JP6603348B2 - 失火判定装置 - Google Patents

失火判定装置 Download PDF

Info

Publication number
JP6603348B2
JP6603348B2 JP2018056413A JP2018056413A JP6603348B2 JP 6603348 B2 JP6603348 B2 JP 6603348B2 JP 2018056413 A JP2018056413 A JP 2018056413A JP 2018056413 A JP2018056413 A JP 2018056413A JP 6603348 B2 JP6603348 B2 JP 6603348B2
Authority
JP
Japan
Prior art keywords
engine
misfire
misfire determination
speed
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056413A
Other languages
English (en)
Other versions
JP2019167883A (ja
Inventor
真雄 太田
竜也 市川
大樹 志波
雅也 梶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2018056413A priority Critical patent/JP6603348B2/ja
Priority to US16/208,837 priority patent/US10866160B2/en
Priority to CN201910090896.XA priority patent/CN110293960A/zh
Publication of JP2019167883A publication Critical patent/JP2019167883A/ja
Application granted granted Critical
Publication of JP6603348B2 publication Critical patent/JP6603348B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/022Actuator failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、失火判定装置に関し、特に、駆動力源としてエンジンと電動モータを搭載したハイブリッド車両においてエンジンの失火を判定する失火判定装置に関する。
従来から、エンジンの失火による排気エミッションの悪化を防止するために、エンジンの失火判定が行われている。一方、近年、エンジンと電動モータとを併用することで車両の燃料消費率(燃費)を効果的に向上させることができるハイブリッド自動車(HEV)やプラグイン・ハイブリッド自動車(PHEV)が広く実用化されている。
ところで、通常、エンジンの失火判定は、エンジン回転速度を点火周期ごとに比較することにより(すなわち、エンジンの回転変動に基づいて)行なわれるが、例えば、エンジンがダンパなどの捩じれ要素を介して車軸側に接続されているハイブリッド車では、捩じれ要素の捩じれがエンジンの回転変動に影響を及ぼすためエンジンの失火を精度よく判定することが困難となるおそれがある。特に、捩じれ要素等が共振を起こした場合にはエンジン回転が振動して、正常燃焼と失火とを分離して判定できなくなるおそれがある。
ここで、特許文献1には、捩じれ要素等の共振による影響を考慮しつつ、エンジンの失火を判定する失火判定システムが開示されている。
より詳細には、この失火判定システムでは、EFI−ECUが、同期用信号を基準として、前段軸回転数(エンジン回転数Ne)の検出時刻である前段時刻を計測する。一方、HV−ECUは、同期用信号を基準として計測されたモータ時刻を、後段軸回転数(インプットシャフト回転数Nd)の算出時刻である後段時刻として設定する。そして、EFI−ECUは、通信線を介してHV−ECUからインプットシャフト回転数Ndと後段時刻を取得し、前段時刻と後段時刻とが最も近いエンジン回転数Neとインプットシャフト回転数Ndとに基づいて、共振がエンジン回転数Neに影響を及ぼす共振影響成分Ndeを演算する。そして、この共振影響成分Ndeをエンジン回転数Neから減じて得られる検出用回転数に基づいてエンジンの失火判定を行う。
特開2015−174492号公報
上述したように、特許文献1に記載の失火判定システムによれば、エンジン回転数Ne及びインプットシャフト回転数Ndを取得するまでに遅延があったとしても、最も近い前段時刻と後段時刻とを特定できる。そして、前段時刻と後段時刻とが最も近いエンジン回転数Neとインプットシャフト回転数Ndとを用いてエンジンの失火判定を行うことができる。
しかしながら、上述した失火判定システムでは、エンジン回転数Neとインプットシャフト回転数Ndの同期を取り、その後、共振影響成分Ndeを演算する必要がある。より具体的には、エンジン回転数Neとインプットシャフト回転数Ndから捩じれ角θdを計算し、該捩じれ角θdからノイズ含有共振影響成分Ndenを計算し、該ノイズ含有共振影響成分Ndenからハイパスフィルタを用いてノイズを除去することによって共振影響成分Ndeを取得する必要がある。そして、エンジン回転数Neから共振影響成分Ndeが減算されて判定用回転数が取得され、該判定用回転数を用いて失火判定が行われる。そのため、失火判定に要する処理負荷が増大するおそれがある。特に、失火判定は各気筒の点火周期毎に実行する必要があるため、すなわち処理の実行頻度が高いため、処理負荷の増大を抑えたいという要望がある。
本発明は、上記問題点を解消する為になされたものであり、エンジンが捩じれ要素を介して車軸側に接続されたハイブリッド車両においてエンジンの失火を判定する失火判定装置であって、処理負荷の増大を抑制しつつ、捩じれ要素に共振が生じた場合であっても精度よく失火を判定することが可能な失火判定装置を提供することを目的とする。
本発明に係る失火判定装置は、エンジンが捩じれ要素を介して車軸側に接続されるとともに、該車軸と電動モータとがトルク伝達可能に接続されたハイブリッド車両においてエンジンの失火を判定する失火判定装置であって、エンジンのエンジン回転数を取得するエンジン回転数取得手段と、電動モータのモータ回転数を取得するモータ回転数取得手段と、モータ回転数、及び、電動モータとエンジンとの間の総ギヤ比に基づいて、演算によって演算エンジン回転数を求めるエンジン回転数演算手段と、エンジン回転数と演算エンジン回転数との回転偏差を取得する回転偏差取得手段と、回転偏差が判定しきい値を超えた場合に、エンジンが失火していると判定する失火判定手段とを備えることを特徴とする。
本発明に係る失火判定装置によれば、エンジン回転数(回転速度)、及び、モータ回転数(回転速度)が取得され、モータ回転数、及び、電動モータとエンジンとの間の総ギヤ比に基づいて、演算によって演算エンジン回転数が求められる。そして、エンジン回転数と演算エンジン回転数との回転偏差が取得され、該回転偏差が判定しきい値を超えた場合に、エンジンが失火していると判定される。すなわち、直接的に取得されたエンジン回転数と、捩じれ要素の下流側に設けられた電動モータの回転数から演算で求められた演算エンジン回転数との偏差を取ること(比較すること)で、失火(エンジントルクの低下)による回転偏差のみを抽出することができる。その結果、処理負荷の増大を抑制しつつ、捩じれ要素に共振が生じた場合であっても精度よく失火を判定することが可能となる。
特に、本発明に係る失火判定装置は、所定クランクアングル間における回転偏差の平均値を求める平均値取得手段をさらに備え、失火判定手段が、回転偏差から平均値を減算して減算後の回転偏差を求め、該減算後の回転偏差が判定しきい値を超えた場合にエンジンが失火していると判定することが好ましい。
この場合、所定クランクアングル間における回転偏差の平均値が求められ、回転偏差から平均値が減算されて減算後の回転偏差が求められる。そして、減算後の回転偏差が判定しきい値を超えた場合にエンジンが失火していると判定される。すなわち、まず、エンジン回転数と演算エンジン回転数との回転偏差が所定クランクアングル間において平均化されて、エンジン回転数と演算エンジン回転数との潜在的なズレ量(オフセット)が算出される。そして、回転偏差から平均値(潜在的なズレ量)が減算され、減算後の回転偏差(瞬時回転偏差)が算出される。そのため、エンジン回転数と演算エンジン回転数との回転偏差から潜在的なズレ量(オフセット)を取り除くことで、失火のように突発的に発生する回転変化を抽出することができ、共振領域においても精度良く失火を判定することが可能となる。
本発明に係る失火判定装置では、上記所定クランクアングル間が、捩じれ要素の共振周波数に応じて設定されることが好ましい。
このようにすれば、エンジン回転数と演算エンジン回転数との潜在的なズレ量(オフセット)をより適切に算出することができる。
本発明に係る失火判定装置では、上記判定しきい値が、エンジン回転数とエンジン負荷とに応じて定められることが好ましい。
このようにすれば、より適切に判定しきい値を設定することができる。
本発明に係る失火判定装置では、上記判定しきい値が、エンジン冷却水温度に応じて補正されることが好ましい。
ところで、冷態時にはエンジンの燃えが悪くなる。この場合、水温に応じて判定しきい値が補正されるため、誤判定を防止して、より精度よく失火を判定することが可能となる。
本発明に係る失火判定装置では、エンジンが一時停止された後、エンジンが再始動されたときに、失火判定手段が、失火判定の実行を再開するまでにディレイを設けることが好ましい。
ところで、エンジンの再始動直後は燃焼が比較的安定しない。この場合、エンジンが再始動されたときにディレイを設けることにより、誤判定を防止することが可能となる。
本発明に係る失火判定装置では、失火判定手段が、捩じれ要素の共振が発生し得るエンジン回転数領域において、失火判定を実行することが好ましい。
このようにすれば、捩じれ要素の共振領域(共振が発生するエンジン回転領域)に限って失火判定が実行されるため、処理負荷の増大をより抑制することが可能となる。
本発明に係る失火判定装置では、失火判定手段が、減算後の回転偏差が判定しきい値を超えたか否かに応じてエンジンが失火しているか否かを判定することに加えて、点火タイミングに応じたクランクアングルでのエンジン回転数と、該クランクアングルに対して所定クランクアングル前のエンジン回転数との差分が所定のしきい値を超えたか否かに応じてエンジンが失火しているか否かを判定し、いずれか一方又は双方でエンジンが失火していると判定された場合に、エンジンが失火していると判定することが好ましい。
このように、エンジンと電動モータとの回転偏差に基づいて失火を判定する手法と、エンジンの回転変動に基づいて失火を判定する手法とを組み合わせて失火を判定することにより、全運転領域において(すなわち捩じれ要素の共振領域以外でも)失火の判定精度を向上することが可能となる。
本発明に係る失火判定装置では、失火判定手段が、エンジンが失火していると判定する毎に、失火判定回数をカウントするカウンタ値をカウントアップし、該カウンタ値が所定値に達した場合に、失火異常と確定することが好ましい。
このようにすれば、誤判定を防止でき、かつ、失火の程度が排気エミッションに悪影響が出るおそれがある程度になった場合に失火異常と確定することが可能となる。
本発明によれば、エンジンが捩じれ要素を介して車軸側に接続されたハイブリッド車両において、処理負荷の増大を抑制しつつ、捩じれ要素に共振が生じた場合であっても精度よく失火を判定することが可能となる。
実施形態に係る失火判定装置が搭載されたハイブリッド車両のパワーユニットの構成を示すスケルトン図、及び、その制御システムの構成を示すブロック図である。 実施形態に係る失火判定装置及び該失火判定装置が適用されたエンジンの構成を示す図である。 実施形態に係る失火判定装置による失火判定を説明するための図である(第1図)。 実施形態に係る失火判定装置による失火判定を説明するための図である(第2図)。 実施形態に係る失火判定装置による失火判定処理の処理手順を示すフローチャートである。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。
まず、図1及び図2を併せて用いて、実施形態に係る失火判定装置1の構成について説明する。図1は、失火判定装置1が搭載されたハイブリッド車両のパワーユニットの構成を示すスケルトン図、及び、その制御システムの構成を示すブロック図である。図2は、失火判定装置1および該失火判定装置1が適用されたエンジン10の構成を示す図である。なお、ここでは、失火判定装置1を、シリーズ・パラレル・ハイブリッド車(HEV)に搭載した場合を例にして説明する。
まず、図1を参照しつつ、ハイブリッド車両のパワーユニット等の構成について説明する。エンジン10(詳細は後述する)のクランクシャフト10aには、エンジン10の回転変動を吸収するフライホイールダンパ20(特許請求の範囲に記載の捩じれ要素に相当)及び一対のギヤ21を介して、動力分割機構30が接続されている。動力分割機構30には、複数のギヤやシャフト等から構成され、駆動輪との間でトルクを伝達するドライブトレーン15、及び、第1モータ・ジェネレータ(MG)11(特許請求の範囲に記載の電動モータに相当)が接続されている。動力分割機構30は、例えば、サンギヤ30a、リングギヤ30b、ピニオンギヤ30c、及びプラネタリキャリア30dから構成される遊星歯車機構を有しており、エンジン10から発生した駆動トルクを、ドライブトレーン15と第1モータ・ジェネレータ11とに分割して伝達する。
より具体的には、キャリア30dは、フライホイールダンパ20及び一対のギヤ21を介して、エンジン10のクランクシャフト10aに連結されている。サンギヤ30aは第1モータ・ジェネレータ11に連結されている。一方、リングギヤ30bは、一対のギヤ(カウンタギヤ)31を介して、ドライブトレーン15を構成するプロペラシャフト(後輪出力軸、特許請求の範囲に記載の車軸に相当)50に接続されるとともに、さらに駆動用リダクションギヤ43を介してフロントドライブシャフト(前輪出力軸、特許請求の範囲に記載の車軸に相当)60に接続されている。
動力分配機構30は、第1モータ・ジェネレータ11がジェネレータ(発電機)として機能するときには、プラネタリキャリア30dから入力されるエンジン10からのトルク(駆動力)をサンギヤ30aとリングギヤ30bとに双方のギヤ比に応じて分配する。一方、動力分配機構30は、第1モータ・ジェネレータ11がモータ(電動機)として機能するときには、プラネタリキャリア30dから入力されるエンジン10からのトルクと、サンギヤ30aから入力される第1モータ・ジェネレータ11からのトルクとを統合してリングギヤ30bに出力する。リングギヤ30bに出力されたトルクは、一対のギヤ(カウンタギヤ)31を介して、ドライブトレーン15を構成するプロペラシャフト50に出力されるとともに、さらに駆動用リダクションギヤ43を介してフロントドライブシャフト60に出力される。
一方、ドライブトレーン15には、第2モータ・ジェネレータ(MG)12(特許請求の範囲に記載の電動モータに相当)も接続されている。より具体的には、第2モータ・ジェネレータ12は、モータ・リダクションギヤ41を介してプロペラシャフト50に接続されている。また、第2モータ・ジェネレータ12は、モータ・リダクションギヤ41及び駆動用リダクションギヤ43から構成される駆動用リダクションギヤ機構40を介して、フロントドライブシャフト60に接続されている。フロントドライブシャフト60は、前輪との間でトルクを伝達する。また、プロペラシャフト50は、後輪との間でトルクを伝達する。
第1モータ・ジェネレータ11及び第2モータ・ジェネレータ12は、供給された電力を機械的動力に変換するモータとしての機能と、入力された機械的動力を電力に変換するジェネレータとしての機能とを兼ね備えた同期発電電動機として構成されている。すなわち、第1モータ・ジェネレータ11及び第2モータ・ジェネレータ12それぞれは、車両駆動時には駆動トルクを発生するモータとして動作し、回生時にはジェネレータとして動作する。なお、第1モータ・ジェネレータ11は、主にジェネレータとして動作し、第2モータ・ジェネレータ12は、主にモータとして動作する。
駆動用リダクションギヤ機構40は、モータ・リダクションギヤ41及び駆動用リダクションギヤ43を有して構成されている。また、モータ・リダクションギヤ41は、プラネタリギヤから構成されており、リダクションギヤ43は、例えば、平ギヤ(又は斜歯ギヤ)から構成されている。
より詳細には、モータ・リダクションギヤ41は、例えば、サンギヤ41a、リングギヤ41b、ピニオンギヤ41c、及びプラネタリキャリア41dから構成される遊星歯車機構を有している。モータ・リダクションギヤ41は、第2モータ・ジェネレータ12がモータとして機能するときには、第2モータ・ジェネレータ12から伝達された回転を減速して(トルクを増大して)プラネタリキャリア41dから出力する。一方、モータ・リダクションギヤ41は、プラネタリキャリア41dに入力されたトルク(駆動力)による回転を加速して(トルクを低減させて)サンギヤ41aから出力することにより、第2モータ・ジェネレータ12をジェネレータとして機能させる。
フロントドライブシャフト60は、駆動用リダクションギヤ機構40と駆動輪(図1の例では前輪)との間でトルクを伝達する。より詳細には、フロントドライブシャフト60に伝達された第2モータ・ジェネレータ12などのトルクは、フロントデファレンシャル(以下「フロントデフ」ともいう)62に伝達される。フロントデフ62は、例えば、ベベルギヤ式の差動装置である。フロントデフ62からのトルクは、左前輪ドライブシャフトを介して左前輪(図示省略)に伝達されるとともに、右前輪ドライブシャフトを介して右前輪(図示省略)に伝達される。
一方、プロペラシャフト50は、後輪との間でトルクを伝達する。プロペラシャフト50には、後輪側に伝達されるトルクを調節するトランスファクラッチ51が介装されている。トランスファクラッチ51は、4輪の駆動状態(例えば前輪のスリップ状態等)やエンジントルクなどに応じて締結力(すなわち後輪へのトルク分配率)を制御する。よって、プロペラシャフト50に伝達された第2モータ・ジェネレータ12などのトルクは、トランスファクラッチ51の締結力に応じて分配され、後輪側にも伝達される。
より具体的には、プロペラシャフト50に伝達され、トランスファクラッチ51によって調節(分配)されたトルクは、リヤデファレンシャル(以下「リヤデフ」ともいう)52に伝達される。リヤデフ52には左後輪ドライブシャフト及び右後輪ドライブシャフト(図示省略)が接続されている。リヤデフ52からの駆動力は、左後輪ドライブシャフトを介して左後輪(図示省略)に伝達されるとともに、右後輪ドライブシャフトを介して右後輪(図示省略)に伝達される。
このように構成されているため、本実施形態に係る車両(AWDのHEV車)では、エンジン10と第2モータ・ジェネレータ12の2つの動力で前輪及び後輪(車両)を駆動することができる。また、走行条件に応じて、例えば、第2モータ・ジェネレータ12のみによる走行(EV走行)と、エンジン10及び第2モータ・ジェネレータ12による走行とを切替えることができる。さらに、第2モータ・ジェネレータ12などで発電することもできる。
車両の駆動力源であるエンジン10、及び、第2モータ・ジェネレータ12並びに第1モータ・ジェネレータ11は、ハイブリッド車・コントロールユニット(以下「HEV−CU」という)80によって総合的に制御される。
HEV−CU80は、演算を行うマイクロプロセッサ、該マイクロプロセッサに各処理を実行させるためのプログラム等を記憶するEEPROM、演算結果などの各種データを記憶するRAM、その記憶内容が保持されるバックアップRAM、及び入出力I/F等を有して構成されている。
HEV−CU80には、例えば、アクセルペダルの踏み込み量を検出するアクセルペダルセンサ91、スロットルバルブの開度を検出するスロットル開度センサ92、車両の前後・左右の加速度を検出するGセンサ(加速度センサ)93、車輪の速度を検出する車速センサ94、及び、フロントドライブシャフト60の回転数を検出する回転数センサ95、第1モータ・ジェネレータ11の回転数(回転速度)を検出するレゾルバ97、第2モータ・ジェネレータ12の回転数(回転速度)を検出するレゾルバ98などを含む各種センサが接続されている。なお、レゾルバ97、レゾルバ98それぞれは、特許請求の範囲に記載のモータ回転数取得手段として機能する。
また、HEV−CU80は、CAN(Controller Area Network)70を介して、エンジン10を制御するエンジン・コントロールユニット(以下「ECU」という)81や、車両の横滑りなどを抑制して走行安定性を向上させるビークルダイナミック・コントロールユニット(以下「VDCU」という)85等と相互に通信可能に接続されている。HEV−CU80は、CAN70を介して、ECU81やVDCU85から、例えば、エンジン回転数やブレーキ操作量等の各種情報を受信する。一方、HEV−CU80は、CAN70を介して、第1モータ・ジェネレータ11の回転数(回転速度)、第2モータ・ジェネレータ12の回転数(回転速度)等の各種情報をECU81に送信する。
HEV−CU80は、取得したこれらの各種情報に基づいて、エンジン10、第2モータ・ジェネレータ12、及び第1モータ・ジェネレータ11の駆動を総合的に制御する。HEV−CU80は、例えば、アクセルペダル開度(運転者の要求駆動力)、車両の運転状態、高電圧バッテリ(以下、単に「バッテリ」ともいう)90の充電状態(SOC)などに基づいて、エンジン10の要求出力、及び第2モータ・ジェネレータ12、第1モータ・ジェネレータ11のトルク指令値を求めて出力する。
パワーコントロールユニット(以下「PCU」という)82は、上記トルク指令値に基づいて、インバータ82aを介して、第2モータ・ジェネレータ12、第1モータ・ジェネレータ11を駆動する。PCU82は、高圧バッテリ90の直流電力を三相交流の電力に変換して第2モータ・ジェネレータ12、第1モータ・ジェネレータ11に供給するインバータ82aを有している。PCU82は、上述したように、HEV−CU80から受信したトルク指令値に基づいて、インバータ82aを介して、第2モータ・ジェネレータ12、第1モータ・ジェネレータ11を駆動する。一方、インバータ82aは、回生時に、第2モータ・ジェネレータ12で発電した交流電圧を直流電圧に変換して高圧バッテリ90を充電する。
また、ECU81は、上記要求出力に基づいて、例えば、電子制御式スロットルバルブ113の開度を調節する。次に、図2を参照しつつ、失火判定装置1及び該失火判定装置1が適用されたエンジン10の構成について詳細に説明する。
エンジン10は、どのような形式のものでもよいが、例えば水平対向型の4気筒ガソリンエンジンである。また、エンジン10は、シリンダ内(筒内)に燃料を直接噴射する筒内噴射式のエンジンである。エンジン10では、エアクリーナ116から吸入された空気が、吸気管115に設けられた電子制御式スロットルバルブ(以下、単に「スロットルバルブ」ともいう)113により絞られ、インテークマニホールド111を通り、エンジン10に形成された各気筒に吸入される。ここで、エアクリーナ116から吸入された空気の量は、エアクリーナ116とスロットルバルブ113との間に配置されたエアフローメータ114により検出される。また、インテークマニホールド111を構成するコレクター部(サージタンク)の内部には、インテークマニホールド111内の圧力(吸気マニホールド圧力)を検出するバキュームセンサ130が配設されている。さらに、スロットルバルブ113には、該スロットルバルブ113の開度を検出するスロットル開度センサ92が配設されている。
シリンダヘッドには、気筒毎に吸気ポート122と排気ポート123とが形成されている(図2では片バンクのみ示した)。各吸気ポート122、排気ポート123それぞれには、該吸気ポート122、排気ポート123を開閉する吸気バルブ124、排気バルブ125が設けられている。吸気バルブ124を駆動する吸気カム軸と吸気カムプーリとの間には、吸気カムプーリと吸気カム軸とを相対回動してクランクシャフト10aに対する吸気カム軸の回転位相(変位角)を連続的に変更して、吸気バルブ124のバルブタイミング(開閉タイミング)を進遅角する可変バルブタイミング機構126が配設されている。この可変バルブタイミング機構126により吸気バルブ124の開閉タイミングがエンジン運転状態に応じて可変設定される。
同様に、排気カム軸と排気カムプーリとの間には、排気カムプーリと排気カム軸とを相対回動してクランクシャフト10aに対する排気カム軸の回転位相(変位角)を連続的に変更して、排気バルブ125のバルブタイミング(開閉タイミング)を進遅角する可変バルブタイミング機構127が配設されている。この可変バルブタイミング機構127により排気バルブ125の開閉タイミングがエンジン運転状態に応じて可変設定される。
エンジン10の各気筒には、シリンダ内に燃料を噴射するインジェクタ112が取り付けられている。インジェクタ112は、高圧燃料ポンプ(図示省略)により加圧された燃料を各気筒の燃焼室内へ直接噴射する。
また、各気筒のシリンダヘッドには、混合気に点火する点火プラグ117、及び該点火プラグ117に高電圧を印加するイグナイタ内蔵型コイル121が取り付けられている。エンジン10の各気筒では、吸入された空気とインジェクタ112によって噴射された燃料との混合気が点火プラグ117により点火されて燃焼する。燃焼後の排気ガスは排気管118を通して排出される。
本実施形態では、排気管118として、排気を干渉させないようにするために、1番シリンダ(#1)と2番シリンダ(#2)、3番シリンダ(#3)と4番シリンダ(#4)をまず合流(集合)させ、その後1本に集合した4−2−1レイアウトを採用した。なお、4−2−1レイアウトに変えて、例えば、4−1レイアウト等を採用してもよい。
排気管118の集合部の下流かつ後述する排気浄化触媒120の上流には、空燃比センサ119が取り付けられている。空燃比センサ119としては、排気ガス中の酸素濃度、未燃ガス濃度に応じた信号(すなわち混合気の空燃比に応じた信号)を出力でき、空燃比をリニアに検出することができるリニア空燃比センサ(LAFセンサ)が用いられる。
LAFセンサ119の下流には排気浄化触媒120が配設されている。排気浄化触媒120は三元触媒であり、排気ガス中の炭化水素(HC)及び一酸化炭素(CO)の酸化と、窒素酸化物(NOx)の還元を同時に行い、排気ガス中の有害ガス成分を無害な二酸化炭素(CO)、水蒸気(HO)及び窒素(N)に清浄化するものである。
上述したエアフローメータ114、LAFセンサ119、バキュームセンサ130、スロットル開度センサ92に加え、エンジン10のカムシャフト近傍には、エンジン10の気筒判別を行うためのカム角センサ132が取り付けられている。また、エンジン10のクランクシャフト10a近傍には、クランクシャフト10aの回転位置(回転位置の時間変化から求められる回転角速度及び回転数)を検出するクランク角センサ133が取り付けられている。ここで、クランクシャフト10aの端部には、例えば、2歯欠歯した34歯の突起が10°間隔で形成されたタイミングロータ133aが取り付けられており、クランク角センサ133は、タイミングロータ133aの突起の有無を検出することにより、クランクシャフト10aの回転位置を検出する。カム角センサ132及びクランク角センサ133としては、例えば電磁ピックアップ式のものなどが用いられる。なお、クランク角センサ133は、特許請求の範囲に記載のエンジン回転数取得手段として機能する。
これらのセンサは、ECU81に接続されている。さらに、ECU81には、エンジン10の冷却水の温度を検出する水温センサ134等の各種センサも接続されている。また、ECU81は、CAN70を介して、HEV−CU80から、要求出力、第1モータ・ジェネレータ11の回転数(回転速度)、第2モータ・ジェネレータ12の回転数(回転速度)、アクセルペダル開度等の情報を受信する。
ECU81は、演算を行うマイクロプロセッサ、該マイクロプロセッサに各処理を実行させるためのプログラム等を記憶するEEPROM、演算結果などの各種データを記憶するRAM、バッテリによってその記憶内容が保持されるバックアップRAM、及び入出力I/F等を有して構成されている。また、ECU81は、インジェクタ112を駆動するインジェクタドライバ、点火信号を出力する出力回路、及び、電子制御式スロットルバルブ113を開閉する電動モータ113aを駆動するモータドライバ等を備えている。
ECU81では、カム角センサ132の出力から気筒が判別され、クランク角センサ133の出力から回転角速度およびエンジン回転数が求められる。また、ECU81では、上述した各種センサから入力される検出信号に基づいて、吸入空気量、吸気管負圧、混合気の空燃比、及び、エンジン10の水温等の各種情報が取得される。そして、ECU81は、HEV−CU80からの要求出力、及び、取得したこれらの各種情報に基づいて、燃料噴射量や点火時期、及び、スロットルバルブ113等の各種デバイスを制御することによりエンジン10を制御する。
特に、ECU81は、処理負荷の増大を抑制しつつ、フライホイールダンパ20に共振が生じた場合であっても精度よく失火を判定する機能を有している。そのため、ECU81は、エンジン回転数演算部81a、回転偏差取得部81b、平均値取得部81c、及び、失火判定部81dを機能的に備えている。ECU81では、EEPROMなどに記憶されているプログラムがマイクロプロセッサによって実行されることにより、エンジン回転数演算部81a、回転偏差取得部81b、平均値取得部81c、及び、失火判定部81dの各機能が実現される。
エンジン回転数演算部81aは、HEV−CU80から受信した第1モータ・ジェネレータ11(又は第2モータ・ジェネレータ12でもよい)のモータ回転数、及び、第1モータ・ジェネレータ11とエンジン10との間の総ギヤ比(図1の例では、ギヤ対21及びプラネタリギヤ30(サンギヤ30aとピニオンギヤ30c)のギヤ比)に基づいて、演算によってエンジン回転数(演算エンジン回転数)を求める。なお、演算エンジン回転数は、HEV−CU80側で算出してCAN70を介して受け取る構成としてもよい。すなわち、エンジン回転数演算部81aは、特許請求の範囲に記載のエンジン回転数演算手段として機能する。なお、求められた演算エンジン回転数は、回転偏差取得部81bに出力される。
回転偏差取得部81bは、エンジン回転数と演算エンジン回転数との回転偏差を取得する。すなわち、回転偏差取得部81bは、特許請求の範囲に記載の回転偏差取得手段として機能する。なお、取得された回転偏差は、平均値取得部81cに出力される。
平均値取得部81cは、所定のクランクアングル間(区間)におけるエンジン回転数と演算エンジン回転数との回転偏差の移動平均値(回転偏差平均値)を求める。すなわち、平均値取得部81cは、特許請求の範囲に記載の平均値取得手段として機能する。なお、移動平均を取る所定のクランクアングル間隔(すなわちデータ数)は、フライホイールダンパ20の共振周波数に応じて設定される。また、所定のクランクアングル間隔(データ数)は、エンジン10の回転数が高くなるほど大きくすることが好ましい。なぜならば、エンジン回転数が変化すると点火間隔(時間)が変化するが、共振周波数は変化しないため、共振の波を吸収するために要する点火数(データ数)が変化するためである。なお、求められた回転偏差の移動平均値は、失火判定部81dに出力される。
失火判定部81dは、回転偏差から、回転偏差の移動平均値を減算して減算後の回転偏差を求める。そして、失火判定部81dは、該減算後の回転偏差が判定しきい値を超えた場合にエンジン10が失火していると判定する。すなわち、失火判定部81dは、特許請求の範囲に記載の失火判定手段として機能する。ここで、失火判定部81dは、フライホイールダンパ20の共振が発生し得るエンジン回転数領域(例えば、1500〜2500rpm)において、上述した失火判定を実行する。
失火を判定するための判定しきい値は、失火を的確に判定するために、例えば、エンジン回転数とエンジン負荷(例えば吸入空気量から求められる)とに応じて定められる。なぜならば、エンジン回転数が変化すると慣性力の影響で回転偏差の出方が変わることと、エンジン10の出力トルクが変化すると失火したときの変動量が変化するためである。ここで、ECU81のEEPROM等には、エンジン回転数とエンジン負荷(例えば吸入空気量)と判定しきい値との関係を記憶したマップ(判定しきい値マップ)が記憶されている。失火判定部81dでは、エンジン回転数とエンジン負荷(吸入空気量)とによって判定しきい値マップを検索することにより判定しきい値を取得する。
また、判定しきい値は、誤判定を防止するために、エンジン10の冷却水温度に応じて補正(水温補正)される。なぜならば、冷態時は燃料の霧化が悪くなり(すなわち燃焼が悪くなり)、エンジン回転数が変動しやすいためである。さらに、誤判定を防止する観点から、失火判定部81dは、エンジン10が一時停止された後、エンジン10が再始動されとき(例えば、燃料カットやアイドリングストップからの復帰時など)に、失火判定の実行を再開するまでに所定のディレイ時間を設けることが好ましい。なぜならば、例えば燃料カットから復帰した直後などは燃焼が荒れやすく、回転偏差が大きくなる傾向があるためである。
そして、失火判定部81dは、エンジン10が失火していると判定する毎に、失火判定回数をカウントするカウンタ値をカウントアップし、該カウンタ値が所定値に達した場合に、失火異常と確定する。
なお、失火判定部81dは、上述したように、減算後の回転偏差が判定しきい値を超えたか否かに応じてエンジン10が失火しているか否かを判定することに加えて、点火タイミングに応じたクランクアングルでのエンジン回転数と、該クランクアングルに対して所定クランクアングル前(例えば、180°、360°、720°CA前)のエンジン回転数との差分(すなわちエンジン10の回転変動)が所定のしきい値を超えたか否かに応じてエンジン10が失火しているか否かを判定し、いずれか一方又は双方でエンジン10が失火していると判定された場合にエンジン10が失火していると判定することが好ましい。
次に、図3〜図5を併せて参照しつつ、失火判定装置1の動作について説明する。図3及び図4は、失火判定装置1による失火判定を説明するための図である(第1図及び第2図)。ここで、図3の横軸は時間(時刻)であり、縦軸は、上段から順に、リアルタイムの演算エンジン回転数(rpm)、点火毎に平均化された演算エンジン回転数(rpm)、エンジン回転数(rpm)、回転偏差(rpm)、エンジン気筒カウンタである。同様に、図4の横軸は時間(時刻)であり、縦軸は、上段から順に、回転偏差(rpm)、回転偏差の移動平均値(rpm)、移動平均値を減算した後の回転偏差(rpm)、エンジン気筒カウンタである。ここで、エンジン気筒カウンタは、エンジン10の点火タイミング毎(例えば4気筒エンジンであれば180°CA毎)にカウントアップ(インクリメント)されるカウンタであり、何番気筒が点火気筒であるかを示す。図5は、失火判定装置1による失火判定処理の処理手順を示すフローチャートである。本処理は、主としてECU81において、所定のタイミングで繰り返して実行される。
まず、図5のステップS100では、エンジン回転数、及び、モータ回転数が読み込まれる。続いて、ステップS102では、エンジン回転数が、フライホイールダンパ20の共振が発生するエンジン回転数領域(例えば1500〜2500rpm)であるか否かについての判断が行われる。ここで、共振が発生するエンジン回転数領域である場合には、ステップS104に処理が移行する。一方、共振が発生するエンジン回転数領域でないときには、一旦、本処理から抜ける。
ステップS104では、エンジン10が再始動されてから所定時間以上経過しているか否かについての判断が行われる。ここで、所定時間以上経過している場合には、ステップS106に処理が移行する。一方、所定時間以上経過していないときには、本処理から一旦抜ける。
ステップS106では、まず、リアルタイムの第1モータ・ジェネレータ11のモータ回転数、及び、第1モータ・ジェネレータ11とエンジン10との間の総ギヤ比から、リアルタイムの演算エンジン回転数が算出される(図3の第1段目の実線参照)。そして、リアルタイムの演算エンジン回転数が、エンジン気筒カウンタに同期して、すなわち、エンジン10の点火毎(例えば、4気筒エンジンであれば180°CA毎)に平均化されて失火判定に用いられる演算エンジン回転数が取得される(図3の第2段目の破線参照)。同様に、リアルタイムのエンジン回転数が、エンジン気筒カウンタに同期して、すなわち、エンジン10の点火毎(例えば、4気筒エンジンであれば180°CA毎)に平均化されて失火判定に用いられるエンジン回転数が取得される(図3の第3段目の一点鎖線参照)。
次に、ステップS108では、ステップS106で算出されたエンジン回転数と演算エンジン回転数との偏差が取得される(図3の第4段目、及び、図4の第1段目の二点鎖線参照)。続くステップS110では、所定のクランクアングル間(区間)における回転偏差の移動平均値(フライホイールダンパ20の前後に生じている平均的な回転差)が算出される(図4の第2段目の実線参照)。より具体的には、図4に示されるように、基準点火の前後の区間(図4の例では前後3点を含む区間(1260°CA))の移動平均が算出される。
続いて、ステップS112では、回転偏差から、ステップS110で算出された回転偏差の移動平均値が減算され、減算後の回転偏差が算出される(図4の第3段目の破線参照)。次に、ステップS114では、エンジン回転数とエンジン負荷(吸入空気量)とによって上述した判定しきい値マップが検索され、判定しきい値が取得される。また、ステップS114では、取得された判定しきい値に対し、冷却水温度に応じて水温補正が加えられる。
そして、ステップS116では、減算後の回転偏差の絶対値が補正後の判定しきい値よりも大きいか否かについての判断が行われる。ここで、減算後の回転偏差の絶対値が補正後の判定しきい値以下の場合には、ステップS118において正常判定がなされた後、本処理から一旦抜ける。一方、減算後の回転偏差の絶対値が補正後の判定しきい値よりも大きいときには、ステップS120に処理が移行する。
ステップS120では、失火判定回数をカウントするカウンタ値がインクリメント(カウントアップ)される。そして、ステップS122において、カウンタ値が所定値に達したか否かについての判断が行われる。ここで、カウンタ値が所定値に達していない場合には、本処理から一旦抜ける。一方、カウンタ値が所定値に達したときには、ステップS124において失火異常が確定され、その後、本処理から抜ける。
以上のようにして失火判定が行われる。なお、上述したように、減算後の回転偏差が判定しきい値を超えたか否かに応じてエンジン10が失火しているか否かを判定することに加えて、点火タイミングに応じたクランクアングルでのエンジン回転数と、該クランクアングルに対して所定クランクアングル前(例えば、180°、360°、720°CA前)のエンジン回転数との差分(すなわちエンジン10の回転変動)が所定のしきい値を超えたか否かに応じてエンジン10が失火しているか否かを判定し、いずれか一方又は双方でエンジン10が失火していると判定された場合に、エンジン10が失火していると判定することが好ましい。
以上、詳細に説明したように、本実施形態によれば、エンジン回転数(回転速度)、及び、モータ回転数(回転速度)が取得され、モータ回転数、及び、第1モータ・ジェネレータ11とエンジン10との間の総ギヤ比に基づいて、演算によって演算エンジン回転数が求められる。そして、エンジン回転数と演算エンジン回転数との回転偏差が取得され、該回転偏差が判定しきい値を超えた場合に、エンジン10が失火していると判定される。すなわち、直接的に取得されたエンジン回転数と、フライホイールダンパ20の下流側に設けられた第1モータ・ジェネレータ11の回転数から演算で求められた演算エンジン回転数との偏差を取ること(比較すること)で、失火(エンジントルクの低下)による回転偏差のみを抽出することができる。その結果、処理負荷の増大を抑制しつつ、フライホイールダンパ20に共振が生じた場合であっても精度よく失火を判定することが可能となる。
特に、本実施形態によれば、所定クランクアングル間(区間)における回転偏差の移動平均値が求められ、回転偏差から移動平均値が減算されて減算後の回転偏差が求められる。そして、減算後の回転偏差が判定しきい値を超えた場合にエンジン10が失火していると判定される。すなわち、まず、エンジン回転数と演算エンジン回転数との回転偏差が所定クランクアングル間において移動平均化されて、エンジン回転数と演算エンジン回転数との潜在的なズレ量(オフセット)が算出される。そして、回転偏差から移動平均値(潜在的なズレ量)が減算され、減算後の回転偏差(瞬時回転偏差)が算出される。そのため、エンジン回転数と演算エンジン回転数との回転偏差から潜在的なズレ量(オフセット)を取り除くことで、失火のように突発的に発生する回転変化を抽出することができ、共振領域においても精度良く失火を判定することが可能となる。
本実施形態によれば、上記所定クランクアングル間隔(区間)がフライホイールダンパ20の共振周波数に応じて設定されるため、エンジン回転数と演算エンジン回転数との潜在的なズレ量(オフセット)をより適切に算出することができる。
本実施形態によれば、上記判定しきい値がエンジン回転数とエンジン負荷とに応じて定められるため、より適切に判定しきい値を設定することができる。
ところで、冷態時にはエンジン10の燃えが悪くなる。本実施形態によれば、水温に応じて判定しきい値が補正されるため、誤判定を防止して、より精度よく失火を判定することが可能となる。
ところで、エンジン10の再始動直後は燃焼が比較的安定しない。本実施形態によれば、エンジン10が再始動されたときにディレイを設けることにより、誤判定を防止することが可能となる。
また、本実施形態によれば、フライホイールダンパ20の共振が発生し得るエンジン回転数領域において、失火判定が実行される。そのため、フライホイールダンパ20の共振領域(共振が発生するエンジン回転領域)に限って上記失火判定を実行する構成とできるため、処理負荷の増大をより抑制することが可能となる。
本実施形態によれば、エンジン10と第1モータ・ジェネレータ11との回転偏差に基づいて失火を判定する手法と、エンジン10の回転変動に基づいて失火を判定する手法とを組み合わせて失火を判定することにより、全運転領域において(すなわち捩じれ要素の共振領域以外でも)失火の判定精度を向上することが可能となる。
また、本実施形態によれば、エンジン10が失火していると判定される毎に、失火判定回数をカウントするカウンタ値がカウントアップされ、該カウンタ値が所定値に達した場合に失火異常と確定される。そのため、誤判定を防止でき、かつ、失火の程度が排気エミッションに悪影響が出るおそれがある程度になった場合に失火異常と確定することが可能となる。
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、本発明に係る失火判定装置1をシリーズ・パラレル・ハイブリッド車(HEV)に適用した場合を例にして説明したが、異なる形式のハイブリッド車(例えば、パラレル・ハイブリッド車など)や、外部から充電可能なプラグイン・ハイブリッド車(PHEV)にも適用することができる。また、上記実施形態では、2つの電動モータ(第1モータ・ジェネレータ11及び第2モータ・ジェネレータ12)を有していたが、電動モータの数は2つ(2モータ)には限られず、1つ(1モータ)、又は3つ(3モータ)以上であってもよい。同様に、複数のギヤやシャフトから構成される駆動系の構成は、上記実施形態には限られない。
また、上記実施形態では、本発明に係る失火判定装置1を4気筒エンジンに適用した場合を例にして説明したが、本発明は、4気筒エンジンに限られることなく、適用することができる。さらに、本発明は、水平対向型のエンジンに限られず、直列型やV型等のエンジンにも適用することができる。同様に、上記実施形態では、本発明を筒内噴射式のエンジンに適用した場合を例にして説明したが、本発明は、ポート噴射式のエンジン等にも適用することができる。
また、HEV−CU80やECU81等のコントローラのシステム構成、及び、各コントローラの機能分担等は上記実施形態に限られない。さらに、上記実施形態では、本発明をAWD車(全輪駆動車)に適用した場合を例にして説明したが、本発明は、例えば2WD車(FF車やFR車)にも適用することもできる。
1 失火判定装置
10 エンジン
11 第1モータ・ジェネレータ
12 第2モータ・ジェネレータ
20 フライホイールダンパ(捩じれ要素)
30 駆動力分割機構
40 駆動用リダクションギヤ機構
41 モータ・リダクションギヤ
43 駆動用リダクションギヤ
50 プロペラシャフト
51 トランスファクラッチ
52 リヤデファレンシャル
60 フロントドライブシャフト
62 フロントデファレンシャル
70 CAN
80 HEV−CU
81 ECU
81a エンジン回転数演算部
81b 回転偏差取得部
81c 平均値取得部
81d 失火判定部
82 PCU
91 アクセルペダルセンサ
92 スロットル開度センサ
93 Gセンサ(加速度センサ)
94 車速センサ(車輪速センサ)
95 回転数センサ
97,98 レゾルバ
112 インジェクタ
113 電子制御式スロットルバルブ
114 エアフローメータ
117 点火プラグ
119 空燃比センサ(LAFセンサ)
132 カム角センサ
133 クランク角センサ
133a タイミングロータ
134 水温センサ

Claims (9)

  1. エンジンが捩じれ要素を介して車軸側に接続されるとともに、該車軸と電動モータとがトルク伝達可能に接続されたハイブリッド車両において前記エンジンの失火を判定する失火判定装置であって、
    前記エンジンのエンジン回転数を取得するエンジン回転数取得手段と、
    前記電動モータのモータ回転数を取得するモータ回転数取得手段と、
    前記モータ回転数、及び、前記電動モータと前記エンジンとの間の総ギヤ比に基づいて、演算によって演算エンジン回転数を求めるエンジン回転数演算手段と、
    前記エンジン回転数と前記演算エンジン回転数との回転偏差を取得する回転偏差取得手段と、
    前記回転偏差が判定しきい値を超えた場合に、前記エンジンが失火していると判定する失火判定手段と、を備えることを特徴とする失火判定装置。
  2. 所定クランクアングル間における前記回転偏差の平均値を求める平均値取得手段をさらに備え、
    前記失火判定手段は、前記回転偏差から前記平均値を減算して減算後の回転偏差を求め、前記回転偏差に代えて減算後の回転偏差が前記判定しきい値を超えた場合にエンジンが失火していると判定することを特徴とする請求項1に記載の失火判定装置。
  3. 前記所定クランクアングル間は、前記捩じれ要素の共振周波数に応じて設定されることを特徴とする請求項2に記載の失火判定装置。
  4. 前記判定しきい値は、エンジン回転数とエンジン負荷とに応じて定められることを特徴とする請求項2又は3に記載の失火判定装置。
  5. 前記判定しきい値は、前記エンジンの冷却水温度に応じて補正されることを特徴とする請求項2〜4のいずれか1項に記載の失火判定装置。
  6. 前記失火判定手段は、前記エンジンが一時停止された後、前記エンジンが再始動されたときに、失火判定の実行を再開するまでにディレイを設けることを特徴とする請求項2〜5のいずれか1項に記載の失火判定装置。
  7. 前記失火判定手段は、前記捩じれ要素の共振が発生し得るエンジン回転数領域において、失火判定を実行することを特徴とする請求項2〜6のいずれか1項に記載の失火判定装置。
  8. 前記失火判定手段は、前記減算後の回転偏差が前記判定しきい値を超えたか否かに応じて前記エンジンが失火しているか否かを判定することに加えて、点火タイミングに応じたクランクアングルでのエンジン回転数と、該クランクアングルに対して所定クランクアングル前のエンジン回転数との差分が所定のしきい値を超えたか否かに応じて前記エンジンが失火しているか否かを判定し、いずれか一方又は双方で前記エンジンが失火していると判定された場合に、前記エンジンが失火していると判定することを特徴とする請求項2〜7のいずれか1項に記載の失火判定装置。
  9. 前記失火判定手段は、前記エンジンが失火していると判定する毎に、失火判定回数をカウントするカウンタ値をカウントアップし、該カウンタ値が所定値に達した場合に、失火異常と確定することを特徴とする請求項2〜8のいずれか1項に記載の失火判定装置。
JP2018056413A 2018-03-23 2018-03-23 失火判定装置 Active JP6603348B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018056413A JP6603348B2 (ja) 2018-03-23 2018-03-23 失火判定装置
US16/208,837 US10866160B2 (en) 2018-03-23 2018-12-04 Misfire determination apparatus
CN201910090896.XA CN110293960A (zh) 2018-03-23 2019-01-30 失火判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056413A JP6603348B2 (ja) 2018-03-23 2018-03-23 失火判定装置

Publications (2)

Publication Number Publication Date
JP2019167883A JP2019167883A (ja) 2019-10-03
JP6603348B2 true JP6603348B2 (ja) 2019-11-06

Family

ID=67983610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056413A Active JP6603348B2 (ja) 2018-03-23 2018-03-23 失火判定装置

Country Status (3)

Country Link
US (1) US10866160B2 (ja)
JP (1) JP6603348B2 (ja)
CN (1) CN110293960A (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624324B1 (ja) 2019-03-29 2019-12-25 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、内燃機関の制御装置、内燃機関の失火検出方法、および受信実行装置
JP6624325B1 (ja) * 2019-03-29 2019-12-25 トヨタ自動車株式会社 内燃機関の失火検出装置、内燃機関の失火検出システム、データ解析装置、内燃機関の制御装置、内燃機関の失火検出方法、および受信実行装置
US11015666B2 (en) * 2019-05-22 2021-05-25 Ford Global Technologies, Llc Selectable torque transfer mechanism for a vehicle transmission
JP7370047B2 (ja) * 2019-10-29 2023-10-27 株式会社ニッキ エンジンの失火診断検出方法
CN111120094B (zh) * 2019-11-29 2021-02-23 潍柴动力股份有限公司 一种发动机失火检测方法、装置、存储介质及终端
DE102021101609A1 (de) * 2020-02-20 2021-08-26 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung eines Momentverlaufs, insbesondere von Fehlzündungen einer Brennkraftmaschine eines hybridischen Antriebsstrangs und Hybridantriebsstrang
JP7314895B2 (ja) * 2020-09-25 2023-07-26 トヨタ自動車株式会社 内燃機関の失火判定装置
JP7327358B2 (ja) 2020-11-12 2023-08-16 トヨタ自動車株式会社 ハイブリッド車両のエンジン失火検出装置
JP7452445B2 (ja) * 2021-01-08 2024-03-19 トヨタ自動車株式会社 車両のエンジントルク算出システム
CN115506906A (zh) * 2022-09-29 2022-12-23 东风商用车有限公司 一种多级发动机失火诊断及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292933B2 (en) * 2004-11-15 2007-11-06 Lotus Engineering, Inc. Engine misfire detection
JP4552687B2 (ja) * 2005-01-11 2010-09-29 トヨタ自動車株式会社 内燃機関の失火判定装置および失火判定方法
JP4453654B2 (ja) * 2005-12-21 2010-04-21 トヨタ自動車株式会社 内燃機関の失火判定装置およびこれを搭載する車両並びに失火判定方法
JP4544354B2 (ja) * 2007-12-11 2010-09-15 トヨタ自動車株式会社 内燃機関の失火判定装置および車両
US7707874B2 (en) * 2007-12-11 2010-05-04 Toyota Jidosha Kabushiki Kaisha Misfire determination device and method for internal combustion engine, and vehicle including misfire determination device
JP5108719B2 (ja) * 2008-10-31 2012-12-26 株式会社日本自動車部品総合研究所 内燃機関の失火判定装置
JP5232065B2 (ja) * 2009-04-06 2013-07-10 トヨタ自動車株式会社 燃焼判定装置
JP6171995B2 (ja) 2014-03-13 2017-08-02 株式会社デンソー 失火判定システム
JP6287994B2 (ja) * 2015-08-05 2018-03-07 トヨタ自動車株式会社 車両
JP2017105332A (ja) * 2015-12-10 2017-06-15 トヨタ自動車株式会社 ハイブリッド車両
JP6275761B2 (ja) * 2016-03-18 2018-02-07 本田技研工業株式会社 車両駆動装置
JP6802663B2 (ja) * 2016-08-10 2020-12-16 株式会社Subaru エンジン制御装置

Also Published As

Publication number Publication date
US10866160B2 (en) 2020-12-15
CN110293960A (zh) 2019-10-01
US20190293519A1 (en) 2019-09-26
JP2019167883A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6603348B2 (ja) 失火判定装置
JP4345847B2 (ja) 内燃機関の失火判定装置および失火判定方法並びに車両
JP4438858B2 (ja) 内燃機関の失火判定装置および車両並びにねじれ要素の剛性推定装置,内燃機関の失火判定方法,ねじれ要素の剛性推定方法
US8855888B2 (en) Engine misfire identification device for internal combustion engine, vehicle equipped with the same and method of engine misfire identification
JP4702169B2 (ja) 内燃機関装置およびこれを搭載する車両並びに内燃機関の失火判定方法
JP5011896B2 (ja) 内燃機関の失火判定装置および車両
US9545920B2 (en) Misfire determination device for internal combustion engine
JP4544354B2 (ja) 内燃機関の失火判定装置および車両
JP2007170248A (ja) 内燃機関装置およびこれを搭載する車両並びに内燃機関の失火判定方法
JP2009292362A (ja) 内燃機関の失火判定装置およびハイブリッド車並びに内燃機関の失火判定方法
JP6658179B2 (ja) ハイブリッド車両の制御装置
JP4816574B2 (ja) 内燃機関の出力状態検出装置、車両及び内燃機関の出力状態検出方法
JP2012215178A (ja) 内燃機関の失火判定装置
JP4910776B2 (ja) 内燃機関装置およびこれを搭載する車両並びに内燃機関の失火判定方法
JP4930419B2 (ja) 内燃機関の失火判定装置および失火判定方法並びに車両
JP5044479B2 (ja) 内燃機関の失火判定装置および車両並びに内燃機関の失火判定方法
JP2012214224A (ja) 内燃機関の失火判定装置
JP4924439B2 (ja) 内燃機関の失火判定装置および車両並びに内燃機関の失火判定方法
JP4605124B2 (ja) 内燃機関の失火判定装置および失火判定方法並びに車両
JP2010106814A (ja) 内燃機関の失火判定装置
JP2006194125A (ja) 内燃機関の失火判定装置および失火判定方法
JP4952684B2 (ja) 内燃機関の失火判定装置およびその失火判定方法
JP2013019310A (ja) エンジン装置およびハイブリッド自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191010

R150 Certificate of patent or registration of utility model

Ref document number: 6603348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250