JP6754981B2 - 吸収式冷凍機 - Google Patents

吸収式冷凍機 Download PDF

Info

Publication number
JP6754981B2
JP6754981B2 JP2016097729A JP2016097729A JP6754981B2 JP 6754981 B2 JP6754981 B2 JP 6754981B2 JP 2016097729 A JP2016097729 A JP 2016097729A JP 2016097729 A JP2016097729 A JP 2016097729A JP 6754981 B2 JP6754981 B2 JP 6754981B2
Authority
JP
Japan
Prior art keywords
control unit
cold
temperature
hot water
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016097729A
Other languages
English (en)
Other versions
JP2017207218A (ja
Inventor
修司 石崎
修司 石崎
榎本 英一
英一 榎本
崇浩 小林
崇浩 小林
佑太 増渕
佑太 増渕
篤 海老澤
篤 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016097729A priority Critical patent/JP6754981B2/ja
Priority to CN201710287633.9A priority patent/CN107388615B/zh
Publication of JP2017207218A publication Critical patent/JP2017207218A/ja
Application granted granted Critical
Publication of JP6754981B2 publication Critical patent/JP6754981B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、吸収式冷凍機に係り、特に、安定運転時における冷凍機データを取得することを可能とした吸収式冷凍機に関する。
一般に、高温再生器、低温再生器、蒸発器、凝縮器および吸収器を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている。吸収式冷凍機は、例えば、オフィスビルのセントラル空調などに用いられている。
このような吸収式冷凍機においては、従来、例えば、冷温水出口温度などのデータを取得し、冷温水機本体の運転台数に応じた運転量の増減値に加算し、この加算した値をもとにして冷温水機本体の運転台数を制御することで、負荷急変時の挙動を低減させ、安定した制御を行なうことができるようにした技術が開示されている(例えば、特許文献1参照)。
特許第3030169号公報
従来の技術に示すように、吸収式冷凍機においては、冷温水温度、冷却水温度、高温再生器温度、低温再生器温度などのデータを逐次取得し、これらデータに基づいて、各種制御を行うことが一般に行われている。
しかしながら、例えば、高負荷運転時など吸収式冷凍機の運転状態が不安定な状態でもデータを取得する場合があり、このように不安定な運転状態で取得したデータを用いて、例えば、COPなどの運転性能を判断する場合、運転性能に誤差が生じるおそれがあるという問題がある。
そのため、吸収式冷凍機の運転性能を適正に判断することができ、不具合があれば早期発見が可能で、適切なメンテナンス対応を行うことが要望されている。
本発明は、前記した事情に鑑みてなされたものであり、吸収式冷凍機の運転性能を適正に判断することのできる吸収式冷凍機を提供することを目的とするものである。
前記目的を達成するため、本発明は、高温再生器、低温再生器、蒸発器、凝縮器および吸収器を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機において、制御部を備え、前記制御部は、前記蒸発器の冷温水出口温度と冷温水の設定温度との差が所定温度の範囲内である状態が所定時間継続していると判断した第1の条件と、所定時間毎に取得した前記蒸発器の冷温水出入口温度の差が所定温度の範囲内である状態が所定時間継続していると判断した第2の条件と、前記蒸発器の冷温水温度差と冷温水流量値から冷凍能力比を算出し、所定時間毎の冷凍能力比差が、所定の範囲内である状態が所定時間継続していると判断した第3の条件と、を全て満たしていると判断した場合、安定運転が行われていると判断し、冷凍機データを取得し、前記制御部は、前記冷凍機データに基づいて熱バランスを算出し、この熱バランスが所定の範囲内であると判断した場合、前記冷凍機データを前記安定運転時に取得した冷凍機データとして採用することを特徴とする。
これによれば、制御部により、蒸発器の冷温水出口温度と冷温水の設定温度との差が所定温度の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得することで、安定運転が行われていると判断した場合の冷凍機データを取得することができる。
本発明によれば、制御部により、安定運転が行われていると判断した冷凍機データを取得することで、確実に安定運転が行われていると判断した場合の冷凍機データを取得することができる。その結果、吸収式冷凍機の運転性能を適正に判断することができ、不具合があれば早期発見が可能で、適切なメンテナンス対応を行うことが可能となる。
本実施形態に係る吸収式冷凍機の概略構成図 本実施形態の制御構成を示すブロック図 本実施形態の動作を示すフローチャート
第1の発明は、高温再生器、低温再生器、蒸発器、凝縮器および吸収器を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機において、制御部を備え、前記制御部は、前記蒸発器の冷温水出口温度と冷温水の設定温度との差が所定温度の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得することを特徴とする吸収式冷凍機である。
これにより、安定運転が行われていると判断した場合の冷凍機データを取得することができる。
第2の発明は、前記制御部は、所定時間毎に取得した前記蒸発器の冷温水出入口温度の差が所定温度の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得することを特徴とする吸収式冷凍機である。
これにより、安定運転が行われていると判断した場合の冷凍機データを取得することができる。
第3の発明は、前記制御部は、前記蒸発器の冷温水温度差と冷温水流量値から冷凍能力比を算出し、所定時間毎の冷凍能力比差が、所定の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得することを特徴とする吸収式冷凍機である。
これにより、安定運転が行われていると判断した場合の冷凍機データを取得することができる。
第4の発明は、前記制御部は、熱バランスを算出し、この熱バランスが所定の範囲内であると判断した場合、安定運転時における冷凍機データであるとして取得した冷凍機データを採用することを特徴とする吸収式冷凍機である。
これにより、制御部により算出された熱バランスが所定の範囲内であると判断した場合の冷凍機データを採用することで、確実に安定運転時における冷凍機データを利用することができる。
第5の発明は、遠隔監視センターとの通信を行う遠隔監視アダプタを備え、前記制御部は、前記遠隔監視アダプタが備えるアダプタ用制御部であることを特徴とする吸収式冷凍機である。
これにより、アダプタ用制御部により安定運転が行われているか否かの判断を行うことができる。
第6の発明は、熱バランスを算出する前記制御部は、前記遠隔監視センターが備えるセンター用制御部であることを特徴とする吸収式冷凍機である。
これにより、遠隔監視センターのセンター用制御部により確実に安定運転時における冷凍機データを利用することができる。
以下、図面を参照して本発明の一実施形態を説明する。
図1は、本実施形態に係る吸収式冷凍機の概略構成図である。吸収式冷凍機100は、冷水または温水を図示しない負荷に循環供給することのできる吸収冷温水機であり、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用したものである。
吸収式冷凍機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1および吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ(加熱手段)4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6および凝縮器7を収納した低温再生器凝縮器胴8とを備える。
また、吸収式冷凍機100は、低温熱交換器12と、高温熱交換器13と、冷媒ドレン熱回収器17と、稀吸収液ポンプ45と、濃吸収液ポンプ47と、冷媒ポンプ48とを備え、これらの各機器が吸収液管21〜25および冷媒管31〜35などを介して配管接続されて循環経路が構成されている。
蒸発器1には、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば、空気調和装置)に循環供給するための冷温水管14が設けられており、この冷温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。
吸収器2および凝縮器7には、吸収器2および凝縮器7に順次冷却水を流通させるための冷却水管15が設けられており、この冷却水管15の一部に形成された各伝熱管15A、15Bがそれぞれ吸収器2および凝縮器7内に配置されている。
吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、稀吸収液ポンプ45を有する稀吸収液管21の一端が接続されている。稀吸収液管21は、稀吸収液ポンプ45の下流側で分岐する分岐稀吸収液管21Aを備える。
この分岐稀吸収液管21Aは冷媒ドレン熱回収器17を経由した後に、稀吸収液管21の低温熱交換器12の下流側で再び稀吸収液管21に合流する。この稀吸収液管21の他端は、高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。
稀吸収液管21は、低温熱交換器12の下流側で第2分岐管21Bに分岐され、第2分岐管21Bは低温再生器6内に開口している。
高温再生器5は、シェル60内にガスバーナ4を収容して構成され、このガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路40が接続され、この排気経路40には、排ガス熱交換器41が設けられている。また、ガスバーナ4には、燃料ガスが供給されるガス管61と、ブロワ62からの空気が供給される吸気管63とが接続され、これらガス管61および吸気管63には、燃料ガスおよび空気の量を制御する制御弁64が設けられている。ガス管61には、ガス流量計65が設けられている。
熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した中間吸収液が溜る中間吸収液溜り5Cが形成されている。この中間吸収液溜り5Cの下端には第2中間吸収液管23の一端が接続され、この第2中間吸収液管23には高温熱交換器13が設けられている。この高温熱交換器13は、中間吸収液溜り5Cから流出した高温の中間吸収液の温熱で第1中間吸収液管22を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。
第2中間吸収液管23の他端は、低温再生器6と吸収器2とを繋ぐ濃吸収液管25に接続されている。また、第2中間吸収液管23の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管24により接続されている。
低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、低温再生器6内に形成された吸収液溜り6Aに溜った吸収液を加熱再生するものであり、吸収液溜り6Aには、高温再生器5の上端部から低温再生器6の底部に延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Aに溜った吸収液に伝達され、この吸収液が更に濃縮される。
低温再生器6の吸収液溜り6Aには、濃吸収液管25の一端が接続され、この濃吸収液管25の他端は、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。濃吸収液管25には濃吸収液ポンプ47および低温熱交換器12が設けられている。この低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で稀吸収液管21を流れる稀吸収液を加熱するものである。
また、濃吸収液管25には、濃吸収液ポンプ47および低温熱交換器12をバイパスするバイパス管27が設けられている。
濃吸収液ポンプ47の運転が停止した場合には、低温再生器6の吸収液溜り6Aに溜った吸収液は、濃吸収液管25およびバイパス管27を通じて吸収器2内に供給される。
前述のように、高温再生器5の気層部5Bと凝縮器7の底部に形成された冷媒液溜り7Aとは、冷媒管31により接続される。この冷媒管31は、低温再生器6の吸収液溜り6Aに配管された伝熱管31Aおよび冷媒ドレン熱回収器17を備え、この冷媒管31の伝熱管31Aの上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。
また、凝縮器7の冷媒液溜り7Aには、この冷媒液溜り7Aから流出した冷媒が流れる冷媒管34の一端が接続され、この冷媒管34の他端は、下方に湾曲したUシール部34Aを介して蒸発器1の気層部1Aに接続されている。
蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1Aの上部に配置される散布器1Cとは冷媒ポンプ48が介在するに冷媒管35により接続されている。
また、冷却水管15には、冷却水管15を流れる冷却水の入口側の温度を検出する冷却水入口温度センサ36および冷却水の出口側の温度を検出する冷却水出口温度センサ37が設けられている。
冷温水管14には、冷温水管14を流れる冷温水の入口側の温度を検出する冷温水入口温度センサ38および冷温水の出口側の温度を検出する冷温水出口温度センサ39が設けられている。
また、冷温水管14の入口側と出口側とを連結する配管14Bが設けられ、この配管14Bには、冷温水管14の入口側と出口側との圧力差を検出する冷温水差圧センサ76が設けられている。
さらに、冷却水管15の吸収器2の入口側と出口側とを連結する配管15Bが設けられ、この配管15Bには、冷却水管15の入口側と出口側との圧力差を検出する冷却水差圧センサ77が設けられている。
また、本実施形態の吸収式冷凍機100は、抽気装置70を備えており、抽気装置70は、タンク71を備えている。タンク71の上部には、吸収器2の気層部2Bに連通する抽気管72が接続されている。タンク71の底部には、吸収器2の下方に連通する戻り管73が接続されている。さらに、タンク71の上部には、エジェクタポンプ74介して稀吸収液管21に接続される吸収液管75が接続されている。
そして、エジェクタポンプ74を駆動することにより、吸収液管75を介して稀吸収液管21の稀吸収液をタンク71に取り込む。吸収液管75により流れ込んだ稀吸収液により、タンク71の内部が負圧となり、これにより、吸収器2の上部に貯留されている不凝縮ガスのみならず冷媒蒸気、気化した吸収液などが抽気管72を通ってタンク71の上方に導かれる。
タンク71に導かれたガスのうち、冷媒蒸気と気化した吸収液は、タンク71の下方に溜まっている吸収液に溶け込んで吸収されるが、不凝縮ガスは吸収液に溶け込むことができないので、タンク71の上方に溜められる。そして、タンク71の下方に溜まった吸収液は、戻り管73を通って吸収器3に戻される。
次に、本実施形態の制御構成について説明する。
図2は、本実施形態の制御構成を示すブロック図である。
図2に示すように、本実施形態の吸収式冷凍機100は、コントローラ50を備えており、コントローラ50は、冷凍機用制御部51を備えている。冷凍機用制御部51は、吸収式冷凍機100の各部を中枢的に制御するものであり、演算実行部としてのCPU、このCPUによって実行可能な基本制御プログラムや所定のデータ等を不揮発的に記憶するROM、RAMなどのメモリ52、その他の周辺回路などを備えている。
また、冷凍機用制御部51には、冷却水入口温度センサ36、冷却水出口温度センサ37、冷温水入口温度センサ38、冷温水出口温度センサ39、ガス流量計65、冷温水差圧センサ76および冷却水差圧センサ77の検出信号がそれぞれ入力されるように構成されている。
また、コントローラ50は、タイマ53と、操作部54と、報知部55とをそれぞれ備えている。
コントローラ50の冷凍機用制御部51は、吸収式冷凍機100のガスバーナ4の燃料制御弁64を制御することで、ガスバーナ4による燃焼制御を行うとともに、稀吸収液ポンプ45、濃吸収液ポンプ47および冷媒ポンプ48の駆動制御を行うように構成されている。さらに、コントローラ50の冷凍機用制御部51は、稀吸収液ポンプ45、濃吸収液ポンプ47および冷媒ポンプ48のインバータ制御を行うことで、稀吸収液ポンプ45、中間吸収液ポンプ46、濃吸収液ポンプ47および冷媒ポンプ48による流量制御を行うように構成されている。また、冷凍機用制御部51は、各弁28,V1,V2の開閉制御を行うように構成されている。
また、コントローラ50には、遠隔監視アダプタ56が接続されており、遠隔監視アダプタ56には、コントローラ50の冷凍機用制御部51が取得した各種冷凍機データが送られるように構成されている。
遠隔監視アダプタ56は、アダプタ用制御部57を備えており、アダプタ用制御部57は、演算実行部としてのCPU、このCPUによって実行可能な基本制御プログラムや所定のデータ等を不揮発的に記憶するROM、RAMなどのメモリ、その他の周辺回路などを備えている。
ここで、冷凍機データとしては、例えば、冷温水入口温度、冷温水出口温度、高温再生器温度、凝縮温度、冷却水入口温度、冷却水出口温度、吸収液温度、吸収液濃度、冷媒温度、制御弁開度など各種データが含まれる。
遠隔監視アダプタ56は、有線または無線により遠隔監視センター58と通信可能に構成されている。遠隔監視センター58は、センター用制御部59を備えており、センター用制御部59は、演算実行部としてのCPU、このCPUによって実行可能な基本制御プログラムや所定のデータ等を不揮発的に記憶するROM、RAMなどのメモリ、その他の周辺回路などを備えている。
遠隔監視センター58のセンター用制御部59は、遠隔監視アダプタ56から送られる冷凍機データを取得し、この冷凍機データに基づいてメンテナンスが必要か否かの判断や、過去に取得した経年冷凍機データを比較することによる劣化判断などを行うように構成されている。
本実施形態においては、冷凍機用制御部51は、冷凍機データを取得し、遠隔監視アダプタ56に送る。冷凍機データの取得は、例えば、1分ごとに取得するようになっている。時間の計測は、タイマ53が行う。
遠隔監視アダプタ56のアダプタ用制御部57は、冷凍機データを取得したら、冷温水出口温度センサ39により検出される冷温水出口温度T1および冷温水設定温度T0に基づいて、冷温水出口温度T1−冷温水設定温度T0により冷温水温度差T2を算出する。
そして、アダプタ用制御部57は、冷温水温度差T2が、所定範囲にあるか否かを判断する。所定範囲は、例えば、±0.1℃から±0.5℃の範囲のうち任意の温度に設定される。所定範囲を−0.1℃から0.1℃に設定した場合には、以下の式により判断される。
−0.1℃≧T2(冷温水出口温度T1−冷温水設定温度T0)≧0.1℃
アダプタ用制御部57は、冷温水温度差T2が、この範囲にある状態が所定時間(例えば、10分)継続しているか判断し、所定時間継続していると判断した場合には、冷房または暖房の安定運転が行われていると判断する(第1の条件)。
この場合において、例えば、所定範囲を−0.1から0.1の範囲に設定した場合と、−0.5から0.5の範囲に設定した場合とでは、安定運転が行われているか否かの判断が異なることが予想される。すなわち、所定範囲を−0.1から0.1の範囲に設定した場合では、安定運転と判断される可能性が低くなり、−0.5から0.5の範囲に設定した場合では安定運転と判断される可能性が高くなる。そのため、季節や運転負荷などに応じて所定範囲を適宜設定する必要がある。
また、アダプタ用制御部57は、冷凍機用制御部51から送られる冷凍機データに基づいて、冷温水入口温度と冷温水出口温度との差である冷温水出入口温度差T3、T4を算出する。ここで、冷温水出入口温度差T3は、現在の冷温水出入口温度差であり、冷温水出入口温度差T4は、直前に取得した冷温水出入口温度差である。
アダプタ用制御部57は、冷温水出入口温度差T3と冷温水出入口温度差T4との差T5が、所定範囲にあるか否かを判断する。所定範囲は、例えば、±0.1℃から±0.5℃の範囲のうち任意の温度に設定される。所定範囲を−0.1℃から0.1℃に設定した場合には、以下の式により判断される。
−0.1≧T5(冷温水出入口温度差T3−冷温水出入口温度差T4)≧0.1℃
アダプタ用制御部57は、温度差T5が、この範囲にある状態が所定時間(例えば、10分)継続しているか判断し、所定時間継続していると判断した場合には、冷房または暖房の安定運転が行われていると判断する(第2の条件)。
この場合においても、運転負荷などに応じて、所定範囲を±0.1℃から±0.5℃の範囲で適宜変更することができる。
また、アダプタ用制御部57は、冷凍機用制御部51から送られる冷凍機データに基づいて、冷温水温度差と冷温水流量値から冷凍能力比Qを算出し、所定時間ごと(例えば、1分)の冷凍能力比Q1,Q2の差が所定範囲にあるか否かを判断する。ここで、冷凍能力比Q1は、現在の冷凍能力比であり、冷凍能力比Q2は、直前に取得した冷凍能力比である。
冷房時における冷凍能力比Qは、例えば、以下の式で算出される。
Q=(冷温水出口温度−冷温水入口温度)÷冷温水定格温度差×
(冷温水差圧センサ検出値÷冷温水差圧定格値)0.5×100%
また、所定範囲は、例えば、−3%から3%の範囲にあるか否かで判断される。この所定範囲も任意の値に設定することが可能である。所定範囲を−3%から3%に設定した場合には、以下の式により判断される。
−3%≧(冷凍能力比Q1−冷凍能力比Q2)≧3%
アダプタ用制御部57は、冷凍能力比差が、この範囲にある状態が所定時間(例えば、10分)継続しているか判断し、所定時間継続していると判断した場合には、冷房または暖房の安定運転が行われていると判断する(第3の条件)。
アダプタ用制御部57は、前述の第1の条件から第3の条件を満たしていると判断した場合は、冷凍機用制御部51から取得した冷凍機データを遠隔監視センター58に送るように構成されている。
遠隔監視センター58のセンター用制御部59は、取得した冷凍機データに基づいて、熱バランスを算出し、算出された熱バランスが95%から105%の範囲にあるか否かを判断する。そして、熱バランスが95%から105%の範囲にあると判断した場合には、安定運転時に取得された冷凍機データであるとして、当該冷凍機データを採用する。一方、熱バランスが前述の範囲外であると判断した場合には、安定運転時に取得された冷凍機データでないとして、当該冷凍機データを採用せず、再度冷凍機データの取得を行う。
なお、本実施形態においては、第1の条件から第3の条件を満たしていると判断した場合に、安定運転状態であると判断して冷凍機データを遠隔監視センター58に送るようにしているが、本発明はこれに限定されない。例えば、第1の条件のみを満たしている場合に安定運転状態であると判断するようにしてもよい。また、第1の条件と第2の条件、または第1の条件と第3の条件といった2つの条件を満たしている場合に、安定運転状態であると判断するようにしてもよい。
また、本実施形態においては、安定運転が行われているか否かの判断をアダプタ用制御部57が行い、熱バランスが所定範囲か否かの判断をセンター用制御部59が行うようにしているが、本発明はこれに限定されない。
例えば、冷凍機データを取得した制御部がすべての判断を行い、安定運転時に取得された冷凍機データであると判断した場合に、遠隔監視アダプタ56を介して遠隔監視センター58に冷凍機データを送るようにしてもよいし、すべての冷凍機データを遠隔監視アダプタ56を介して遠隔監視センター58に送り、センター用制御部59により、安定運転が行われているか否かの判断、熱バランスが所定範囲か否かの判断を行うようにしてもよい。
次に、本実施形態の動作について説明する。
冷房などの冷却運転時においては、冷温水管14を介して図示しない熱負荷にブライン(例えば、冷水)が循環供給される。冷凍機用制御部51は、ブラインの蒸発器1の出口側温度(冷温水出口温度センサ39にて検出される温度)が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御される。
具体的には、冷凍機用制御部51は、全てのポンプ45,47,48を起動し、かつ、ガスバーナ4におけるガスの燃焼制御を行うことで、冷温水出口温度センサ39が計測するブラインの温度が所定の7℃となるようにガスバーナ4の火力を制御する。
この場合、吸収器2からの稀吸収液は、稀吸収液管21を介して稀吸収液ポンプ45により低温熱交換器12および高温熱交換器13または排ガス熱交換器41を経由して加熱され高温再生器5に送られる。
高温再生器5に送られた吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、高温熱交換器13を経由して濃吸収液管25に送られ、低温再生器6を経由した吸収液と合流する。
一方、低温再生器6に送られた吸収液は、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が高温再生器5を経由した上記吸収液と合流し、濃吸収液ポンプ47により低温熱交換器12を経由して吸収器2に送られ、濃液散布器2Cから散布される。
低温再生器6で分離生成した冷媒は、凝縮器7に入って凝縮して冷媒液溜り7Aに溜る。そして、冷媒液溜り7Aに冷媒液が多く溜まると、この冷媒液は冷媒液溜り7Aから流出し、冷媒管34を経由して蒸発器1に入り、冷媒ポンプ48の運転により揚液されて散布器1Cから冷温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するため、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷温水管14から熱負荷に供給されて冷房などの冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2に入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプ45によって高温再生器5に搬送される循環を繰り返す。
次に、本実施形態による制御について、図3に示すフローチャートを参照して説明する。
まず、吸収式冷凍機100の運転を開始し、ガスバーナ4による燃焼が開始されたら(ステップS1)、冷凍機用制御部51は、冷温水入口温度センサ38により検出される冷温水入口温度、冷温水出口温度センサ39により検出される冷温水出口温度、ガス流量計65により検出されるガス流量、冷温水差圧検出センサにより検出される冷温水差圧、冷却水入口温度センサ36により検出される冷却水入口温度、冷却水出口温度センサ37により検出される冷却水出口温度、冷却水差圧検出センサにより検出される冷却水差圧などの各種冷凍機データを取得し、遠隔監視アダプタ56に送る。
遠隔監視アダプタ56のアダプタ用制御部57は、冷凍機データを取得したら、冷温水出口温度T1−冷温水設定温度T0により冷温水温度差T2を算出し、冷温水温度差T2が、例えば、−0.1℃から0.1℃の範囲にあるか否かを判断する(ステップS2)。
そして、アダプタ用制御部57は、冷温水温度差T2が、この範囲にある状態が所定時間継続しているか判断し、所定時間継続していると判断した場合には、アダプタ用制御部57は、冷温水出入口温度差T3と冷温水出入口温度差T4との差T5が、例えば、−0.1℃から0.1℃の範囲にあるか否かを判断する(ステップS3)。
アダプタ用制御部57は、温度差T5が、この範囲にある状態が所定時間継続しているか判断し、所定時間継続していると判断した場合には、冷温水温度差と冷温水流量値から冷凍能力比Qを算出し、所定時間ごとの冷凍能力比Q1,Q2の差が、例えば、−3%から3%の範囲にあるか否か判断する(ステップS4)。
そして、アダプタ用制御部57は、冷凍能力比差が、この範囲にある状態が所定時間継続しているか判断し、所定時間継続していると判断した場合には、冷房または暖房の安定運転が行われていると判断する。
前述の各条件(第1〜第3の条件)を満たしている場合には、アダプタ用制御部57は、冷凍機データを遠隔監視センター58に送る(ステップS5)。
遠隔監視センター58のセンター用制御部59は、取得した冷凍機データに基づいて、熱バランスを算出し、算出された熱バランスが95%から105%の範囲にあるか否かを判断する(ステップS6)。
そして、熱バランスが95%から105%の範囲にあると判断した場合には、安定運転時に取得された冷凍機データであるとして、当該冷凍機データを採用する(ステップS7)。一方、熱バランスが前述の範囲外であると判断した場合には、安定運転時に取得された冷凍機データでないとして、当該冷凍機データを採用せず、再度冷凍機データの取得を行う。
以上説明したように、本実施形態においては、アダプタ用制御部57(制御部)は、蒸発器1の冷温水出口温度と冷温水の設定温度との差が所定温度の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得する。
これによれば、アダプタ用制御部57により、蒸発器1の冷温水出口温度と冷温水の設定温度との差が所定温度の範囲内である状態が所定時間継続していると判断した冷凍機データを取得することで、確実に安定運転が行われていると判断した場合の冷凍機データを取得することができる。
また、本実施形態においては、アダプタ用制御部57(制御部)は、所定時間毎に取得した蒸発器1の冷温水出入口温度の差が所定温度の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得する。
これによれば、アダプタ用制御部57により、所定時間毎に取得した蒸発器1の冷温水出入口温度の差が所定温度の範囲内である状態が所定時間継続していると判断した冷凍機データを取得することで、確実に安定運転が行われていると判断した場合の冷凍機データを取得することができる。
また、本実施形態においては、アダプタ用制御部57(制御部)は、蒸発器1の冷温水温度差と冷温水流量値から冷凍能力比を算出し、所定時間毎の冷凍能力比差が、所定の範囲内である状態が所定時間継続していると判断した場合、安定運転が行われていると判断し、冷凍機データを取得する。
これによれば、アダプタ用制御部57により、蒸発器1の冷温水温度差と冷温水流量値から算出した所定時間毎の冷凍能力比差が、所定の範囲内である状態が所定時間継続していると判断した冷凍機データを取得することで、安定運転が行われていると判断した場合の冷凍機データを取得することができる。
また、本実施形態においては、センター用制御部59(制御部)は、熱バランスを算出し、この熱バランスが所定の範囲内であると判断した場合、安定運転時における冷凍機データであるとして取得した冷凍機データを採用する。
これによれば、センター制御部により算出された熱バランスが所定の範囲内であると判断した場合の冷凍機データを採用することで、確実に安定運転時における冷凍機データを利用することができる。その結果、吸収式冷凍機の運転性能を適正に判断することができ、不具合があれば早期発見が可能で、適切なメンテナンス対応を行うことが可能となる。
また、本実施形態においては、遠隔監視センター58との通信を行う遠隔監視アダプタ56を備え、遠隔監視アダプタ56が備えるアダプタ用制御部57が安定運転であるか否かを判断する。
これによれば、アダプタ用制御部57により安定運転が行われているか否かの判断を行うことができる。
また、本実施形態においては、遠隔監視センター58が備えるセンター用制御部59が熱バランスを算出する。
これによれば、遠隔監視センター58のセンター用制御部59により確実に安定運転時における冷凍機データを利用することができる。
なお、本実施形態は本発明を適用した一態様を示すものであって、本発明は前記実施形態に限定されない。
例えば、本実施形態では、高温再生器にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限定されるものではなく、例えば、灯油やA重油を燃焼させるガスバーナを備える構成や、蒸気や排気ガスなどの温熱を用いて加熱する構成としてもよい。
1 蒸発器
2 吸収器
4 ガスバーナ
5 高温再生器
6 低温再生器
7 凝縮器
14 冷温水管
15 冷却水管
36 冷却水入口温度センサ
37 冷却水出口温度センサ
38 冷温水入口温度センサ
39 冷温水出口温度センサ
45 稀吸収液ポンプ
47 濃吸収液ポンプ
48 冷媒ポンプ
50 コントローラ
51 冷凍機用制御部
52 メモリ
53 タイマ
54 操作部
55 報知部
56 遠隔監視アダプタ
57 アダプタ用制御部
58 遠隔監視センター
59 センター用制御部
65 ガス流量計
70 抽気装置
76 冷温水差圧センサ
77 冷却水差圧センサ
100 吸収式冷凍機

Claims (3)

  1. 高温再生器、低温再生器、蒸発器、凝縮器および吸収器を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機において、
    制御部を備え、前記制御部は、前記蒸発器の冷温水出口温度と冷温水の設定温度との差が所定温度の範囲内である状態が所定時間継続していると判断した第1の条件と、所定時間毎に取得した前記蒸発器の冷温水出入口温度の差が所定温度の範囲内である状態が所定時間継続していると判断した第2の条件と、前記蒸発器の冷温水温度差と冷温水流量値から冷凍能力比を算出し、所定時間毎の冷凍能力比差が、所定の範囲内である状態が所定時間継続していると判断した第3の条件と、を全て満たしていると判断した場合、安定運転が行われていると判断し、冷凍機データを取得し、
    前記制御部は、前記冷凍機データに基づいて熱バランスを算出し、この熱バランスが所定の範囲内であると判断した場合、前記冷凍機データを前記安定運転時に取得した冷凍機データとして採用することを特徴とする吸収式冷凍機。
  2. 遠隔監視センターとの通信を行う遠隔監視アダプタを備え、前記制御部は、前記遠隔監視アダプタが備えるアダプタ用制御部であることを特徴とする請求項1に記載の吸収式冷凍機。
  3. 熱バランスを算出する前記制御部は、前記遠隔監視センターが備えるセンター用制御部であることを特徴とする請求項2に記載の吸収式冷凍機。
JP2016097729A 2016-05-16 2016-05-16 吸収式冷凍機 Active JP6754981B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016097729A JP6754981B2 (ja) 2016-05-16 2016-05-16 吸収式冷凍機
CN201710287633.9A CN107388615B (zh) 2016-05-16 2017-04-27 吸收式制冷机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097729A JP6754981B2 (ja) 2016-05-16 2016-05-16 吸収式冷凍機

Publications (2)

Publication Number Publication Date
JP2017207218A JP2017207218A (ja) 2017-11-24
JP6754981B2 true JP6754981B2 (ja) 2020-09-16

Family

ID=60338866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097729A Active JP6754981B2 (ja) 2016-05-16 2016-05-16 吸収式冷凍機

Country Status (2)

Country Link
JP (1) JP6754981B2 (ja)
CN (1) CN107388615B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213476B2 (ja) * 2018-04-24 2023-01-27 パナソニックIpマネジメント株式会社 吸収式冷凍機
CN114594202B (zh) 2020-12-07 2024-07-30 大金工业株式会社 室内空气质量的预测方法及室内空气质量检测系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697126B2 (ja) * 1987-07-24 1994-11-30 東京瓦斯株式会社 吸収冷温水機の診断装置
JP3184034B2 (ja) * 1993-12-16 2001-07-09 株式会社荏原製作所 吸収冷温水機の制御方法
JP3208472B2 (ja) * 1995-12-19 2001-09-10 矢崎総業株式会社 吸収冷温水機及びその制御方法
JP3999893B2 (ja) * 1998-10-23 2007-10-31 三洋電機株式会社 吸収冷温水機の制御装置
JP4090137B2 (ja) * 1999-02-02 2008-05-28 三洋電機株式会社 吸収冷温水機の制御方法
JP2000274864A (ja) * 1999-03-19 2000-10-06 Sanyo Electric Co Ltd 吸収式冷凍機の制御方法
JP2001282868A (ja) * 2000-03-31 2001-10-12 Mitsubishi Heavy Ind Ltd 製品設計管理システム
JP2002013833A (ja) * 2000-06-30 2002-01-18 Ebara Corp 吸収冷凍機の制御方法
JP4224275B2 (ja) * 2001-10-12 2009-02-12 株式会社日立ビルシステム 空気調和装置用熱源機の管理装置及び管理方法
JP2010078298A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 吸収式冷凍機
CN102261778B (zh) * 2010-05-27 2013-10-02 三洋电机株式会社 吸收式冷温水机的运转台数控制方法及装置
JP2013036632A (ja) * 2011-08-04 2013-02-21 Mitsubishi Heavy Ind Ltd ターボ冷凍機の運転状態データ選定装置

Also Published As

Publication number Publication date
CN107388615A (zh) 2017-11-24
JP2017207218A (ja) 2017-11-24
CN107388615B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
JP3883838B2 (ja) 吸収式冷凍機
JP6754981B2 (ja) 吸収式冷凍機
JP7213476B2 (ja) 吸収式冷凍機
JP2018169075A (ja) 吸収式冷凍機
JP5575519B2 (ja) 吸収式冷凍機
KR100585352B1 (ko) 흡수 냉동기
JP7122538B2 (ja) 吸収式冷凍機
JP2017198402A (ja) 吸収式冷凍機
JP6789846B2 (ja) 吸収式冷凍機
JP6765056B2 (ja) 吸収式冷凍機
JP2011153795A (ja) 吸収式冷凍機
JP7054855B2 (ja) 吸収式冷凍機
JP4090262B2 (ja) 吸収式冷凍機
JP6264636B2 (ja) 吸収式冷凍機
JP6364238B2 (ja) 吸収式冷温水機
JP6653444B2 (ja) 吸収式冷凍機
JP5967407B2 (ja) 吸収式冷温水機
JP2010266170A (ja) 吸収式冷凍機
JP6789847B2 (ja) 吸収式冷凍機
JP5456368B2 (ja) 吸収式冷凍機
JP2017125653A (ja) 吸収式冷凍機
JP3945955B2 (ja) 吸収冷凍機
JP2011033261A (ja) 吸収式冷凍機
JP2023115745A (ja) 吸収式冷凍機の遠隔監視システム
JP2020204412A (ja) 吸収式冷凍機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R151 Written notification of patent or utility model registration

Ref document number: 6754981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151