side in the first direction. It has a curved surface curved in an arc shape so as to swell toward the surface.
  • the plurality of back surface protection substrates are arranged on the back side of the photoelectric conversion unit and are divided into a plurality in the first direction.
  • FIG. 1 is a perspective view of the solar cell module 1.
  • the direction parallel to the short side will be described as the first direction
  • the direction parallel to the long side will be referred to as the second direction. Describe.
  • the first direction and the second direction are orthogonal to each other on the horizontal plane.
  • the 1st direction and 2nd direction about the following solar cell modules 1 are not limited to when orthogonally crossing, but should just be mutually different directions, and may mutually incline a little.
  • first direction and the second direction are not directions along the horizontal plane, and the plane along the first direction and the second direction may be inclined with respect to the horizontal plane or a plane along the vertical direction.
  • first direction is indicated by an arrow X
  • second direction is indicated by arrows Y
  • vertical direction perpendicular to X and Y is indicated by an arrow Z.
  • direction parallel to the short side is defined as the first direction
  • the direction parallel to the long side is defined as the second direction.
  • FIG. 2 is a perspective view of the solar cell module 1 as seen from the light receiving surface side in a simplified manner.
  • 3 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view corresponding to the line BB of FIG. 2 showing a state in which the members constituting the solar cell module 1 are separated in FIG.
  • the solar cell module 1 includes a surface protection substrate 2, a plurality of back surface protection substrates 3, a photoelectric conversion unit 10, and a filler 20.
  • the solar cell module 1 is a three-dimensional curved surface curved in an arc shape in each of the first direction X and the second direction Y according to the shape of the installation place, and toward the light receiving surface side in each direction.
  • the solar cell module 1 has a curved surface curved in an arc shape.
  • the solar cell module 1 has a higher intermediate portion in each of the first direction X and the second direction Y, and a quadratic curve that is convex upward in both the cross section in the first direction X and the cross section in the second direction Y. It is bent to draw.
  • the number of solar cells 12 constituting the solar cell module 1 is reduced as compared with FIG. 1.
  • the surface protection substrate 2 is disposed on the upper surface side that is the light receiving surface side of the solar cell module 1 and protects the surface of the solar cell module 1. More specifically, the surface protection substrate 2 is disposed on the light receiving surface of the solar cell module 1, and the back surface protection substrate 3 described later is disposed on the back surface that is the side surface opposite to the light receiving surface of the solar cell module 1.
  • another layer may be provided in each outer layer of the surface protection substrate 2 and the back surface protection substrate 3 according to a use.
  • the surface protection substrate 2 is a resin substrate formed of resin.
  • the resin substrate is lighter than the glass substrate.
  • the material for forming the surface protective substrate 2 is not particularly limited.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the surface protective substrate 2 contains polycarbonate (PC).
  • the main component of the surface protection substrate 2 is polycarbonate in terms of protecting the surface of the solar cell module 1.
  • main component means that 50% by weight or more is contained in a member containing the component.
  • the thickness of the surface protective substrate 2 is not particularly limited as long as it plays the role of protecting the surface of the solar cell module 1, but is preferably 0.1 mm to 15 mm, and more preferably 0.5 mm to 10 mm. By setting it as such a range, the solar cell module 1 can be protected appropriately and light can be made to reach the photoelectric conversion part 10 efficiently.
  • the total light transmittance of the surface protective substrate 2 is not particularly limited, but is preferably 80% to 100%, and more preferably 85% to 95%. By setting the total light transmittance of the surface protective substrate 2 in such a range, light can efficiently reach the photoelectric conversion unit.
  • the total light transmittance can be measured, for example, by a method such as JIS K7361-1 (Plastic—Testing method of total light transmittance of transparent material—Part 1: Single beam method).
  • the plurality of back surface protection substrates 3 are arranged on the bottom surface, which is the back surface of the solar cell module 1, to protect the back surface of the solar cell module 1.
  • the back surface protection substrate 3 is formed of a resin. By using resin for the back surface protection substrate 3, the weight can be reduced as compared with the case of using glass.
  • the material for forming the back surface protection substrate 3 is not particularly limited.
  • fiber reinforced plastic FRP
  • polyimide PI
  • cyclic polyolefin polycarbonate
  • PC polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • PEEK polyether ether ketone
  • PS Polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • FRP fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • FRP fiber reinforced plastic
  • PMMA polymethyl methacrylate
  • PEEK polyether ether ketone
  • the linear expansion coefficient of the back surface protection substrate 3 is more preferably smaller than the linear expansion coefficient of the surface protection substrate 2. In this way, the relationship between the linear expansion coefficients of the back surface protection substrate 3 and the front surface protection substrate 2 is regulated, so that deformation due to heat of the portion coupled to the back surface protection substrate 3 and the back surface protection substrate 3 is suppressed, and the surface protection substrate 2 can maintain the high bonding strength of the back surface protection substrate 3 to 2 over a long period of time.
  • polycarbonate can be used as the main component of the surface protective substrate 2
  • carbon fiber reinforced plastic can be used as the main component of the back surface protective substrate 3.
  • the thickness of the back surface protection substrate 3 is not particularly limited, it is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 5.0 mm or less. By setting it as such a range, the bending of the back surface protection substrate 3 can be suppressed and the solar cell module 1 can be made lighter.
  • a plurality of back surface protection substrates 3 are arranged on the back surface of the solar cell module 1.
  • bonding strength of the back surface protection substrate 3 with respect to the surface protection substrate 2 can be maintained over a long term.
  • a specific arrangement of the plurality of back surface protection substrates 3 will be described later.
  • the photoelectric conversion unit 10 is not particularly limited as long as it converts light energy into electric energy.
  • the photoelectric conversion unit 10 is formed by electrically connecting a plurality of solar cell strings 11 in series.
  • the photoelectric conversion unit 10 includes a plurality of solar cell strings 11 arranged in the first direction X and a crossover tab 15.
  • Each of the plurality of solar cell strings 11 is formed by connecting the plurality of solar cells 12 in the second direction Y via the connection wiring 13.
  • FIGS. 2 and 4 show that three solar cells 12 arranged in the second direction Y are connected in series by the connection wiring 13 to form one solar cell string 11.
  • positioning of a photovoltaic cell are not limited.
  • connection wiring 13 can be a tab wiring formed of an elongated metal foil.
  • connection wiring 13 for example, copper or the like can be used.
  • connection wiring 13 can also be used by coating with solder or silver.
  • Resin or solder can be used to connect the connection wiring 13 and the bus bar electrode.
  • the several finger electrode extended in the 1st direction X can also be provided in the light-receiving surface side and back surface side of each photovoltaic cell 12 in parallel.
  • the bus bar electrode extending in the second direction Y can be orthogonally connected to the plurality of finger electrodes.
  • a second connection wiring 14 is connected to both ends of the solar cell string 11 in the second direction Y so as to extend in the second direction Y on the light receiving surface side or the back surface side of the solar cell 12 located at the end. Is done.
  • the material and connection method of the second connection wiring 14 are the same as those of the connection wiring 13.
  • the solar cell strings 11 adjacent in the first direction X are connected by the crossover tabs 15 in which the second connection wirings 14 arranged at the respective ends extend in the first direction.
  • the cross section orthogonal to the longitudinal direction of the transition tab 15 is larger than the cross section orthogonal to the longitudinal direction of the connection wiring 13 and the second connection wiring 14, and the tensile strength of the transition tab 15 is the tensile strength of the connection wiring 13 and the second connection wiring 14. Greater than.
  • the second crossover tab 16 extending in the first direction X is connected to the solar cells 12 located at both ends in the connection direction of the solar cells 12 through the plurality of second connection wires 14. Is done. Thereby, the photoelectric conversion part 10 is formed.
  • the second transition tab 16 is the positive electrode end or the negative electrode end of the photoelectric conversion unit 10.
  • Examples of the solar battery cell 12 include a silicon solar battery, a compound solar battery, and an organic solar battery.
  • Examples of the silicon-based solar cell include a single crystal silicon-based solar cell, a polycrystalline silicon-based solar cell, a microcrystalline silicon-based solar cell, and an amorphous silicon-based solar cell.
  • a heterojunction solar battery or a multijunction solar battery can be used as the solar battery cell 12.
  • the flat surface having the front surface, the back surface, and the side surface, or the front surface and the back surface has a curved surface that is curved in an arc shape in one or both of the first direction X and the second direction Y. It can be a curved plate.
  • the surface can be, for example, a surface on the same light receiving surface side as the surface protection substrate 2.
  • the back surface can be, for example, a surface on the back side on the same side as the back surface protection substrate 3.
  • a side surface can be made into the surface which is pinched
  • the photoelectric conversion unit 10 is arranged on the lower side, which is the back side of the front side filler 21 to be described later, and on the upper side which is the light receiving surface side of the back side filler 22 to be described later. Is done.
  • the photoelectric conversion unit 10 when an object collides with the light receiving surface or the back surface of the solar cell module 1, the impact can be reduced with the filler 20. Thereby, damage to the photoelectric conversion unit 10 can be suppressed.
  • the filler 20 includes a transparent front-side filler 21 disposed on the light receiving surface side of the photoelectric conversion unit 10 and a back-side filler 22 disposed on the back side of the photoelectric conversion unit 10.
  • the front side filler 21 and the back side filler 22 protect the photoelectric conversion unit 10 as a sealing material.
  • the material which forms the front side filler 21 is not specifically limited, As the front side filler 21, various gels can be used, for example.
  • the gel is not particularly limited, but is classified into a gel containing a solvent and a gel not containing a solvent.
  • a hydrogel in which the dispersion medium is a water gel and an organogel in which the dispersion medium is an organic solvent gel can be used.
  • the gel containing the solvent may be a polymer gel having a number average molecular weight of 10,000 or more, an oligomer gel having a number average molecular weight of 1,000 or more and less than 10,000, or a low molecular gel having a number average molecular weight of less than 1,000. .
  • the front-side filler 21 it is preferable to use a polymer gel containing a solvent or a gel not containing a solvent. Since the polymer gel containing the solvent or the gel not containing the solvent can fix the photoelectric conversion unit 10, the load on the connection wiring 13 and the second connection wiring 14 due to the movement of the photoelectric conversion unit 10 can be suppressed.
  • the front-side filler 21 preferably contains at least one selected from the group consisting of silicone gel, acrylic gel, and urethane gel.
  • the tensile elastic modulus of these gels is small, and the thermal stress and local load of the surface protection substrate 2 due to temperature change can be alleviated, so that damage to the photoelectric conversion unit 10 can be suppressed.
  • these gel can fix the photoelectric conversion part 10 more, and can suppress that a load is applied to the connection wiring 13 and the 2nd connection wiring 14 by the movement of the photoelectric conversion part 10.
  • the thickness of the front-side filler 21 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting it as such a range, the photoelectric conversion part 10 can be protected appropriately and light can reach the photoelectric conversion part 10 efficiently.
  • the total light transmittance of the front-side filler 21 is not particularly limited, but is preferably 60% to 100%, and more preferably 70% to 95%.
  • the total light transmittance of the front-side filler 21 is more preferably 80% to 95%.
  • the back-side filler 22 also protects the photoelectric conversion unit 10 as a sealing material.
  • the back side filler 22 is disposed on the upper side of the back surface protective substrate 3 on the lower side, which is the back side of the photoelectric conversion unit 10, and on the lower side of the front side filler 21.
  • back side filler 22 and the back surface protective substrate 3 may directly contact without providing other members between the back side filler 22 and the back surface protective substrate 3.
  • Other layers such as an adhesive layer and a functional layer may be provided between the back side filler 22 and the back surface protective substrate 3.
  • the material for forming the back side filler 22 is not particularly limited.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PET polyethylene terephthalate
  • PO polyolefin
  • PI polyimide
  • the back side filler 22 preferably contains an ethylene-vinyl acetate copolymer (EVA) or polyolefin (PO).
  • the thickness of the back-side filler 22 is not particularly limited, but is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.2 mm or more and 1.0 mm or less. By setting it as such a range, the photoelectric conversion part 10 can be protected appropriately from a thermal shock.
  • FIG. 2 the figure which saw through the solar cell module 1 from the upper side is shown, and the back surface protection board 3 is shown by the rectangular part which attached
  • the plurality of back surface protection substrates 3 are arranged one by one on the back side of each of the plurality of solar cell strings 11. Further, the plurality of back surface protection substrates 3 are separated on the back side of the portion located between the adjacent solar cell strings 11 in the first direction X in the back side filler 22.
  • Each back surface protection substrate 3 has a long and long shape along a second direction Y that coincides with the longitudinal direction of the solar cell string 11.
  • the back surface protection substrate 3 has a front surface, a back surface, and a side surface, and the front surface and the back surface have a curved plate shape having a curved surface that is curved in an arc shape in one or both of the first direction X and the second direction Y.
  • the surface can be, for example, a surface on the same light receiving surface side as the surface protection substrate 2.
  • the back surface can be, for example, a surface on the back side on the same side as the back surface protection substrate 3.
  • a side surface can be made into the surface which is pinched
  • the surface protection substrate 2, the front side filler 21, the photoelectric conversion unit 10, the back side filler 22, and the back surface protection substrate 3 that are constituent members of the solar cell module 1 are laminated in this order and heated. It compresses by pressing in the front and back direction (up and down direction in FIG. 4). Thereby, the solar cell module 1 is integrally molded.
  • the structural member of the solar cell module 1 can be divided into a plurality of parts and compression-molded separately, and then joined together by adhesion or the like.
  • the overall length in the first direction X when the plurality of back surface protection substrates 3 are abutted in the first direction X so as to fill the gap G is obtained.
  • the length is smaller than the length of the surface protection substrate 2 in the first direction X.
  • the entire length of the plurality of back surface protection substrates 3 in the second direction Y is smaller than the length of the surface protection substrate 2 in the second direction Y.
  • the entire area of the front surface of the plurality of back surface protection substrates 3 is smaller than the area of the back surface of the surface protection substrate 2.
  • the back surface protection substrate 3 disposed on the back side of the surface protection substrate 2 is divided into a plurality in the first direction X.
  • each back surface protection substrate 3 becomes small, so that the solar cell module 1 as a whole can easily form a curved surface having a uniform thickness. That is, the back surface protection substrate 3 can be easily aligned with the surface protection substrate 2, and the distance between the surface protection substrate 2 and the back surface protection substrate 3 can be made more uniform over the entire surface.
  • the plurality of back surface protection substrates 3 are arranged one by one on the back side of each of the plurality of solar cell strings 11, and each back surface protection substrate 3 extends in the second direction Y.
  • the plurality of back surface protection substrates 3 are separated on the back side of the portion located between the adjacent solar cell strings 11 in the first direction X.
  • the back surface protection substrate 3 can be arrange
  • the back surface protection substrate 3 and the front surface protection substrate 2 have the same linear expansion coefficient as that of the back surface protection substrate 3. Deformation due to temperature change of the protective substrate 3 can be suppressed. Thereby, it can suppress that a load is applied to the filler 20 in the solar cell module 1, the connection wiring 13, and the connection wiring 14.
  • the filler 20 was formed by the front side filler 21 and the back side filler 22 was demonstrated above, the filler is not completely distinguished by the welding at the time of integral molding by heating and pressurization, etc. In some cases.
  • FIG. 5 is a view corresponding to FIG. 3 showing a solar cell module 1a of a comparative example.
  • the back surface protection substrate 3 a is not separated into a plurality, and only one back surface protection substrate 3 a is disposed on the back surface of the solar cell module 1.
  • the back surface protection substrate 3a has a curved surface that is curved in an arc shape in both the first direction X and the second direction Y.
  • the other configuration is the same as that of the embodiment of FIGS.
  • both the front surface protection substrate 2 and the rear surface protection substrate 3a have a large area, it is more difficult than the case of using the back surface protection substrate 3 having a small area in terms of approaching a desired shape by processing. There is a case.
  • FIG. 6 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • a plurality of front side fillers 21 and a plurality of back side fillers 22 are provided.
  • one front-side filler 21 is arranged for each solar cell string 11 on the light receiving surface side of the plurality of solar cell strings 11.
  • one back side filler 22 is arranged for each solar cell string 11.
  • Each front-side filler 21 and each back-side filler 22 are elongated along the second direction Y of each solar cell string 11, and the length of each filler 21, 22 in the first direction X is the sun
  • the length of each solar battery cell 12 in the battery cell string 11 in the first direction X is substantially the same.
  • the back surface protection substrate 3 is arrange
  • the length of each back surface protection substrate 3 in the first direction X is substantially the same as the length of each solar cell 12 in the first direction X.
  • Other configurations and operations are the same as those in FIGS. 1 to 4.
  • FIG. 7 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the arrangement width L1 is substantially the same as the width L2 of the surface protection substrate 2 in the first direction X.
  • FIG. 8 is a view corresponding to FIG. 2 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 8 is different from the configurations of FIGS. 1 to 4, and the plurality of back surface protection substrates 3 b are separately arranged in each of the first direction X and the second direction Y, and the length in each second direction Y However, it is smaller than the configuration of FIGS.
  • the plurality of back surface protection substrates 3 b are arranged one by one for each solar battery cell 12 on the back side of the plurality of solar battery cells 12. By adopting such a configuration, the area of the front surface of each back surface protection substrate 3b can be reduced as compared with the configurations of FIGS.
  • the end portion in the second direction Y of the back surface protection substrate 3 b disposed on the back side at both ends in the longitudinal direction of each solar cell string 11 can be extended as shown by the broken line in FIG. 8. . And when the extended part is seen from the light-receiving surface side, it can also be made to overlap with the 2nd transition tab 16. In this case, when viewed from the light receiving surface side, a part of the back surface protection substrate 3b is connected to the solar battery cell 12, the second connection wiring 14, and the second crossover tab 16 on the back side of the second connection wiring 14. It arrange
  • the second connection wiring 14 when a temperature change occurs in the solar cell module 1 at the time of manufacture or use, in addition to the configuration in which the back surface protection substrate 3b is not provided on the back side of the second connection wiring 14, the second connection wiring 14 is provided. Can also be protected from external impacts. Further, when the linear expansion coefficient of the back surface protection substrate 3b is made smaller than the linear expansion coefficient of the surface protection substrate 2, the back surface protection substrate 3b and the front surface protection substrate 2 have the same linear expansion coefficient as that of the back surface protection substrate 3b. Deformation due to temperature change of the protective substrate 3b can be suppressed. As a result, it is possible to suppress a load on the connection wiring 14.
  • FIG. 9 is a diagram corresponding to FIG. 2 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 9 is different from the configurations of FIGS. 1 to 4, and the plurality of back surface protection substrates 3 c are separately arranged in each of the first direction X and the second direction Y, and the second direction of each back surface protection substrate 3 c.
  • the length at Y is smaller than that of the configuration of FIGS.
  • some of the back surface protection substrates 3 c include two solar cells 12 adjacent in the second direction Y and a connection wiring 13 between the two solar cells 12. It is arranged on the back side.
  • the remaining back surface protection substrate 3c of the plurality of back surface protection substrates 3c includes the back side of the solar cells 12 and the transition tabs 15 or the second transition tabs 16 adjacent to each other in the second direction Y, and the solar cells and the transition tabs or the second tabs. It arrange
  • the remaining back surface protection substrate 3c is connected to the solar battery cell 12 and the transition tab 15 or the second transition tab 16 and the second connection wiring 14 when viewed from the light receiving surface side on the back side of the second connection wiring 14. It arrange
  • the area of the front surface of each back surface protection substrate 3c is smaller than the configuration of FIGS. 1 to 4 as in the configuration of FIG.
  • the connection wiring 13 and the second connection wiring 13 and the second connection wiring 13 and the second connection wiring 14 are compared with the configuration in which the back surface protection substrate 3 is not provided behind the connection wiring 13 and the second connection wiring 14. It is possible to suppress a load on the connection wiring 14.
  • the back surface protection substrate 3c and the front surface protection substrate 2 have the same linear expansion coefficient as that of the back surface protection substrate 3c. Deformation due to temperature change of the protective substrate 3c can be suppressed. Thereby, it is possible to suppress the load on the connection wiring 13 and the connection wiring 14. Other configurations and operations are the same as those in FIGS. 1 to 4.
  • FIG. 10 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 10 is different from the configurations of FIGS. 1 to 4 and includes a second back surface protection substrate 4 arranged on the back side of the plurality of back surface protection substrates 3.
  • the second back surface protection substrate 4 covers the gap G between two adjacent back surface protection substrates 3 from the back surface side.
  • each of the plurality of second back surface protection substrates 4 is coupled to the back side of two adjacent back surface protection substrates 3 so as to straddle the two back surface protection substrates 3.
  • the length of each second back surface protection substrate 4 in the second direction Y is substantially the same as the length of the back surface protection substrate 3 in the second direction Y.
  • the material of the 2nd back surface protection substrate 4 is not specifically limited, From the surface of the appearance improvement, Preferably, the 2nd back surface protection substrate 4 is formed with the same material as the back surface protection substrate 3, The same color is preferable.
  • the surface protection substrate 2 of the some back surface protection substrate 3 can be suppressed. High bond strength with respect to can be maintained for a longer period of time. Furthermore, since the space between the adjacent back surface protection substrates 3 is covered with the second back surface protection substrate 4, it is possible to suppress the division of the back surface protection substrate 3 from the light receiving surface side, and water can enter from the back surface side. An adverse effect on the solar battery cell 12 can be prevented. Since it is difficult to visually recognize the divided portion from the light receiving surface side, it is possible to suppress the deterioration of the design property due to dividing the back surface protective substrate 3 into a plurality.
  • the back surface protection substrate 3 is formed of a resin material
  • a hole that does not penetrate the back surface of the back surface protection substrate 3 may be formed at the time of injection molding in the mold of the back surface protection substrate 3.
  • a protrusion is formed on the surface of the second back surface protection substrate 4, and the protrusion is tightly fitted into the hole of the back surface protection substrate 3, and the second back surface protection substrate 4 is attached to the back surface protection substrate 3 together with adhesive bonding.
  • a part of the second back surface protection substrate 4 is coupled to only the back surface protection substrate 3 positioned at both ends in the first direction X, but the part of the second back surface protection substrate 4 is omitted. You can also Other configurations and operations are the same as those in FIGS. 1 to 4.
  • FIG. 11 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration in FIG. 11 is different from the configuration in FIG. 10.
  • Each of the plurality of second back surface protection substrates 4 a is arranged on the back side of two adjacent back surface protection substrates 3 only in a portion straddling the two back surface protection substrates 3. Is done.
  • the length in the 1st direction X of each 2nd back surface protection board 4a is small compared with the structure of FIG.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 12 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 12 includes the thin substrate 5 arranged on the front side (light receiving surface side) of the plurality of back surface protection substrates 3, unlike the configurations of FIGS. 1 to 4.
  • the thin substrate 5 corresponds to an inter-substrate closing member.
  • the thin substrate 5 is disposed between the two back surface protection substrates 3 on the light receiving surface side of the two adjacent back surface protection substrates 3 between the back surface protection substrate 3 and the photoelectric conversion unit 10. It is a board
  • the reason why the thin substrate 5 is thin is that when the constituent members of the solar cell module 1 are integrated by heating and pressurization, the overall thickness is reduced and the bonding strength is increased.
  • the length of the thin substrate 5 in the second direction Y is substantially the same as the length of the back surface protection substrate 3 in the second direction Y.
  • the material of the thin substrate 5 is not particularly limited, for example, it can be formed of the same material as the back surface protection substrate 3.
  • substrate 5 straddles the front side between adjacent back surface protection substrates 3, while being able to suppress that the division part of the back surface protection substrate 3 is visually recognized from the light-receiving surface side, it is adjacent from a back surface side. It is possible to prevent water from entering through the matching back surface protective substrate 3 and adversely affecting the solar cells 12. Moreover, when integrating the structural member of the solar cell module 1 by heating and pressurization, it can suppress that the filler 20 leaks out between the back surface protection substrates 3 which adjoin. Other configurations and operations are the same as those in FIGS. 1 to 4.
  • FIG. 13 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration shown in FIG. 13 is different from the configuration shown in FIG. 12 and includes a plurality of colored films 6 as an inter-substrate closing member instead of a thin substrate.
  • the film 6 is disposed so as to be sandwiched between the solar battery cell 12 and the back surface protective substrate 3 via the back side filler 22.
  • the material of the film 6 is not specifically limited, For example, a polyethylene terephthalate (PET), polyvinyl butyral (PVB), a polyimide (PI), polyolefin (PO) etc. can be used suitably.
  • PET polyethylene terephthalate
  • PVB polyvinyl butyral
  • PI polyimide
  • PO polyolefin
  • the thin substrate 5 may be disposed so as to be sandwiched between the solar battery cell 12 and the back surface protection substrate 3 as in the configuration of FIG. 13.
  • FIG. 14 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment. 14 has a length in the first direction X of the film 6 larger than that in FIG. 13 and is a part of the outer peripheral edge of the film 6 when viewed from the light receiving surface side. Both end edges of the solar cell overlap with the solar cells 12 adjacent in the first direction X. According to this structure, the 1st direction X edge of the film 6 is shown to the back side of the photovoltaic cell 12 from the 1st direction X edge of the photovoltaic cell 12 shown with broken line A1, A2, A3, A4 of FIG. hide.
  • FIG. 15 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 15 is different from the configuration of FIG. 13 in that one film 6 a is disposed on the entire surface between the back side filler 22 and the back surface protection substrate 3. According to this configuration, the number of parts can be reduced compared to the configuration of FIG. Other configurations and operations are the same as those in FIG.
  • the thin substrate 5 of FIG. 12 can also be used instead of the films 6 and 6a.
  • the thin substrate 5 or the films 6 and 6 a may be the same color as the back surface protection substrate 3. According to this structure, since the external appearance of the thin substrate 5 or the films 6 and 6a and the back surface protection substrate 3 can be made substantially the same, it is possible to suppress a decrease in designability when viewed from the light receiving surface side.
  • the linear expansion coefficient of the thin substrate 5 or the films 6 and 6 a is such that the linear expansion coefficient close to the back surface protection substrate 3 among the surface protection substrate 2 and the back surface protection substrate 3. You may make it have a coefficient.
  • the thin substrate 5 or the films 6 and 6 a can suppress displacement and deformation of the back surface protection substrate 3 when a temperature change occurs in the solar cell module. For this reason, the high coupling
  • a film having a function of preventing invasion of one or both of oxygen and water may be used as the films 6 and 6a.
  • a resin sheet such as polyethylene terephthalate (PET) may be used by laminating a single layer or a plurality of layers, and those resin sheets coated with a metal may be used.
  • PET polyethylene terephthalate
  • the metal coating has a higher function of preventing oxygen and water from entering. According to this configuration, it is possible to prevent oxygen or water from entering the interior of the back surface protection substrate 3 adjacent from the outside of the solar cell module 1 to adversely affect the solar cells 12.
  • a film having water permeability may be used. According to this configuration, even when water enters the inside through the space between the adjacent back surface protection substrates 3 from the outside of the solar cell module 1, the water can be positively discharged through the film. Thereby, it can suppress that the water which penetrate
  • FIG. 16 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 16 is different from the configuration of FIG. 13 in that the second back surface protection substrate 4 a is coupled to the back side of two adjacent back surface protection substrates 3 so as to straddle between the two back surface protection substrates 3.
  • the configuration of the second back surface protection substrate 4a is the same as the configuration shown in FIG. According to this structure, when the temperature change arises in the solar cell module 1, the displacement and deformation of the back surface protection substrate 3 can be suppressed by the second back surface protection substrate 4a. Thereby, since it can also suppress that the film 6 deform
  • Other configurations and operations are the same as the configuration in FIG. 11 or the configuration in FIG. 13.
  • FIG. 17 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 17 differs from the configurations of FIGS. 1 to 4 in that a transparent filler is used as the front-side filler 21 and a colored filler is used as the back-side filler 22a.
  • the back side filler 22a may be colored black, gray or the like, and can be appropriately changed according to the purpose. According to this structure, since the division part of the adjacent back surface protection substrate 3 is hard to visually recognize from the light-receiving surface side of the solar cell module 1, it is possible to suppress a decrease in design properties due to the division of the back surface protection substrate 3 into a plurality of portions. Other configurations and operations are the same as those in FIGS. 1 to 4.
  • FIG. 18 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the configuration of FIG. 18 is different from the configurations of FIGS. 1 to 4 in that the back-side filler 22b has a transparent front-side layer 23 and a back-side layer 24 that is arranged behind the front-side layer 23 and colored.
  • the back side layer 24 may be colored black, gray or the like, and can be appropriately changed according to the purpose.
  • this configuration similarly to the configuration of FIG. 17, it is difficult to visually recognize the divided portion of the adjacent back surface protection substrate 3 from the light receiving surface side of the solar cell module 1. It is possible to suppress a decrease in design properties.
  • the transparent front side layer 23 is disposed on the light receiving surface side of the back side filler 22b.
  • FIG. 19 is a view corresponding to FIG. 3 showing another example of the solar cell module 1 of the embodiment.
  • the surface protection substrate 2, the front side filler 21, the photoelectric conversion unit 10, the back side filler 22, and the plurality of back surface protection substrates 3 are stacked and heated and pressurized.
  • the solar cell module 1 is then formed by filling the resin 25 between the adjacent back surface protection substrates 3. For example, a resin melted by heating or the like is filled in the gap between adjacent back surface protection substrates 3 and cured. According to this configuration, it is possible to suppress water from entering the inside of the filler 20 from the outside through the gap between the adjacent back surface protection substrates 3. Further, when the solar cell module 1 is deformed due to a temperature change or the like, the contact of the adjacent back surface protection substrate 3 can be prevented, and the reliability can be maintained high.
  • Other configurations and operations are the same as those in FIGS. 1 to 4.
  • FIG. 20 is a diagram corresponding to FIG. 3 illustrating another example of the solar cell module 1 of the embodiment.
  • the solar cell module 1 of FIG. 20 is different from the configurations of FIGS. 1 to 4 in that the back surface protection substrate 3d is not divided into a plurality.
  • the configuration of FIG. 20 includes only one back surface protection substrate 3d.
  • the back surface protection substrate 3d has a surface area on the light receiving surface side smaller than the area of the back surface of the surface protection substrate 2.
  • the length of the back surface protection substrate 3d in the first direction X is made smaller than the length of the surface protection substrate 2 in the first direction X.
  • the linear expansion coefficient of the back surface protection substrate 3 d is smaller than the linear expansion coefficient of the surface protection substrate 2.
  • the surface protection substrate 2 is formed of a material mainly composed of polycarbonate
  • the back surface protection substrate 3d is formed of a material mainly composed of carbon fiber reinforced plastic.
  • the surface area of the back surface protection substrate 3 can be reduced as compared with the comparative example shown in FIG.
  • the back surface protection substrate 3d can be easily aligned with the surface protection substrate 2, and the distance between the surface protection substrate 2 and the back surface protection substrate 3d can be made more uniform over the entire surface. For this reason, it is suppressed that the space
  • the linear expansion coefficient of the back surface protection substrate 3d is smaller than the linear expansion coefficient of the surface protection substrate 2, deformation of the back surface protection substrate 3d and the filler 20 bonded to the front side of the back surface protection substrate 3d is suppressed, The high bonding strength of the back surface protection substrate 3d with respect to the protection substrate 2 can be maintained for a long time. Moreover, since it can suppress the load with respect to wiring members, such as the connection wiring 13 (FIG. 2) arrange
  • the photoelectric conversion unit includes a plurality of solar cell strings
  • the photoelectric conversion unit may include only one solar cell string or only one solar cell. Good.
  • a gel material is exemplified as the material of the front side filler 21, but a general resin material may be used in the same manner as the back side filler 22 instead of the gel material. Even in this case, the effect of the configuration of the present application can be sufficiently exhibited.
  • a light-transmitting resin material is exemplified as a material for the front surface protection substrate and the back surface protection substrate. Since the resin material is light and easy to process, it is preferable to use the resin material from the viewpoint of production. Alternatively, a light-transmitting inorganic material such as glass can be used instead.
  • the solar cell module 1 has a curved surface curved in an arc shape in both the first direction X and the second direction Y
  • the solar cell module is bent in an arc shape only in the first direction X. It can also be set as the structure containing the curved surface which has a cross section.
  • the back surface protection substrate in each example of the above embodiment, high bonding strength of the back surface protection substrate with respect to the front surface protection substrate can be maintained for a long time.
  • the back surface protection substrate of each example of the embodiment in the configuration in which the solar cell module has a curved surface curved in an arc shape in both the first direction X and the second direction Y, the back surface protection substrate of each example of the embodiment. The effect obtained by adopting the configuration is more remarkable.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示の一態様である太陽電池モジュールは、光電変換部と、光電変換部の受光面側に配置され、1つの平面に沿う方向である第1方向及び第2方向のうち、少なくとも第1方向において受光面側に向かって円弧状に湾曲し、透光性樹脂材料からなる表面保護基板と、光電変換部の裏側に配置され、第1方向において複数に分割して設けられている裏面保護基板と、表面保護基板と複数の裏面保護基板との間に配置された充填材とを含む。

Description

太陽電池モジュール
 本開示は、太陽電池モジュールに関する。
 太陽電池モジュールを設置する場合において、設置部分の形状等に応じて太陽電池モジュールを曲面状とすることが望まれる場合がある。例えば、太陽電池モジュールにおいて、所定方向において円弧状に曲がった曲面、または所定方向と所定方向に直交する別の方向とのそれぞれで円弧状に曲がった曲面を有する構成とすることが考えられる。
特開2012-74530号公報
 太陽電池モジュールが曲面を有する場合において、表裏の両面に柔軟性が低い基板を設ける場合には、2つの基板の間隔を全面にわたって均一にすることが難しい。このため、充填材を介して2つの基板を結合する構成において、受光面側の表面保護基板に対する裏側の裏面保護基板の高い結合強度を長期にわたって維持する面から改良の余地がある。
 本開示の一態様である太陽電池モジュールは、光電変換部と、光電変換部の受光面側に配置される表面保護基板と、光電変換部の裏側に配置される裏面保護基板と、表面保護基板と裏面保護基板との間に配置された充填材と、を備える太陽電池モジュールであって、表面保護基板は透光性樹脂材料からなり、1つの平面に沿う方向である第1方向及び第2方向のうち少なくとも第1方向において受光面側に向かって円弧状に湾曲し、裏面保護基板は、第1方向において複数に分割して設けられている。
 また、本開示の一態様である太陽電池モジュールは、光電変換部と、光電変換部の受光面側に配置され、1つの平面に沿う方向である第1方向及び第2方向のうち、少なくとも第1方向に円弧状に曲がった曲面を有する透光性樹脂材料からなる表面保護基板と、光電変換部の裏側に配置され、少なくとも第1方向において円弧状に曲がった曲面を有する裏面保護基板と、表面保護基板と裏面保護基板との間に配置された充填材とを備え、裏面保護基板は、表面の面積が表面保護基板の裏面の面積より小さく、かつ、裏面保護基板の線膨張係数は表面保護基板の線膨張係数より小さい。また、本開示の一態様である太陽電池モジュールは、光電変換部と、光電変換部の受光面側に配置される表面保護基板と、光電変換部の裏側に配置される裏面保護基板と、を備える太陽電池モジュールであって、表面保護基板は、1つの平面に沿う方向である第1方向及び第2方向のうち少なくとも第1方向において受光面側に向かって円弧状に湾曲し、裏面保護基板は、第1方向において複数に分割して設けられている。
 本開示の一態様によれば、曲面を有する太陽電池モジュールにおいて、表面保護基板に対する裏面保護基板の高い結合強度を長期にわたって維持できる。
実施形態の太陽電池モジュールの斜視図である。 実施形態の太陽電池モジュールを簡略化して受光面側から見た透視図である。 図2のA-A断面図である。 図3において、太陽電池モジュールを構成する部材を分離した状態を示している図2のB-B断面相当図である。 比較例の太陽電池モジュールを示している図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図2に対応する図である。 実施形態の太陽電池モジュールの別例を示す図2に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。 実施形態の太陽電池モジュールの別例を示す図3に対応する図である。
 本開示の一態様である太陽電池モジュールは、光電変換部、表面保護基板、複数の裏面保護基板、及び充填材を備える。表面保護基板は、透光性樹脂材料からなり、光電変換部の受光面側に配置され、1つの平面に沿う方向である第1方向及び第2方向のうち、少なくとも第1方向において受光面側に向かって膨らむように円弧状に湾曲した曲面を有する。複数の裏面保護基板は、光電変換部の裏側に配置され、第1方向において複数に分割して設けられている。これにより、曲面を有する太陽電池モジュールにおいて、表面保護基板に対する裏面保護基板の高い結合強度を長期にわたって維持できる。
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。実施形態において参照する図面は、模式的に記載されたものであるから、図面に描画された構成要素の寸法などは、以下の説明を参酌して判断されるべきである。本明細書において、「略~」との記載は、略同じを例に説明すると、完全に同じであることはもとより、実質的に同じであると認められる場合を含む意図である。以下で説明する実施形態は例示であって、本開示の太陽電池モジュールはこれに限定されない。例えば、以下で説明する複数の実施形態は適宜組み合わされてもよい。以下では、すべての図面において対応する要素には同一の符号を付して説明する。
 図1は、太陽電池モジュール1の斜視図である。便宜上、以下では、太陽電池モジュールが上から見た状態で正方形を除く矩形の場合について説明し、短辺と平行な方向を第1方向と記載し、長辺と平行な方向を第2方向と記載する。水平面上において第1方向及び第2方向は直交する。また、以下の太陽電池モジュール1についての第1方向及び第2方向は直交する場合に限定せず、互いに異なる方向であればよく、互いに少し傾斜していてもよい。また、第1方向及び第2方向は、水平面に沿う方向ではなく、第1方向及び第2方向が沿う平面が、水平面に対し傾斜する、または鉛直方向に沿う平面としてもよい。図面には、第1方向を矢印X、第2方向を矢印Y、X及びYに直交する上下方向を矢印Zで示す。なお、本願明細書中では短辺と平行な方向を第1方向、長辺と平行な方向を第2方向としたが、逆であってもよい。
 図2は、太陽電池モジュール1を簡略化して受光面側から見た透視図である。図3は、図2のA-A断面図である。図4は、図2において、太陽電池モジュール1を構成する部材を分離した状態を示している図2のB-B断面相当図である。太陽電池モジュール1は、表面保護基板2、複数の裏面保護基板3、光電変換部10、充填材20を備える。太陽電池モジュール1は、設置場所の形状に合わせて第1方向X及び第2方向Yのそれぞれにおいて円弧状に曲がった3次元曲面形状の曲面であって、それぞれの方向において受光面側に向かって円弧状に湾曲した曲面を有する。太陽電池モジュール1は第1方向X及び第2方向Yのそれぞれで中間部が高くなり、第1方向Xの断面においても、第2方向Yの断面においても、上に凸となった二次曲線を描くように曲がっている。
 図2から図4では、実施形態の特徴をより分かりやすくするために、図1に比べて太陽電池モジュール1を構成する太陽電池セル12の数を少なくして示している。表面保護基板2は、太陽電池モジュール1の受光面側である上面側に配置され、太陽電池モジュール1の表面を保護する。より具体的には、表面保護基板2は、太陽電池モジュール1の受光面に配置され、後述する裏面保護基板3は、太陽電池モジュール1の受光面とは反対側面である裏面に配置される。なお、用途に応じて表面保護基板2及び裏面保護基板3のそれぞれの外層に他の層が設けられてもよい。
 表面保護基板2は、樹脂により形成される樹脂基板である。樹脂基板は、ガラス基板と比較して軽量である。表面保護基板2を形成する材料は特に限定されない。例えば、表面保護基板2を形成する材料として、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選択される少なくとも1つを用いることができる。これらの中でも、表面保護基板2として、ポリカーボネート(PC)を含有することがより好ましい。ポリカーボネート(PC)は耐衝撃性および透光性に優れるため、太陽電池モジュール1の表面を保護する面から、表面保護基板2の主成分をポリカーボネートとすることが好ましい。ここで、「主成分」とは、その成分を含む部材中に50重量%以上含むことである。
 表面保護基板2の厚みは、太陽電池モジュール1の表面を保護する役割を果たす限り特に限定されないが、0.1mm~15mmとすることが好ましく、0.5mm~10mmとすることがより好ましい。このような範囲とすることによって、太陽電池モジュール1を適切に保護し、光電変換部10に光を効率よく到達させることができる。
 表面保護基板2の全光線透過率は特に限定されないが、80%~100%であることが好ましく、85%~95%であることがより好ましい。表面保護基板2の全光線透過率をこのような範囲とすることにより、光を効率よく光電変換部へ到達させることができる。全光線透過率は、例えば、JISのK7361-1(プラスチック-透明材料の全光線透過率の試験方法-第1部:シングルビーム法)などの方法により測定することができる。
 複数の裏面保護基板3は、太陽電池モジュール1の裏面である下面に配置され、太陽電池モジュール1の裏面を保護する。裏面保護基板3は、樹脂により形成される。裏面保護基板3に樹脂を用いることでガラスを用いる場合より軽量化を図れる。裏面保護基板3を形成する材料は特に限定されないが、例えば、繊維強化プラスチック(FRP)、ポリイミド(PI)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選択される少なくとも1つを用いることができる。繊維強化プラスチック(FRP)としては、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、アラミド繊維強化プラスチック(AFRP)などが挙げられる。裏面保護基板3を形成する材料として、繊維強化プラスチック(FRP)、ポリメチルメタクリレート(PMMA)及びポリエーテルエーテルケトン(PEEK)からなる群より選択される少なくとも1つを含有することが好ましい。これらの材料は衝撃等によりたわみが発生しにくく、軽量である面から好ましい。
 また、裏面保護基板3の線膨張係数は、表面保護基板2の線膨張係数より小さいことがより好ましい。このように裏面保護基板3及び表面保護基板2の線膨張係数の関係が規制されることで、裏面保護基板3及び裏面保護基板3に結合された部分の熱による変形を抑制し、表面保護基板2に対する裏面保護基板3の高い結合強度を長期にわたり維持できる。例えば、表面保護基板2の主成分としてポリカーボネートを用い、裏面保護基板3の主成分として炭素繊維強化プラスチックを用いることができる。
 裏面保護基板3の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上5.0mm以下であることがより好ましい。このような範囲とすることによって、裏面保護基板3のたわみを抑制し、太陽電池モジュール1をより軽量にできる。
 さらに、裏面保護基板3は、太陽電池モジュール1の裏面に複数配置される。これにより、曲面を有する太陽電池モジュール1において、表面保護基板2に対する裏面保護基板3の高い結合強度をより長期にわたって維持できる。複数の裏面保護基板3の具体的な配置については後で説明する。
 光電変換部10は、光エネルギーを電気エネルギーに変換するものであれば特に限定されない。実施形態では、光電変換部10は、複数の太陽電池セルストリング11を電気的に直列に接続することにより形成される。図2から図4に示すように、光電変換部10は、第1方向Xに分かれて配列された複数の太陽電池セルストリング11と、渡りタブ15とを含む。複数の太陽電池セルストリング11のそれぞれは、複数の太陽電池セル12が第2方向Yに接続配線13を介して接続されることにより形成される。
 図4に示すように、第2方向Yに隣り合う太陽電池セル12のうち、一方の太陽電池セル12のバスバー電極と、他方の太陽電池セル12のバスバー電極とが接続配線13により接続される。図2、図4では、第2方向Yに並んで配置される3つの太陽電池セル12が接続配線13によって直列に接続され、1つの太陽電池セルストリング11が形成されることを示している。なお、太陽電池セルの数及び配置は限定されない。
 接続配線13の形状及び材料は特に限定されない。例えば、接続配線13は、細長い金属箔により形成されたタブ配線とすることができる。接続配線13の材料としては、例えば銅などを用いることができる。接続配線13は、ハンダまたは銀をコーティングして用いることもできる。
 接続配線13及びバスバー電極の接続には樹脂またはハンダを用いることができる。なお、図示は省略するが、各太陽電池セル12の受光面側及び裏面側に、平行に第1方向Xに伸びる複数のフィンガー電極を設けることもできる。第2方向Yに伸びるバスバー電極は、複数のフィンガー電極と直交して接続することができる。
 太陽電池セルストリング11の第2方向Yの両端部には、その端部に位置する太陽電池セル12の受光面側または裏面側に第2接続配線14が、第2方向Yに伸びるように接続される。第2接続配線14の材料及び接続方法は、接続配線13の場合と同様である。
 図2に戻って、第1方向Xに隣り合う太陽電池セルストリング11は、それぞれの端部に配置された第2接続配線14が第1方向に伸びる渡りタブ15で接続される。渡りタブ15の長手方向に直交する断面は、接続配線13及び第2接続配線14の長手方向に直交する断面より大きく、渡りタブ15の引っ張り強度は接続配線13及び第2接続配線14の引っ張り強度より大きい。また、光電変換部10において、太陽電池セル12の接続方向について両端に位置する太陽電池セル12には、複数の第2接続配線14を介して第1方向Xに伸びる第2渡りタブ16が接続される。これにより、光電変換部10が形成される。第2渡りタブ16は、光電変換部10の正極端または負極端である。
 太陽電池セル12としては、例えば、シリコン系太陽電池、化合物系太陽電池、または有機系太陽電池が挙げられる。シリコン系太陽電池としては、単結晶シリコン系太陽電池、多結晶シリコン系太陽電池、微結晶シリコン系太陽電池、またはアモルファスシリコン系太陽電池が挙げられる。また、太陽電池セル12として、ヘテロ接合型太陽電池または多接合型太陽電池を用いることもできる。
 太陽電池セル12の形状は特に限定されないが、表面、裏面及び側面を有する平板状、または表面及び裏面が、第1方向X及び第2方向Yの一方または両方において円弧状に曲がった曲面を有する曲板状とすることができる。ここで、表面とは、例えば、表面保護基板2と同じ側の受光面側の面とすることができる。また、裏面とは、例えば、裏面保護基板3と同じ側の裏面側の面とすることができる。また、側面とは、表面と裏面とで挟まれ、外周部を形成する面とすることができる。
 図3に示すように、光電変換部10は、充填材20のうち、後述する表側充填材21の裏側である下側であって、後述する裏側充填材22の受光面側である上側に配置される。光電変換部10のこのような配置により、太陽電池モジュール1の受光面または裏面に物が衝突した場合に、その衝撃を充填材20で緩和できる。これにより、光電変換部10の破損を抑制できる。
 充填材20は、光電変換部10の受光面側に配置された透明な表側充填材21と、光電変換部10の裏側に配置された裏側充填材22とを含む。表側充填材21及び裏側充填材22は、封止材として光電変換部10を保護する。
 表側充填材21と表面保護基板2との間には他の部材を設けず、表側充填材21と表面保護基板2とを直接接触させることができる。表側充填材21と表面保護基板2との間に、接着層、機能層等の他の層を設けることもできる。
 表側充填材21を形成する材料は、特に限定されないが、表側充填材21として、例えば各種のゲルを用いることができる。ゲルは、特に限定されないが、溶媒を含有したゲルと溶媒を含有しないゲルとに分類される。溶媒を含有したゲルには、分散媒が水のゲルであるヒドロゲル、分散媒が有機溶媒のゲルであるオルガノゲルを用いることができる。また、溶媒を含有したゲルは、数平均分子量が10000以上の高分子ゲル、数平均分子量が1000以上10000未満のオリゴマーゲル、数平均分子量が1000未満の低分子ゲルのいずれかを用いることができる。これらのなかでも、表側充填材21には、溶媒を含有した高分子ゲルまたは溶媒を含有しないゲルを使用することが好ましい。溶媒を含有した高分子ゲルもしくは溶媒を含有しないゲルは光電変換部10を固定できるため、光電変換部10の移動による接続配線13及び第2接続配線14への負荷を抑制できる。
 また、溶媒を含有した高分子ゲルもしくは溶媒を含有しないゲルの中でも、表側充填材21は、シリコーンゲル、アクリルゲル及びウレタンゲルからなる群より選択される少なくとも1つを含有することが好ましい。この好ましい構成によれば、これらのゲルの引張弾性率が小さく、温度変化による表面保護基板2の熱応力及び局所的な荷重を緩和できるので、光電変換部10の破損を抑制できる。また、これらのゲルは光電変換部10をより固定し、光電変換部10の移動による接続配線13及び第2接続配線14に負荷がかかることを抑制することができる。
 表側充填材21の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上1.0mm以下であることがより好ましい。このような範囲とすることによって、光電変換部10を適切に保護し、光を光電変換部10に効率よく到達させることができる。
 表側充填材21の全光線透過率は特に限定されないが、60%~100%であることが好ましく、70%~95%であることがより好ましい。また、表側充填材21の全光線透過率は80%~95%であることがさらに好ましい。表側充填材21の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部10へ到達させることができる。
 裏側充填材22も表側充填材21と同様に、封止材として光電変換部10を保護する。裏側充填材22は、表側充填材21のうち、光電変換部10から外れた部分、及び、光電変換部10の裏側である下側であって、裏面保護基板3の上側に配置される。
 裏側充填材22と裏面保護基板3との間に他の部材を設けず、裏側充填材22と裏面保護基板3とを直接接触させることもできる。裏側充填材22と裏面保護基板3との間に、接着層、機能層等の他の層を設けることもできる。
 裏側充填材22を形成する材料は、特に限定されないが、例えば、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、ポリイミド(PI)などの熱可塑性樹脂、エポキシ、ウレタン及びポリイミドなどの熱硬化性樹脂からなる群より選択される少なくとも1つを用いることができる。これらの樹脂として変性樹脂を用いることもでき、それぞれの組合せとして用いることもできる。その中でも、裏側充填材22はエチレン-酢酸ビニル共重合体(EVA)またはポリオレフィン(PO)を含有することが好ましい。
 裏側充填材22の厚みは、特に限定されないが、0.1mm以上10mm以下であることが好ましく、0.2mm以上1.0mm以下であることがより好ましい。このような範囲とすることによって、光電変換部10を熱衝撃から適切に保護することができる。
 次に、複数の裏面保護基板3の配置について、図2から図4を用いて説明する。図2では、太陽電池モジュール1を上側から透視した図を示しており、砂地を付した矩形部分により裏面保護基板3を示している。複数の裏面保護基板3は、複数の太陽電池セルストリング11のそれぞれの裏側に1つずつ配置される。また、複数の裏面保護基板3は、裏側充填材22のうち、第1方向Xにおいて隣り合う太陽電池セルストリング11の間に位置する部分の裏側で分かれている。それぞれの裏面保護基板3は、太陽電池セルストリング11の長手方向と一致する第2方向Yに沿って、長い長尺状である。
 また、裏面保護基板3は、表面、裏面及び側面を有し、表面及び裏面が、第1方向X及び第2方向Yの一方または両方で円弧状に曲がった曲面を有する曲板状とすることができる。ここで、表面とは、例えば、表面保護基板2と同じ側の受光面側の面とすることができる。また、裏面とは、例えば、裏面保護基板3と同じ側の裏面側の面とすることができる。また、側面とは、表面と裏面とで挟まれ、外周部を形成する面とすることができる。隣り合う裏面保護基板3は、第1方向Xにおいて隙間G(図3)をあけて離れている。
 図4に示すように、太陽電池モジュール1の構成部材である表面保護基板2、表側充填材21、光電変換部10、裏側充填材22及び裏面保護基板3は、この順に積層し、加熱しながら表裏方向(図4の上下方向)に加圧して圧縮成形する。これにより、太陽電池モジュール1が一体に成形される。なお、太陽電池モジュール1の構成部材を複数に分けてそれぞれで別に圧縮成形し、その後で一体に接着等により接合することもできる。
 また、本例の構成では、図2、図3から明らかなように、複数の裏面保護基板3を、隙間Gを埋めるように第1方向Xに突き合わせた場合の全体の第1方向Xにおける長さは、表面保護基板2の第1方向Xにおける長さより小さい。また、図2に示すように、複数の裏面保護基板3の全体の第2方向Yにおける長さは、表面保護基板2の第2方向Yにおける長さより小さい。そして、複数の裏面保護基板3の表面の全体面積は、表面保護基板2の裏面の面積より小さい。
 上記の太陽電池モジュール1によれば、表面保護基板2の裏側に配置される裏面保護基板3が、第1方向Xにおいて複数に分かれている。これにより、裏面保護基板3として1枚の大きな板を備える太陽電池モジュールの場合と異なり、各裏面保護基板3が小さくなることで太陽電池モジュール1全体として、厚みが均一な曲面を作りやすくなる。つまり、表面保護基板2に対して、裏面保護基板3を沿わせやすくすることができ、表面保護基板2と裏面保護基板3の間隔を全面にわたってより均一にすることができる。このため、表面保護基板2と裏面保護基板3との間隔が部分的に大きくなるのが抑制され、充填材20を介した表面保護基板2と裏面保護基板3との高い結合強度を長期にわたり維持することができる。
 また、複数の裏面保護基板3は、複数の太陽電池セルストリング11のそれぞれの裏側に1つずつ配置され、それぞれの裏面保護基板3が第2方向Yに伸びている。また、複数の裏面保護基板3は、第1方向Xにおいて隣り合う太陽電池セルストリング11の間に位置する部分の裏側で分かれている。これにより、表面保護基板2に対する裏面保護基板3の高い結合強度を長期にわたり維持できる構成で、接続配線13の裏側に裏面保護基板3を配置できる。
 さらに、裏面保護基板3の線膨張係数を表面保護基板2の線膨張係数より小さくした場合には、表面保護基板3と表面保護基板2の線膨張係数が同じである場合と比較して、裏面保護基板3の温度変化による変形を抑制できる。これによって、太陽電池モジュール1内部の充填材20や、接続配線13及び接続配線14に負荷がかかるのを抑制することができる。
 なお、上記では、充填材20を表側充填材21と裏側充填材22とにより形成した場合を説明したが、加熱及び加圧による一体成形時の溶着等により充填材が完全に2つに区別されない場合もある。
 図5は、比較例の太陽電池モジュール1aを示している図3に対応する図である。図5の比較例では、裏面保護基板3aは複数に分離されることなく、1つの裏面保護基板3aのみが太陽電池モジュール1の裏面に配置される。また、裏面保護基板3aは第1方向X及び第2方向Yの両方において、円弧状に曲がった曲面を有する。比較例において、それ以外の構成は、図1から図4の実施形態と同様である。このような比較例では、表面保護基板2及び裏面保護基板3aがいずれも大面積であることから、加工によって所望の形状に近づけるという観点において、小面積の裏面保護基板3を用いる場合よりも難しい場合がある。その結果、完成した太陽電池モジュール1aにおいて、裏面保護基板3aと表面保護基板2との間隔を全面にわたって均一なものにすることが難しい場合がある。つまり、表面保護基板2と裏面保護基板3aとの間隔が部分的に大きくなることで、表面保護基板2に対する裏面保護基板3aの充填材20を介した高い結合強度を長期にわたって維持したいという点において、改良の余地がある。上記の実施形態ではこのような不都合を防止できる。
 図6は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図6の別例の構成では、表側充填材21及び裏側充填材22をそれぞれ複数ずつ備える。具体的には、表面保護基板2の裏側において、複数の太陽電池セルストリング11の受光面側には、太陽電池セルストリング11ごとに1つずつ表側充填材21が配置される。また、複数の太陽電池セルストリング11の裏面側には、太陽電池セルストリング11ごとに1つずつ裏側充填材22が配置される。各表側充填材21及び各裏側充填材22は、各太陽電池セルストリング11の第2方向Yに沿った長尺状であり、各充填材21,22の第1方向Xにおける長さは、太陽電池セルストリング11の各太陽電池セル12の第1方向Xにおける長さと略同じである。そして、各裏側充填材22の裏側に裏面保護基板3が配置される。各裏面保護基板3の第1方向Xにおける長さは、各太陽電池セル12の第1方向Xにおける長さと略同じである。その他の構成及び作用は、図1から図4の構成と同様である。
 図7は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図7の別例の構成では、図1から図4の構成と異なり、複数の裏面保護基板3のうち、第1方向Xの両端に位置する2つの裏面保護基板3の第1方向Xの最大配置幅L1は、表面保護基板2の第1方向Xの幅L2と略同じである。このような構成の場合も、図5の比較例に比べて、各裏面保護基板3の表面の面積を小さくしやすいので、完成後の太陽電池モジュール1において、裏面保護基板3の高い結合強度を長期にわたって維持できる。一方、図7の構成では、図1から図4の構成に比べて、裏面保護基板3の数を同じとした場合に、裏面保護基板3の表面の面積が大きくなるので、表面保護基板2と裏面保護基板3との間隔を均等にする効果は低くなる。しかし、図7の構成とした場合、太陽電池モジュール1の端部まで全域において剛性を高くすることができる効果がある。図7の構成において、その他の構成及び作用は、図1から図4の構成と同様である。
 図8は、実施形態の太陽電池モジュール1の別例を示している図2に対応する図である。図8の構成は、図1から図4の構成と異なり、複数の裏面保護基板3bは、第1方向X及び第2方向Yのそれぞれにおいて分かれて配置され、それぞれの第2方向Yにおける長さが、図1から図4の構成に比べて小さい。具体的には、複数の裏面保護基板3bは、複数の太陽電池セル12の裏側において、太陽電池セル12ごとに1つずつ配置される。このような構成にすることによって、各裏面保護基板3bの表面の面積を、図1から図4の構成に比べて小さくすることができる。これにより、完成した太陽電池モジュール1において、表面保護基板2に対して裏面保護基板3bを沿わせることが容易になる。従って、表面保護基板2に対する裏面保護基板3bの高い結合強度をより長期にわたり維持することができる。その他の構成及び作用は、図1から図4の構成と同様である。
 なお、図8の構成において、各太陽電池セルストリング11の長手方向両端の裏側に配置する裏面保護基板3bについて、第2方向Yにおける端部は、図8の破線で示すように伸ばすこともできる。そして、その伸ばした部分を、受光面側から見た場合に、第2渡りタブ16と重畳させることもできる。この場合には、受光面側から見た場合に、一部の裏面保護基板3bが、第2接続配線14の裏側において、太陽電池セル12と第2接続配線14と第2渡りタブ16とに重畳するように配置される。この構成によれば、製造時または使用時において太陽電池モジュール1に温度変化が生じた場合に、第2接続配線14の裏側に裏面保護基板3bがない構成に加えて、第2接続配線14をも外部衝撃から保護することができる。さらに、裏面保護基板3bの線膨張係数を表面保護基板2の線膨張係数より小さくした場合には、裏面保護基板3bと表面保護基板2の線膨張係数が同じである場合と比較して、裏面保護基板3bの温度変化による変形を抑制できる。これによって、接続配線14に負荷がかかるのを抑制することができる。
 図9は、実施形態の太陽電池モジュール1の別例を示している図2に対応する図である。図9の構成は、図1から図4の構成と異なり、複数の裏面保護基板3cは、第1方向X及び第2方向Yのそれぞれにおいて分かれて配置され、各裏面保護基板3cの第2方向Yにおける長さは、図1から図4の構成に比べて小さい。具体的には、複数の裏面保護基板3cのうち、一部の裏面保護基板3cは、第2方向Yに隣り合う2つの太陽電池セル12と、2つの太陽電池セル12の間における接続配線13の裏側とに配置される。また、複数の裏面保護基板3cの残りの裏面保護基板3cは、第2方向Yに隣り合う太陽電池セル12及び渡りタブ15または第2渡りタブ16の裏側と、太陽電池セル及び渡りタブまたは第2渡りタブの間における第2接続配線14の裏側とに配置される。この状態で、一部の裏面保護基板3cは、接続配線13の裏側において、受光面側から見た場合に、隣り合う2つの太陽電池セル12と接続配線13とに重畳するように配置される。また、残りの裏面保護基板3cは、第2接続配線14の裏側において、受光面側から見た場合に、太陽電池セル12と渡りタブ15または第2渡りタブ16と第2接続配線14とに重畳するように配置される。
 上記の構成の場合も、図8の構成と同様に、各裏面保護基板3cの表面の面積が図1から図4の構成に比べて小さくなる。これにより、表面保護基板2に対する裏面保護基板3cの高い結合強度をより長期にわたり維持することができる。さらに、製造時または使用時において太陽電池モジュール1に温度変化が生じた場合に、接続配線13及び第2接続配線14の裏側に裏面保護基板3がない構成に比べて、接続配線13及び第2接続配線14に負荷がかかるのを抑制することができる。さらに、裏面保護基板3cの線膨張係数を表面保護基板2の線膨張係数より小さくした場合には、裏面保護基板3cと表面保護基板2の線膨張係数が同じである場合と比較して、裏面保護基板3cの温度変化による変形を抑制できる。これによって、接続配線13及び接続配線14に負荷がかかるのを抑制することができる。その他の構成及び作用は、図1から図4の構成と同様である。
 図10は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図10の構成は、図1から図4の構成と異なり、複数の裏面保護基板3の裏側に配置された第2裏面保護基板4を備える。第2裏面保護基板4は、隣り合う2つの裏面保護基板3の間の隙間Gを裏面側から覆う。具体的には、複数の第2裏面保護基板4のそれぞれは、隣り合う2つの裏面保護基板3の裏側に、その2つの裏面保護基板3に跨るように結合される。各第2裏面保護基板4の第2方向Yにおける長さは、裏面保護基板3の第2方向Yにおける長さと略同じである。
 第2裏面保護基板4の材料は特に限定しないが、外観の見栄えの向上の面から、好ましくは、第2裏面保護基板4は、裏面保護基板3と同じ材料により形成され、裏面保護基板3と同色にすることが好ましい。
 上記の構成によれば、第2裏面保護基板4により、太陽電池モジュールに温度変化が生じた場合における裏面保護基板3の変位及び変形を抑制できるので、複数の裏面保護基板3の表面保護基板2に対する高い結合強度をより長期に維持できる。さらに、隣り合う裏面保護基板3の間を第2裏面保護基板4で覆うので、受光面側から裏面保護基板3の分割部が視認されるのを抑制できるとともに、裏面側から水が侵入して太陽電池セル12に悪影響を及ぼすことを防止できる。受光面側から分割部が視認されにくいので、裏面保護基板3を複数に分けることによる意匠性の低下を抑制できる。なお、裏面保護基板3を樹脂材料により形成する場合において、裏面保護基板3の金型内での射出成形時に、裏面保護基板3の裏面に貫通しない孔を形成してもよい。そして、第2裏面保護基板4の表面に突部を形成し、その突部を裏面保護基板3の孔にきつく嵌合し、接着剤の接着とともに、裏面保護基板3に第2裏面保護基板4を結合することもできる。この場合、孔及び突部の嵌合と、接着との一方のみを用いて、裏面保護基板3に第2裏面保護基板4を結合してもよい。なお、図10では、第1方向Xの両端に位置する裏面保護基板3のみに一部の第2裏面保護基板4が結合されているが、その一部の第2裏面保護基板4を省略することもできる。その他の構成及び作用は、図1から図4の構成と同様である。
 図11は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図11の構成は、図10の構成と異なり、複数の第2裏面保護基板4aのそれぞれは、隣り合う2つの裏面保護基板3の裏側に、その2つの裏面保護基板3に跨る部分にのみ配置される。また、各第2裏面保護基板4aの第1方向Xにおける長さは、図10の構成に比べて小さい。その他の構成及び作用は、図10の構成と同様である。
 図12は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図12の構成は、図1から図4の構成と異なり、複数の裏面保護基板3の表側(受光面側)に配置された薄基板5を備える。薄基板5は、基板間塞ぎ部材に相当する。具体的には、薄基板5は、裏面保護基板3と光電変換部10との間において、隣り合う2つの裏面保護基板3の受光面側に、隣り合う2つの裏面保護基板3に跨るように配置され、裏面保護基板3より厚みが小さい基板である。薄基板5として、厚みが小さいものを用いるのは、太陽電池モジュール1の構成部材を加熱及び加圧により一体化させる場合において、全体の厚みを小さくして、結合強度を高くするためである。薄基板5の第2方向Yにおける長さは、裏面保護基板3の第2方向Yにおける長さと略同じである。薄基板5の材料は特に限定しないが、例えば裏面保護基板3と同じ材料により形成することができる。
 上記の構成によれば、隣り合う裏面保護基板3の間の表側に薄基板5が跨るので、受光面側から裏面保護基板3の分割部が視認されることを抑制できるとともに、裏面側から隣り合う裏面保護基板3の間を通じて水が侵入して太陽電池セル12に悪影響を及ぼすことを防止できる。また、太陽電池モジュール1の構成部材を加熱及び加圧により一体化させる場合に、充填材20が隣り合う裏面保護基板3の間から漏れ出ることを抑制できる。その他の構成及び作用は、図1から図4の構成と同様である。
 図13は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図13の構成は、図12の構成と異なり、薄基板の代わりに、基板間塞ぎ部材として、着色された複数のフィルム6を備える。フィルム6は、太陽電池セル12と裏面保護基板3とで裏側充填材22を介して挟まれるように配置される。フィルム6の材料は特に限定しないが、例えばポリエチレンテレフタレート(PET)、ポリビニルブチラール(PVB)、ポリイミド(PI)、ポリオレフィン(PO)等を適宜用いることができる。本例の構成の場合も、図12の構成と同様に、受光面側から裏面保護基板3の分割部が視認されることを抑制できる。その他の構成及び作用は、図12の構成と同様である。なお、図12の構成において、図13の構成のように、薄基板5を、太陽電池セル12と裏面保護基板3とで挟まれるように配置してもよい。
 図14は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図14の構成は、フィルム6の第1方向Xにおける長さを図13の構成よりも大きくし、受光面側から見た場合に、フィルム6の外周縁の一部である、第1方向Xにおける両端縁が第1方向Xに隣り合う太陽電池セル12と重畳している。この構成によれば、図14の破線A1,A2,A3,A4で示す、太陽電池セル12の第1方向X端縁より太陽電池セル12の裏側に、フィルム6の第1方向X端縁が隠れる。これにより、太陽電池モジュール1の受光面側から見た場合に、裏面保護基板3上に配置されて、分割された複数の裏面保護基板3同士の隙間から、フィルム6の外周縁の多くが視認されにくくなるので、意匠性の低下を抑制できる。その他の構成及び作用は、図13の構成と同様である。
 図15は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図15の構成は、図13の構成と異なり、裏側充填材22と裏面保護基板3との間の全面に1つのフィルム6aが配置される。この構成によれば、図13の構成に比べて部品点数を削減できる。その他の構成及び作用は、図13の構成と同様である。なお、図14または図15の構成において、フィルム6,6aの代わりに図12の薄基板5を用いることもできる。
 また、図12から図15のいずれか1の構成において、薄基板5またはフィルム6,6aを裏面保護基板3と同色にしてもよい。この構成によれば、薄基板5またはフィルム6,6aと裏面保護基板3との外観を略同じにできるので、受光面側から見た場合の意匠性の低下を抑制できる。
 また、図12から図15のいずれか1の構成において、薄基板5またはフィルム6,6aの線膨張係数は、表面保護基板2と裏面保護基板3とのうち、裏面保護基板3に近い線膨張係数を有するようにしてもよい。この構成によれば、図10、図11の構成と同様に、薄基板5またはフィルム6,6aにより、太陽電池モジュールに温度変化が生じた場合における裏面保護基板3の変位及び変形を抑制できる。このため、裏面保護基板3の表面保護基板2に対する高い結合強度をより長期に維持できる。
 さらに、図13から図15のいずれか1の構成において、フィルム6,6aとして、酸素及び水の一方または両方に対する侵入防止機能を有するものを用いてもよい。例えば、フィルムとして、ポリエチレンテレフタレート(PET)等の樹脂シートを単層、または複数層積層させて用いてよく、これらの樹脂シートに金属のコーティングを施したものを用いてもよい。金属のコーティングを施したもののほうが、酸素及び水の浸入防止機能が高い。この構成によれば、太陽電池モジュール1の外部から隣り合う裏面保護基板3の間を通じて酸素または水が内部に侵入して、太陽電池セル12に悪影響を及ぼすことを防止できる。
 一方、図13から図15のいずれか1の構成において、フィルムとして、水に対する透過性を有するものを用いてもよい。この構成によれば、太陽電池モジュール1の外部から隣り合う裏面保護基板3の間を通じて内部に水が侵入した場合でも、その水を、フィルムを通じて積極的に排出することができる。これにより、内部に侵入した水が太陽電池セル12に悪影響を及ぼすことを抑制できる。
 図16は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図16の構成は、図13の構成と異なり、隣り合う2つの裏面保護基板3の裏側に、その2つの裏面保護基板3の間に跨るように第2裏面保護基板4aが結合される。第2裏面保護基板4aの構成は、図11で示した構成と同様である。この構成によれば、太陽電池モジュール1に温度変化が生じた場合に、裏面保護基板3の変位及び変形を第2裏面保護基板4aにより抑制できる。これにより、フィルム6が変形することも抑制できるので、フィルム6にシワが生じて見栄えが低下することを抑制できる。その他の構成及び作用は、図11の構成または図13の構成と同様である。
 図17は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図17の構成は、図1から図4の構成と異なり、充填材20のうち、表側充填材21として透明な充填材が用いられるとともに、裏側充填材22aとして着色された充填材が用いられる。裏側充填材22aは、黒、灰色等に着色されてよく、目的に応じて適宜変更可能である。この構成によれば、太陽電池モジュール1の受光面側から、隣り合う裏面保護基板3の分割部を視認しにくいので、裏面保護基板3を複数に分けたことによる意匠性の低下を抑制できる。その他の構成及び作用は、図1から図4の構成と同様である。
 図18は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図18の構成は、図1から図4の構成と異なり、裏側充填材22bが、透明な表側層23と、表側層23より裏側に配置され、着色された裏側層24とを有する。例えば、裏側層24は、黒、灰色等に着色されてよく、目的に応じて適宜変更可能である。この構成の場合も、図17の構成と同様に、太陽電池モジュール1の受光面側から、隣り合う裏面保護基板3の分割部を視認しにくいので、裏面保護基板3を複数に分けたことによる意匠性の低下を抑制できる。しかも、本例の構成の場合には、裏側充填材22bの受光面側に透明な表側層23が配置される。これにより、製造時に表側充填材21と裏側充填材22bとが一体化される際に裏側充填材22bのうち、着色された充填材が太陽電池セル12の受光面側に回り込むことを効果的に防止できる。このため、意匠性の低下を抑制できるとともに、発電効率の低下を抑制できる。その他の構成及び作用は、図1から図4の構成と同様である。
 図19は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図19の太陽電池モジュール1の製造時には、表面保護基板2と、表側充填材21と、光電変換部10と、裏側充填材22と、複数の裏面保護基板3とを積層して加熱及び加圧により一体化させる。そして、太陽電池モジュール1は、その後、隣り合う裏面保護基板3の間に樹脂25が充填されることにより形成される。例えば、隣り合う裏面保護基板3の隙間に加熱等により溶融した樹脂が充填され硬化される。この構成によれば、外部から隣り合う裏面保護基板3の隙間を通じて充填材20の内部に水が侵入することを抑制できる。また、温度変化等による太陽電池モジュール1の変形時において、隣り合う裏面保護基板3の接触を防止でき、信頼性を高く維持できる。その他の構成及び作用は、図1から図4の構成と同様である。
 図20は、実施形態の太陽電池モジュール1の別例を示している図3に対応する図である。図20の太陽電池モジュール1は、図1から図4の構成と異なり、裏面保護基板3dは複数に分かれていない。図20の構成は、裏面保護基板3dとして1つのみを備える。その代わりに、本例の構成では、裏面保護基板3dは、受光面側の表面の面積が表面保護基板2の裏面の面積より小さい。例えば、裏面保護基板3dの第1方向Xにおける長さを、表面保護基板2の第1方向Xにおける長さより小さくしている。さらに、裏面保護基板3dの線膨張係数は、表面保護基板2の線膨張係数より小さい。このために、例えば、表面保護基板2は、ポリカーボネートを主成分とする材料により形成し、裏面保護基板3dを炭素繊維強化プラスチックを主成分とする材料により形成する。
 上記の構成によれば、図5に示した比較例に比べて、裏面保護基板3の表面の面積を小さくできる。これにより、表面保護基板2に対して、裏面保護基板3dを沿わせやすくすることができ、表面保護基板2と裏面保護基板3dの間隔を全面にわたってより均一にすることができる。このため、表面保護基板2と裏面保護基板3dとの間隔が部分的に大きくなるのが抑制され、充填材20を介した表面保護基板2と裏面保護基板3dとの高い結合強度を長期にわたり維持することができる。さらに、裏面保護基板3dの線膨張係数が表面保護基板2の線膨張係数より小さいので、裏面保護基板3d及び裏面保護基板3dの表側に結合された充填材20の熱による変形を抑制し、表面保護基板2に対する裏面保護基板3dの高い結合強度を長期にわたり維持できる。また、表面保護基板2と裏面保護基板3dとの間に充填材20を介して配置された接続配線13(図2)等の配線部材に対する負荷を抑制できるので、配線部材をより有効に保護することができる。これにより、耐久性及び信頼性を向上できる。その他の構成及び作用は、図1から図4の構成と同様である。
 なお、上記の各例の構成では、光電変換部が複数の太陽電池セルストリングを含む場合を説明したが、光電変換部が1つの太陽電池セルストリングまたは1つの太陽電池セルのみを含む構成としてもよい。
 また、上記では、表側充填材21の材料としてゲル材料を例示しているが、ゲル材料に代えて、裏側充填材22に用いるのと同様に、一般的な樹脂材料を用いてもよい。この場合でも本願の構成による効果を十分に発揮することができる。
 また、上記では、表面保護基板及び裏面保護基板の材料としていずれも透光性のある樹脂材料を例示している。樹脂材料は軽量でかつ加工が容易であるため製造の観点から樹脂材料を用いるのが好ましいが、これに代えてガラス等の透光性無機材料を用いることもできる。
 上記では、太陽電池モジュール1が第1方向X及び第2方向Yの両方において、円弧状に曲がった曲面を有する場合を説明したが、太陽電池モジュールは第1方向Xにのみ円弧状に曲がった断面を有する曲面を含む構成とすることもできる。この構成の場合でも、上記の各例の裏面保護基板の構成を用いることで、表面保護基板に対する裏面保護基板の高い結合強度を長期にわたり維持できる。なお、上記の実施形態の各例のように、太陽電池モジュールが第1方向X及び第2方向Yの両方において、円弧状に曲がった曲面を有する構成では、実施形態の各例の裏面保護基板の構成を採用したことによる効果がより顕著になる。
 1,1a 太陽電池モジュール、2 表面保護基板、3,3a,3b,3c,3d 裏面保護基板、4,4a 第2裏面保護基板、5 薄基板、6,6a フィルム、10 光電変換部、11 太陽電池セルストリング、12 太陽電池セル、13 接続配線、14 第2接続配線、15 渡りタブ、16 第2渡りタブ、20 充填材、21 表側充填材、22,22a,22b 裏側充填材、23 表側層、24 裏側層、25 樹脂。

Claims (21)

  1.  光電変換部と、
     前記光電変換部の受光面側に配置される表面保護基板と、
     前記光電変換部の裏側に配置される裏面保護基板と、
     前記表面保護基板と前記裏面保護基板との間に配置された充填材と、
    を備える太陽電池モジュールであって、
     前記表面保護基板は透光性樹脂材料からなり、1つの平面に沿う方向である第1方向及び第2方向のうち少なくとも前記第1方向において前記受光面側に向かって円弧状に湾曲し、
     前記裏面保護基板は、前記第1方向において複数に分割して設けられている、
    太陽電池モジュール。
  2.  請求項1に記載の太陽電池モジュールにおいて、
     前記光電変換部は、前記第1方向に分かれて配列された複数の太陽電池セルストリングを含み、
     前記複数の太陽電池セルストリングのそれぞれは、複数の太陽電池セルが前記第2方向に接続配線を介して接続されることにより形成され、
     複数の前記裏面保護基板は、前記複数の太陽電池セルストリングのそれぞれの裏側に1つずつ配置され、それぞれの前記裏面保護基板が前記第2方向に伸びた長尺状であり、
     さらに、複数の前記裏面保護基板は、前記第1方向において隣り合う前記太陽電池セルストリングの間に位置する部分の裏側で分かれている、太陽電池モジュール。
  3.  請求項2に記載の太陽電池モジュールにおいて、
     前記裏面保護基板の線膨張係数は、前記表面保護基板の線膨張係数より小さい、太陽電池モジュール。
  4.  請求項1に記載の太陽電池モジュールにおいて、
     前記光電変換部は、前記第1方向に分かれて配列された複数の太陽電池セルストリングを含み、
     前記複数の太陽電池セルストリングのそれぞれは、複数の太陽電池セルが前記第2方向に接続配線を介して接続されることにより形成され、
     複数の前記裏面保護基板は、前記第1方向及び前記第2方向のそれぞれにおいて分かれている、太陽電池モジュール。
  5.  請求項4に記載の太陽電池モジュールにおいて、
     隣り合う前記太陽電池セルストリングは、それぞれの端部に配置された第2接続配線が前記第1方向に伸びる渡りタブで接続され、
     複数の前記裏面保護基板は、前記接続配線または前記第2接続配線の裏側において、受光面側から見た場合に、隣り合う2つの前記太陽電池セルと前記接続配線、または前記太陽電池セルと前記第2接続配線と前記渡りタブとに重畳するように配置される、太陽電池モジュール。
  6.  請求項1に記載の太陽電池モジュールにおいて、
     隣り合う2つの前記裏面保護基板の裏側に、隣り合う2つの前記裏面保護基板に跨るように結合された第2裏面保護基板を備える、太陽電池モジュール。
  7.  請求項1に記載の太陽電池モジュールにおいて、
     前記裏面保護基板と前記光電変換部との間において、隣り合う2つの前記裏面保護基板の受光面側に、隣り合う2つの前記裏面保護基板に跨るように配置され、前記裏面保護基板より厚みが小さい部材であり、着色されたフィルムまたは薄基板である基板間塞ぎ部材を備える、太陽電池モジュール。
  8.  請求項7に記載の太陽電池モジュールにおいて、
     前記光電変換部は、前記第1方向に分かれて配列された前記複数の太陽電池セルストリングを含み、
     前記複数の太陽電池セルストリングのそれぞれは、複数の太陽電池セルが前記第2方向に接続配線を介して接続されることにより形成され、
     受光面側から見た場合に、前記基板間塞ぎ部材の外周縁の少なくとも一部が隣り合う2つの前記太陽電池セルと重畳する、太陽電池モジュール。
  9.  請求項7または請求項8に記載の太陽電池モジュールにおいて、
     前記基板間塞ぎ部材は、前記裏面保護基板と同色である、太陽電池モジュール。
  10.  請求項7から請求項9のいずれか1に記載の太陽電池モジュールにおいて、
     前記基板間塞ぎ部材は、前記表面保護基板と前記裏面保護基板とのうち、前記裏面保護基板に近い線膨張係数を有する、太陽電池モジュール。
  11.  請求項7から請求項10のいずれか1に記載の太陽電池モジュールにおいて、
     前記基板間塞ぎ部材は、酸素及び水の一方または両方に対する侵入防止機能を有する、太陽電池モジュール。
  12.  請求項7から請求項10のいずれか1に記載の太陽電池モジュールにおいて、
     前記基板間塞ぎ部材は、水透過性を有する、太陽電池モジュール。
  13.  請求項7から請求項12のいずれか1に記載の太陽電池モジュールにおいて、
     前記基板間塞ぎ部材は、前記フィルムであり、
     隣り合う2つの前記裏面保護基板の裏側に、隣り合う2つの前記裏面保護基板に跨るように結合された第2裏面保護基板を備える、太陽電池モジュール。
  14.  請求項1に記載の太陽電池モジュールにおいて、
     前記充填材は、前記光電変換部の受光面側に配置された透明な表側充填材と、前記光電変換部の裏側に配置された裏側充填材とを含み、
     前記裏側充填材が着色されている、太陽電池モジュール。
  15.  請求項1に記載の太陽電池モジュールにおいて、
     前記充填材は、前記光電変換部の受光面側に配置された透明な表側充填材と、前記光電変換部の裏側に配置された裏側充填材とを含み、
     前記裏側充填材は、透明な表側層と、前記表側層より裏側に配置され、着色された裏側層とを有する、太陽電池モジュール。
  16.  請求項1に記載の太陽電池モジュールにおいて、
     前記表面保護基板と、前記光電変換部と、前記充填材と、複数の前記裏面保護基板とを積層して加熱及び加圧により一体化させた後、隣り合う前記裏面保護基板の間に樹脂が充填されることにより形成された、太陽電池モジュール。
  17.  請求項1に記載の太陽電池モジュールにおいて、
     複数の前記裏面保護基板の表面の全体面積は、前記表面保護基板の裏面の面積より小さい、太陽電池モジュール。
  18.  請求項1から請求項17のいずれか1に記載の太陽電池モジュールにおいて、
     前記表面保護基板は、前記第1方向及び前記第2方向のそれぞれにおいて円弧状に曲がった曲面を有する、太陽電池モジュール。
  19.  光電変換部と、
     前記光電変換部の受光面側に配置され、1つの平面に沿う方向である第1方向及び第2方向のうち、少なくとも前記第1方向に円弧状に曲がった曲面を有する透光性樹脂材料からなる表面保護基板と、
     前記光電変換部の裏側に配置され、少なくとも前記第1方向において円弧状に曲がった曲面を有する裏面保護基板と、
     前記表面保護基板と前記裏面保護基板との間に配置された充填材とを備え、
     前記裏面保護基板は、表面の面積が前記表面保護基板の裏面の面積より小さく、かつ、前記裏面保護基板の線膨張係数は前記表面保護基板の線膨張係数より小さい、太陽電池モジュール。
  20.  請求項19に記載の太陽電池モジュールにおいて、
     前記表面保護基板は、前記第1方向及び前記第2方向のそれぞれにおいて円弧状に曲がった曲面を有する、太陽電池モジュール。
  21.  光電変換部と、
     前記光電変換部の受光面側に配置される表面保護基板と、
     前記光電変換部の裏側に配置される裏面保護基板と、
    を備える太陽電池モジュールであって、
     前記表面保護基板は、1つの平面に沿う方向である第1方向及び第2方向のうち少なくとも前記第1方向において前記受光面側に向かって円弧状に湾曲し、
     前記裏面保護基板は、前記第1方向において複数に分割して設けられている、
    太陽電池モジュール。
PCT/JP2018/001359 2017-02-17 2018-01-18 太陽電池モジュール WO2018150794A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568052A JPWO2018150794A1 (ja) 2017-02-17 2018-01-18 太陽電池モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017028486 2017-02-17
JP2017-028486 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150794A1 true WO2018150794A1 (ja) 2018-08-23

Family

ID=63169742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001359 WO2018150794A1 (ja) 2017-02-17 2018-01-18 太陽電池モジュール

Country Status (2)

Country Link
JP (1) JPWO2018150794A1 (ja)
WO (1) WO2018150794A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186511A (ja) * 2018-04-12 2019-10-24 ベイジン ハナジー ソーラー パワー インヴェストメント カンパニー リミテッド 太陽電池モジュール、製造方法及び車輌
JP7377701B2 (ja) 2019-12-24 2023-11-10 株式会社カネカ 太陽電池モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358351A (ja) * 2000-06-13 2001-12-26 Canon Inc 光起電力素子の製造方法、その製造装置、及び太陽電池モジュール
JP2004055596A (ja) * 2002-07-16 2004-02-19 Sharp Corp 太陽電池モジュールおよびそれを用いた太陽電池モジュールパネルの製造方法
WO2014002201A1 (ja) * 2012-06-27 2014-01-03 三洋電機株式会社 太陽電池モジュールの製造方法及び太陽電池モジュール
US20150179346A1 (en) * 2013-12-19 2015-06-25 Hyundai Motor Company Method of curving a dye sensitized solar cell for vehicle
JP2015223012A (ja) * 2014-05-22 2015-12-10 株式会社豊田自動織機 太陽電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358351A (ja) * 2000-06-13 2001-12-26 Canon Inc 光起電力素子の製造方法、その製造装置、及び太陽電池モジュール
JP2004055596A (ja) * 2002-07-16 2004-02-19 Sharp Corp 太陽電池モジュールおよびそれを用いた太陽電池モジュールパネルの製造方法
WO2014002201A1 (ja) * 2012-06-27 2014-01-03 三洋電機株式会社 太陽電池モジュールの製造方法及び太陽電池モジュール
US20150179346A1 (en) * 2013-12-19 2015-06-25 Hyundai Motor Company Method of curving a dye sensitized solar cell for vehicle
JP2015223012A (ja) * 2014-05-22 2015-12-10 株式会社豊田自動織機 太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186511A (ja) * 2018-04-12 2019-10-24 ベイジン ハナジー ソーラー パワー インヴェストメント カンパニー リミテッド 太陽電池モジュール、製造方法及び車輌
JP7377701B2 (ja) 2019-12-24 2023-11-10 株式会社カネカ 太陽電池モジュール

Also Published As

Publication number Publication date
JPWO2018150794A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018110582A1 (ja) 太陽電池モジュール
JP6395020B1 (ja) 太陽電池モジュール
KR20100133962A (ko) 태양 전지 시스템
JP6308471B2 (ja) 太陽電池モジュール
WO2018150794A1 (ja) 太陽電池モジュール
JP5506295B2 (ja) 太陽電池モジュールおよびその製造方法
JP6560104B2 (ja) 太陽電池モジュール
JP6365896B2 (ja) 太陽電池モジュール
JP6057113B1 (ja) 太陽電池モジュール及びその製造方法
JP4720174B2 (ja) 太陽電池モジュール
WO2019159729A1 (ja) 太陽電池モジュール
KR101959545B1 (ko) 패턴 글라스를 활용하고 발전 기능을 가지며 심미성이 증대된 태양광 모듈
JP2013030734A (ja) 太陽電池モジュール
JP2020088268A (ja) 太陽電池モジュール
JP6655828B2 (ja) 太陽電池モジュール
WO2019176646A1 (ja) 太陽電池モジュール
WO2017150045A1 (ja) 太陽電池モジュール
JPWO2019065606A1 (ja) 太陽電池モジュール
WO2019031378A1 (ja) 太陽電池モジュール及び太陽電池モジュールの中間製品
JP2019140301A (ja) 太陽電池モジュール及びその製造方法
WO2017145663A1 (ja) 太陽電池モジュール
CN219226306U (zh) 太阳能组件
JP2019062088A (ja) 太陽電池モジュール
JP7377692B2 (ja) 太陽電池モジュール
JP5025592B2 (ja) 太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753883

Country of ref document: EP

Kind code of ref document: A1