JP6697530B2 - 計算的ウェーハ検査 - Google Patents

計算的ウェーハ検査 Download PDF

Info

Publication number
JP6697530B2
JP6697530B2 JP2018223995A JP2018223995A JP6697530B2 JP 6697530 B2 JP6697530 B2 JP 6697530B2 JP 2018223995 A JP2018223995 A JP 2018223995A JP 2018223995 A JP2018223995 A JP 2018223995A JP 6697530 B2 JP6697530 B2 JP 6697530B2
Authority
JP
Japan
Prior art keywords
substrate
processing
defects
defect
processing parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018223995A
Other languages
English (en)
Other versions
JP2019061267A (ja
Inventor
フーケ,クリストフ,デイビッド
カストルプ,ベルナルド
ボーフ,アリー,ジェフリー デン
ボーフ,アリー,ジェフリー デン
マルケンス,ヨハネス,キャサリヌス,ヒューベルタス
カバナ,ジェームス,ベネディクト
コーンメン,ジェームス,パトリック
カラン,ニール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2019061267A publication Critical patent/JP2019061267A/ja
Application granted granted Critical
Publication of JP6697530B2 publication Critical patent/JP6697530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

関連出願の相互参照
[0001] 本願は、2014年6月10日出願の米国仮特許出願第62/010,221号及び2014年7月11日出願の米国仮出願第62/023,589号に関し、その全体が参照により本明細書に組み込まれる。
[0002] 本発明は、半導体製造プロセスの実行を最適化する方法に関する。本方法はリソグラフィ装置に関連して使用可能である。
[0003] リソグラフィ装置は、基板のターゲット部分に所望のパターンを付与するマシンである。リソグラフィ装置は、例えば集積回路(IC)の製造時に使用可能である。この状況において、代替的にマスク又はレチクルと呼ばれるパターニングデバイスが、ICの個々の層に対応する回路パターン(「設計レイアウト」)を生成するために使用され得、このパターンが、放射感応性材料(レジスト)の層を有する基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、1つ又はいくつかのダイの一部を含む)上に結像可能である。一般に、単一の基板は、正常に露光された隣接するターゲット部分のネットワークを含むことになる。既知のリソグラフィ装置は、パターン全体をターゲット部分に1回で露光することによって各ターゲット部分が照射される、いわゆるステッパと、ビームを介してパターンを所与の方向(「スキャニング」方向)にスキャンし、更に同期的にこの方向と平行又は逆平行に基板をスキャンすることによって、各ターゲット部分が照射される、いわゆるスキャナとを含む。
[0004] 態様は、設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのためのコンピュータ実装欠陥予測方法を含み、この方法は、設計レイアウトの一部からホットスポットを識別すること;ホットスポットに関するデバイス製造プロセスの処理パラメータの値範囲を決定することであって、処理パラメータが範囲外の値を有する時、デバイス製造プロセスに伴ってホットスポットから欠陥が生成される、決定すること;処理パラメータの実際値を決定すること;実際値を用いて、デバイス製造プロセスに伴ってホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することを含む。
[0005] 方法の実施形態において、存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することは、ホットスポットの特徴、設計レイアウトの特徴、又はその両方を更に使用する。
[0006] 方法の実施形態において、方法は、欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを用いて、処理パラメータを調整又は補償することを更に含む。
[0007] 方法の実施形態において、方法は、欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを反復的に決定又は予測すること、及び処理パラメータを調整又は補償することを、実施することを更に含む。
[0008] 方法の実施形態において、方法は、調整又は補償された処理パラメータを用いて、デバイス製造プロセスを用いてホットスポットから生成される残余欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することを、更に含む。
[0009] 方法の実施形態において、方法は、決定又は予測された残余欠陥の存在、存在の確率、特徴、又はそれらの組み合わせに少なくとも部分的に基づいて、ホットスポットが検査されることになるかどうかを示すことを、更に含む。
[0010] 方法の実施形態において、方法は、決定又は予測された欠陥の存在、存在の確率、特徴、又はそれらの組み合わせに少なくとも部分的に基づいて、ホットスポットが検査されることになるかどうかを示すことを、更に含む。
[0011] 方法の実施形態において、ホットスポットは、経験的モデル又は計算的モデルを用いて識別される。
[0012] 方法の実施形態において、処理パラメータは、実際のウェーハステージの位置及び傾斜、実際のレチクルステージの位置及び傾斜、焦点、ドーズ量、ソースパラメータ、投影光学機器パラメータ、メトロロジーから取得されるデータ、及び/又は、デバイス製造プロセスで用いられる処理装置のオペレータからのデータから選択される、任意の1つ以上である。
[0013] 方法の実施形態において、処理パラメータは、メトロロジーから取得されるデータであり、メトロロジーから取得されるデータは、回析ツール又は電子顕微鏡から取得される。
[0014] 方法の実施形態において、処理パラメータは、モデルを用いて、又はデータベースを照会することによって、決定又は予測される。
[0015] 方法の実施形態において、欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することは、処理パラメータの下でホットスポットのイメージ又は予想されるパターニング輪郭をシミュレートすること、及びイメージ又は輪郭パラメータを決定することを含む。
[0016] 方法の実施形態において、ホットスポットは、処理パラメータに関して、その部分のパターンの感度を用いて識別される。
[0017] 方法の実施形態において、方法は、ホットスポットを検査することを更に含む。
[0018] 方法の実施形態において、方法は、ホットスポットの検査に少なくとも部分的に基づいて、値の範囲を調整することを更に含む。
[0019] 方法の実施形態において、デバイス製造プロセスはリソグラフィ装置を使用することを含む。
[0020] 方法の実施形態において、処理パラメータは、ホットスポットが処理される直前に決定される。
[0021] 方法の実施形態において、処理パラメータは、ローカル処理パラメータ又はグローバル処理パラメータから選択される。
[0022] 方法の実施形態において、ホットスポットを識別することは、その場所を識別することを含む。
[0023] 方法の実施形態において、欠陥は基板が不可逆的に処理される前には検出不可能である。
[0024] 他の態様は、パターンを基板上又は基板のダイ上に処理することを含む、デバイスを製造する方法を含み、この方法は、基板又はダイを処理する前に処理パラメータを決定すること;基板又はダイを処理する前に処理パラメータを用いて、また、基板又はダイの特徴、基板又はダイ上で処理されることになるパターンのジオメトリの特徴、或いはその両方を用いて、欠陥の存在、欠陥の存在の確率、欠陥の特徴、又はそれらの組み合わせを予測又は決定すること;欠陥を消去する、欠陥の確率を低減させる、又は欠陥の重大度を低減させるように、予測又は決定に基づいて処理パラメータを調整することを、含む。
[0025] 方法の実施形態において、方法は、パターンからホットスポットを識別することを更に含む。
[0026] 方法の実施形態において、欠陥は、ホットスポットから生成される欠陥である。
[0027] 方法の実施形態において、基板又はダイの特徴は、ホットスポットの処理ウィンドウである。
[0028] 更に他の態様は、設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法を含み、この方法は、設計レイアウトの一部からホットスポットを識別すること;デバイス製造プロセスに伴ってホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測すること;欠陥の存在、存在の確率、特徴、又はそれらの組み合わせの決定又は予測に少なくとも部分的に基づいて、ホットスポットを検査するかどうかを決定することを含む。
[0029] 更に他の態様は、設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法を含み、この方法は、設計レイアウトの一部からホットスポットを識別すること;ホットスポットに関するデバイス製造プロセスの処理パラメータに関して、ホットスポットの感度を決定すること、同じ感度を有するマークを生成すること、マークを設計レイアウトに追加することを含む。
[0030] 他の態様は、上記実施形態のうちのいずれかに従い、決定又は予測された欠陥の存在、存在の確率、特徴、又はそれらの組み合わせに少なくとも部分的に基づいて、複数のホットスポットのうちのいずれを検査するかを示す、コンピュータ実装欠陥予測方法を含む、デバイスを製造する方法を含む。
[0031] 方法の実施形態において、欠陥は、ネッキング、ラインプルバック(line pull back)、ライン薄型化、CDエラー、重複、レジストトップ損失、レジストアンダーカット、及び/又はブリッジングから選択される、1つ以上である。
[0032] 他の態様は、設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法を含み、方法は、デバイス製造プロセスの処理パラメータの実際値を決定すること、実際値に少なくとも部分的に基づいて、検査マップを構築することを含み、検査マップは基板上の潜在的欠陥の位置を含む。
[0033] 方法の実施形態において、方法は、潜在的欠陥の位置で基板を検査することを更に含む。
[0034] 方法の実施形態において、方法は、潜在的欠陥の位置のみで基板を検査することを更に含む。
[0035] 方法の実施形態において、方法は、検査マップをユーザに提示することを更に含む。
[0036] 他の態様は、命令が記録されたコンピュータ可読媒体を備えるコンピュータプログラム製品を含み、命令は、コンピュータによって実行された時、前述の実施形態のうちのいずれかの方法を実装する。
[0037] 他の態様は、設計レイアウトの一部がデバイス製造プロセスによって処理される基板を検査するように構成されたメトロロジーツールを含み、メトロロジーツールは、基板上の潜在的欠陥の位置を受信するように構成されたデータ転送ユニットと、その位置で基板を選択的に検査するように構成された検査ユニットとを備える。
[0038] メトロロジーツールの実施形態において、メトロロジーツールは回析ツール又は電子顕微鏡である。
[0039] 方法の実施形態において、基板の検査は、電子顕微鏡又は明視野検査ツールを用いて実行される。
[0040] 方法の実施形態において、方法は検査マップをユーザに提示することを更に含む。
[0041] 方法の実施形態において、検査マップを構築することは、プロセスシミュレーションモデルを用いて少なくともいくつかの識別された潜在的欠陥をシミュレートすることを更に含む。
[0042] 方法の実施形態において、検査マップを構築することは、欠陥検査ツールによって読み取り可能な形式で検査マップを構築することを更に含む。
[0043] 他の態様は、設計レイアウトの一部がデバイス製造プロセスによって処理される基板を検査するように構成されたメトロロジーツールを含み、メトロロジーツールは、基板上の潜在的欠陥の位置を受信するように構成されたデータ転送ユニットと、その位置で基板を選択的に検査するように構成された検査ユニットとを備える。
[0044] メトロロジーツールの実施形態において、メトロロジーツールは回析ツール又は電子顕微鏡である。
[0045] 他の態様は、設計レイアウトの一部が処理される基板を検査するためのメトロロジーシステムを含み、メトロロジーシステムは、処理パラメータの実際値を決定するための第1のメトロロジーツールと、前述の実施形態のうちのいずれかのコンピュータ実装方法を実行するために構成された欠陥予測ユニットとを備える。
[0046] 対応する参照符号が対応する部分を示す添付の概略図を参照しながら以下に本発明の実施形態について説明するが、これは単に例示としてのものに過ぎない。
[0047]本発明の実施形態に従ったリソグラフィ装置を示す図である。 [0048]実施形態に従った、デバイス製造プロセスのための欠陥予測の方法を示すフローチャートである。 [0049]処理パラメータの例示的ソースを示す図である。 [0050]図2のステップ214の実装を示す図である。 [0051]多くのダイを備える例示的基板を示す図である。 [0052]従来の方法を使用して取得される使用可能焦点深度(uDOF)を示す図である。 [0053]本明細書で説明する実施形態に従った方法を使用して取得される使用可能焦点深度(uDOF)を示す図である。 [0054]処理フローを示す概略フロー図である。 [0055]焦点の例示的マップを示す図である。 [0056]実施形態に従った、設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法を示すフローチャートである。 [0057]実施形態に従った、設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法を示すフローチャートである。
[0058] 本文ではICの製造におけるリソグラフィ装置の使用に特に言及しているが、本明細書で説明するリソグラフィ装置には他の用途もあることを理解されたい。例えば、これは、集積光学システム、磁気ドメインメモリ用誘導及び検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッドなどの製造である。こうした代替的な用途に照らして、本明細書で「ウェーハ」又は「ダイ」という用語を使用している場合、それぞれ、「基板」又は「ターゲット部分」という、より一般的な用語と同義と見なしてよいことが、当業者には認識される。本明細書に述べている基板は、露光前又は露光後に、例えばトラック(通常はレジストの層を基板に塗布し、露光したレジストを現像するツール)、メトロロジーツール及び/又はインスペクションツールで処理することができる。適宜、本明細書の開示は、以上及びその他の基板処理ツールに適用することができる。更に基板は、例えば多層ICを生成するために、複数回処理することができ、したがって本明細書で使用する基板という用語は、既に複数の処理済み層を含む基板も指すことができる。
[0059] 本明細書で使用する「放射」及び「ビーム」という用語は、イオンビーム又は電子ビームなどの粒子ビームのみならず、紫外線(UV)放射(例えば、365nm、248nm、193nm、157nm若しくは126nm、又はこれら辺りの波長を有する)及び極端紫外線光(EUV)放射(例えば、5nm〜20nmの範囲の波長を有する)を含むあらゆるタイプの電磁放射を網羅する。
[0060] 本明細書において使用する「パターニングデバイス」という用語は、基板のターゲット部分にパターンを生成するように、放射ビームの断面にパターンを付与するために使用し得る任意のデバイスを指すものとして広義に解釈されるべきである。ここで、放射ビームに付与されるパターンは、例えばパターンが位相シフトフィーチャ又はいわゆるアシストフィーチャを含む場合、基板のターゲット部分における所望のパターンに正確には対応しないことがある点に留意されたい。一般的に、放射ビームに付与されるパターンは、集積回路などのターゲット部分に生成されるデバイスの特定の機能層に相当する。
[0061] パターニングデバイスは透過性又は反射性でよい。パターニングデバイスの例には、マスク、プログラマブルミラーアレイ、及びプログラマブルLCDパネルがある。マスクはリソグラフィにおいて周知のものであり、これには、バイナリマスク、レベンソン型(alternating)位相シフトマスク、ハーフトーン型(attenuated)位相シフトマスクのようなマスクタイプ、更には様々なハイブリッドマスクタイプも含まれる。プログラマブルミラーアレイの一例は、小型ミラーの行列構成を使用し、ミラーの各々は、入射する放射ビームを様々な方向に反射するように個別に傾けることができる。このようにして、反射ビームがパターニングされる。
[0062] 支持構造はパターニングデバイスを保持する。支持構造は、パターニングデバイスの方向、リソグラフィ装置の設計等の条件、例えばパターニングデバイスが真空環境で保持されているか否かに応じた方法で、パターニングデバイスを保持する。この支持構造は、機械式クランプ、真空、又は他のクランプ技術、例えば真空条件下での静電クランプを使用することができる。支持構造は、例えばフレーム又はテーブルでよく、必要に応じて固定式又は可動式でよい。支持構造は、パターニングデバイスが例えば投影システムなどに対して確実に所望の位置にくるようにできる。本明細書において「マスク」という用語を使用した場合、その用語は、より一般的な用語である「パターニングデバイス」と同義と見なすことができる。
[0063] 本明細書において使用する「投影システム」という用語は、適宜、例えば露光放射の使用、或いは浸漬液の使用又は真空の使用などの他の要因に対する、屈折光学システム、反射光学システム、及び反射屈折システムを含む、様々なタイプの投影システムを網羅するものとして広義に解釈されるべきである。本明細書において「投影レンズ」という用語を使用した場合、これは更に一般的な「投影システム」という用語と同義と見なすことができる。
[0064] また、照明システムは、放射ビームを誘導し、整形し、又は制御する屈折、反射、及び反射屈折光学コンポーネントを含む様々なタイプの光学コンポーネントを含んでよく、そのようなコンポーネントも以下においては集合的に又は単独で「レンズ」とも呼ばれることがある。
[0065] リソグラフィ装置は、2つ(デュアルステージ)又はそれ以上の基板テーブル(及び/又は2つ以上のパターニングデバイステーブル)を有するタイプでよい。このような「マルチステージ」機械においては、追加のテーブルを並行して使用するか、1つ以上の他のテーブルを露光に使用している間に1つ以上のテーブルで予備工程を実行することができる。
[0066] リソグラフィ装置は、投影システムの最終要素と基板との間の空間を充填するように、基板が比較的高い屈折率を有する液体、例えば水などに液浸されるタイプであってもよい。液浸技術は、投影システムの開口数を増加させるために当技術分野で周知である。
[0067] 図1は、本発明の特定の実施形態に従ったリソグラフィ装置を概略的に示す。この装置は、
−放射(例えばUV放射又はDUV放射)のビームPBを調節するための照明システム(イルミネータ)ILと、
−パターニングデバイス(例えばマスク)MAを支持するための、アイテムPLに関してパターニングデバイスを正確に位置決めするために第1の位置決めデバイスPMに接続された支持構造MTと、
−基板(例えばレジスト被覆ウェーハ)Wを保持するための、アイテムPLに関して基板を正確に位置決めするための第2の位置決めデバイスPWに接続された、基板テーブル(例えばウェーハテーブル)WTと、
−パターニングデバイスMAによって放射ビームPBに付与されたパターンを基板Wのターゲット部分C(例えば1つ以上のダイを含む)上に結像するように構成された、投影システム(例えば屈折投影レンズ)PLとを備える。
[0068] 本明細書で示すように、本装置は透過タイプである(例えば透過マスクを使用する)。或いは、装置は反射タイプでもよい(例えば上記で言及したようなタイプのプログラマブルミラーアレイを使用する)。
[0069] イルミネータILは放射源SOから放射ビームを受ける。放射源及びリソグラフィ装置は、例えば放射源がエキシマレーザーの場合、別個の要素であってもよい。このような場合、放射源はリソグラフィ装置の一部を形成するものとは見なされず、放射ビームは、例えば好適な誘導ミラー及び/又はビームエクスパンダを備えるビームデリバリシステムBDを用いて放射源SOからイルミネータILへと渡される。その他の場合、例えば放射源が水銀ランプの場合、放射源は装置の一体部分であってよい。放射源SO及びイルミネータILは、必要であればビームデリバリシステムBDと共に放射システムと呼んでもよい。
[0070] イルミネータILはビームの強度分布を変更することができる。イルミネータは、イルミネータILの瞳面内の環状領域内での強度分布が非ゼロであるように、放射ビームの半径範囲を制限するように配置構成することができる。追加的又は代替的に、イルミネータILは、瞳面内の複数の等しく間隔が空けられたセクタ内での強度分布が非ゼロであるように、瞳面内のビームの分布を制限するように動作可能であり得る。イルミネータILの瞳面内の放射ビームの強度分布を、照明モードと呼ぶことができる。
[0071] イルミネータILは、ビームの強度分布を調整するように構成されたアジャスタAMを備えることができる。一般に、イルミネータの瞳面内の強度分布の少なくとも外側及び/又は内側半径範囲(一般に、それぞれσ−outer及びσ−innerと呼ばれる)が調整可能である。イルミネータILは、ビームの角度分布を変動させるように動作可能であり得る。例えばイルミネータは、強度分布が非ゼロの瞳面内のセクタの数及び角度範囲を変更するように動作可能であり得る。イルミネータの瞳面内のビームの強度分布を調整することによって、異なる照明モードが達成され得る。例えば、イルミネータILの瞳面内の強度分布の半径範囲及び角度範囲を制限することによって、強度分布は、例えば双極子、四極子、又は六極子分布などの多極子分布を有することができる。望ましい照明モードは、例えばその照明モードをイルミネータILに提供する光学部品を挿入すること、又は空間光変調器を使用することによって、取得することができる。
[0072] イルミネータILは、ビームの偏極を変更するように動作可能であり得、アジャスタAMを用いて偏極を調整するように動作可能であり得る。イルミネータILの瞳面にわたる放射ビームの偏極状態を、偏極モードと呼ぶことができる。異なる偏極モードを使用することで、基板W上に形成されるイメージ内でより大きなコントラストを達成することができる。放射ビームは非偏極であってよい。代替的に、イルミネータは放射ビームを線形に偏極するように配置構成可能である。放射ビームの偏極方向は、イルミネータILの瞳面にわたって変動し得る。放射の偏極方向は、イルミネータILの瞳面内の異なる領域において異なり得る。放射の偏極状態は、照明モードに依存して選択することができる。多極子照明モードの場合、放射ビームの各極子の偏極は、一般に、イルミネータILの瞳面内のその極子の位置ベクトルに対して垂直であり得る。例えば双極子照明モードの場合、放射は、双極子の2つの相対するセクタを二等分する線にほぼ垂直な方向で、線形に偏極され得る。放射ビームは、X偏極状態及びY偏極状態と呼ばれる2つの異なる直交方向のうちの1つで偏極され得る。四極子照明モードの場合、各極子のセクタ内の放射は、そのセクタを二等分する線にほぼ垂直な方向で、線形に偏極され得る。この偏極モードはXY偏極と呼ぶことができる。同様に六極子照明モードの場合、各極子のセクタ内の放射は、そのセクタを二等分する線にほぼ垂直な方向で、線形に偏極され得る。この偏極モードはTE偏極と呼ぶことができる。
[0073] 加えて、イルミネータILは一般に、インテグレータIN及びコンデンサCOなどの様々な他のコンポーネントを備える。イルミネータは、その断面に望ましい均一性及び強度分布を有する、条件付き放射ビームPBを提供する。
[0074] 放射ビームPBは、支持構造MT上で保持されるパターニングデバイス(例えば、マスク)MAに入射する。ビームPBはパターニングデバイスMAをトラバースした後、レンズPLを通過し、このレンズがビームの焦点を基板Wのターゲット部分C上に合わせる。第2の位置決めデバイスPW及び位置センサIF(例えば、干渉計デバイス)の助けを借りて、基板テーブルWTは、例えばビームPBの経路内で異なるターゲット部分Cを位置決めするように、正確に移動することが可能である。同様に、第1の位置決めデバイスPM及び別の位置センサ(図1には明示的に示されていない)を使用して、例えばマスクライブラリからの機械的取り出し後、又はスキャン中に、ビームPBの経路に関してパターニングデバイスMAを正確に位置決めすることができる。一般に、オブジェクトテーブルMT及びWTの動きは、位置決めデバイスPM及びPWの一部を形成する、ロングストロークモジュール(粗動位置決め)及びショートストロークモジュール(微動位置決め)の助けを借りて実現される。しかしながら、(スキャナとは対照的に)ステッパのケースでは、支持構造MTはショートストロークアクチュエータのみに接続され得るか、又は固定され得る。パターニングデバイスMA及び基板Wは、パターニングデバイスアライメントマークM1、M2及び基板アライメントマークP1、P2を用いて位置合わせすることができる。
[0075] 図示のリソグラフィ装置は、以下の好ましいモードのうち少なくとも1つにて使用可能である。
1.ステップモードでは、支持構造MT及び基板テーブルWTは、基本的に静止状態に維持される一方、放射ビームPBに付与されたパターン全体が1回でターゲット部分Cに投影される(すなわち単一静的露光)。次に、別のターゲット部分Cを露光できるように、基板テーブルWTがX方向及び/又はY方向に移動される。ステップモードでは、露光フィールドの最大サイズによって、単一静的露光で像が形成されるターゲット部分Cのサイズが制限される。
2.スキャンモードでは、支持構造MT及び基板テーブルWTは同期的にスキャンされる一方、放射ビームPBに付与されるパターンがターゲット部分Cに投影される(すなわち単一動的露光)。支持構造MTに対する基板テーブルWTの速度及び方向は、投影システムPLの拡大(縮小)及び像反転特性によって求めることができる。スキャンモードでは、露光フィールドの最大サイズによって、単一動的露光におけるターゲット部分の(非スキャン方向における)幅が制限され、スキャン動作の長さによってターゲット部分の(スキャン方向における)高さが決まる。
3.別のモードでは、支持構造MTはプログラマブルパターニングデバイスを保持して基本的に静止状態に維持され、基板テーブルWTを移動又はスキャンさせながら、放射ビームPBに与えられたパターンをターゲット部分Cに投影する。このモードでは、一般にパルス状放射源を使用して、基板テーブルWTを移動させる毎に、又はスキャン中に連続する放射パルスの間で、プログラマブルパターニングデバイスを必要に応じて更新する。この動作モードは、以上で言及したようなタイプのプログラマブルミラーアレイなどのプログラマブルパターニングデバイスを使用するマスクレスリソグラフィに容易に利用できる。
[0076] 上述した使用モードの組み合わせ及び/又は変形、又は全く異なる使用モードも利用できる。
[0077] 投影システムPLは、基板W上に結像されるパターンに影響を与える可能性のある、不均一であり得る光学伝達関数を有する。非偏極放射の場合、こうした影響は、投影システムPLを出た放射の伝送(アポダイゼーション(apodization))及び相対位相(収差)を、その瞳面内の位置の関数として記述する、2つのスカラマップによってかなり良く説明することができる。これらのスカラマップは伝送マップ及び相対位相マップと呼ぶことができ、基底関数の完全セットの線形結合として表すことができる。特に便利なセットはゼルニケ多項式であり、単位円上に画定される直交多項式のセットを形成する。各スカラマップの決定は、こうした展開において係数を決定することを含み得る。ゼルニケ多項式は単位円上で直交するため、ゼルニケ係数は、測定されたスカラマップと各ゼルニケ多項式との内積を計算し、これをそのゼルニケ多項式のノルムの2乗で割ることによって決定され得る。
[0078] 伝送マップ及び相対位相マップはフィールド及びシステムに依存する。すなわち、一般に、各投影システムPLは、各フィールドポイントについて(すなわち、そのイメージ面における各空間的場所について)異なるゼルニケ展開を有する。その瞳面内の投影システムPLの相対位相は、例えば、投影システムPLの対物面(すなわち、パターニングデバイスMAの面)内のポイント状ソースから投影システムPLを介して放射を投影すること、及び、波面(すなわち、同じ位相を伴うポイントの軌跡)を測定するためにせん断干渉計を用いることによって決定され得る。せん断干渉計は共通経路干渉計であるため、有利なことに、波面を測定するために2次参照ビームを必要としない。せん断干渉計は、投影システムのイメージ面(すなわち、基板テーブルWT)内の、例えば2次元格子などの回析格子と、投影システムPLの瞳面と共役な平面内の干渉パターンを検出するように配置構成された検出器とを備えることができる。干渉パターンは、せん断方向の瞳面内の座標に関して放射の位相の導関数に関する。検出器は、例えば電荷結合素子(CCD)などの感知要素のアレイを備えることができる。
[0079] 回析格子は、投影システムPLの座標系の軸(x及びy)と一致し得るか、又はこれらの軸に対して45度などの角度であり得る、2つの垂直方向に順次スキャン可能である。スキャニングは、整数の格子周期、例えば1格子周期にわたって実行可能である。スキャニングは一方向の位相変動を平均し、他方向の位相変動を再構築することができる。これによって波面を、両方の方向の関数として決定することができる。
[0080] 最先端のリソグラフィ装置LAの投影システムPLは可視フリンジを生成し得ないため、波面の決定の精度は、例えば回析格子の移動などの位相ステッピング技法を用いて向上させることができる。ステッピングは回析格子の平面内で、及び測定のスキャニング方向に垂直な方向に、実行可能である。ステッピング領域は1格子周期であってよく、少なくとも3つの(均一に分布された)位相ステップが使用できる。したがって、例えば3回のスキャニング測定がy方向に実行可能であり、各スキャニング測定はx方向の異なる位置に対して実行される。この回析格子のステッピングは、位相変動を強度変動に効果的に変換し、位相情報を決定することができる。格子は、検出器を較正するために回析格子に対して垂直方向(z方向)にステッピングすることができる。
[0081] 投影システムPLのその瞳面での伝送(アポダイゼーション)は、例えば投影システムPLの対物面(すなわち、パターニングデバイスMAの面)内のポイント状ソースから投影システムPLを介して放射を投影すること、及び、検出器を用いて投影システムPLの瞳面と共役な平面内の放射の強度を測定することによって、決定され得る。収差を決定するために波面を測定する際に使用されたのと同じ検出器を使用することができる。投影システムPLは、複数の光学(例えばレンズ)要素を備えることが可能であり、収差(フィールド全体の瞳面にわたる位相変動)を補正するように、1つ以上の光学要素を調整するように構成された調整メカニズムPAを更に備えることが可能である。これを達成するために、調整メカニズムPAは、1つ以上の異なるやり方で投影システムPL内の1つ以上の光学(例えばレンズ)要素を操作するように動作可能であり得る。投影システムは、その光学軸がz方向に延在する座標系を有し得る。調整メカニズムPAは、1つ以上の光学要素を変位させること、1つ以上の光学要素を傾斜させること、及び/又は1つ以上の光学要素を変形させることの、任意の組み合わせを実行するように動作可能であり得る。光学要素の変位は、任意の方向(x、y、z、又はそれらの組み合わせ)であり得る。光学要素の傾斜は、典型的には軸の周りをx又はy方向に回転することによって光学軸に垂直な面から外れるが、z軸の周りの回転は非回転対称の非球面光学要素に使用可能である。光学要素の変形は、低周波形状(例えば、非点収差)及び高周波形状(例えば、自由形非球面)の両方を含むことができる。光学要素の変形は、例えば、光学要素の1つ以上の側面に力を及ぼすために1つ以上のアクチュエータを使用すること、及び/又は光学要素の1つ以上の選択された領域を加熱するために1つ以上の加熱要素を使用することによって、実行することができる。一般に、アポダイゼーション(瞳面にわたる伝送変動)を補正するために投影システムPLを調整することが不可能な場合がある。リソグラフィ装置LAのためのパターニングデバイス(例えばマスク)MAを設計する時に、投影システムPLの伝送マップを使用することができる。計算リソグラフィ技術を使用して、少なくとも部分的にアポダイゼーションを補正するようにパターニングデバイスMAを設計することができる。
[0082] その下でパラメータが規定内で生成されることになる処理パラメータのスペースを、そのパターンの処理ウィンドウと呼ぶことができる。パターンが規格を外れて生成された場合、これは欠陥である。パターニングデバイス上のパターンは、処理パラメータの変動によって様々に影響を受ける可能性がある。例えばあるパターンは、別のパターンよりもドーズ量の変動に敏感な場合がある。したがって、パターニングデバイス上のパターンは異なる処理ウィンドウを有することができる。処理パラメータに関するパターンの感度は、例えば処理パラメータに関するパターンの特徴の偏導関数によって測定可能である。潜在的な系統的欠陥に関するパターン規格の例は、ネッキング、ラインプルバック、ライン薄型化、CD、エッジ配置、重複、レジストトップ損失、レジストアンダーカット、及びブリッジングのチェックを含む。パターニングデバイス上のすべてのパターンの処理ウィンドウは、各個別パターンの処理ウィンドウをマージする(重複させる)ことによって取得可能である。すべてのパターンのプロセスウィンドウの境界は、個別パターンのうちのいくつかの処理ウィンドウの境界を含む。言い換えれば、これらの個別パターンは、すべてのパターンの処理ウィンドウを制限する。これらのパターンは「ホットスポット」又は「処理ウィンドウ制限パターン(PWLP)」と呼ぶことができ、本明細書では互換的に使用される。リソグラフィプロセスを制御する時、ホットスポットに焦点を合わせることは可能であり経済的である。ホットスポットに欠陥がない場合、すべてのパターンに欠陥がない可能性が高い。
[0083] 処理パラメータは、基板上の位置と共に、及び時間と共に(例えば基板間、ダイ間で)変動し得る。こうした変動は、温度及び湿度などの環境における変化によって生じ得る。こうした変動の他の原因は、リソグラフィ装置内のソース、投影光学機器、基板テーブル、基板表面の高さ変動などの、処理装置における1つ以上のコンポーネントにおけるドリフトを含み得る。こうした変動及びPWLP又は潜在的パターニング欠陥に与えるそれらの影響に気付くこと、及び、実際の欠陥を低減させるようにこうした変動に対処するようにリソグラフィプロセスを調整することが有用である。これらの変動を追跡する計算コストを低減させるために、ホットスポットのみを監視するように選択することができる。
[0084] 図2は、実施形態に従った、デバイス製造プロセスのための欠陥予測の方法についてのフローチャートを示す。ステップ211で、設計レイアウトの一部から任意の好適な方法を使用して、少なくともホットスポットが識別される。例えばホットスポットは、経験的モデル又は計算的モデルを使用して、設計レイアウトの一部におけるパターンを分析することによって識別可能である。経験的モデルでは、パターンのイメージ(例えばレジストイメージ、光学イメージ、エッチイメージ)はシミュレートされず、代わりに経験的モデルは、処理パラメータと、パターンのパラメータと、欠陥との間の相関に基づいて、欠陥又は欠陥の確率を予測する。例えば経験的モデルは、分類モデル又は欠陥を起こしやすいパターンのデータベースとすることができる。計算モデルでは、イメージの一部又はイメージの特徴が計算又はシミュレートされ、その一部又は特徴に基づいて欠陥が識別される。例えばラインプルバック欠陥は、その望ましい場所から離れ過ぎているライン端を見つけることによって識別可能であり、ブリッジング欠陥は、2本のラインが望ましくない方法で接合している場所を見つけることによって識別可能であり、重複欠陥は、望ましくない方法で重複しているか又は望ましくない方法で重複していない別々の層上に2つのフィーチャを見つけることによって識別可能である。経験的モデルは、通常、計算的モデルよりも計算上は費用がかからない。一例では、ホットスポット及び/又はそれらの場所は、FEMウェーハ検査又は好適なメトロロジーツールなどによって、経験的に決定することができる。
[0085] 実施形態において、ホットスポットは、処理パラメータに関してパターンの感度を使用して識別することができる。例えばパターンの感度が閾値を超える場合、そのパターンはホットスポットとして識別することができる。
[0086] 欠陥は、レジストトップ損失、レジストアンダーカットなどの、開発後検査(ADI)(通常は光学検査)では検出できない欠陥を含む。従来の検査では、基板が不可逆的に処理(例えば、エッチング)された後にのみ、こうした欠陥が明らかになり、その時点で、ウェーハは再処理できない。したがってこうしたレジストトップ損失欠陥は、本明細書の草稿時点では、現行の光学技術を使用して検出できない。しかしながら、シミュレーションを使用して、どこでレジストトップ損失が発生しているか、及びどの程度の重大度であるかを決定することができる。この情報に基づいて、より正確な(及び典型的にはより時間のかかる)検査方法を使用して、欠陥を再処理する必要があるかどうかを判別するために特定の可能な欠陥を検査するように判定するか、或いは、不可逆的処理(例えば、エッチング)が実行される前に、特定のレジスト層の結像を再処理する(レジストトップ損失欠陥を有するレジスト層を除去し、特定層の結像を再実行するためにウェーハを再コーティングする)ように判定することができる。
[0087] ステップ212で、デバイス製造プロセスの処理パラメータの値範囲がホットスポットについて決定され、デバイス製造プロセスは、処理パラメータが範囲外の値を有する時にホットスポットから欠陥を生成する。複数の処理パラメータについての複数の値範囲を、ホットスポットについて決定することもできる。決定された1つ以上の範囲を、ホットスポットの処理ウィンドウとしてコンパイルすることができる。ホットスポットの場所及び個々のホットスポットの処理ウィンドウに基づいて、複数のホットスポットの処理ウィンドウを決定すること及び/又はマップにコンパイルすること、すなわち、処理ウィンドウをホットスポットの場所に応じて決定することが可能である。この処理ウィンドウマップは、レイアウト特有の感度及びパターンの処理マージンを特徴付けることができる。処理パラメータはローカルである、すなわち、ホットスポット、ダイ、又はその両方の場所に依存してよい。処理パラメータはグローバルである、すなわちホットスポット及びダイの場所に依存しなくてよい。
[0088] ステップ213で、処理パラメータの実際値が決定される。リソグラフィプロセス中、パターンは、例えばパターンが処理ウィンドウ内で処理されることを保証するように選択可能な、処理パラメータの特定の設定を使用して生成することができる。しかしながら、パターンが生成される実際の処理パラメータは、例えばリソグラフィプロセスのドリフトによって、又は例えばローカルに偏位し得るグローバルに設定された処理パラメータによって、設定パラメータとは異なる可能性がある。グローバルに設定された処理パラメータのこうしたローカル偏位の1つは、例えば、グローバルには設定処理パラメータであり得るが、ローカルには例えばリソグラフィプロセス中の基板の傾斜によって異なり得る、焦点位置とすることができる。したがって、特定のホットスポットの場合、処理パラメータの実際値は設定処理パラメータとは異なる可能性がある。処理パラメータの実際値を決定するための例示的方法の1つは、リソグラフィ装置の状況を決定することである。例えば実際のウェーハステージの位置及び傾斜を使用して、処理パラメータのローカルの実際値を計算することができる。しかし、実際のレチクルステージの位置及び傾斜、レーザー帯域幅、焦点、ドーズ量、ソースパラメータ、投影光学機器パラメータ、及びこれらのパラメータの空間的又は時間的変動を、リソグラフィ装置から直接測定し、処理パラメータの実際値を決定するために使用することも可能である。別の例示的方法は、基板上で実行されるメトロロジーから取得されるデータから、処理パラメータを推測することである。このメトロロジーは、既に露光された基板上で実行され、例えば機械のドリフトを識別するために使用することができる。代替的に、処理パラメータの実際値は処理装置のオペレータから取得することができる。例えばメトロロジーは、回析ツール(例えば、ASML、YieldStar、又は回析位相差顕微鏡法)、電子顕微鏡、又は他の好適な検査ツールを使用して、基板を検査することを含み得る。識別されたホットスポットを含む、処理された基板上の任意の場所について、処理パラメータを取得することが可能である。処理パラメータは、すなわち場所の関数としてマップに、リソグラフィパラメータ又はプロセス条件に、コンパイルすることができる。図7は、焦点に関する例示的なマップを示す。もちろん、他の処理パラメータを場所の関数、すなわちマップとして表すことが可能である。実施形態において、処理パラメータは、各ホットスポットの処理の前、及び好ましくは処理の直前、或いは処理中に決定することができる。
[0089] ステップ214で、ホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせが、処理パラメータの実際値を使用して決定される。この決定又は予測は、処理パラメータの実際値をステップ212で決定されたその値の範囲と単に比較することによるものとすることができる。実際値がその範囲内にある場合、欠陥が存在することは予測されず、実際値が範囲外にある場合、少なくとも1つの欠陥が存在することが予測される。この決定又は予測は、好適な経験的モデル(統計的モデルを含む)を使用して実行することも可能である。例えば分類モデルを使用して、欠陥の存在の確率を提供することができる。この決定を行う別の方法は、計算的モデルを使用して、実際値の下で、ホットスポットのイメージ又は予測されるパターニング輪郭をシミュレートすること、及び、こうしたシミュレーションから予測されるイメージ又は輪郭パラメータを決定することである。決定された欠陥の存在及び/又は特徴は、再処理、例えば電子顕微鏡などの検査ツールを使用する詳細な検査、又は可能な欠陥の受容という、処分の決定の基礎としての役割を果たすことができる。実施形態において、実際値は処理パラメータの移動平均である。移動平均は、短期揺動による混乱なしに、処理パラメータの長期ドリフトをキャプチャするのに有用である。
[0090] 任意選択のステップ215で、処理パラメータは、欠陥が消去されるか又はその重大度が低減されるように、ステップ214で決定されたような存在、存在の確率、特徴、又はそれらの組み合わせを使用するために調整又は補償することができる(すなわち、予測又は決定が処理パラメータを調整するためにフィードバックされる)。このプロセスは、例えば、リソグラフィプロセスにおけるドリフトを継続的に監視し、このドリフトを低減させるために使用することができる。フィードフォワード例において、結像されることになるホットスポットが基板のバンプ上に配置され、それによって焦点の実際値が焦点の値範囲外に生じている場合、ホットスポットを基板上に結像させる前に焦点又はダイのレベリングを範囲内に入るように調整することが可能であり、それによってそのホットスポット上の欠陥をなくすか又は大幅に低減させることができる。この例では、焦点の調整が(例えば、ハードウェアの制限、又はこうした調整の副作用によって)望ましくない場合、他のパラメータを調整することによって補償し、それによって焦点の実際値が受容可能範囲内に入るように、処理パラメータ全体の範囲を変更することができる。好ましくは、処理パラメータは、ホットスポットを処理する直前に調整又は補償される。ステップ214及び215は反復可能である。処理パラメータは、組織的であるか又はゆっくりと変化するプロセス変動に適応するため、又は多数の調整可能な処理パラメータに対処するために、1つ又は複数の基板の処理後、特に、処理パラメータの平均(例えば移動平均)が決定された後にも、調整又は補償可能である。処理パラメータの調整又は補償は、ウェーハステージの位置及び傾斜、レチクルステージの位置及び傾斜、焦点、ドーズ量、ソース、又は瞳相に対する調整を含むことができる。
[0091] 任意選択のステップ216で、残余欠陥の存在及び/又は特徴を、調整された処理パラメータを用いて決定することができる。残余欠陥とは、処理パラメータの調整によって消去できない欠陥である。この決定は単に調整された処理パラメータと範囲とを単に比較することであり得、調整された処理パラメータが範囲内に入る場合、残余欠陥が存在することは予測されず、調整された処理パラメータが範囲外にある場合、少なくとも1つの残余欠陥が存在することが予測される。この決定は、(統計的モデルを含む)好適な経験的モデルを用いても実行可能である。例えば、分類モデルを使用して残余欠陥の存在の確率を提供することができる。この決定を行うための別の方法は、計算的モデルを使用して、調整された処理パラメータの下でホットスポットのイメージ又は予測されるパターニング輪郭をシミュレートすること、及び、こうしたシミュレーションから予測されるイメージ又は輪郭パラメータを決定することである。決定された残余欠陥の存在及び/又は特徴は、再処理、例えば検査ツールを使用する詳細な検査、又は受容という、処分の決定の基礎としての役割を果たすことができる。
[0092] 任意選択のステップ217で、いずれのホットスポットが検査を受けるかの指示を、残余欠陥又は欠陥の、決定又は予測される存在、存在の確率、1つ以上の特徴、或いはそれらの組み合わせに少なくとも部分的に基づいて、作成することができる。例えば、基板が1つ以上の残余欠陥又は欠陥を有する確率を有する場合、その基板は基板検査を受けることができる。残余欠陥又は欠陥の予測又は決定は、検査へと前送りされる。これらのホットスポットは、欠陥が実際に存在するかどうかを確認するために、好適な検査ツールを使用して実際に検査することが可能であり、これによって、設計レイアウトの一部にあるすべてのパターンを検査することを回避することができる。既知のリソグラフィプロセスフローにおいて、初期の明視野検査は、基板上のどこに可能な欠陥が配置されているかの初期指示を得るために、ほぼ基板全体で(典型的には「ダイ間」又は「ダイとデータベースとの間」で)実行される。これは比較的時間のかかるプロセスであり、可能な欠陥はランダムに識別され得る。現在既知の明視野検査ツールは、(しばしば、熟練オペレータによるイメージの解釈を介して)可能な欠陥の指示のみが取得可能な比較的低い解像度イメージをキャプチャする。これらの可能な欠陥の識別された場所は、明視野検査ツールによって識別された場合、典型的には電子顕微鏡などの詳細な検査ツールを用いて更に検査されることになる。本開示に従ったコンピュータ実装欠陥予測ツールは、明視野検査ステップの少なくとも一部を置き換えることができる。製造プロセス中に存在する処理パラメータの実際値を使用することで、これらの明視野検査を使用することなく、欠陥が予期され得る場所、及び、詳細な検査ツールが更に調査すべきであるか又は欠陥の存在を認識すべきである場所を、予測することができる。更に、本開示に従ったコンピュータ実装欠陥予測ツールを使用することにより、処理パラメータのローカルな実際値によって誘導され、欠陥を積極的に探索することができる。この欠陥予測ツールの使用により、可能な欠陥の発見プロセスがそれほどランダムでなくなる。代替のプロセスフローでは、コンピュータ実装欠陥予測ツールを使用して、基板の一部のみを調査するように明視野検査ツールを誘導することが可能であり、それによって明視野検査ツールでの検査時間全体が大幅に削減され、明視野ツールによる欠陥検査全体がそれほどランダムではなくなる。検査の結果を使用して、現在用いているリソグラフィプロセスステップからのパターンで何をすべきか、すなわち現行のプロセスステップを受け入れるか、又は可能且つ必要であれば、現行のリソグラフィプロセスステップを再処理するかを、決定することができる。こうした再処理は、例えば、欠陥のあるレジスト層のストリッピング、新しいレジスト層の再適用、及びリソグラフィプロセスステップの反復を含むことができる。検査結果を使用して、範囲外の値を有する処理パラメータで処理された場合、ホットスポットが欠陥になり得るかどうかを決定するために用いられる、デバイス製造プロセスの処理パラメータの値範囲を調整することも可能である。この値範囲の調整は、欠陥の決定又は予測をより精密にすることができる。ステップ214の前にステップ212で範囲を増減させることによって、検査の厳密性を調整することも可能である。範囲を減少させることで、欠陥の発見を増やし、場合によっては誤検出を増やすことになる。
[0093] 図3は、処理パラメータ350の例示的ソースを示す。1つのソースは、リソグラフィ装置のソース、投影光学機器、基板ステージなどのパラメータなどの、処理装置のデータ310とすることができる。別のソースは、ウェーハ高さマップ、焦点マップ、CDUマップ、オーバーレイマップなどの、様々な基板メトロロジーツールからのデータ320とすることができる。データ320は、基板の再処理を防止するステップ(例えば、エッチング)を基板が受ける前に、取得することができる。別のソースは、様々なパターニングデバイスメトロロジーツール、マスクCDUマップ、マスクフィルムスタックパラメータ変動などからのデータ330とすることができる。更に別のソースは、処理装置のオペレータからのデータ340とすることができる。
[0094] 図4は、図2のステップ214の例示的実装を示す。処理パラメータ420は分類モデル430への入力(例えば、独立変数)として使用可能である。処理パラメータ420は、ソースの特徴(例えば、強度、瞳プロファイルなど)、投影光学機器の特徴、ドーズ量、焦点、レジストの特徴、レジストの現像及び露光後焼付の特徴、又はエッチングの特徴、実際のウェーハステージの位置及び傾斜、実際のレチクルステージの位置及び傾斜を含むことができる。「分類器」又は「分類モデル」という用語は、時には、入力データをカテゴリにマッピングする、分類アルゴリズムによって実装される数学関数を指すこともある。機械学習及び統計では、分類は、そのカテゴリーメンバーシップが既知である観察(又はインスタンス)を含むデータのトレーニングセットに基づいて、新しい観察がカテゴリのセット440(亜母集団)のうちのいずれに属するかを識別するという問題である。個々の観察が、様々な説明変数、特性などとして知られる定量化可能なプロパティのセットに分析される。これらのプロパティは、様々に分類可能である(例えば、「良」は欠陥を生成しないリソグラフィプロセス、「不良」は欠陥を生成するリソグラフィプロセスであり、「タイプ1」、「タイプ2」、・・・「タイプn」は異なるタイプの欠陥である)。分類は管理された学習のインスタンス、すなわち、正しく識別された観察のトレーニングセットが使用可能な学習と見なされる。分類モデルの例は、ロジスティック回帰及び多項ロジット、プロビット回帰、パーセプトロンアルゴリズム、サポートベクターマシン、インポートベクターマシン、線形判別分析である。
[0095] 処理パラメータの一例は基板レベリングである。図5Aは多くのダイ(格子として示される)を備える例示的基板を示す。コールアウトされたダイでは、ホットスポット(円として示される)は、ダイのパターンにおいて、それほど重要でない位置(すなわち、ダイヤ形として示される、処理ウィンドウによって制限されていない位置)と共に識別される。図5Bは、従来の方法を用いて取得される使用可能焦点深度(uDOF)を示す。uDOFは、露光スリット内のすべてのパターンの処理ウィンドウ内にある焦点の深度である。図5Cは、本明細書で説明する実施形態に従った方法を用いて取得される使用可能焦点深度(uDOF)を示し、ここではそれほど重要でない位置領域(ダイヤ形)をそれぞれの最良の焦点から更に遠くにドリフトさせ、基板レベリングを含む処理パラメータの調整によってホットスポットの最良の焦点(円)をより近付けることで、uDOFを増加させることができる。
実施形態によれば、本明細書で説明する方法は、各基板又は各ダイについて、或いはダイ内の特定の場所で、処理パラメータの調整が可能である。図6は、処理フローについての概略的フロー図を示す。ステップ610で、基板又はダイの処理の直前(例えば、直前の基板又はダイの処理後)に処理パラメータが決定される。ステップ620で、欠陥の存在、欠陥の存在の確率、欠陥の特徴、又はそれらの組み合わせの、予測又は決定が、基板又はダイの処理の直前に処理パラメータを用いて、並びに、基板又はダイの特徴(例えば、基板又はダイ上のメトロロジーから決定される)、及び/又は、基板又はダイに処理されることになるパターンのジオメトリの特徴を用いて、実行される。ステップ630で、処理パラメータは、欠陥の確率又は重大度を消去、低減させるように、予測に基づいて調整される。代替的に、PWLPがダイ内の特定領域に配置され得るように処理されることが、レイアウトのシミュレーションからわかる。こうした状況では、イメージングツール内での露光の前にダイのレベリングを保証するイメージングツール内のシステムが、この特定領域は焦点が合っており、PWLPが特に結像されることを保証するためにダイの他の領域は焦点から更にそらすことを保証することができる。更にこのシミュレーションを用いて、PWLPを含む領域の好ましいレベリング精度のために、あまり良好ではない処理条件によって、それほど重要でない構造が依然として正しく結像されているかどうかを判別することができる。実施形態によれば、本明細書で説明する方法は、従来の処理フローと同等の欠陥率を維持しながら、生成バッチにおける基板の検査をより少なくすることができる。従来の処理フローは、1バッチ分の基板の処理(例えば、リソグラフィ装置内での露光)を含み、ほとんどの欠陥を見つけるためにバッチの2%〜3%又はそれ以上が検査されなければならない。検査は通常破壊的である。したがって、バッチの2%〜3%又はそれ以上が無駄になり、追加の処理費用がかかる。本明細書で説明する方法は、欠陥率の増加などの悪影響なしに、基板のバッチの2%未満、1.5%未満、又は1%未満が検査されることになる、処理フローを可能にする。具体的に言えば、本明細書で説明する方法は、例えばリソグラフィ装置を使用して、基板のバッチ上にパターンを処理することを含むデバイスを製造する方法を可能にし、この方法は、基板上に処理されるパターン内の欠陥の存在を決定するために、バッチの2%未満、1.5%未満、又は1%未満を破壊的に検査する、基板のバッチを処理することを含む。
[0096] 図8は、実施形態に従った、設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法のフローチャートを示す。ステップ811で、設計レイアウトの一部からホットスポットが識別される。ホットスポットは、前述のような任意の好適な方法を使用して識別することができる。ステップ812で、デバイス製造プロセスの処理パラメータに関して、ホットスポットの感度が決定される。感度を決定する1つの方法は、処理パラメータに少なくとも部分的に基づいて特徴をシミュレートするモデルから、処理パラメータに関してホットスポットの特徴の偏導関数を単に推定することによる。別の方法は、処理パラメータの少なくとも2つの値の下でホットスポットの特徴をシミュレートすることである。ステップ813で、同じか又は同様の感度を備えるマークが生成されるか、或いは、同じか又は(ほとんど)同様の感度を備えるマークが特定のリソグラフィツール又は特定のメトロロジーツール用に設計されたマークのプールから選択される。マークは、ADIすなわち現像後検査(AEI)に好適な散乱測定法ターゲットとすることができる。散乱測定法ターゲットは、均一に構成され均一に間隔が空けられた周期的機構のアレイ(例えば、直径100nmのドットのアレイ)を含むことができる。ステップ814で、設計又は選択されたマークが設計レイアウトに追加され、基板上の設計レイアウトと同じ方法で処理される。例えばマークはダイに追加され、すなわち、ダイ間の設計レイアウトに統合され、基板上のいわゆるスクライブレーンに、又は基板の縁部に、或いはその他の方法でダイ間に追加される。マークはホットスポットの代わりに、又はホットスポットに加えて検査することができる。マークの生成又は選択のより詳細な情報は、本願の譲受人に譲渡された米国特許出願第13/542625号、第61/921874号、第61/921907号、第61/921939号、第61/921817号に記載されており、各々、その全体が参照により本明細書に組み込まれる。
[0097] 図9は、実施形態に従った、設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法のフローチャートを示す。ステップ911で、デバイス製造プロセスの処理パラメータの実際値が決定される。処理パラメータを決定するための例示的方法の1つは、リソグラフィ装置の状況を決定することである。例えば、実際のウェーハステージの位置及び傾斜、実際のレチクルステージの位置及び傾斜、レーザー帯域幅、焦点、ドーズ量、ソースパラメータ、投影光学機器パラメータ、及びこれらのパラメータの空間的又は時間的な変動を、リソグラフィ装置から測定することができる。別の例示的方法は、基板上で実行されるメトロロジーから、又は処理装置のオペレータから取得されるデータから、処理パラメータを推測することである。例えばメトロロジーは、回析ツール(例えば、ASML YieldStar)、電子顕微鏡、又は他の好適な検査ツールを用いて、基板を検査することを含み得る。識別されるホットスポットを含む、処理される基板上の任意の場所について、処理パラメータを取得することが可能である。ステップ912で、実際値に少なくとも部分的に基づいて検査マップが構築される。検査マップは、基板上の潜在的欠陥の位置を含む。潜在的欠陥は、実際値と位置依存範囲とを比較することによって識別可能であり、ある位置で実際値が範囲外にある場合、その位置に潜在的欠陥が存在する。ステップ913で、基板は潜在的欠陥の位置で検査される。実施形態において、基板は潜在的欠陥の位置のみで検査される。代替的に、ステップ914で、検査マップがユーザに提示される。
[0098] 実施形態によれば、基板を検査するように構成されたメトロロジーツールを、前述の方法のうちのいずれかから潜在的欠陥の位置を受信するように構成することが可能である。例えばメトロロジーツールは、回析ツール、明視野検査ツール、又は電子顕微鏡とすることができる。
[0099] 本発明は、以下の条項を用いて更に説明することができる。
1.設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
設計レイアウトの一部からホットスポットを識別すること、
ホットスポットに関するデバイス製造プロセスの処理パラメータの値範囲を決定することであって、処理パラメータが範囲外の値を有する時、デバイス製造プロセスに伴ってホットスポットから欠陥が生成される、決定すること、
処理パラメータの実際値を決定すること、
実際値を用いて、デバイス製造プロセスに伴ってホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測すること、
を含む、コンピュータ実装欠陥予測方法。
2.存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することは、ホットスポットの特徴、設計レイアウトの特徴、又はその両方を更に使用する、第1項に記載の方法。
3.欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを用いて、処理パラメータを調整又は補償することを更に含む、第1項又は第2項に記載の方法。
4.欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを反復的に決定又は予測すること、及び処理パラメータを調整又は補償することを、実施することを更に含む、第3項に記載の方法。
5.調整又は補償された処理パラメータを用いて、デバイス製造プロセスを用いてホットスポットから生成される残余欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することを、更に含む、第3項又は第4項に記載の方法。
6.決定又は予測された残余欠陥の存在、存在の確率、特徴、又はそれらの組み合わせに少なくとも部分的に基づいて、ホットスポットが検査されることになるかどうかを示すことを、更に含む、第5項に記載の方法。
7.決定又は予測された欠陥の存在、存在の確率、特徴、又はそれらの組み合わせに少なくとも部分的に基づいて、ホットスポットが検査されることになるかどうかを示すことを、更に含む、第1項から第4項のいずれか一項に記載の方法。
8.ホットスポットは、経験的モデル又は計算的モデルを用いて識別される、第1項から第7項のいずれか一項に記載の方法。
9.処理パラメータは、実際のウェーハステージの位置及び傾斜、実際のレチクルステージの位置及び傾斜、焦点、ドーズ量、ソースパラメータ、投影光学機器パラメータ、メトロロジーから取得されるデータ、及び/又は、デバイス製造プロセスで用いられる処理装置のオペレータからのデータから選択される、任意の1つ以上である、第1項から第8項のいずれか一項に記載の方法。
10.処理パラメータは、メトロロジーから取得されるデータであり、メトロロジーから取得されるデータは、回析ツール又は電子顕微鏡から取得される、第9項に記載の方法。
11.処理パラメータは、モデルを用いて、又はデータベースを照会することによって、決定又は予測される、第1項から第10項のいずれか一項に記載の方法。
12.欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することは、処理パラメータの下でホットスポットのイメージ又は予想されるパターニング輪郭をシミュレートすること、及びイメージ又は輪郭パラメータを決定することを含む、第1項から第11項のいずれか一項に記載の方法。
13.ホットスポットは、処理パラメータに関して、その部分のパターンの感度を用いて識別される、第8項に記載の方法。
14.ホットスポットを検査することを更に含む、第6項から第7項のいずれか一項に記載の方法。
15.ホットスポットの検査に少なくとも部分的に基づいて、値の範囲を調整することを更に含む、第14項に記載の方法。
16.デバイス製造プロセスはリソグラフィ装置を使用することを含む、第1項から第15項のいずれか一項に記載の方法。
17.処理パラメータは、ホットスポットが処理される直前に決定される、第1項から第16項のいずれか一項に記載の方法。
18.処理パラメータは、ローカル処理パラメータ又はグローバル処理パラメータから選択される、第1項から第17項のいずれか一項に記載の方法。
19.ホットスポットを識別することはその場所を識別することを含む、第1項から第18項のいずれか一項に記載の方法。
20.欠陥は基板が不可逆的に処理される前には検出不可能である、第1項から第19項のいずれか一項に記載の方法。
21.パターンを基板上又は基板のダイ上に処理することを含む、デバイスを製造する方法であって、
基板又はダイを処理する前に処理パラメータを決定すること、
基板又はダイを処理する前に処理パラメータを用いて、また、基板又はダイの特徴、基板又はダイ上で処理されることになるパターンのジオメトリの特徴、或いはその両方を用いて、欠陥の存在、欠陥の存在の確率、欠陥の特徴、又はそれらの組み合わせを予測又は決定すること、
欠陥を消去する、欠陥の確率を低減させる、又は欠陥の重大度を低減させるように、予測又は決定に基づいて処理パラメータを調整すること、
を含む、デバイスを製造する方法。
22.パターンからホットスポットを識別することを更に含む、第21項に記載の方法。
23.欠陥は、ホットスポットから生成される欠陥である、第21項に記載の方法。
24.基板又はダイの特徴はホットスポットの処理ウィンドウである、第21項に記載の方法。
25.設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
設計レイアウトの一部からホットスポットを識別すること、
デバイス製造プロセスに伴ってホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測すること、
欠陥の存在、存在の確率、特徴、又はそれらの組み合わせの決定又は予測に少なくとも部分的に基づいて、ホットスポットを検査するかどうかを決定すること、
を含む、コンピュータ実装欠陥予測方法。
26.設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
設計レイアウトの一部からホットスポットを識別すること、
ホットスポットに関するデバイス製造プロセスの処理パラメータに関して、ホットスポットの感度を決定すること、
同じ感度を有するマークを生成すること、
マークを設計レイアウトに追加すること、
を含む、コンピュータ実装欠陥予測方法。
27.デバイスを製造する方法であって、
第1項から第26項のうちのいずれか一項に記載のコンピュータ実装欠陥予測方法と、
決定又は予測された欠陥の存在、存在の確率、特徴、又はそれらの組み合わせに少なくとも部分的に基づいて、複数のホットスポットのうちのいずれを検査するかを示すこと、を含む、デバイスを製造する方法。
28.欠陥は、ネッキング、ラインプルバック、ライン薄型化、CDエラー、重複、レジストトップ損失、レジストアンダーカット、及び/又はブリッジングから選択される、1つ以上である、第1項から第27項のうちのいずれか一項に記載の方法。
29.設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法であって、
デバイス製造プロセスの処理パラメータの実際値を決定すること、
実際値に少なくとも部分的に基づいて、検査マップを構築することであって、検査マップは基板上の潜在的欠陥の位置を含む、構築すること、
を含む、欠陥予測の方法。
30.潜在的欠陥の位置で基板を検査することを更に含む、第29項に記載の方法。
31.潜在的欠陥の位置のみで基板を検査することを更に含む、第29項に記載の方法。
32.基板を検査することは、電子顕微鏡又は明視野検査ツールを用いて実行される、第30項又は第31項に記載の方法。
33.検査マップをユーザに提示することを更に含む、第29項に記載の方法。
34.検査マップを構築することは、プロセスシミュレーションモデルを用いて少なくともいくつかの識別された潜在的欠陥をシミュレートすることを更に含む、第29項に記載の方法。
35.検査マップを構築することは、欠陥検査ツールによって読み取り可能な形式で検査マップを構築することを更に含む、第29項又は第34項に記載の方法。
36.命令が記録されたコンピュータ可読媒体を備えるコンピュータプログラム製品であって、命令は、コンピュータによって実行された時、第1項から第35項のいずれか一項に記載された方法を実装する、コンピュータプログラム製品。
37.設計レイアウトの一部がデバイス製造プロセスによって処理される基板を検査するように構成されたメトロロジーツールであって、
基板上の潜在的欠陥の位置を受信するように構成されたデータ転送ユニットと、
その位置で基板を選択的に検査するように構成された検査ユニットと、
を備える、メトロロジーツール。
38.メトロロジーツールは回析ツール又は電子顕微鏡である、第37項に記載のメトロロジーツール。
39.設計レイアウトの一部が処理される基板を検査するためのメトロロジーシステムであって、メトロロジーシステムは、処理パラメータの実際値を決定するための第1のメトロロジーツールと、第1項から第35項のうちのいずれか一項に記載のコンピュータ実装方法を実行するために構成された欠陥予測ユニットとを備える、メトロロジーシステム。
40.メトロロジーシステムは、第37項及び第38項のうちのいずれか一項に記載のメトロロジーツールである第2のメトロロジーツールを更に備える、第39項に記載のメトロロジーシステム。
[00100] 本発明の実施形態は、ハードウェア、ファームウェア、ソフトウェア、又はそれらの任意の組み合わせで実装することができる。本発明の実施形態は、1つ以上のプロセッサによる読み取り及び実行が可能な、機械可読媒体上に記憶された命令としても実装することが可能である。機械可読媒体は、機械(例えば、コンピューティングデバイス)によって読み取り可能な形で情報を記憶又は伝送するための、任意のメカニズムを含むことができる。例えば、機械可読媒体は、読み取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイス、電気、光、音、又は他の形の伝搬信号(例えば、搬送波、赤外線信号、デジタル信号など)、及びその他を含むことができる。更に、ファームウェア、ソフトウェア、ルーチン、命令は、本明細書ではあるアクションを実行するものとして説明することができる。しかしながら、こうした説明は単に便宜的なものであり、こうしたアクションは、実際は、コンピューティングデバイス、プロセッサ、コントローラ、又は、ファームウェア、ソフトウェア、ルーチン、命令などを実行する他のデバイスから生じることを理解されたい。
[00101] 以上、本発明の特定の実施形態を説明したが、説明とは異なる方法でも本発明を実践できることが理解される。説明は、本発明を限定することを意図していない。以下、当初の特許請求の範囲の内容を付記する。
1.設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
前記設計レイアウトの前記一部からホットスポットを識別すること、
前記ホットスポットに関する前記デバイス製造プロセスの処理パラメータの値範囲を決定することであって、前記処理パラメータが前記範囲外の値を有する時、前記デバイス製造プロセスに伴って前記ホットスポットから欠陥が生成される、決定すること、
前記処理パラメータの実際値を決定すること、
前記実際値を用いて、前記デバイス製造プロセスに伴って前記ホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測すること、
を含む、コンピュータ実装欠陥予測方法。
2.前記存在、前記存在の確率、前記特徴、又はそれらの前記組み合わせを決定又は予測することは、前記ホットスポットの特徴、前記設計レイアウトの特徴、又はその両方を更に使用する、前記1に記載の方法。
3.前記欠陥の前記存在、前記存在の確率、前記特徴、又はそれらの前記組み合わせを用いて、前記処理パラメータを調整又は補償することを更に含む、前記1に記載の方法。
4.前記調整又は補償された処理パラメータを用いて、前記デバイス製造プロセスを用いて前記ホットスポットから生成される残余欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測することを、更に含む、前記3に記載の方法。
5.前記決定又は予測された前記欠陥の存在、存在の確率、前記特徴、又はそれらの前記組み合わせに少なくとも部分的に基づいて、前記ホットスポットが検査されることになるかどうかを示すことを、更に含む、前記1に記載の方法。
6.前記ホットスポットは、経験的モデル又は計算的モデルを用いて識別される、前記1に記載の方法。
7.前記処理パラメータは、実際のウェーハステージの位置及び傾斜、実際のレチクルステージの位置及び傾斜、焦点、ドーズ量、ソースパラメータ、投影光学機器パラメータ、メトロロジーから取得されるデータ、及び/又は、デバイス製造プロセスで用いられる処理装置のオペレータからのデータから選択される、任意の1つ以上である、前記1に記載の方法。
8.前記欠陥の前記存在、前記存在の確率、前記特徴、又はそれらの前記組み合わせを決定又は予測することは、前記処理パラメータの下で前記ホットスポットのイメージ又は予想されるパターニング輪郭をシミュレートすること、及びイメージ又は輪郭パラメータを決定することを含む、前記1に記載の方法。
9.前記ホットスポットは、前記処理パラメータに関して、前記部分のパターンの感度を用いて識別される、前記6に記載の方法。
10.前記ホットスポットを検査することを更に含む、前記5に記載の方法。
11.パターンを基板上又は基板のダイ上に処理することを含む、デバイスを製造する方法であって、
前記基板又は前記ダイを処理する前に処理パラメータを決定すること、
前記基板又は前記ダイを処理する前に前記処理パラメータを用いて、また、前記基板又は前記ダイの特徴、前記基板又は前記ダイ上で処理されることになるパターンのジオメトリの特徴、或いはその両方を用いて、欠陥の存在、欠陥の存在の確率、欠陥の特徴、又はそれらの組み合わせを予測又は決定すること、
前記欠陥を消去する、前記欠陥の確率を低減させる、又は前記欠陥の重大度を低減させるように、前記予測又は決定に基づいて前記処理パラメータを調整すること、
を含む、デバイスを製造する方法。
12.設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
前記設計レイアウトの前記一部からホットスポットを識別すること、
前記デバイス製造プロセスに伴って前記ホットスポットから生成される欠陥の存在、存在の確率、特徴、又はそれらの組み合わせを決定又は予測すること、
前記欠陥の存在、存在の確率、特徴、又はそれらの組み合わせの前記決定又は予測に少なくとも部分的に基づいて、前記ホットスポットを検査するかどうかを決定すること、
を含む、コンピュータ実装欠陥予測方法。
13.設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
前記設計レイアウトの前記一部からホットスポットを識別すること、
前記ホットスポットに関する前記デバイス製造プロセスの処理パラメータに関して、前記ホットスポットの感度を決定すること、
前記同じ感度を有するマークを生成すること、
前記マークを前記設計レイアウトに追加すること、
を含む、コンピュータ実装欠陥予測方法。
14.設計レイアウトの一部を基板上に処理することを含むデバイス製造プロセスのための欠陥予測の方法であって、
前記デバイス製造プロセスの処理パラメータの実際値を決定すること、
前記実際値に少なくとも部分的に基づいて、検査マップを構築することであって、前記検査マップは前記基板上の潜在的欠陥の位置を含む、構築すること、
を含む、欠陥予測の方法。
15.前記検査マップを構築することは、プロセスシミュレーションモデルを用いて少なくともいくつかの前記識別された潜在的欠陥をシミュレートすることを更に含む、前記14に記載の方法。

Claims (1)

  1. 設計レイアウトの一部を基板上に処理することを含む、デバイス製造プロセスのためのコンピュータ実装欠陥予測方法であって、
    デバイス製造プロセスにより基板上に処理するための設計レイアウトの一部からホットスポットを識別すること、
    前記ホットスポットのデバイス製造プロセスの処理パラメータに関して、前記ホットスポットの感度を決定すること、および
    前記ホットスポットの決定された感度と同様の感度を備える測定マークを決定すること、
    を含む、コンピュータ実装欠陥予測方法。


JP2018223995A 2014-06-10 2018-11-29 計算的ウェーハ検査 Active JP6697530B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462010221P 2014-06-10 2014-06-10
US62/010,221 2014-06-10
US201462023589P 2014-07-11 2014-07-11
US62/023,589 2014-07-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016570068A Division JP6491677B2 (ja) 2014-06-10 2015-05-26 計算的ウェーハ検査

Publications (2)

Publication Number Publication Date
JP2019061267A JP2019061267A (ja) 2019-04-18
JP6697530B2 true JP6697530B2 (ja) 2020-05-20

Family

ID=53268803

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016570068A Active JP6491677B2 (ja) 2014-06-10 2015-05-26 計算的ウェーハ検査
JP2018223995A Active JP6697530B2 (ja) 2014-06-10 2018-11-29 計算的ウェーハ検査

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016570068A Active JP6491677B2 (ja) 2014-06-10 2015-05-26 計算的ウェーハ検査

Country Status (7)

Country Link
US (5) US9507907B2 (ja)
JP (2) JP6491677B2 (ja)
KR (1) KR101991418B1 (ja)
CN (2) CN106463434B (ja)
SG (1) SG11201610106SA (ja)
TW (1) TWI549012B (ja)
WO (1) WO2015189026A2 (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939288B1 (ko) * 2014-02-12 2019-01-16 에이에스엠엘 네델란즈 비.브이. 프로세스 윈도우를 최적화하는 방법
KR101991418B1 (ko) * 2014-06-10 2019-06-20 에이에스엠엘 네델란즈 비.브이. 컴퓨터를 이용한 웨이퍼 검사
KR102250062B1 (ko) * 2014-07-04 2021-05-11 삼성전자주식회사 반도체 소자의 제조 방법 및 장치
WO2016045901A1 (en) 2014-09-22 2016-03-31 Asml Netherlands B.V. Process window identifier
WO2016128189A1 (en) * 2015-02-13 2016-08-18 Asml Netherlands B.V. Process variability aware adaptive inspection and metrology
US9891538B2 (en) * 2015-03-16 2018-02-13 Kla-Tencor Corp. Adaptive sampling for process window determination
US11126092B2 (en) * 2015-11-13 2021-09-21 Asml Netherlands B.V. Methods for determining an approximate value of a processing parameter at which a characteristic of the patterning process has a target value
IL259633B (en) 2015-12-22 2022-07-01 Asml Netherlands Bv A device and method for characterizing a window process
US9965848B2 (en) * 2015-12-23 2018-05-08 Kla-Tencor Corporation Shape based grouping
US11094502B2 (en) 2015-12-24 2021-08-17 Asml Netherlands B.V. Method and apparatus for inspection
KR102190292B1 (ko) 2015-12-31 2020-12-14 에이에스엠엘 네델란즈 비.브이. 패터닝 공정들을 위한 측정 위치들의 선택
US9915625B2 (en) * 2016-01-04 2018-03-13 Kla-Tencor Corp. Optical die to database inspection
WO2017178285A1 (en) * 2016-04-15 2017-10-19 Asml Netherlands B.V. Method for adjusting actuation of a lithographic apparatus
US11443083B2 (en) * 2016-05-12 2022-09-13 Asml Netherlands B.V. Identification of hot spots or defects by machine learning
US10649342B2 (en) * 2016-07-11 2020-05-12 Asml Netherlands B.V. Method and apparatus for determining a fingerprint of a performance parameter
TWI647528B (zh) * 2016-07-12 2019-01-11 荷蘭商Asml荷蘭公司 用於視覺化設計佈局之計算分析之效能度量的方法及系統
CN109643106B (zh) * 2016-08-15 2021-09-24 Asml荷兰有限公司 用于提高半导体制造产率的方法
US10402688B2 (en) 2016-12-07 2019-09-03 Kla-Tencor Corporation Data augmentation for convolutional neural network-based defect inspection
EP3343294A1 (en) * 2016-12-30 2018-07-04 ASML Netherlands B.V. Lithographic process & apparatus and inspection process and apparatus
US10140400B2 (en) * 2017-01-30 2018-11-27 Dongfang Jingyuan Electron Limited Method and system for defect prediction of integrated circuits
KR102370347B1 (ko) * 2017-02-02 2022-03-04 에이에스엠엘 네델란즈 비.브이. 메트롤로지 방법 및 장치 및 연계된 컴퓨터 제품
US10890540B2 (en) 2017-03-21 2021-01-12 Asml Netherlands B.V. Object identification and comparison
TWI641960B (zh) * 2017-04-05 2018-11-21 敖翔科技股份有限公司 設計佈局的失效風險的智慧型預診斷系統及方法
TWI837773B (zh) * 2017-06-28 2024-04-01 日商東京威力科創股份有限公司 熱處理裝置之狀態監視裝置、熱處理裝置之管理方法及記錄媒體
KR102597444B1 (ko) * 2017-07-12 2023-11-03 에이에스엠엘 네델란즈 비.브이. 결함 예측
US11282695B2 (en) 2017-09-26 2022-03-22 Samsung Electronics Co., Ltd. Systems and methods for wafer map analysis
US10445452B2 (en) * 2017-10-04 2019-10-15 Mentor Graphics Corporation Simulation-assisted wafer rework determination
US11079687B2 (en) 2017-12-22 2021-08-03 Asml Netherlands B.V. Process window based on defect probability
WO2019129468A1 (en) * 2017-12-29 2019-07-04 Asml Netherlands B.V. Method of processing data, method of obtaining calibration data
JP6966342B2 (ja) * 2018-01-31 2021-11-17 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
KR102499656B1 (ko) 2018-02-23 2023-02-14 에이에스엠엘 네델란즈 비.브이. 패턴의 시맨틱 분할을 위한 딥 러닝
US10572697B2 (en) 2018-04-06 2020-02-25 Lam Research Corporation Method of etch model calibration using optical scatterometry
US11921433B2 (en) 2018-04-10 2024-03-05 Lam Research Corporation Optical metrology in machine learning to characterize features
WO2019199697A1 (en) * 2018-04-10 2019-10-17 Lam Research Corporation Resist and etch modeling
US10872406B2 (en) 2018-04-13 2020-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Hot spot defect detecting method and hot spot defect detecting system
WO2019242922A1 (en) * 2018-06-19 2019-12-26 Asml Netherlands B.V. Method for controlling a manufacturing apparatus and associated apparatuses
US10605745B2 (en) * 2018-06-28 2020-03-31 Applied Materials Israel Ltd. Guided inspection of a semiconductor wafer based on systematic defects
JP7305430B2 (ja) * 2018-06-29 2023-07-10 キヤノン株式会社 情報処理装置、プログラム、リソグラフィ装置、リソグラフィシステム、および物品の製造方法
EP3627225A1 (en) 2018-09-19 2020-03-25 ASML Netherlands B.V. Particle beam apparatus, defect repair method, lithographic exposure process and lithographic system
TW202020577A (zh) * 2018-09-28 2020-06-01 荷蘭商Asml荷蘭公司 基於晶圓量測判定熱點排序
US10481379B1 (en) * 2018-10-19 2019-11-19 Nanotronics Imaging, Inc. Method and system for automatically mapping fluid objects on a substrate
CN112969968B (zh) * 2018-11-08 2024-06-11 Asml荷兰有限公司 基于过程变化度的空间特性对不合格的预测
WO2020135997A1 (en) * 2018-12-26 2020-07-02 Asml Netherlands B.V. System and method for inspecting a wafer
CN113272736A (zh) * 2018-12-31 2021-08-17 Asml荷兰有限公司 用于过程控制的管芯内量测方法和系统
JP7366626B2 (ja) * 2019-07-31 2023-10-23 キヤノン株式会社 判断装置
CN114341742A (zh) * 2019-09-03 2022-04-12 Asml荷兰有限公司 确定图案的像差灵敏度的方法
US11221300B2 (en) 2020-03-20 2022-01-11 KLA Corp. Determining metrology-like information for a specimen using an inspection tool
CN111429426B (zh) * 2020-03-20 2023-06-02 上海集成电路研发中心有限公司 一种检测对象缺陷图案的提取装置、提取方法及存储介质
CN111221225B (zh) * 2020-04-24 2020-08-18 南京诚芯集成电路技术研究院有限公司 光刻工艺质量评估方法及反馈控制系统
CN113837983B (zh) * 2020-06-08 2023-09-15 长鑫存储技术有限公司 一种晶圆缺陷分析方法、系统、设备和介质
WO2022245381A1 (en) * 2021-05-21 2022-11-24 Siemens Industry Software Inc. Real-time patterning hotspot analyzer
CN113658125B (zh) * 2021-08-11 2024-02-23 全芯智造技术有限公司 用于评估版图热点的方法、设备和存储介质

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045445Y2 (ja) 1971-10-07 1975-12-23
JPS5327134Y2 (ja) 1972-08-31 1978-07-10
JPS4958616A (ja) 1972-10-06 1974-06-06
JPS5045445A (ja) 1973-08-29 1975-04-23
JPS5045445U (ja) 1973-09-04 1975-05-07
JPH0254547A (ja) 1988-08-18 1990-02-23 Seiko Epson Corp 半導体集積回路
AU2002245560A1 (en) * 2001-03-20 2002-10-03 Numerial Technologies, Inc. System and method of providing mask defect printability analysis
JP3756119B2 (ja) 2002-02-22 2006-03-15 興亜化工株式会社 膨脹式救命衣
JP2003248295A (ja) * 2002-02-27 2003-09-05 Sony Corp 露光マスク、露光マスクの製造方法、および露光方法
US6882745B2 (en) * 2002-12-19 2005-04-19 Freescale Semiconductor, Inc. Method and apparatus for translating detected wafer defect coordinates to reticle coordinates using CAD data
US6847588B1 (en) * 2004-03-16 2005-01-25 L-3 Communications Corporation Method for changing the frequency for sampling sonar wavefronts
TW200636521A (en) 2004-07-14 2006-10-16 August Technology Corp All surface data for use in substrate inspection
WO2006070672A1 (ja) 2004-12-28 2006-07-06 Kowa Co., Ltd. 含水型貼付剤
DE102005009536A1 (de) 2005-02-25 2006-08-31 Carl Zeiss Sms Gmbh Verfahren zur Maskeninspektion im Rahmen des Maskendesigns und der Maskenherstellung
KR100982135B1 (ko) 2005-09-09 2010-09-14 에이에스엠엘 네델란즈 비.브이. 개별 마스크 오차 모델을 사용하는 마스크 검증 방법 및시스템
JP4996856B2 (ja) * 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
US8146024B2 (en) 2006-12-18 2012-03-27 Cadence Design Systems, Inc. Method and system for process optimization
US7694244B2 (en) 2006-12-18 2010-04-06 Cadence Design Systems, Inc. Modeling and cross correlation of design predicted criticalities for optimization of semiconductor manufacturing
US7665048B2 (en) 2006-12-18 2010-02-16 Cadence Design Systems, Inc. Method and system for inspection optimization in design and production of integrated circuits
TW200830129A (en) 2007-01-12 2008-07-16 Powertech Technology Inc On-line dispatching method used in chip probing
US7689948B1 (en) 2007-02-24 2010-03-30 Cadence Design Systems, Inc. System and method for model-based scoring and yield prediction
US7697128B2 (en) 2007-03-23 2010-04-13 Asml Netherlands B.V. Method of imaging radiation from an object on a detection device and an inspection device for inspecting an object
JP2008242112A (ja) 2007-03-28 2008-10-09 Toshiba Corp マスクパターン評価装置及びフォトマスクの製造方法
US8452075B2 (en) 2007-04-11 2013-05-28 Synopsys, Inc. Range pattern matching for hotspots containing vias and incompletely specified range patterns
JP4958616B2 (ja) 2007-04-20 2012-06-20 株式会社日立ハイテクノロジーズ ホットスポット絞り込み装置、ホットスポット絞り込み方法、ホットスポット絞り込みプログラム、ホットスポット検査装置、および、ホットスポット検査方法
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
JP5045445B2 (ja) 2008-01-09 2012-10-10 ソニー株式会社 マスクパターン補正方法、マスクパターン補正プログラム、マスクパターン補正装置、露光条件設定方法、露光条件設定プログラム、露光条件設定装置、半導体装置製造方法、半導体装置製造プログラムおよび半導体装置製造装置
JP5175577B2 (ja) 2008-02-18 2013-04-03 株式会社日立ハイテクノロジーズ 集積回路パターンの欠陥検査方法、及びその装置
JP5065943B2 (ja) * 2008-02-29 2012-11-07 株式会社日立ハイテクノロジーズ 製造プロセスモニタリングシステム
US9710903B2 (en) * 2008-06-11 2017-07-18 Kla-Tencor Corp. System and method for detecting design and process defects on a wafer using process monitoring features
JP4843649B2 (ja) 2008-08-07 2011-12-21 株式会社東芝 評価パターン作成方法、評価パターン作成プログラムおよびパターン検証方法
JP2010102055A (ja) 2008-10-23 2010-05-06 Sony Corp パターン評価方法、露光用マスク、露光方法、露光用マスクの製造方法および半導体装置の製造方法
JP5559305B2 (ja) 2009-04-20 2014-07-23 オーチス エレベータ カンパニー 安全装置用パラメータの自動調節
JP5297261B2 (ja) * 2009-04-28 2013-09-25 株式会社日立ハイテクノロジーズ 観察欠陥選択処理方法、欠陥観察方法、観察欠陥選択処理装置、欠陥観察装置
US8302052B2 (en) 2009-06-23 2012-10-30 Cadence Design Systems, Inc. Methods, systems, and computer program product for implementing hotspot detection, repair, and optimization of an electronic circuit design
JP5572218B2 (ja) 2009-10-13 2014-08-13 エーエスエムエル ネザーランズ ビー.ブイ. 検査方法及び装置
JP5398502B2 (ja) * 2009-12-10 2014-01-29 株式会社東芝 パターン作成方法、プロセス決定方法およびデバイス製造方法
US8108805B2 (en) * 2010-03-26 2012-01-31 Tokyo Electron Limited Simplified micro-bridging and roughness analysis
NL2007577A (en) * 2010-11-10 2012-05-14 Asml Netherlands Bv Optimization of source, mask and projection optics.
NL2008285A (en) 2011-03-11 2012-09-12 Asml Netherlands Bv Method of controlling a lithographic apparatus, device manufacturing method, lithographic apparatus, computer program product and method of improving a mathematical model of a lithographic process.
US8555210B2 (en) 2011-04-29 2013-10-08 Micron Technology, Inc. Systems and methods for stochastic models of mask process variability
NL2008957A (en) 2011-07-08 2013-01-09 Asml Netherlands Bv Methods and systems for pattern design with tailored response to wavefront aberration.
US8402397B2 (en) 2011-07-26 2013-03-19 Mentor Graphics Corporation Hotspot detection based on machine learning
US8504949B2 (en) 2011-07-26 2013-08-06 Mentor Graphics Corporation Hybrid hotspot detection
US8755045B2 (en) 2012-01-06 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Detecting method for forming semiconductor device
JP5880129B2 (ja) 2012-02-24 2016-03-08 富士通株式会社 欠陥箇所予測装置,欠陥箇所予測プログラムおよび欠陥箇所予測方法
US9367655B2 (en) 2012-04-10 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Topography-aware lithography pattern check
US9606442B2 (en) * 2012-07-30 2017-03-28 Asml Netherlands B.V. Position measuring apparatus, position measuring method, lithographic apparatus and device manufacturing method
CN103744267B (zh) 2013-11-28 2015-07-08 上海华力微电子有限公司 基于规则图形过滤的版图设计光刻工艺友善性检查方法
CN103645612B (zh) * 2013-11-29 2015-08-05 上海华力微电子有限公司 光刻工艺图形缺陷检测方法
CN103645611B (zh) 2013-11-29 2015-11-25 上海华力微电子有限公司 一种版图设计光刻工艺友善性检测方法
KR101924487B1 (ko) 2013-12-17 2018-12-03 에이에스엠엘 네델란즈 비.브이. 수율 추산 및 제어
KR102246286B1 (ko) 2013-12-30 2021-04-30 에이에스엠엘 네델란즈 비.브이. 메트롤로지 타겟의 디자인을 위한 방법 및 장치
WO2015101458A1 (en) 2013-12-30 2015-07-09 Asml Netherlands B.V. Method and apparatus for design of a metrology target
KR101860042B1 (ko) 2013-12-30 2018-05-21 에이에스엠엘 네델란즈 비.브이. 메트롤로지 타겟의 디자인을 위한 장치 및 방법
WO2015101461A2 (en) 2013-12-30 2015-07-09 Asml Netherlands B.V. Method and apparatus for design of a metrology target
KR101939288B1 (ko) * 2014-02-12 2019-01-16 에이에스엠엘 네델란즈 비.브이. 프로세스 윈도우를 최적화하는 방법
KR101991418B1 (ko) * 2014-06-10 2019-06-20 에이에스엠엘 네델란즈 비.브이. 컴퓨터를 이용한 웨이퍼 검사
WO2016012316A1 (en) * 2014-07-21 2016-01-28 Asml Netherlands B.V. Method for determining a process window for a lithographic process, associated apparatuses and a computer program
WO2016045901A1 (en) 2014-09-22 2016-03-31 Asml Netherlands B.V. Process window identifier
WO2016091534A1 (en) 2014-12-09 2016-06-16 Asml Netherlands B.V. Method and apparatus for image analysis
WO2016091536A1 (en) 2014-12-09 2016-06-16 Asml Netherlands B.V. Method and apparatus for image analysis
US10372043B2 (en) 2014-12-17 2019-08-06 Asml Netherlands B.V. Hotspot aware dose correction
US10725372B2 (en) 2015-02-12 2020-07-28 Asml Netherlands B.V. Method and apparatus for reticle optimization
WO2016128189A1 (en) 2015-02-13 2016-08-18 Asml Netherlands B.V. Process variability aware adaptive inspection and metrology
WO2016142169A1 (en) 2015-03-06 2016-09-15 Asml Netherlands B.V. Focus-dose co-optimization based on overlapping process window

Also Published As

Publication number Publication date
TW201602821A (zh) 2016-01-16
WO2015189026A3 (en) 2016-02-18
US20210357570A1 (en) 2021-11-18
US20180365369A1 (en) 2018-12-20
US20150356233A1 (en) 2015-12-10
CN106463434A (zh) 2017-02-22
SG11201610106SA (en) 2016-12-29
US9507907B2 (en) 2016-11-29
KR20170015500A (ko) 2017-02-08
US9990462B2 (en) 2018-06-05
CN112530828A (zh) 2021-03-19
TWI549012B (zh) 2016-09-11
US11080459B2 (en) 2021-08-03
WO2015189026A2 (en) 2015-12-17
KR101991418B1 (ko) 2019-06-20
US20170046473A1 (en) 2017-02-16
JP2019061267A (ja) 2019-04-18
US10579772B2 (en) 2020-03-03
JP2017524963A (ja) 2017-08-31
US20200218849A1 (en) 2020-07-09
US12067340B2 (en) 2024-08-20
JP6491677B2 (ja) 2019-03-27
CN106463434B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
JP6697530B2 (ja) 計算的ウェーハ検査
JP6641422B2 (ja) プロセスウィンドウを最適化する方法
US11561480B2 (en) System and method for inspecting a wafer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6697530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250