WO2017145663A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2017145663A1
WO2017145663A1 PCT/JP2017/003347 JP2017003347W WO2017145663A1 WO 2017145663 A1 WO2017145663 A1 WO 2017145663A1 JP 2017003347 W JP2017003347 W JP 2017003347W WO 2017145663 A1 WO2017145663 A1 WO 2017145663A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin substrate
resin
photoelectric conversion
solar cell
Prior art date
Application number
PCT/JP2017/003347
Other languages
English (en)
French (fr)
Inventor
直樹 栗副
善光 生駒
安藤 秀行
山崎 圭一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017145663A1 publication Critical patent/WO2017145663A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module using a resin substrate.
  • a glass substrate is used as a substrate of a solar cell module. Recently, a resin substrate has been used instead of a glass substrate for weight reduction.
  • Patent Document 1 discloses a front sheet for a solar cell module in which the main component of the base material layer is polycarbonate. And by setting it as such a structure, the front sheet
  • Patent Document 1 discloses a filler layer formed of a sealing material made of a synthetic resin such as an ethylene-vinyl acetate resin in order to protect the solar battery cell.
  • the linear expansion coefficient of resin is larger than that of glass, and the influence of thermal expansion and contraction due to temperature change is large.
  • the resin substrate thermally expands and contracts, stress is applied to the sealing material in conjunction with the resin substrate.
  • the sealing material itself expands and contracts due to a temperature difference. Therefore, the thermal stress of the base material layer and the filler layer is increased in proportion to the temperature difference of the solar battery module, and the tab wiring between the solar battery cells may be fatigued.
  • the solar cells may collide with each other due to thermal expansion and contraction of the sealing material.
  • a leopard or the like may collide with the resin substrate and a local load may be applied.
  • the resin substrate is bent by a local load, the load tends to concentrate on the bent portion. Therefore, when a local load is transmitted to the solar battery cell through the resin substrate and the filler layer, the solar battery cell may be damaged, so that the impact resistance is not sufficient.
  • the present invention has been made in view of such a situation, and an object of the present invention is to reduce the stress on the solar battery cell caused by the thermal deformation of the resin substrate and improve the impact resistance against a local load.
  • the object is to provide a battery module.
  • a solar cell module includes a first resin substrate, a first resin layer, a second resin layer, a photoelectric conversion unit, and a second resin substrate.
  • the first resin layer is disposed under the first resin substrate
  • the second resin layer is disposed under the first resin layer
  • the photoelectric conversion unit is disposed so as not to contact the first resin layer
  • the second resin substrate is disposed in the first resin layer. It arrange
  • the tensile elastic modulus of the first resin layer is smaller than the tensile elastic modulus of the first resin substrate and the second resin layer.
  • the solar cell module includes a first resin substrate, a first resin layer, a second resin layer, a photoelectric conversion unit, and a second resin substrate.
  • the first resin layer is disposed under the first resin substrate
  • the second resin layer is disposed under the first resin layer
  • the photoelectric conversion unit is disposed so as not to contact the first resin layer
  • the second resin substrate is disposed in the first resin layer. It arrange
  • the tensile elastic modulus of the first resin layer is smaller than the tensile elastic modulus of the first resin substrate and the second resin layer.
  • FIG. 1 is a cross-sectional view showing the solar cell module according to the present embodiment.
  • FIG. 2 is a top view showing the solar cell module according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically showing a local load applied to the solar cell module.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined and described.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive direction of each of the x-axis, y-axis, and z-axis is defined in the direction of the arrow, and the negative direction is defined in the direction opposite to the arrow.
  • the positive direction of the z axis corresponds to the light receiving surface side
  • the negative direction side of the z axis corresponds to the side opposite to the light receiving surface.
  • the first member and the second member may be provided in direct contact unless otherwise specified. There may be other members between the member and the second member.
  • Solar cell modules are required to be light in weight, for example, to expand the application to buildings with load bearing problems. Therefore, the substrate used as the protective layer of the solar cell module is being replaced with a resin substrate instead of a glass substrate.
  • the resin substrate is lighter than the glass substrate, the linear expansion coefficient is large, so that the influence of thermal stress due to thermal expansion and contraction becomes large.
  • the photoelectric conversion part is sealed with a sealing material disposed between the substrates, and the resin substrate is in contact with the sealing material. Therefore, when the resin substrate expands and contracts, the sealing material expands and contracts accordingly. Further, the sealing material itself expands and contracts due to a temperature difference. Furthermore, the photoelectric conversion part and the tab wiring between the photoelectric conversion parts are arranged in contact with the sealing material. Therefore, it is affected by thermal expansion and contraction via the sealing material.
  • the solar cell module may be installed outdoors, and a leopard or the like may collide with the resin substrate.
  • a leopard or the like collides with the resin substrate, a local load is applied to the resin substrate.
  • the resin substrate is bent by a local load, the load tends to concentrate on the bent portion.
  • the sealing material and the photoelectric conversion unit are disposed so as to contact each other, a local load is transmitted to the photoelectric conversion unit via the resin substrate and the sealing material, and the photoelectric conversion unit may be damaged. .
  • the first resin substrate, the first resin layer, the second resin layer, the photoelectric conversion unit, and the second resin substrate are arranged in a predetermined arrangement, and the first resin layer Is smaller than the tensile elastic modulus of the first resin substrate and the second resin layer. Therefore, the solar cell module according to the present embodiment can relieve stress on the photoelectric conversion part caused by thermal deformation of the resin substrate, and can improve the impact resistance against a local load. In the following, these components will be described.
  • FIG. 1 shows a cross-sectional view of a solar cell module 100 according to this embodiment.
  • the solar cell module 100 includes a first resin substrate 20, a first resin layer 22, a second resin layer 24, the photoelectric conversion unit 10, and a second resin substrate 26.
  • the first resin layer 22 is disposed under the first resin substrate 20, the second resin layer 24 is disposed under the first resin layer 22, and the photoelectric conversion unit 10 is disposed so as not to contact the first resin layer 22,
  • the second resin substrate 26 is disposed below the second resin layer 24 so as to adhere to the photoelectric conversion unit 10.
  • the first resin substrate 20 is disposed on the light receiving surface side of the solar cell module 100 and protects the surface of the solar cell module 100.
  • the first resin substrate 20 is sometimes referred to as a light receiving surface
  • the second resin substrate 26 is sometimes referred to as a surface opposite to the light receiving surface.
  • the shape of the 1st resin substrate 20 is not specifically limited as long as it plays the role which protects the surface of a solar cell module, It can be made into polygons, such as circular, an ellipse, and a rectangle, according to a use.
  • the material for forming the first resin substrate 20 is not particularly limited.
  • polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), At least one selected from the group consisting of polystyrene (PS), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and combinations thereof can be used.
  • the first resin substrate 20 contains polycarbonate (PC). This is because polycarbonate (PC) is excellent in translucency and has sufficient hardness to protect the surface of the solar cell module.
  • the thickness of the first resin substrate 20 is not particularly limited as long as it plays the role of protecting the surface of the solar cell module 100, but is preferably 0.1 mm to 10 mm, and more preferably 0.5 mm to 5 mm. By setting it as such a range, the solar cell module 100 can be protected appropriately and light can be efficiently reached to the photoelectric conversion part 10.
  • the tensile elastic modulus of the first resin substrate 20 is not particularly limited, but is preferably 1.0 GPa to 10.0 GPa, and more preferably 2.3 GPa to 2.5 GPa. By setting the tensile elastic modulus of the first resin substrate 20 in such a range, the surface of the solar cell module 100 can be appropriately protected.
  • the tensile modulus can be measured, for example, according to JIS K7161-1 (Plastics—Method of obtaining tensile properties—Part 1: General) as follows.
  • Et is the tensile modulus (Pa)
  • the total light transmittance of the first resin substrate 20 is not particularly limited, but is preferably 80% to 100%, and preferably 90% to 100%. By setting the total light transmittance of the first resin substrate 20 within this range, light can efficiently reach the photoelectric conversion unit 10.
  • the total light transmittance can be measured, for example, by a method such as JIS K7361-1 (Plastic—Testing method for total light transmittance of transparent material—Part 1: Single beam method).
  • the 1st resin layer 22 protects the photoelectric conversion part 10 as a sealing material.
  • the first resin layer 22 is disposed under the first resin substrate 20. Specifically, the first resin layer 22 is disposed on the negative direction side of the z axis of the first resin substrate 20.
  • the shape of the 1st resin layer 22 is not specifically limited like the 1st resin substrate 20, It can be made into polygons, such as circular, an ellipse, and a rectangle, according to a use.
  • No other member is provided between the first resin layer 22 and the first resin substrate 20, and the first resin layer 22 can be brought into direct contact with the first resin substrate 20. Further, other layers such as a protective layer and an adhesive layer may be provided between the first resin layer 22 and the first resin substrate 20.
  • the material for forming the first resin layer 22 is not particularly limited, but various gels can be used for the first resin layer 22.
  • the gel is not particularly limited, but is classified into a gel containing a solvent and a gel containing no solvent.
  • the gel containing the solvent hydrogel in which the dispersion medium is a water gel and organogel in which the dispersion medium is an organic solvent gel can be used.
  • the gel containing the solvent any of a polymer gel having a number average molecular weight of 10,000 or more, an oligomer gel having a number average molecular weight of 1,000 or more and less than 10,000, and a low molecular gel having a number average molecular weight of less than 1,000 can be used.
  • the first resin layer 22 is preferably a polymer gel containing a solvent or a gel not containing a solvent. This is because the polymer gel containing the solvent or the gel not containing the solvent can fix the photoelectric conversion unit 10, and can suppress the cutting of the tab wiring 14 due to the movement of the photoelectric conversion unit 10. Further, among the polymer gel containing a solvent or the gel not containing a solvent, the first resin layer 22 is selected from the group consisting of silicone gel, urethane gel or acrylic gel, segmented urethane gel, and segmented acrylic gel. It may contain at least one selected. The first resin layer 22 preferably contains at least one selected from the group consisting of silicone gel, urethane gel, acrylic gel, and combinations thereof. This is because these gels have a small tensile elastic modulus and can suppress damage to the photoelectric conversion unit 10 due to temperature change or impact. The first resin layer 22 may be liquid.
  • the thickness of the first resin layer 22 is not particularly limited, but is preferably 0.1 mm or more and 3 mm or less, and more preferably 0.2 mm or more and 2.0 mm or less. By setting it as such a range, the photoelectric conversion part 10 is protected appropriately and light can be made to reach the photoelectric conversion part 10 efficiently.
  • the tensile elastic modulus of the first resin layer 22 is not particularly limited, but is preferably 0.0000001 GPa to less than 0.005 GPa, and more preferably 0.000001 GPa to 0.001 GPa.
  • the photoelectric conversion unit 10 can be appropriately protected as a sealing material.
  • the upper limit of the tensile elastic modulus of the first resin layer 22 to such a value, thermal stress relaxation and local impact can be efficiently absorbed.
  • the total light transmittance of the first resin layer 22 is not particularly limited, but is preferably 60% to 100%, and more preferably 70% to 100%.
  • the total light transmittance of the first resin layer 22 is more preferably 80% to 100%.
  • the second resin layer 24 also protects the photoelectric conversion unit 10 as a sealing material.
  • the second resin layer 24 is disposed under the first resin layer 22. Specifically, the second resin layer 24 is disposed on the negative direction side of the z axis of the first resin layer 22.
  • the shape of the 2nd resin layer 24 is not specifically limited like the 1st resin substrate 20, It can be made into polygons, such as circular, an ellipse, and a rectangle, according to a use.
  • No other member is provided between the first resin layer 22 and the second resin layer 24, and the first resin layer 22 can be in direct contact with the second resin layer 24. Further, other layers such as a protective layer and an adhesive layer may be provided between the first resin layer 22 and the second resin layer 24.
  • the material for forming the second resin layer 24 is not particularly limited.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PET polyethylene terephthalate
  • PO polyolefin
  • PI polyimide
  • At least one selected from the group consisting of thermoplastic resins, thermosetting resins such as epoxy, urethane, polyimide, and combinations thereof can be used. These resins can be modified resins, or can be used in combination.
  • the second resin layer 24 preferably contains an ethylene-vinyl acetate copolymer (EVA).
  • the thickness of the second resin layer 24 is not particularly limited, but is preferably 0.1 mm or more and 3.0 mm or less, and more preferably 0.2 mm or more and 1.5 mm or less. By setting it as such a range, the photoelectric conversion part 10 is protected appropriately and light can be made to reach the photoelectric conversion part 10 efficiently.
  • the tensile elastic modulus of the second resin layer 24 is not particularly limited, but is preferably 0.005 GPa to 0.5 GPa, and more preferably 0.01 GPa to 0.25 GPa.
  • the photoelectric conversion unit 10 can be appropriately fixed to the second resin substrate 26 and can be prevented from being damaged.
  • a local load can be efficiently disperse
  • the total light transmittance of the second resin layer 24 is not particularly limited, but is preferably 60% to 100%, and more preferably 70% to 100%.
  • the total light transmittance of the first resin layer 22 is more preferably 80% to 100%.
  • the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of the first resin substrate 20 and the second resin layer 24. Therefore, damage to the photoelectric conversion unit 10 and the tab wiring 14 due to expansion and contraction of the first resin substrate 20 can be suppressed. Moreover, the impact resistance with respect to local loads, such as a leopard, can be improved. Note that the tensile elastic modulus of the first resin layer 22 may be smaller than the tensile elastic modulus of the second resin substrate 26.
  • the combination of resins satisfying such a relationship is not particularly limited, but the first resin substrate 20 is polycarbonate (PC), the first resin layer 22 is gel, and the second resin layer 24 is an ethylene-vinyl acetate copolymer ( For example, EVA).
  • PC polycarbonate
  • EVA ethylene-vinyl acetate copolymer
  • Specific examples include a case where a polycarbonate (PC) having a tensile modulus of 2.4 GPa, a silicone gel having a 0.000005 GPa, and an ethylene-vinyl acetate copolymer (EVA) having a 0.1 GPa are used.
  • the photoelectric conversion unit 10 is not particularly limited as long as it converts light energy into electrical energy. Therefore, in this embodiment, the photoelectric conversion unit 10 can be the solar battery cell 12 or the solar battery cell string 18. The photoelectric conversion unit 10 is arranged so as not to contact the first resin layer 22.
  • the photoelectric conversion unit 10 can be arranged so as to be in contact with the second resin layer 24.
  • the photoelectric conversion unit 10 can be disposed under the first resin layer 22.
  • the second resin layer 24 can be disposed between the first resin layer 22 and the photoelectric conversion unit 10.
  • the 2nd resin layer 24 can also be arrange
  • the photoelectric conversion unit 10 can also be arranged. There may be a portion where the photoelectric conversion unit 10 is not in partial contact with the second resin layer 24.
  • the uneven structure associated with the conductive wiring on the surface of the photoelectric conversion unit 10 is covered with the second resin layer 24, and the second resin layer 24 and the photoelectric conversion unit 10
  • the conversion unit 10 can be brought into close contact. Thereby, it can suppress that the bubble of the surface of the photoelectric conversion part 10 by a temperature change generate
  • the second resin layer 24 functions as a protective layer, it is possible to suppress moisture from being transmitted to the photoelectric conversion unit 10.
  • Examples of the solar battery cell 12 include a silicon solar battery, a compound solar battery, and an organic solar battery.
  • silicon solar cells include single crystal silicon solar cells, polycrystalline silicon solar cells, microcrystalline silicon solar cells, and amorphous silicon solar cells.
  • Examples of compound solar cells include GaAs solar cells, CIS solar cells, SIGS solar cells, CdTe solar cells, and the like.
  • Examples of the organic solar cell include a dye-sensitized solar cell and an organic thin film solar cell. Further, as the solar battery cell 12, a heterojunction solar battery or a multijunction solar battery can be used.
  • the shape of the solar battery cell 12 is not particularly limited, but can be a flat plate having a front surface, a back surface, and a side surface.
  • the surface can be, for example, a surface facing the first resin substrate 20 on the light receiving surface side.
  • the back surface can be, for example, a surface facing the second resin substrate 26 opposite to the light receiving surface.
  • a side surface can be made into the surface which is pinched
  • Specific examples of the shape include, but are not particularly limited to, the solar battery cell 12 being a rectangular flat plate. Further, the solar cells 12 can be arranged in a matrix on the xy plane.
  • the solar cell string 18 can be formed by electrically connecting adjacent solar cells 12 to each other. That is, the adjacent solar battery cells 12 may be electrically connected to each other.
  • the solar cell string 18 can also be formed by connecting the solar cells 12 to each other by the tab wiring 14. In FIG. 1, the solar cell string 18 electrically connects the bus bar electrode on one light receiving surface side and the bus bar electrode on the opposite side to the light receiving surface among the adjacent solar cells 12 by the tab wiring 14. However, the tab wiring 14 is not always necessary.
  • FIG. 2 as an example, five solar cells 12 arranged side by side in the y-axis direction are connected in series by a tab wiring 14 to form one solar cell string 18.
  • FIG. 2 as an example, four solar cell strings 18 extending in the y-axis direction are arranged in parallel in the x-axis direction.
  • positioning, etc. of the photovoltaic cell 12 are not limited.
  • the tab wiring 14 is not particularly limited in shape and material as long as it electrically connects the photoelectric conversion units 10 to each other.
  • the tab wiring 14 may be an elongated metal foil.
  • the tab wiring 14 can also be used by coating with solder, silver or the like.
  • Resin can be used for connection between the tab wiring 14 and the bus bar electrode.
  • This resin may be either conductive or non-conductive. In the case of a non-conductive resin, the tab wiring 14 and the bus bar electrode are electrically connected by being directly connected. Also, solder may be used instead of resin.
  • each solar cell 12 and the surface opposite to the light receiving surface are parallel to each other with a plurality of finger electrodes extending in the x-axis direction and orthogonal to the plurality of finger electrodes.
  • a plurality of, for example, two bus bar electrodes extending in the y-axis direction are provided.
  • the bus bar electrode connects each of the plurality of finger electrodes.
  • connection wirings 16 extend in the x-axis direction on the positive side and the negative side of the y-axis of the solar cell string 18, and the connection wiring 16 electrically connects two adjacent solar cell strings 18. Connect.
  • a combination of a plurality of solar cell strings 18 and connection wirings 16 can be used as the photoelectric conversion unit 10.
  • a frame (not shown) can be attached to the edge of the solar cell module 100.
  • the frame protects the edge of the solar cell module 100 and is used when the solar cell module 100 is installed on a roof or the like.
  • the 2nd resin substrate 26 protects the surface on the opposite side to the light-receiving surface of the solar cell module 100 as a back sheet.
  • the second resin substrate 26 is disposed below the second resin layer 24 so as to adhere to the photoelectric conversion unit 10. Specifically, the second resin substrate 26 is disposed on the negative direction side of the z axis of the second resin layer 24.
  • the method of arranging the second resin substrate 26 so as to adhere to the photoelectric conversion unit 10 is not particularly limited.
  • the photoelectric conversion unit 10 can be fixed and bonded to the second resin substrate 26 by sealing with the second resin layer 24 and pressing from above without using an adhesive.
  • the photoelectric conversion unit 10 is directly bonded to the second resin substrate 26.
  • the photoelectric conversion unit 10 can be fixed and bonded to the second resin substrate 26 using an adhesive. That is, when an adhesive is used, an adhesive layer containing an adhesive can be disposed between the photoelectric conversion unit 10 and the second resin substrate 26. In this case, an adhesive layer for adhering the photoelectric conversion unit 10 to the second resin substrate 26 can be provided between the second resin layer 24 and the second resin substrate 26.
  • the adhesive layer may not be provided between the second resin layer 24 and the second resin substrate 26 but may be provided only between the photoelectric conversion unit 10 and the second resin substrate 26.
  • the adhesive layer is not particularly limited as long as it can adhere the photoelectric conversion unit 10 and the second resin substrate 26.
  • the adhesive layer may be a single layer or a multilayer.
  • Examples of the adhesive contained in the adhesive layer include thermoplastic resins, thermosetting resins, and photocurable resins.
  • the photoelectric conversion unit 10 is fixed to the second resin substrate 26 by arranging the second resin substrate 26 so as to adhere to the photoelectric conversion unit 10. Therefore, even when the second resin layer 24 is thermally deformed, damage to the photoelectric conversion unit 10 due to temperature change, cutting of the tab wiring 14 or collision between adjacent photoelectric conversion units 10 can be suppressed. Furthermore, even when a hard substance such as leopard collides with the first resin substrate 20 of the solar cell module 100, the deflection of the photoelectric conversion unit 10 is suppressed, and the destruction of the photoelectric conversion unit 10 can be suppressed. .
  • the material for forming the second resin substrate 26 is not particularly limited.
  • fiber reinforced plastic FRP
  • polyimide PI
  • cyclic polyolefin polycarbonate
  • PC polymethyl methacrylate
  • PMMA polyether ether ketone
  • PS Polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • FRP fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • glass epoxy etc. are mentioned as a glass fiber reinforced plastic (GFRP).
  • the material forming the second resin substrate 26 contains at least one selected from the group consisting of fiber reinforced plastic (FRP), polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and combinations thereof. Is preferred. This is because these materials are unlikely to bend due to impact or the like.
  • FRP fiber reinforced plastic
  • PMMA polymethyl methacrylate
  • PEEK polyether ether ketone
  • the thickness of the second resin substrate 26 is not particularly limited, but is preferably 0.2 mm or more and 5 mm or less, and more preferably 0.5 mm or more and 3 mm or less. By setting it as such a range, the bending of the 2nd resin substrate 26 can be suppressed and the solar cell module 100 can be reduced in weight.
  • the linear expansion coefficient of the second resin substrate 26 is preferably smaller than the linear expansion coefficient of the first resin substrate 20. This is because when the linear expansion coefficient of the second resin substrate 26 is smaller than the linear expansion coefficient of the first resin substrate 20, the influence on the photoelectric conversion unit 10 due to thermal expansion or thermal contraction is further reduced.
  • the linear expansion coefficient can be measured by, for example, JIS K7197 (linear expansion coefficient test method by thermomechanical analysis of plastic).
  • the general linear expansion coefficient of polycarbonate (PC) is 60 ⁇ 10 ⁇ 6 K ⁇ 1 to 70 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the general linear expansion coefficient of fiber reinforced plastic (FRP) is 12 ⁇ 10 ⁇ 6 K ⁇ 1 to 50 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the general linear expansion coefficient of polymethyl methacrylate (PMMA) is 50 ⁇ 10 ⁇ 6 K ⁇ 1 to 90 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the general linear expansion coefficient of polyetheretherketone (PEEK) is 40 ⁇ 10 ⁇ 6 K ⁇ 1 to 47 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the linear expansion coefficient of the second resin substrate 26 is preferably smaller than the linear expansion coefficient of the first resin substrate 20. Therefore, it is more preferable that the second resin substrate 26 contains fiber reinforced plastic (FRP), polymethyl methacrylate (PMMA), or polyether ether ketone (PEEK) and has a smaller linear expansion coefficient than the first resin substrate 20.
  • FRP fiber reinforced plastic
  • PMMA polymethyl methacrylate
  • PEEK polyether ether ketone
  • the flexural modulus of the second resin substrate 26 is preferably equal to or greater than the flexural modulus of the first resin substrate 20. By doing in this way, the bending strength of the solar cell module 100 improves. Further, when stress is applied to the solar cell module 100 due to local impact, the deflection of the second resin substrate 26 is reduced, so that the stress transmitted to the photoelectric conversion unit 10 can be suppressed.
  • the bending elastic modulus of each of the first resin substrate 20, the first resin layer 22, the second resin layer 24, and the second resin substrate 26 is not particularly limited.
  • the flexural modulus can be measured, for example, according to JIS K7171 (Plastics—How to obtain bending characteristics) as follows.
  • E f ( ⁇ f2 ⁇ f1 ) / ( ⁇ f2 ⁇ f1 ) (3)
  • E f represents the flexural modulus (Pa)
  • ⁇ f1 represents the bending stress (Pa) measured with the deflection s 1
  • ⁇ f2 represents the bending stress (Pa) measured with the deflection s 2 .
  • the general flexural modulus of polycarbonate (PC) is 2.3 GPa to 2.5 GPa.
  • the general flexural modulus of fiber reinforced plastic (FRP) is 20 GPa to 150 GPa.
  • the general flexural modulus of glass epoxy is 20 GPa to 25 GPa.
  • the general flexural modulus of carbon fiber reinforced plastic (CFRP) is 100 GPa to 150 GPa.
  • the general flexural modulus of polymethyl methacrylate (PMMA) is 2.6 GPa to 3.5 GPa.
  • the general flexural modulus of polyether ether ketone (PEEK) is 3.5 GPa to 5.0 GPa.
  • the bending elastic modulus of the second resin substrate 26 is the bending elastic modulus of the first resin substrate 20. This can be done.
  • the solar cell module 100 has the total light transmittance of the first resin substrate 20, the first resin layer 22, and the second resin layer 24,
  • the total light transmittance of the second resin substrate 26 is preferably larger. By doing so, the amount of light reaching the photoelectric conversion unit 10 increases, and the electrical energy converted by the photoelectric conversion unit 10 increases.
  • the solar cell module 100 can be created using a known method.
  • the first resin substrate 20, the first resin layer 22, the second resin layer 24, the photoelectric conversion unit 10, and the second resin substrate 26 can be laminated in order on the heater and can be heat-molded.
  • the photoelectric conversion unit 10 may be bonded to the second resin substrate 26 in advance and then laminated with another layer. At the same time as the lamination with the other layer, the photoelectric conversion unit 10 and the second resin substrate 26 are bonded. You can also.
  • the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of the second resin layer 24. That is, the tensile elastic modulus of the second resin layer 24 is larger than the tensile elastic modulus of the first resin layer 22. Therefore, the second resin layer 24 is less deformed at the time of molding, and the mixing of bubbles between the first resin layer 22 and the second resin layer 24 is suppressed.
  • the heating condition is not particularly limited, but for example, it is heated to about 150 ° C. in a vacuum state. When heated under vacuum conditions, since the tensile elastic modulus of the second resin layer 24 is larger than the tensile elastic modulus of the first resin layer 22, the bubble removal properties are further improved.
  • the resin components can be crosslinked by heating with a heater or the like while pressurizing each layer under atmospheric pressure.
  • a frame or the like can be attached to the laminate obtained by heating.
  • the solar cell module 100 includes a first resin substrate 20, a first resin layer 22, a second resin layer 24, the photoelectric conversion unit 10, and a second resin substrate 26.
  • the first resin layer 22 is disposed under the first resin substrate 20, the second resin layer 24 is disposed under the first resin layer 22, and the photoelectric conversion unit 10 is disposed so as not to contact the first resin layer 22,
  • the second resin substrate 26 is disposed below the second resin layer 24 so as to adhere to the photoelectric conversion unit 10.
  • the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of the first resin substrate 20 and the second resin layer 24.
  • the solar cell module 100 includes the first resin substrate 20, the first resin layer 22, the second resin layer 24, the photoelectric conversion unit 10, and the second resin substrate 26.
  • the first resin layer 22 is disposed under the first resin substrate 20, the second resin layer 24 is disposed under the first resin layer 22, and the photoelectric conversion unit 10 is disposed so as not to contact the first resin layer 22,
  • the second resin substrate 26 is disposed below the second resin layer 24 so as to adhere to the photoelectric conversion unit 10. Adjacent photoelectric conversion units 10 are electrically connected to each other.
  • the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of the first resin substrate 20 and the second resin layer 24.
  • the mechanism that can suppress the damage of the photoelectric conversion unit 10 and the tab wiring 14 due to the temperature change is considered as follows.
  • the first resin layer 22 is the first resin substrate 20 and the second resin. It becomes easier to deform than the layer 24. Therefore, even when the first resin substrate 20 undergoes thermal expansion or contraction, the first resin layer 22 undergoes shear deformation to relieve thermal stress and reduce stress transmitted to the photoelectric conversion unit 10 and the tab wiring 14. can do.
  • the tensile elastic modulus of the second resin layer 24 is larger than the tensile elastic modulus of the first resin layer 22. Therefore, compared with the 1st resin layer 22, the force which fixes the photoelectric conversion part 10 is strong, and it can suppress that stress is transmitted to the photoelectric conversion part 10 and the tab wiring 14 directly. Therefore, by making the tensile elastic modulus of the first resin layer 22 smaller than the tensile elastic modulus of the first resin substrate 20 and the second resin layer 24, damage to the photoelectric conversion unit 10 due to temperature change or the tab wiring 14. Damage can be suppressed.
  • the second resin substrate 26 is disposed below the second resin layer 24 so as to adhere to the photoelectric conversion unit 10. For this reason, since the photoelectric conversion unit 10 is fixed to the second resin substrate 26, even when thermal stress is applied to the second resin layer 24, it is possible to suppress the transmission of stress to the photoelectric conversion unit 10 and the tab wiring 14. it can.
  • FIG. 3 is a cross-sectional view schematically showing a load applied to the solar cell module 100.
  • FIG. 3 assumes a case where a local load S ⁇ b> 1 is applied to the first resin substrate 20 from the light receiving surface side due to the collision of a leopard or the like.
  • the tensile elastic modulus of the first resin substrate 20 is often smaller than the tensile elastic modulus of glass, the first resin substrate 20 is deflected in the negative z-axis direction with respect to the received load S1.
  • a local load S2 is generated.
  • the first resin layer 22 Since the tensile elastic modulus of the first resin layer 22 is smaller than the tensile elastic modulus of the first resin substrate 20 and the second resin layer 24, the first resin layer 22 absorbs the deflection of the first resin substrate 20 to some extent. Therefore, the local load S3 in the first resin layer 22 is smaller than the load S2 in the first resin substrate 20.
  • the second resin layer 24 has a larger tensile elastic modulus than the first resin layer 22. That is, the second resin layer 24 is formed to be harder than the first resin layer 22. Therefore, the second resin layer 24 is pressed in the xy plane by the load S3, thereby generating a load S4 that is more dispersed in the xy plane than the load S3 and that faces the negative direction of the z axis. . That is, the load S4 is smaller than the load S1 and is distributed on the xy plane. Therefore, even when a local impact such as a leopard is applied to the solar cell module 100, the possibility that the photoelectric conversion unit 10, the tab wiring 14, and the connection wiring 16 are damaged is reduced, and the impact resistance can be improved.
  • the second resin substrate 26 is disposed below the second resin layer 24 so as to adhere to the photoelectric conversion unit 10. Therefore, even when a hard substance such as leopard collides with the first resin substrate 20 of the solar cell module 100, the deflection of the photoelectric conversion unit 10 is suppressed, and the destruction of the photoelectric conversion unit 10 can be suppressed. .
  • the solar cell module according to the present embodiment includes a second resin substrate disposed so as to adhere to the photoelectric conversion unit under the second resin layer, and the tensile elastic modulus of the first resin layer is the first resin substrate and the second resin substrate. It is smaller than the tensile elastic modulus of the resin layer. Therefore, according to the present embodiment, it is possible to relieve the stress on the photoelectric conversion part caused by the thermal deformation of the resin substrate and improve the impact resistance against a local load.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュール100は、第1樹脂基板20と、第1樹脂層22と、光電変換部10と、第2樹脂層24と、第2樹脂基板26とを備える。第1樹脂層22は第1樹脂基板20下に配置され、第2樹脂層24は第1樹脂層22下に配置され、光電変換部10は第1樹脂層22と接触しないように配置され、第2樹脂基板26は第2樹脂層24下に光電変換部10と接着するように配置される。第1樹脂層22の引張弾性率は、第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さい。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関し、特に樹脂基板を使用する太陽電池モジュールに関する。
 太陽電池モジュールの基板としてガラス基板が用いられているが、近年、軽量化のためにガラス基板に代わり樹脂基板が用いられるようになってきている。
 例えば、特許文献1には、基材層の主成分をポリカーボネートとした太陽電池モジュール用フロントシートが開示されている。そして、このような構成とすることにより、軽量で、高い耐衝撃性を有する太陽電池モジュール用フロントシートを実現させている。
 また、特許文献1では、太陽電池セルを保護するため、エチレン-酢酸ビニル系樹脂などの合成樹脂の封止材により形成された充填剤層が開示されている。
特開2013-145807号公報
 しかしながら、一般的に、樹脂の線膨張率はガラスの線膨張率より大きく、温度変化による熱伸縮の影響が大きい。そして、樹脂基板が熱伸縮した場合、樹脂基板と連動して封止材に応力がかかる。また、封止材自体も温度差により熱伸縮する。そのため、太陽電池モジュールの温度差に比例して基材層や充填剤層の熱応力が大きくなり、太陽電池セル間のタブ配線が疲労破断するおそれがあった。また、封止材が熱伸縮することにより、太陽電池セル同士が衝突するおそれもあった。
 また、ガラス基板に代えて樹脂基板を用いた場合は、樹脂基板にヒョウ等が衝突し、局所的な荷重が加わる場合がある。局所的な荷重により樹脂基板がたわんだ場合には、たわんだ部分に荷重が集中する傾向にある。そのため、局所的な荷重が樹脂基板及び充填剤層を介して太陽電池セルに伝わった場合、太陽電池セルが破損するおそれがあるため、耐衝撃性が十分とはいえなかった。
 以上の理由により、樹脂基板を用いる場合、熱膨張への対策に加えて、局所的な荷重に対する耐衝撃性の向上が必要とされる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、樹脂基板の熱変形により生じる太陽電池セルへの応力を緩和し、かつ、局所的な荷重に対する耐衝撃性を向上させた太陽電池モジュールを提供することにある。
 上記課題を解決するために、本発明の第一の態様に係る太陽電池モジュールは、第1樹脂基板と、第1樹脂層と、第2樹脂層と、光電変換部と、第2樹脂基板とを備える。第1樹脂層は第1樹脂基板下に配置され、第2樹脂層は第1樹脂層下に配置され、光電変換部は第1樹脂層と接触しないように配置され、第2樹脂基板は第2樹脂層下に光電変換部と接着するように配置される。第1樹脂層の引張弾性率は、第1樹脂基板及び第2樹脂層の引張弾性率よりも小さい。
 本発明の第二の態様に係る太陽電池モジュールは、第1樹脂基板と、第1樹脂層と、第2樹脂層と、光電変換部と、第2樹脂基板とを備える。第1樹脂層は第1樹脂基板下に配置され、第2樹脂層は第1樹脂層下に配置され、光電変換部は第1樹脂層と接触しないように配置され、第2樹脂基板は第2樹脂層下に光電変換部と接着するように配置される。隣接した光電変換部は互いに電気的に接続されている。第1樹脂層の引張弾性率は、第1樹脂基板及び第2樹脂層の引張弾性率よりも小さい。
図1は、本実施形態に係る太陽電池モジュールを示す断面図である。 図2は、本実施形態に係る太陽電池モジュールを示す上面図である。 図3は、太陽電池モジュールに加わる局所的な荷重を模式的に示す断面図である。
 以下、図面を用いて本発明の実施形態に係る太陽電池モジュールについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。
 また、図面は、便宜上、x軸、y軸、z軸からなる直角座標系を規定して説明している。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸及びy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸それぞれの正の方向は、矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。なお、z軸の正の方向が受光面側に該当し、z軸の負の方向側が受光面と反対側に該当する。
 また、「第1の部材の上に第2の部材を設ける」等の記載では、特に限定しない限り、第1の部材及び第2の部材が直接接触して設けられてもよく、第1の部材及び第2の部材の間に他の部材が存在してもよい。
 太陽電池モジュールは、例えば、耐荷重性の問題のある建物などへ用途を拡大するため、軽量化が必要とされている。そのため、太陽電池モジュールの保護層として用いられている基板は、ガラス基板に代わり、樹脂基板が使用されるようになってきている。
 しかし、樹脂基板はガラス基板と比較して軽いものの、線膨張率が大きいため、熱伸縮による熱応力の影響が大きくなる。
 ここで、熱応力は、以下のように示される。
  [数1]
 σ=EαΔT (1)
 上記式(1)中、σは熱応力(Pa)、Eは引張弾性率(ヤング率)(Pa)、αは線膨張率(K-1)、ΔTは変化した温度差(K)を示す。
 また、通常、光電変換部は基板の間に配置された封止材により封止され、樹脂基板と封止材が接している。そのため、樹脂基板が伸縮することで、封止材もそれに伴い伸縮する。また、封止材自体も温度差により伸縮する。さらに、光電変換部や光電変換部間のタブ配線は、封止材に接するように配置されている。そのため、封止材を介して熱伸縮の影響を受ける。
 光電変換部やタブ配線に応力がかかった場合、太陽電池セルやタブ配線の破損が生じる可能性がある。また、封止材が熱伸縮した場合、太陽電池セル同士が衝突して破損する可能性もある。そのため、ガラス基板に代えて樹脂基板を用いる場合には、熱伸縮により、光電変換部や光電変換部間のタブ配線が破損しないよう考慮する必要がある。
 一方、太陽電池モジュールは屋外に設置されることがあり、樹脂基板にヒョウ等が衝突することがある。ヒョウ等が樹脂基板に衝突した場合、局所的な荷重が樹脂基板に加わることとなる。局所的な荷重により樹脂基板がたわんだ場合には、たわんだ部分に荷重が集中する傾向にある。しかし、封止材と光電変換部が接するように配置されている場合には、局所的な荷重が樹脂基板及び封止材を介して光電変換部に伝わり、光電変換部が破損するおそれがある。
 そこで、本実施形態に係る太陽電池モジュールは、第1樹脂基板と、第1樹脂層と、第2樹脂層と、光電変換部と、第2樹脂基板とを所定の配置とし、第1樹脂層の引張弾性率は第1樹脂基板及び第2樹脂層の引張弾性率よりも小さい。そのため、本実施形態にかかる太陽電池モジュールは、樹脂基板の熱変形により生じる光電変換部への応力を緩和し、かつ、局所的な荷重に対する耐衝撃性を向上させることができる。以下において、これらの構成要素の説明を行う。
 図1は、本実施形態に係る太陽電池モジュール100の断面図を示している。本実施形態に係る太陽電池モジュール100は、第1樹脂基板20と、第1樹脂層22と、第2樹脂層24と、光電変換部10と、第2樹脂基板26とを備える。第1樹脂層22は第1樹脂基板20下に配置され、第2樹脂層24は第1樹脂層22下に配置され、光電変換部10は第1樹脂層22と接触しないように配置され、第2樹脂基板26は第2樹脂層24下に光電変換部10と接着するように配置される。
 <第1樹脂基板20>
 第1樹脂基板20は太陽電池モジュール100の受光面側に配置されており、太陽電池モジュール100の表面を保護する。本実施形態においては、便宜上、第1樹脂基板20を受光面と呼び、第2樹脂基板26を受光面と反対側の面と呼ぶこともあるが、用途に応じてそれぞれの面の外層に他の層を設けることもできる。第1樹脂基板20の形状は、太陽電池モジュールの表面を保護する役割を果たす限り、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。
 第1樹脂基板20を形成する材料は特に限定されず、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)及びこれらの組合せからなる群より選択される少なくとも1種を用いることができる。これらの中でも、第1樹脂基板20はポリカーボネート(PC)を含有することがより好ましい。ポリカーボネート(PC)は、透光性に優れ、太陽電池モジュールの表面を保護するのに十分な硬度を有するためである。
 第1樹脂基板20の厚みは、太陽電池モジュール100の表面を保護する役割を果たす限り特に限定されないが、0.1mm~10mmとすることが好ましく、0.5mm~5mmとすることがより好ましい。このような範囲とすることによって、太陽電池モジュール100を適切に保護し、光を光電変換部10に効率よく到達させることができる。
 第1樹脂基板20の引張弾性率は特に限定されないが、1.0GPa~10.0GPaであることが好ましく、2.3GPa~2.5GPaであることがより好ましい。第1樹脂基板20の引張弾性率をこのような範囲とすることによって、太陽電池モジュール100の表面を適切に保護することができる。引張弾性率は、例えば、次のように、JIS K7161-1(プラスチック-引張特性の求め方-第1部:通則)により測定することができる。
  [数2]
 E=(σ-σ)/(ε-ε) (2)
 上記式(2)において、Eは引張弾性率(Pa)、σはひずみε=0.0005における応力(Pa)、σはひずみε=0.0025における応力(Pa)を示す。
 第1樹脂基板20の全光線透過率は特に限定されないが、80%~100%であることが好ましく、90%~100%であることが好ましい。第1樹脂基板20の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部10へ到達させることができる。全光線透過率は、例えば、JIS K7361-1(プラスチック-透明材料の全光線透過率の試験方法-第1部:シングルビーム法)などの方法により測定することができる。
 <第1樹脂層22>
 第1樹脂層22は封止材として光電変換部10を保護する。第1樹脂層22は第1樹脂基板20下に配置される。具体的には、第1樹脂層22は第1樹脂基板20のz軸の負方向側に配置される。第1樹脂層22の形状は、第1樹脂基板20と同様に、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。
 第1樹脂層22と第1樹脂基板20との間には他の部材を設けず、第1樹脂層22は第1樹脂基板20と直接接触させることができる。また、第1樹脂層22と第1樹脂基板20との間に、保護層や接着層など他の層を設けることもできる。
 第1樹脂層22を形成する材料は特に限定されないが、第1樹脂層22は各種ゲルを用いることができる。ゲルは、特に限定されないが、溶媒を含有したゲルと溶媒を含まないゲルに分類される。溶媒を含有したゲルには、分散媒が水のゲルであるヒドロゲル、分散媒が有機溶媒のゲルであるオルガノゲル、を用いることができる。また、溶媒を含有したゲルは、数平均分子量が10000以上の高分子ゲル、数平均分子量が1000以上10000未満のオリゴマーゲル、数平均分子量が1000未満の低分子ゲルのいずれを用いることができる。これらのなかでも、第1樹脂層22は溶媒を含有した高分子ゲルもしくは溶媒を含まないゲルを使用することが好ましい。溶媒を含有した高分子ゲルもしくは溶媒を含まないゲルは光電変換部10を固定することができるため、光電変換部10の移動によるタブ配線14の切断を抑制することができるためである。また、溶媒を含有した高分子ゲルもしくは溶媒を含まないゲルのなかでも、第1樹脂層22はシリコーンゲル、ウレタンゲル又はアクリルゲル及びセグメント化ウレタンゲル、セグメント化アクリルゲルこれらの組合せからなる群より選択される少なくとも1種を含有することができる。また、第1樹脂層22はシリコーンゲル、ウレタンゲル、アクリルゲル及びこれらの組合せからなる群より選択される少なくとも1種を含有することが好ましい。これらのゲルは引張弾性率が小さく、温度変化や衝撃による光電変換部10の破損を抑制することができるためである。なお、第1樹脂層22は、液状であってもよい。
 第1樹脂層22の厚みは、特に限定されないが、0.1mm以上3mm以下であることが好ましく、0.2mm以上2.0mm以下であることがより好ましい。このような範囲とすることによって、光電変換部10が適切に保護され、光を光電変換部10に効率よく到達させることができる。
 第1樹脂層22の引張弾性率は特に限定されないが、0.0000001GPa~0.005GPa未満であることが好ましく、0.000001GPa~0.001GPaであることがより好ましい。第1樹脂層22の引張弾性率の下限をこのような値とすることによって、封止材として光電変換部10を適切に保護することができる。また、第1樹脂層22の引張弾性率の上限をこのような値とすることによって、熱応力の緩和や局所的な衝撃を効率よく吸収することができる。
 第1樹脂層22の全光線透過率は特に限定されないが、60%~100%であることが好ましく、70%~100%であることがより好ましい。また、第1樹脂層22の全光線透過率は80%~100%であることがさらに好ましい。第1樹脂層22の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部10へ到達させることができる。
 <第2樹脂層24>
 第2樹脂層24も第1樹脂層22と同様、封止材として光電変換部10を保護する。第2樹脂層24は第1樹脂層22下に配置される。具体的には、第2樹脂層24は第1樹脂層22のz軸の負方向側に配置される。第2樹脂層24の形状は、第1樹脂基板20と同様、特に限定されず、用途に応じて円形、楕円形、矩形などの多角形とすることができる。
 第1樹脂層22と第2樹脂層24との間には他の部材を設けず、第1樹脂層22は第2樹脂層24と直接接触させることができる。また、第1樹脂層22と第2樹脂層24との間に、保護層や接着層など他の層を設けることもできる。
 第2樹脂層24を形成する材料は特に限定されず、例えば、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、ポリイミド(PI)などの熱可塑性樹脂、エポキシ、ウレタン、ポリイミドなどの熱硬化性樹脂及びこれらの組合せからなる群より選択される少なくとも1種を用いることができる。これらの樹脂は変性樹脂を用いることもでき、それぞれの組合せとして用いることもできる。なかでも、第2樹脂層24はエチレン-酢酸ビニル共重合体(EVA)を含有することが好ましい。
 第2樹脂層24の厚みは、特に限定されないが、0.1mm以上3.0mm以下であることが好ましく、0.2mm以上1.5mm以下であることがより好ましい。このような範囲とすることによって、光電変換部10が適切に保護され、光を光電変換部10に効率よく到達させることができる。
 第2樹脂層24の引張弾性率は特に限定されないが、0.005GPa~0.5GPaであることが好ましく、0.01GPa~0.25GPaであることがより好ましい。第2樹脂層24の引張弾性率の下限をこのような値とすることによって、光電変換部10が第2樹脂基板26に適度に固定され、破損するのを抑制することができる。また、第2樹脂層24の引張弾性率の上限をこのような値とすることによって、局所的な荷重を効率よく分散することができる。
 第2樹脂層24の全光線透過率は特に限定されないが、60%~100%であることが好ましく、70%~100%であることがより好ましい。また、第1樹脂層22の全光線透過率は80%~100%であることがさらに好ましい。第1樹脂層22の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部10へ到達させることができる。
 本実施形態に係る太陽電池モジュール100においては、第1樹脂層22の引張弾性率は、第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さい。そのため、第1樹脂基板20の膨張及び収縮に伴う光電変換部10やタブ配線14の破損を抑制することができる。また、ヒョウ等の局所的な荷重に対する耐衝撃性を向上することができる。なお、第1樹脂層22の引張弾性率を第2樹脂基板26の引張弾性率より小さくしてもよい。
 このような関係を満たす樹脂の組合せは特に限定されないが、第1樹脂基板20としてポリカーボネート(PC)を、第1樹脂層22としてゲルを、第2樹脂層24としてエチレン-酢酸ビニル共重合体(EVA)を用いた場合などが挙げられる。具体的には、引張弾性率が、2.4GPaのポリカーボネート(PC)、0.000005GPaのシリコーンゲル、0.1GPaのエチレン-酢酸ビニル共重合体(EVA)を用いた場合などが挙げられる。
 <光電変換部10>
 光電変換部10は、光エネルギーを電気エネルギーに変換するものであれば特に限定されない。そのため、本実施形態において、光電変換部10は、太陽電池セル12とすることもできるし、太陽電池セルストリング18とすることもできる。光電変換部10は第1樹脂層22と接触しないように配置される。
 また、光電変換部10は第2樹脂層24と接するよう配置することができる。なお、光電変換部10は第1樹脂層22下に配置することができる。より具体的には、第2樹脂層24は、第1樹脂層22と光電変換部10の間に配置することができる。光電変換部10が第2樹脂層24と接する具体的態様は特に限定されないが、光電変換部10全体を覆うように第2樹脂層24を配置することもできるし、第2樹脂層24中に光電変換部10を配置することもできる。光電変換部10が第2樹脂層24と部分的に接していない部分があってもよい。光電変換部10を第2樹脂層24と接するように配置することにより、光電変換部10の表面の導電配線などに伴う凹凸構造が第2樹脂層24により覆われ、第2樹脂層24と光電変換部10とを密着させることができる。これにより、温度変化による光電変換部10の表面の気泡が発生するのを抑制することができる。また、第2樹脂層24が保護層として働くため、光電変換部10へ水分が透過するのを抑制することが可能となる。
 太陽電池セル12としては、例えば、シリコン系太陽電池、化合物系太陽電池、有機系太陽電池などが挙げられる。シリコン系太陽電池としては、単結晶シリコン系太陽電池、多結晶シリコン系太陽電池、微結晶シリコン系太陽電池、アモルファスシリコン系太陽電池などが挙げられる。化合物系太陽電池としては、GaAs系太陽電池、CIS系太陽電池、SIGS系太陽電池、CdTe系太陽電池などが挙げられる。有機系太陽電池としては、色素増感太陽電池、有機薄膜太陽電池などが挙げられる。また、太陽電池セル12として、ヘテロ接合型太陽電池や多接合型太陽電池を用いることもできる。
 太陽電池セル12の形状は、特に限定されないが、表面、裏面及び側面を有する平板状とすることができる。ここで、表面とは、例えば、受光面側の第1樹脂基板20と対向する面とすることができる。また、裏面とは、例えば、受光面と反対側の第2樹脂基板26と対向する面とすることができる。また、側面とは、表面と裏面とで挟まれ、側部を形成する面とすることができる。具体的な形状の例としては、太陽電池セル12を矩形状の平板とすることが挙げられるが、特に限定されない。また、太陽電池セル12は、x-y平面上にマトリクス状に配列することができる。
 太陽電池セルストリング18は、隣接した太陽電池セル12を互いに電気的に接続することにより形成することができる。すなわち、隣接した太陽電池セル12は互いに電気的に接続されていてもよい。太陽電池セルストリング18は、太陽電池セル12を互いにタブ配線14によって接続することにより形成することもできる。図1では、太陽電池セルストリング18は、隣接した太陽電池セル12のうち、一方の受光面側のバスバー電極と、受光面と反対側のバスバー電極とを、タブ配線14により電気的に接続することにより形成しているが、必ずしもタブ配線14は必要ではない。
 図2では、一例として、y軸方向に並んで配置される5つの太陽電池セル12が、タブ配線14によって直列に接続され、1つの太陽電池セルストリング18が形成されている。また、図2では、一例として、y軸方向に延びた太陽電池セルストリング18がx軸方向に4つ平行に並べられている。なお、図2では一例を示したが、太陽電池セル12の数や配置などは限定されない。
 タブ配線14は、光電変換部10を互いに電気的に接続するものであれば、形状や材料は特に限定されないが、例えば、細長い金属箔とすることができる。タブ配線14の材料としては、例えば、銅などを用いることができる。また、タブ配線14は、ハンダや銀などをコーティングして用いることもできる。
 タブ配線14とバスバー電極との接続には樹脂を使用することができる。この樹脂は導電性、非導電性いずれでもよい。非導電性樹脂の場合はタブ配線14とバスバー電極とが直接接続されることで電気的に接続される。また、樹脂ではなくハンダでもよい。
 なお、図1では省略しているが、各太陽電池セル12の受光面及び受光面と反対側の面には、互いに平行にx軸方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy軸方向に延びる複数、例えば2本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。
 さらに、太陽電池セルストリング18のy軸の正方向側と負方向側において、複数の接続配線16がx軸方向に延びており、接続配線16は、隣接した2つの太陽電池セルストリング18を電気的に接続する。本実施形態においては、複数の太陽電池セルストリング18と接続配線16との組合せを、光電変換部10とすることもできる。
 太陽電池モジュール100の端縁部には、図示しないフレームを取り付けることもできる。フレームは、太陽電池モジュール100の端縁部を保護するとともに、太陽電池モジュール100を屋根等に設置する際に利用される。
 <第2樹脂基板26>
 第2樹脂基板26は、バックシートとして太陽電池モジュール100の受光面と反対側の面を保護する。第2樹脂基板26は第2樹脂層24下に光電変換部10と接着するように配置される。具体的には、第2樹脂基板26は、第2樹脂層24のz軸の負方向側に配置される。
 第2樹脂基板26を光電変換部10と接着するように配置する方法は特に限定されない。例えば、接着剤を用いず、第2樹脂層24により封止して上から押さえつけることにより、光電変換部10を第2樹脂基板26に固定して接着することができる。この場合、光電変換部10は第2樹脂基板26に直接接着している。
 また、接着剤を用いて、光電変換部10を第2樹脂基板26に固定して接着することもできる。すなわち、接着剤を用いた場合は、光電変換部10と第2樹脂基板26との間に接着剤を含有する接着層を配置することができる。この場合、第2樹脂層24と第2樹脂基板26との間に、光電変換部10を第2樹脂基板26に接着させるための接着層を設けることができる。また、接着層は、第2樹脂層24と第2樹脂基板26との間には設けず、光電変換部10と第2樹脂基板26との間にのみ設けてもよい。
 接着層は、光電変換部10と第2樹脂基板26を接着できるものであれば、特に限定されない。接着層は単層でも多層でもよい。接着層に含まれる接着剤としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などが挙げられる。
 このように、第2樹脂基板26を光電変換部10と接着するように配置することで、光電変換部10が第2樹脂基板26に固定される。そのため、第2樹脂層24が熱変形した場合であっても、温度変化に伴う光電変換部10の破損、タブ配線14の切断又は隣接する光電変換部10の衝突などを抑制することができる。さらに、太陽電池モジュール100の第1樹脂基板20に、ヒョウなどの固い物質が衝突した場合であっても、光電変換部10のたわみが抑制され、光電変換部10の破壊を抑制することができる。
 第2樹脂基板26を形成する材料は特に限定されず、例えば、繊維強化プラスチック(FRP)、ポリイミド(PI)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)及びこれらの組合せからなる群より選択される少なくとも1種を用いることができる。繊維強化プラスチック(FRP)としては、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、アラミド繊維強化プラスチック(AFRP)などが挙げられる。なお、ガラス繊維強化プラスチック(GFRP)としては、ガラスエポキシなどが挙げられる。第2樹脂基板26を形成する材料は、繊維強化プラスチック(FRP)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)及びこれらの組合せからなる群より選択される少なくとも1種を含有することが好ましい。これらの材料は衝撃等によりたわみが発生しにくいためである。
 第2樹脂基板26の厚みは、特に限定されないが、0.2mm以上5mm以下であることが好ましく、0.5mm以上3mm以下であることがより好ましい。このような範囲とすることによって、第2樹脂基板26のたわみを抑制し、太陽電池モジュール100をより軽量化できる。
 第2樹脂基板26の線膨張率は第1樹脂基板20の線膨張率よりも小さいことが好ましい。第2樹脂基板26の線膨張率が第1樹脂基板20の線膨張率よりも小さい場合、熱膨張や熱収縮による光電変換部10への影響がより小さくなるためである。線膨張率は、例えば、JIS K7197(プラスチックの熱機械分析による線膨脹率試験方法)により測定することができる。
 なお、ポリカーボネート(PC)の一般的な線膨張率は60×10-6-1~70×10-6-1である。繊維強化プラスチック(FRP)の一般的な線膨張率は12×10-6-1~50×10-6-1である。ポリメチルメタクリレート(PMMA)の一般的な線膨張率は50×10-6-1~90×10-6-1である。ポリエーテルエーテルケトン(PEEK)の一般的な線膨張率は40×10-6-1~47×10-6-1である。また、上記の通り、第2樹脂基板26の線膨張率は第1樹脂基板20の線膨張率よりも小さいことが好ましい。そのため、第2樹脂基板26は繊維強化プラスチック(FRP)、ポリメチルメタクリレート(PMMA)又はポリエーテルエーテルケトン(PEEK)を含有し、第1樹脂基板20よりも線膨張率が小さいことがより好ましい。
 第2樹脂基板26の曲げ弾性率は第1樹脂基板20の曲げ弾性率以上であることが 好ましい。このようにすることで、太陽電池モジュール100の曲げ強度が向上する。また、局所的な衝撃により太陽電池モジュール100に応力が加わった場合、第2樹脂基板26のたわみが小さくなるため、光電変換部10へ伝わる応力を抑制することができる。なお、第1樹脂基板20、第1樹脂層22、第2樹脂層24及び第2樹脂基板26それぞれの曲げ弾性率は特に限定されない。曲げ弾性率は、例えば、次のように、JIS K7171(プラスチック-曲げ特性の求め方)により測定することができる。
  [数3]
 E=(σf2-σf1)/(εf2-εf1) (3)
 上記式(3)において、Eは曲げ弾性率(Pa)、σf1はたわみsで測定した曲げ応力(Pa)、σf2はたわみsで測定した曲げ応力(Pa)を示す。
 ポリカーボネート(PC)の一般的な曲げ弾性率は2.3GPa~2.5GPaである。繊維強化プラスチック(FRP)の一般的な曲げ弾性率は20GPa~150GPaである。ガラスエポキシの一般的な曲げ弾性率は20GPa~25GPaである。炭素繊維強化プラスチック(CFRP)の一般的な曲げ弾性率は100GPa~150GPaである。ポリメチルメタクリレート(PMMA)の一般的な曲げ弾性率は2.6GPa~3.5GPaである。ポリエーテルエーテルケトン(PEEK)の一般的な曲げ弾性率は3.5GPa~5.0GPaである。そのため、例えば、第1樹脂基板としてポリカーボネート(PC)と、第2樹脂基板として繊維強化プラスチック(FRP)を用いた場合、第2樹脂基板26の曲げ弾性率を第1樹脂基板20の曲げ弾性率以上とすることができる。
 第2樹脂基板の全光線透過率は特に限定されないが、本実施形態に係る太陽電池モジュール100は、第1樹脂基板20、第1樹脂層22及び第2樹脂層24の全光線透過率が、第2樹脂基板26の全光線透過率よりも大きいことが好ましい。このようにすることで、光電変換部10に到達する光量が大きくなり、光電変換部10により変換される電気エネルギーが多くなるためである。
<太陽電池モジュールの製造方法>
 本実施形態に係る太陽電池モジュール100は公知の方法を用いて作成することができる。例えば、ヒーター上に第1樹脂基板20、第1樹脂層22、第2樹脂層24、光電変換部10、第2樹脂基板26を順番にラミネートして、加熱成形することができる。また、光電変換部10を第2樹脂基板26に事前に接着させてから他の層とラミネートすることもでき、他の層とラミネートすると同時に光電変換部10と第2樹脂基板26を接着させることもできる。
 本実施形態によれば、第1樹脂層22の引張弾性率が、第2樹脂層24の引張弾性率よりも小さい。すなわち、第2樹脂層24の引張弾性率は第1樹脂層22の引張弾性率よりも大きい。そのため、第2樹脂層24は成形時の変形が少なく、第1樹脂層22と第2樹脂層24との間の気泡の混入が抑制される。加熱条件は特に限定されないが、例えば真空状態で150℃程度に加熱される。真空条件で加熱した場合は、第2樹脂層24の引張弾性率は第1樹脂層22の引張弾性率よりも大きいため、泡抜け性がさらに向上する。
 真空加熱の後、大気圧下において、各層を加圧しながらヒーターなどにより加熱して、樹脂成分を架橋することもできる。加熱により得られた積層体には、フレームなどを取り付けることもできる。
 以下、本実施形態に係る太陽電池モジュール100の効果を説明する。
 本実施形態に係る太陽電池モジュール100は、第1樹脂基板20と、第1樹脂層22と、第2樹脂層24と、光電変換部10と、第2樹脂基板26とを備える。第1樹脂層22は第1樹脂基板20下に配置され、第2樹脂層24は第1樹脂層22下に配置され、光電変換部10は第1樹脂層22と接触しないように配置され、第2樹脂基板26は第2樹脂層24下に光電変換部10と接着するように配置される。第1樹脂層22の引張弾性率は、第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さい。
 また、本実施形態に係る太陽電池モジュール100は、第1樹脂基板20と、第1樹脂層22と、第2樹脂層24と、光電変換部10と、第2樹脂基板26とを備える。第1樹脂層22は第1樹脂基板20下に配置され、第2樹脂層24は第1樹脂層22下に配置され、光電変換部10は第1樹脂層22と接触しないように配置され、第2樹脂基板26は第2樹脂層24下に光電変換部10と接着するように配置される。また、隣接した光電変換部10は互いに電気的に接続されている。第1樹脂層22の引張弾性率は、第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さい。
 このような構成とすることで、以下に詳述するように、温度変化に伴う光電変換部10の破損やタブ配線14の破損を抑制することができ、かつ、ヒョウ等に対する耐衝撃吸収性を向上することができる。
 本実施形態において、温度変化に伴う光電変換部10の破損やタブ配線14の破損を抑制することができる機構は次の通りと考えられる。
 本実施形態では、第1樹脂層22の引張弾性率は第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さいため、第1樹脂層22が第1樹脂基板20及び第2樹脂層24よりも変形しやすくなる。そのため、第1樹脂基板20に熱膨張や熱収縮が生じた場合でも、第1樹脂層22がせん断変形することにより、熱応力を緩和し、光電変換部10やタブ配線14に伝わる応力を低減することができる。
 さらに、第2樹脂層24の引張弾性率は第1樹脂層22の引張弾性率よりも大きい。そのため、第1樹脂層22に比べて光電変換部10を固定する力が強く、光電変換部10やタブ配線14へ直接応力が伝わるのを抑制することができる。そのため、第1樹脂層22の引張弾性率を、第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さくすることによって、温度変化に伴う光電変換部10の破損やタブ配線14の破損を抑制することができる。
 また、第2樹脂基板26は第2樹脂層24下であって光電変換部10と接着するように配置される。そのため、第2樹脂基板26に光電変換部10が固定されるため、第2樹脂層24に熱応力がかかった場合でも、光電変換部10やタブ配線14へ応力が伝わるのを抑制することができる。
 一方、ヒョウ等に対する耐衝撃吸収性を向上する機構は次の通りと考えられる。
 図3は、太陽電池モジュール100に加わる荷重を模式的に示す断面図である。図3は、ヒョウ等の衝突により、受光面側から局所的な荷重S1が第1樹脂基板20に加えられた場合を想定している。この場合、第1樹脂基板20の引張弾性率は、ガラスの引張弾性率よりも小さいことが多いため、第1樹脂基板20は、受けた荷重S1に対してz軸の負方向にたわむことによって、局所的な荷重S2が生じる。
 第1樹脂層22の引張弾性率は第1樹脂基板20及び第2樹脂層24の引張弾性率よりも小さいので、第1樹脂層22は第1樹脂基板20のたわみをある程度吸収する。そのため、第1樹脂層22における局所的な荷重S3は、第1樹脂基板20における荷重S2よりも小さくなる。
 第2樹脂層24は、第1樹脂層22と比較して、大きい引張弾性率を有する。すなわち、第2樹脂層24は、第1樹脂層22よりも硬く形成されている。そのため、第2樹脂層24は、荷重S3によって、x-y平面で面押しされることによって、荷重S3よりもx-y平面で分散し、かつz軸の負方向を向いた荷重S4を生じる。すなわち、荷重S4は、荷重S1と比較して、小さく、かつx-y平面で分散している。そのため、太陽電池モジュール100にヒョウ等の局所的な衝撃が加わっても、光電変換部10、タブ配線14、接続配線16が破損するおそれは低減され、耐衝撃性を向上することができる。
 また、第2樹脂基板26は第2樹脂層24下であって光電変換部10と接着するように配置される。そのため、太陽電池モジュール100の第1樹脂基板20に、ヒョウなどの固い物質が衝突した場合であっても、光電変換部10のたわみが抑制され、光電変換部10の破壊を抑制することができる。
 特願2016-034090号(出願日:2016年2月25日)の全内容は、ここに援用される。
 以上、本実施形態を実施例によって説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。
 本実施形態の太陽電池モジュールは、第2樹脂層下に光電変換部と接着するように配置された第2樹脂基板を備え、第1樹脂層の引張弾性率は、第1樹脂基板及び第2樹脂層の引張弾性率よりも小さい。そのため、本実施形態によれば、樹脂基板の熱変形により生じる光電変換部への応力を緩和し、かつ、局所的な荷重に対する耐衝撃性を向上させることができる。
 10  光電変換部
 20  第1樹脂基板
 22  第1樹脂層
 24  第2樹脂層
 26  第2樹脂基板
 100 太陽電池モジュール

Claims (7)

  1.  第1樹脂基板と、
     前記第1樹脂基板下に配置された第1樹脂層と、
     前記第1樹脂層下に配置された第2樹脂層と、
     前記第1樹脂層と接触しないように配置された光電変換部と、
     前記第2樹脂層下に前記光電変換部と接着するように配置された第2樹脂基板と、を備え、
     前記第1樹脂層の引張弾性率は、前記第1樹脂基板及び前記第2樹脂層の引張弾性率よりも小さいことを特徴とする太陽電池モジュール。
  2.  前記光電変換部は前記第2樹脂層と接するよう配置されていることを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記第1樹脂基板はポリカーボネートを含有し、前記第1樹脂層はシリコーンゲル、ウレタンゲル、アクリルゲル及びこれらの組合せからなる群より選択される少なくとも1種を含有することを特徴とする請求項1又は2に記載された太陽電池モジュール。
  4.  前記第2樹脂基板の曲げ弾性率は前記第1樹脂基板の曲げ弾性率以上であることを特徴とする請求項1乃至3のいずれか1項に記載された太陽電池モジュール。
  5.  前記第2樹脂基板は繊維強化プラスチック、ポリメチルメタクリレート、ポリエーテルエーテルケトン及びこれらの組合せからなる群より選択される少なくとも1種を含有し、前記第1樹脂基板よりも線膨張率が小さいことを特徴とする請求項1乃至4のいずれか1項に記載された太陽電池モジュール。
  6.  前記第1樹脂基板、前記第1樹脂層及び前記第2樹脂層の全光線透過率は、前記第2樹脂基板の全光線透過率よりも大きいことを特徴とする請求項1乃至5のいずれか1項に記載された太陽電池モジュール。
  7.  第1樹脂基板と、
     前記第1樹脂基板下に配置された第1樹脂層と、
     前記第1樹脂層下に配置された第2樹脂層と、
     前記第1樹脂層と接触しないように配置された光電変換部と、
     前記第2樹脂層下に前記光電変換部と接着するように配置された第2樹脂基板と、を備え、
     隣接した前記光電変換部は互いに電気的に接続されており、
     前記第1樹脂層の引張弾性率は、前記第1樹脂基板及び前記第2樹脂層の引張弾性率よりも小さいことを特徴とする太陽電池モジュール。
PCT/JP2017/003347 2016-02-25 2017-01-31 太陽電池モジュール WO2017145663A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016034090 2016-02-25
JP2016-034090 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145663A1 true WO2017145663A1 (ja) 2017-08-31

Family

ID=59685460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003347 WO2017145663A1 (ja) 2016-02-25 2017-01-31 太陽電池モジュール

Country Status (1)

Country Link
WO (1) WO2017145663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580960A (en) * 2019-02-01 2020-08-05 Sunew Filmes Fotovoltaicos Photovoltaic device, photovoltaic device apparatus and method of manufacturing photovoltaic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341030A (ja) * 1997-06-09 1998-12-22 Canon Inc 太陽電池モジュール
JP2015192068A (ja) * 2014-03-28 2015-11-02 三菱化学株式会社 太陽電池モジュール及び車両用部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341030A (ja) * 1997-06-09 1998-12-22 Canon Inc 太陽電池モジュール
JP2015192068A (ja) * 2014-03-28 2015-11-02 三菱化学株式会社 太陽電池モジュール及び車両用部材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580960A (en) * 2019-02-01 2020-08-05 Sunew Filmes Fotovoltaicos Photovoltaic device, photovoltaic device apparatus and method of manufacturing photovoltaic device
WO2020157671A1 (en) * 2019-02-01 2020-08-06 Sunew Filmes Fotovoltaicos Photovoltaic device, photovoltaic device apparatus and method of manufacturing photovoltaic device

Similar Documents

Publication Publication Date Title
WO2018110582A1 (ja) 太陽電池モジュール
JP6395020B1 (ja) 太陽電池モジュール
JP2011109072A (ja) 太陽電池モジュール
WO2017208793A1 (ja) 太陽電池モジュール及びその製造方法
JP6767708B2 (ja) 太陽電池モジュール
US20180358492A1 (en) Solar cell module
US10388843B2 (en) Honeycomb sandwich structure and method of manufacturing honeycomb sandwich structure
JP6057113B1 (ja) 太陽電池モジュール及びその製造方法
JP5506295B2 (ja) 太陽電池モジュールおよびその製造方法
WO2017145663A1 (ja) 太陽電池モジュール
WO2017150045A1 (ja) 太陽電池モジュール
WO2018150794A1 (ja) 太陽電池モジュール
JP2013030734A (ja) 太陽電池モジュール
JP6655828B2 (ja) 太陽電池モジュール
JP2019062088A (ja) 太陽電池モジュール
JP2015065303A (ja) 太陽電池モジュール及びその製造方法
WO2019176646A1 (ja) 太陽電池モジュール
JP2018093040A (ja) 太陽電池モジュール
JP2017107994A (ja) 太陽電池モジュール
WO2019031378A1 (ja) 太陽電池モジュール及び太陽電池モジュールの中間製品
WO2019087802A1 (ja) 太陽電池モジュール
JPWO2019065606A1 (ja) 太陽電池モジュール
JP2018107254A (ja) 太陽電池モジュール
WO2019093327A1 (ja) 太陽電池モジュール、及び移動体
JP2018098406A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756105

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP