JP6369398B2 - 流量測定装置、及び処理装置 - Google Patents

流量測定装置、及び処理装置 Download PDF

Info

Publication number
JP6369398B2
JP6369398B2 JP2015123949A JP2015123949A JP6369398B2 JP 6369398 B2 JP6369398 B2 JP 6369398B2 JP 2015123949 A JP2015123949 A JP 2015123949A JP 2015123949 A JP2015123949 A JP 2015123949A JP 6369398 B2 JP6369398 B2 JP 6369398B2
Authority
JP
Japan
Prior art keywords
wind receiving
unit
flow rate
receiving member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015123949A
Other languages
English (en)
Other versions
JP2017009380A (ja
Inventor
正幸 梶原
正幸 梶原
林 聖人
聖人 林
了至 安藤
了至 安藤
稲田 博一
博一 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2015123949A priority Critical patent/JP6369398B2/ja
Priority to TW105118287A priority patent/TWI647428B/zh
Priority to KR1020160075721A priority patent/KR102637165B1/ko
Publication of JP2017009380A publication Critical patent/JP2017009380A/ja
Application granted granted Critical
Publication of JP6369398B2 publication Critical patent/JP6369398B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/20Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows
    • G01F3/22Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、被処理体に対する処理が行われる処理部から排出された気体の流量を測定する技術に関する。
半導体装置の製造工程においては、被処理体である半導体ウエハ(以下、「ウエハ」という)に塗布液を供給して塗布膜を形成したり、処理液を供給してウエハの表面の処理を行ったりする液処理や、ウエハの表面に形成された塗布膜に対して加熱や紫外線の照射による処理を行う熱処理、紫外線処理など、各種の処理が行われる。このとき、液体から発生したミストや塗布膜から放出された成分をウエハの周囲から除去するため、処理が実行される処理部内の気体は排気路を介して外部へと排出される。
ウエハへのミストの再付着を防ぎ、また安定した雰囲気中でウエハの加熱や紫外線照射を行うためには、処理部から排出される気体の排出量を正確に把握し、当該排出量を適正な値に保つ必要がある。
従来、処理部から排出された気体の流量は、排気路の途中に設けられた絞りの前後の圧力差に基づいて流量を測定する差圧式の流量計などを用いて把握していた。
しかしながら、これらミストや塗布膜からの放出成分は、液体分の蒸発や、温度低下に伴う固化などにより、排気路を構成する配管の内壁面に付着するおそれがある。特に、これらの付着物が前述の流量測定用の絞りを詰まらせると、気体の排出量を正確に把握することができなくなるばかりでなく、処理部内を排気する能力までも低下してしまうおそれもある。
このような課題を解決するため、例えば特許文献1には、熱処理装置から排出された気体が流れる排気管を、当該気体に含まれる昇華物の昇華温度以上に加熱するヒータと、このヒータの上流側、及び下流側の温度を測定する温度センサとを設け、ヒータの前後における気体の温度差に基づいて気体の流量を求める技術が記載されている。
特許5041009号公報:請求項1、段落0019〜0020、図3
特許文献1に記載の技術によれば、排気管に絞りを設けなくても熱処理装置から排出された気体の流量を測定することができるばかりでなく、排気管に対する昇華物の付着による流量測定誤差も発生しにくい。
一方で、排気管内を流れる流体中には反応性のミストが含まれる場合がある。この点、ヒータを用いた流量計では、ミストの反応が進行することを避けるためにヒータの温度制約が大きく、正確な流量測定を行うにあたっての障害となる。
本発明の目的は、処理部から排出される気体の流量を幅広い範囲で正確に測定することが可能な流量測定装置、及びこの流量測定装置を備えた処理装置を提供することにある。
本発明の流量測定装置は、被処理体に対する処理が行われる処理部から排出され、排気路を流れる気体の流量を測定する流量測定装置において、
前記排気路を流れる気体の流れと交差するように配置される受風面を備え、この受風面を介して気体から受ける力に応じて状態が変化する受風部材と、
前記受風部材の状態の変化量を検出し、当該変化量に応じた信号を出力するセンサ部と、
前記センサ部から出力された信号に基づき、前記排気路を流れる気体の流量を算出する流量算出部と、を備え
前記受風部材は、この受風部材に働く重力方向と交差する方向へ向けて伸びる支軸によって、当該支軸回りに回転自在に支持され、前記センサ部は、前記受風部材の状態の変化量として、前記処理部から気体が排出されていないときのホームポジションからの前記支軸回りの受風部材の回転角を検出することと、
前記処理部から排出される気体には、受風面に付着する付着物となる物質が含まれ、前記受風面への付着物の付着により、当該受風面側の重量が増大したことに起因する前記ホームポジションからの支軸回りの受風部材の回転角を、前記処理部から気体が排出されていない期間中にセンサ部から取得して、当該受風部材への付着物の付着を検出する付着物検出部を備えたことと、を特徴とする。
前記流量測定装置は、下記の構成を備えていてもよい。
(a)前記センサ部は、前記受風部材、または受風部材と一体に回転する前記支軸に取り付けられた加速度センサであること
(b)前記受風部材の周囲に、当該受風部材の表面から離れるに連れて次第に温度が低くなる温度勾配を形成して付着物の付着を抑制するために、受風部材の加熱を行う受風部材加熱機構が設けられていること。
c)前記受風部材に付着した付着物が除去される温度まで、当該受風部材を加熱するための受風部材加熱機構が設けられていること。
)()において、前記受風部材の温度を計測する受風部材温度計測部と、前記受風部材加熱機構により、予め設定された付着確認温度となるまで前記受風部材を加熱している期間中に、前記受風部材温度計測部により計測した受風部材の温度の経時変化プロファイルに基づいて、付着物の除去の要否を判断する判断部を備えたこと。
)前記処理部から排出される気体には、前記排気路を構成する配管の内壁面に付着する付着物となる物質が含まれ、前記配管の内壁面から離れるに連れて次第に温度が低くなる温度勾配を形成して付着物の付着を抑制するために、前記受風部材が配置されている領域の配管の加熱を行う配管加熱機構が設けられていること。
)前記処理部から排出される気体には、前記を構成する配管の内壁面に付着する付着物となる物質が含まれ、前記受風部材が配置されている領域の配管には、内壁面に付着した付着物が除去される温度まで、当該配管を加熱するための配管加熱機構が設けられていること。
)()において前記配管加熱機構により加熱されている領域の配管の温度を計測する配管温度計測部と、前記配管加熱機構により、予め設定された付着確認温度となるまで前記配管を加熱している期間中に、前記配管温度計測部により計測した配管の温度の経時変化プロファイルに基づいて、付着物の除去の要否を判断する判断部を備えたこと。
また、他の発明に係る処理装置は、被処理体に対する処理を行う処理部と、
前記処理部から排気路へ排出される気体の流量を調節する排気量調節部と、
上述のいずれかの流量測定装置と、
前記排気量調節部を操作し、前記排気路へ排出される気体の流量を調節する制御部と、を備えたことを特徴とする。
前記処理装置は、下記の構成を備えていてもよい。
)前記処理部と排気量調節部との組が複数けられ、
前記流量測定装置の受風部材は、前記複数の処理部から排出された気体が合流する合流排気路に設けられ、
前記制御部は、被処理体の処理を実行している処理部の数から予測される予測排気流量と、前記流量算出部にて算出された気体の流量との差に基づいて、いずれかの排気量調節部における排気量調節の異常を検出すること。
)以下の(1)〜(3)より選択された少なくとも1つの種類の処理部を備えたこと。
(1)被処理体を鉛直軸周りに回転自在に保持する保持機構と、前記保持機構に保持され被処理体の表面に液体を供給する液体供給機構と、前記保持部の周囲を囲むように配置され、回転する被処理体から振り切られた液体を受け止め、液体と気体とを分離して排出するカップ体と、を備えた液処理部。
(2)表面に塗布膜が形成された被処理体を加熱する加熱機構を備えた加熱処理部。
(3)表面に塗布膜が形成された被処理体に紫外線を照射する紫外線照射機構を備えた紫外線処理部。



本発明は、気体から受ける力に応じて変化する受風部材の状態の変化量に基づいて気体の流量を算出することにより、被処理体に対する処理が行われる処理部から排出される気体の流量を幅広い範囲で正確に測定することができる。
本発明の流量測定部が設けられた排気管の一部破断斜視図である。 前記排気管の縦断正面図である。 前記排気管の縦断側面図である。 前記流量測定部に設けられた受風板の外観図である。 前記受風板の作用説明図である。 気体の風速と受風板の回転角との関係を示す説明図である。 受風板の加熱による付着物の原因物質の付着抑制作用を示す説明図である。 受風板の加熱による付着物の除去作用を示す説明図である。 受風板の加熱時の温度の経時変化プロファイルを示す説明図である。 付着物が付着した受風板の側面図である。 垂直方向に伸びる排気管に設けた流量測定部の縦断側面図である。 前記受風板の変形例を示す縦断正面図である。 第2の実施の形態に係る流量測定部を備えた排気管の縦断側面図である。 本発明の流量測定装置が設けられる塗布、現像装置の横断平面図である。 前記塗布、現像装置の縦断側面図である。 前記塗布、現像装置の外観斜視図である。 前記塗布、現像装置に設けられている液処理モジュールの横断平面図である。 前記液処理モジュールの排気系統の構成図である。 前記塗布、現像装置に設けられている熱処理モジュールの排気系統の構成図である。 前記塗布、現像装置全体の排気系統の構成図である。 前記流量測定部を用いて計測した指示風速と、実風速との関係を示す相関図である。
(流量測定装置)
初めに、本発明の流量測定装置の構成例及び受風部材を用いて気体の流量を測定する原理について図1〜図13を参照しながら説明する。
図1〜図3は、本例の受風部材である受風板21を備えた排気管(配管)3の一部破断斜視図、当該排気管3を気体の流れ方向の上流側から見た縦断正面図、及び前記流れ方向と直交する方向から見た縦断側面図である。また図4は受風板21の外観図である。
図1〜図3に示す例においては、重力方向と直交する水平方向に向けて配置された排気管3内を流れる気体の流量を測定する場合を示している。また、本発明の流量測定装置のうち、排気管3に設けられている気体の流量の測定機構を流量測定部2と呼ぶ。
流量測定部2には受風板21が設けられている。受風板21は細長い薄板として構成され、その上方側の前面には、受風板21と直交するように配置された棒状の支軸22が固定ネジ221によって取り付けられている。受風板21の詳細な構成については後述する。
排気管3の上面には台座部251が設けられ、この台座部251の上面には、支軸22を回転自在に保持する2つの軸受部23が互いに対向するように配置されている。上面側から見たとき、2つの軸受部23は、図1、図3に白抜きの矢印で示した気体の流れ方向と直交する方向へ向けて支軸22が配置されるように、軸受面を互いに対向させている。
支軸22は、2つの軸受部23によって水平に、且つ水平な軸周りに回転自在に支持されている。支軸22に保持された受風板21は、排気管3の上面側に形成された開口部33を介して排気管3内に挿入されている。図2に示すように、細長い薄板である受風板21は、上流側から見て、直径方向に排気管3を縦断するように、気体の排気路30を成す排気管3内に挿入されている。
ここで既述のように固定ネジ221によって受風板21が支軸22に取り付けられていることにより、受風板21は支軸22と一体となって回転することができる。なお、例えば受風板21側に形成された貫通口に支軸22を挿入して、当該支軸22を軸受部23に固定支持し、支軸22の周りに受風板21が回転自在な構成を採用してもよい。
排気管3内に挿入された受風板21は、薄板の一方側の面(図4(a)に示した面の裏側の面、図4(b)に示す右側の面)を、上流側に向け、当該面が気体の流れ方向と交差する方向(上下方向)に延伸されるように配置されている。排気管3内を流れる気体は、前記薄板の一方側の面(受風面210)に当たり、受風板21は気体から受ける力によって支軸22周りに回転する(図3の破線)。
本例の流量測定装置は、排気管3内を気体が流れていない状態における受風板21の位置(ホームポジション)からの支軸22周りの受風板21の回転角を、気体の流量に応じて変化する受風板21の状態の変化量として検出する。
なお、受風板21を挿入する開口部33が形成されている台座部251(排気管3の上面側と一体となっている)には、受風板21から見て下流側の下面に、支軸22周りに回転する受風板21との干渉を避けるための傾斜面状の切り欠き部331が形成されている。
前記受風板21には、排気管3の上面側に突出した領域であって、支軸22の取り付け位置よりも上方側に傾斜センサ24が取り付けられている。傾斜センサ24は、支軸22周りの受風板21の回転角を検出するセンサ部である。図3、図4に示すように、傾斜センサ24は基板242にセンサ本体241を配置した構成となっており、この基板242が受風板21の一方側の板面(本例では、受風面210の反対側の面)に取り付けられている。
センサ本体241は、支軸22周りの受風板21の回転角を検出することができれば、静電容量式やピエゾ抵抗式など、どのような検出原理を利用したものであってよい。本例では受風板21に加わる力が釣り合って静止状態となっている期間中においても受風板21の傾きを検出することが可能な静電容量式のものを採用した場合について説明する。
傾斜センサ24は、図4(b)中の傾斜センサ24の近傍位置に併記した小文字のx−y軸方向の傾きを検出する2軸式の加速度センサとして構成されている。同図では、重力加速度gの作用方向と反対向きの方向をy方向、y方向と直交し、傾斜センサ24から見て受風板21へ向かう方向をx方向としている。傾斜センサ24は、これらx−y軸の各方向に対する傾斜センサ24の傾き、即ち傾斜センサ24が取り付けられている受風板21の傾き(支軸22周りの受風板21の回転角)を検出する。
図3に示すように、傾斜センサ24(センサ本体241)は、x軸方向、y軸方向に対する傾きの大きさを電圧値として検出する電圧計243a、243bに接続されている。各電圧計243a、243bは、検出した電圧値を制御部8に向けて出力し、制御部8は傾斜センサ24の傾きと電圧値との対応関係に基づいて受風板21の回転角を検出する。そして、この回転角に基づいて、排気管3内を流れる気体の流量が算出されるが、その詳細な内容については、後段で説明する。
ここで、受風板21の回転角を検出する手法は、傾斜センサ24を用いる場合に限定されない。例えば、レーザー変位計により、受風板21の回転に伴う所定の位置からの受風板21の移動距離を検出してもよい。また、軸受部23にロータリーエンコーダを設け、受風板21と一体となって回転する支軸22の回転角を検出してもよい。
図1〜図3に示すように、排気管3の上面側に突出した受風板21の上部側部分、受風板21を支持する支軸22や軸受部23は、カバー25によって覆われている。このカバー25内には清浄空気や窒素ガスなどを供給して排気管3内の圧力よりも高い圧力雰囲気に維持し、排気路30内を流れる気体に含まれるミストや付着物となる成分などの進入を抑える構成としてもよい。
次に、図4(a)、(b)を参照しながら受風板21の詳細な構成について説明する。
受風板21は、耐熱性、耐薬品性の高い樹脂、例えばPPS(ポリフェニレンスルファイド)樹脂により構成されている。受風板21は、排気管3内を気体が流れていないときに、支軸22に保持された状態にて重力方向に対する回転角θがゼロとなるように重心の位置が調整されている。本例では、傾斜センサ24を取り付けた重量とバランスする量だけ当該傾斜センサ24の取り付けた面(受風面210の反対側の面)が軽くなるように、当該面に凹部214を形成することにより重心位置の調整が行われている。
また、排気管3内に挿入されている領域の受風板21の表面は、シート状の受風板ヒータ211によって覆われている。図4(a)に示すように受風板ヒータ211は、給電部213に接続され、給電部213から供給される電力を増減することにより受風板21の温度を調節することができる。図4(a)、(b)に示すように、受風板21には、熱電対などからなる温度センサ212が設けられ、温度センサ212にて検出された受風板21の温度に基づき、制御部8により給電部213からの供給電力の調節が行われる。受風板ヒータ211及び給電部213は、受風部材加熱機構を構成し、温度センサ212は受風部材温度計測部に相当している。
受風板ヒータ211による受風板21の加熱は、受風板21の表面への付着物の付着抑制、受風板21に付着した付着物の除去、受風板21に付着物が付着したことの検出の目的で行われるが、その詳細は作用説明にて述べる。
受風板ヒータ211は、受風板21を覆うシート状に構成する場合に限らず、ニクロム線などの線状の抵抗発熱体を受風板21の全面に巻きつけるようにパターニングする構成としてもよい。
さらに、受風板ヒータ211で覆われた受風板21の表面は、ミストなど受風板21への付着物となる原因物質の付着を抑制するため、異物が付着しにくい特性を持つフッ素樹脂などによってコーティングされている。
さらに図1〜図2に示すように、流量測定部2が設けられている領域の排気管3には、受風板21が挿入されている位置から見て、気体の流れ方向の上流側、及び下流側の数cm〜数十cmの範囲に亘って、排気管ヒータ31が設けられている。排気管ヒータ31は、例えばシート状ヒータを排気管3の外面に巻き付け、またはニクロム線などの線状の抵抗発熱体を排気管3の外面にパターニングした構成となっている。図3に示すように排気管ヒータ31は、給電部34に接続され、給電部34から供給される電力を増減することにより排気管3の管壁の温度を調節することができる。図2に示すように、排気管ヒータ31が設けられている領域の排気管3の壁面には、熱電対などからなる温度センサ32が設けられ、温度センサ32にて検出された排気管3の管壁の温度に基づき、制御部8により給電部34からの供給電力の調節が行われる。排気管ヒータ31及び給電部34は、配管加熱機構を構成し、温度センサ32は配管温度計測部に相当している。
本例の排気管ヒータ31による排気管3の管壁の加熱についても、受風板21の場合と同様に、排気管3の内壁面への付着物の付着抑制、排気管3の内壁に付着した付着物の除去、排気管3の内壁への付着物の付着検出の目的で行われるが、その詳細については受風板21側の加熱の作用説明と併せて述べる。
以上に説明した構成を備えた流量測定部2は、制御部8と共に本例の流量測定装置を構成している。制御部8は、コンピュータとして構成され、不図示のプログラム格納部を有している。プログラム格納部には、傾斜センサ24にて検出した受風板21の回転角に基づいて、排気管3を流れる気体の流量を算出する流量算出部としての機能や、当該流量測定装置が組み込まれた処理装置にて、前記気体の流量の算出結果に基づいて処理部から排出される気体の流量を調節する機能を実現するための例えばソフトウェアからなるプログラムが格納されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスクまたはメモリーカードなどの記憶媒体に収納された状態でプログラム格納部に格納される。
次いで、流量測定部2を利用して、排気管3を流れる気体の流量を算出する手法について図5を参照しながら説明する。
排気管3に挿入された受風板21が、風速v[m/s]で排気管3内を流れる気体からの力を受けて、支軸22周りの回転角がθとなる位置まで移動した状態のとき、受風板21に対して働く力のバランスについて考える。
受風板21の受風面210の面積をS[m]としたとき、受風板21に働く力(風荷重F)は、受風面210に加わる風圧P[N/m]と、受風面210の面積との積で表すことができる。さらに、気体の密度ρ[kg/m]、気体の風速v[m/s]、受風板21の断面形状に基づいて決定される風量係数C[−]を用いて風圧Pを表現すると、下記(1)式が得られる。
Figure 0006369398
図5に示すように気体の流れ方向に風荷重Fが加わっているとき、支軸22周りに受風板21を回転させようとする力FWuは、前記風荷重Fの受風板21の受風面210と垂直な方向に働く成分である。従って、FWuは下記(2)式で表される。
Figure 0006369398
また、受風板21が支軸22周りの回転角θの位置でバランスしているとき、前記(2)式で表される力FWuと、受風板21に働く重力における受風面210と垂直な方向に働く成分であり、下記(3)式で表されるFgdとが釣り合っている。(3)式において、mは受風板21の質量[kg]、gは重力加速度[m/s])である。
Figure 0006369398
そこで、(2)、(3)式よりFWu=Fgdとおいて、気体の風速vについて解くと、下記(4)式が得られる。
Figure 0006369398
排気路30の断面積A[m]は既知であるので、気体の流量Q[m/s]は以下の(5)式により算出できる。
Figure 0006369398
本例の制御部8においては、(4)、(5)式に基づいて気体の流量を算出するための各種定数が不図示のメモリなどに予め記憶されている。これらの定数と、傾斜センサ24より取得した受風板21の回転角とに基づいて気体の流量を算出することができる。
図6は、排気管3内を流れる気体の風速と、気体からの力を受けて支軸22周りに回転する受風板21の回転角との関係の一例を示している。受風板21の設計においては、排気管3内を流れる気体の設計上の風速範囲などを考慮し、例えば回転角に対する風速(流量)の測定感度が高くなる範囲(図6中に破線で囲まれた領域)にて流量測定が行われるように受風板21の設計変数(受風面210の面積Sや風量係数Cに影響を及ぼす受風板21の断面積形状)を決定するとよい。
制御部8は、不図示のメモリなどに図6に示す回転角と風速との対応関係、または風速に基づいて算出した回転角と気体の風量との対応関係を記憶しておき、傾斜センサ24から取得した受風板21の回転角と、上記対応関係とを利用して排気管3内を流れる気体の流量を算出してもよい。
次に、受風板21や排気管3に設けられた受風板ヒータ211、排気管ヒータ31の作用について説明する。受風板ヒータ211及び排気管ヒータ31は、設けられている領域が異なる点を除いて互いの機能は共通しているので、図7〜図9では受風板ヒータ211を例に挙げて作用説明を行う。
図7は、受風板ヒータ211を利用した付着物の抑制作用を模式的に示している。例えば液処理部にて発生したミストや熱処理部、紫外線処理部にて塗布膜から放出された成分などは、気体と共に各処理部から排出される。これらの物質が流量測定部2を通過する際に受風板21に衝突すると、受風板21の表面に付着し、付着物となるおそれがある。受風板21に付着物が付着した状態を放置すると、既述の(4)式における受風板21の質量mの値が変化してしまい、気体の流量を正しく測定できなくなってしまう。そこで、図7に示すように、付着物の原因物質Pが気体の流れに乗って受風板21に向かって流れてくるとき、受風板ヒータ211によって受風板21を気体の温度よりも高い温度に加熱する。
この結果、受風板21の表面の近傍には、受風板21の表面から離れるに連れて次第に温度が低くなる温度勾配が形成される。このような温度勾配を形成することにより、図7中に破線で示すように、当該温度勾配に沿って受風板21の表面側から、当該表面より遠ざかる方向へ向けて流れる対流を形成することができる。そして、気体の流れに乗って原因物質Pが受風板21の表面近傍に搬送されてきた場合でも、前記対流の流れによって原因物質Pを押し戻し、受風板21の表面に付着することを抑制することができる。
受風板ヒータ211により、排気管3内を流れる気体の温度よりも高い温度に受風板21を加熱すれば、上述の作用を得ることはできる。例えば、液処理部から20〜30℃の範囲内の温度の気体が排出されるとき、気体中に含まれるミストが反応性のものではないとき受風板21の加熱温度は50〜60℃、ミストが反応性のものであるときは、前記加熱温度は30〜35℃の範囲内の温度に設定される。また、熱処理部、紫外線処理部から80〜150℃の範囲内の温度の気体が排出されるとき、受風板21の加熱温度は100〜180℃の範囲内の温度に設定される。
図8は、受風板21に付着した付着物を除去する作用を模式的に示している。図8(a)に示すように受風板21に既述の原因物質Pが付着して付着物P’となったとする。このとき、当該付着物P’が気化(固体から直接、気体になる物質においては昇華)し、または付着物P’が分解する温度まで受風板21を加熱することにより、受風板21の表面に付着した付着物P’を除去して、清浄な状態に復帰させることができる(図8(b))。
付着物P’の除去を行う際の受風板21の加熱温度は、付着物P’を構成する物質の気化温度や昇華温度にもよるが、例えば60〜80℃の範囲内の温度に設定される。
図7、図8を用いて説明した複数の目的に、受風板ヒータ211を使い分ける手法として、通常時においては原因物質Pの付着を抑制する温度まで受風板21を加熱した状態としておき(図7)、付着物P’の付着量が予め設定した量を超えたとき、加熱温度を除去温度まで上昇させる(図8)場合が考えられる。
図9、図10は、受風板21への付着物P’の付着を検出する2種類の手法を示している。
図9は、受風板ヒータ211による加熱温度をステップ的に変化させたときに温度センサ212にて検出される受風板21の温度の経時変化プロファイルを利用する手法を示している。
図9の例において付着物P’の付着量の検出動作は、予め設定された時間間隔や、処理部側にて所定枚数のウエハWの処理が実行されたタイミング、処理部からの排気を停止しているタイミングなどに行われる。図9(a)に示すように、時刻t1において、受風板ヒータ211の設定温度をT1(例えば図7に示した原因物質Pの付着を抑制する温度でもよいし、常温であってもよい)から、付着物の確認を行う際の温度T2(付着物確認温度)までステップ的に変化させる。そして、時刻t1から所定時間経過した後の時刻t2にて、受風板ヒータ211の設定温度をT2からT1にステップ的に戻す。付着物確認温度T2は、受風板21に付着した付着物P’を除去する際の温度よりも低い温度であってよい。
このとき、受風板21の熱容量が小さく、且つ、受風板21に付着物Pが殆ど付着していない清浄な状態が維持されている場合には、温度センサ212にて検出される受風板21の温度は、図9(b)に示すように、受風板ヒータ211における設定温度の変更に迅速に追随する。この結果、時刻t2における受風板21の到達温度T2’は、付着物確認温度T2に近い温度となる。
一方で、受風板21に多くの付着物P’が付着している場合には、当該付着物P’を含む受風板21の熱容量が増大し、図9(c)に示すように、温度センサ212にて検出される受風板21の温度上昇が遅くなる。このため、時刻t2における受風板21の到達温度T2’’が、清浄時の到達温度T2’よりも低くなる場合がある。そこで、図9(a)に示す設定温度の変更を行った結果、時刻t2における温度センサ212の検出温度が到達温度T2’’まで低下したら、受風板21に対して付着物P’が付着していると判断する。そして、受風板ヒータ211により、受風板21の昇温を行い、前記付着物P’の除去を実行する。
付着物P’の付着判断においては、予め設定した時刻t2における受風板21の到達温度(温度センサ212の検出温度)に替えて、受風板21の温度が予め設定した到達温度T2’に到達するまでの到達時間にしきい値を定めておき、当該到達時間がしきい値を超えた場合に付着物P’の除去を実行してもよい。
受風板21を加熱したときの温度の経時変化プロファイルに基づいて付着物P’の付着を検出し、付着物P’の除去操作の要否を判断する動作は、制御部8によって行われる。この観点において制御部8は、付着物P’の除去の要否判断を行う判断部に相当している。
次いで図10は、受風板21の回転角を利用して受風板21に対する付着物P’の付着を検出する手法を示している。排気管3内を流れる気体は、受風面210側から受風板21を押し上げ、支軸22周りに受風板21を回転させる。従って、当該気体中に含まれる原因物質Pは、主として受風面210に衝突して当該受風面210に付着物P’を形成する。
このように、受風面210側に付着した付着物P’の量が増えていくと、付着物P’に働く重力の影響を受け、受風板21の重心位置が移動する。この結果、図10に示すように、排気管3内の流れを停止した状態においても、付着物P’が殆ど付着していない面側、即ち受風面210の反対の面側へ向けて、回転角θだけ受風板21が回転する。
そこで、例えば処理部から気体の排出が行われていないタイミングにて、傾斜センサ24を用いて受風板21の回転角θを検出し、制御部8は、この回転角θが予め定めたしきい値を超えた場合に付着物P’の除去を実行してもよい。当該回転角θに基づいて付着物P’の付着を判断(検出)する制御部8は、本例の付着物検出部として機能している。
以上、受風板ヒータ211を用いて、付着物P’となる原因物質Pの受風板21への付着を抑制する手法、受風板21に付着した付着物P’を除去する手法、受風板21に対する付着物P’の付着を検出する手法について説明した。但し、受風板ヒータ211は、これらの全ての機能を実施可能に構成することは必須でなく、一部の機能を選択して実施することが可能であってもよい。
例えば、受風板ヒータ211により、受風板21を原因物質Pの付着を抑制する温度まで加熱しておき、図9や図10を用いて説明した手法にて付着物P’の付着を検出したら、流量測定部2を分解して受風板21の清掃を行ってもよい。
また、排気管3に設けられた排気管ヒータ31についても、付着物P’となる原因物質Pの排気管3の内壁面への付着を抑制する機能、排気管3の内壁面に付着した付着物P’を除去する機能、排気管3の内壁面に対する付着物P’の付着を検出する機能を備えている。但し、その作用については、図7〜図9を用いて説明した受風板21側の例と同様なので、再度の説明を省略する。
また、図10に示した手法にて受風板21に対する付着物P’の付着が検出された場合には、併せて排気管3側の付着物P’の除去操作を行うとよい。
排気管3の内壁面に付着物P’が付着していない状態を維持することにより、排気路30の断面積Aを一定に保ち、(5)式に基づく気体の流量Qの算出を正確に行うことができる。
以上に説明した本実施の形態に係る流量測定装置によれば以下の効果がある。気体から受ける力を受けて支軸22周りに回転する受風板21の回転量に基づいて排気管3内を流れる気体の流量を算出することにより、ウエハWに対する処理が行われる処理部から排出される気体の流量を幅広い範囲で正確に測定することができる。
ここで受風板21の回転角に基づいて排気管3を流れる気体の流量を求める手法は、図1〜図3などに示した例の如く、水平方向に向けて配置された排気管3に適用する場合に限定されない。排気管3が伸びる方向は垂直方向であってもよいし、斜め上、または斜め下方向であってもよい。
例えば図11に示す流量測定部2aは、垂直方向下方側から上方側へ向けて気体が流れるように配置された排気管3に設けられている。当該排気管3を流れる気体の流量についても、気体から受風板21が受ける力と、受風板21に働く重力との釣り合いに応じて決定される受風板21の回転角θに基づいて算出することができる。従って、傾斜センサ24を用いて当該回転角を検出することにより、排気管3内を上昇する気体の流量を測定することができる。なお、図11中に示すストッパー26は、排気管3内を気体が流れていない状態にて、受風板21がホームポジション(同図中、実線で示してある)に位置するよう受風板21を支える部材である。
また、以下の説明に用いる各図において、既述の図1〜図10に示したものと共通の構成要素には、これらの図に用いたものと共通の符号が付してある。
さらに、受風板21の形状や排気管3内の配置位置、支軸22を支持する位置などについても図1〜4に示した例に限定されない。例えば図12に示す流量測定部2bは、排気管3内を横断するように配置された支軸22から、横方向に幅広の受風面210を持つ受風板21aを垂下させた例を示している。本例では、支軸22は受風板21aと一体となって回転し、排気管3の左右の側壁面に設けた軸受部23から突出した支軸22上に傾斜センサ24が固定配置されている。受風板21aの回転角は、当該受風板21aと共に回転する、支軸22の回転角に基づいて検出される。
次いで図13に示す第2の実施の形態に係る流量測定部2cにおいては、受風板21の回転角の代わりに、気体の力を受けて弾性変形する受風板21aの変形量が当該受風板21aの状態の変化量として検出される。
図13に示す受風板21aの一面側、本例では受風面210の反対側の面には、受風板21aの変形量を検出するセンサ部として、公知のひずみゲージや圧電素子からなり、受風板21aと一体となって変形する歪みセンサ27が設けられている。
図13に示すように、排気管3内を流れる気体の力を受けて受風板21aが湾曲すると、当該歪みセンサ27はその変形量に応じた信号を出力する。例えばひずみゲージでは抵抗の変化が発生し、また圧電素子では起電力が発生し、これらの変化が電圧計243にて電圧の変化として検出される。なお、図13の電圧計243には、ひずみゲージからなる歪みセンサ27に電力を供給する給電部や、圧電素子からなる歪みセンサ27にて発生した起電力を増幅する増幅回路などが含まれている。また、形状の変化が継時的に発生している期間中だけ起電力が発生する圧電素子を歪みセンサ27として用いる場合には、電圧計243にて検出された電圧の経時変化を積分して、受風板21の変形量を特定するとよい。
ここで、図6に示した排気管3内の気体の風速と受風板21の回転角との関係と同様に、本例においても気体の風速と、歪みセンサ27を用いて検出した受風板21の変形量との関係を予め取得しておく。そして、歪みセンサ27より取得した受風板21の変形量に基づいて、気体の風速を特定し、(5)式より気体の流量を求める。また、歪みセンサ27の変形量と気体の流量との関係を予め取得しておき、受風板21の変形量に基づいて気体の流量を直接、算出してもよい。
(塗布、現像装置)
以上、図1〜図13を参照しながら本実施の形態の流量測定装置の構成例及び受風板21の状態の変化量に基づく気体の流量の算出法について説明した。次いで、ウエハWの処理部を備える処理装置に当該流量測定装置を適用した例について説明する。
以下、図14〜図20を用いて説明する例は、処理部として、ウエハWに対して塗布膜の原料となる塗布液などの供給を行う液処理部4a〜4dと、塗布膜などが形成されたウエハWの熱処理を行う熱処理部5a〜5cとを備える塗布、現像装置1に対して、本発明の流量測定装置を設置した場合を示している。
図14〜図16は、塗布、現像装置1の構成の一例を示す。これらの図は、塗布、現像装置1の平面図、概略縦断側面図、及び外観斜視図である。塗布、現像装置1は、キャリアブロックD1と、処理ブロックD2と、インターフェイスブロックD3と、を直線状に接続して構成されている。インターフェイスブロックD3にはさらに露光装置D4が接続されている。以降の説明ではブロックD1〜D3の配列方向を前後方向とする。
キャリアブロックD1は、キャリアCを塗布、現像装置1に対して接続、離脱させる載置台171と、キャリアCの蓋の開閉を行う開閉部172と、開閉部172を介してキャリアCからウエハWを搬送する移載機構173とを備えている。
図15に示すように、処理ブロックD2は、ウエハWに液処理を行う第1〜第6の単位ブロックE1〜E6が下からこの順に積層されている。説明の便宜上ウエハWに下層側の反射防止膜を形成する処理を「BCT」、ウエハWにレジスト膜を形成する処理を「COT」、露光後のウエハWにレジストパターンを形成するための処理を「DEV」と夫々表現する場合がある。図15、図16に示すように、本例ではBCT層E1、E2、COT層E3、E4、DEV層E5、E6が下方側から2層ずつ積み上げられている。名称が同じ単位ブロックにおいては互いに並行してウエハWが搬送され、共通の処理が行われる。
ここでは図14を参照しながら、単位ブロックE1〜E6のうち代表してCOT層E3の構成を説明する。キャリアブロックD1からインターフェイスブロックD3へ向かう搬送領域174の左右の一方側には棚ユニットUが前後方向に複数配置され、他方側にはレジスト塗布モジュール12A、保護膜形成モジュールITCが前後方向に並べて設けられている。レジスト塗布モジュール12Aは、ウエハWにレジスト液を供給してレジスト膜を形成する。保護膜形成モジュールITCは、レジスト膜上に所定の塗布液を供給し、当該レジスト膜を保護する保護膜を形成する。棚ユニットUは、加熱モジュール5を構成し、後述の熱処理部5a〜5cを備える。前記搬送領域174には、ウエハWの搬送機構である搬送アームF3が設けられている。
COT層E4はCOT層E3と同様に構成されており、レジスト塗布モジュールとして、12Aの代わりに12Bが設けられている。他の単位ブロックE1、E2、E5及びE6は、ウエハWに供給する液体が異なることを除き、単位ブロックE3、E4と同様に構成される。単位ブロックE1、E2は、レジスト塗布モジュール12A、12Bの代わりに、反射防止膜の原料となる塗布液の供給を行う反射防止膜形成モジュールを備え、単位ブロックE5、E6は、レジスト膜の現像を行う現像液の供給を行う現像モジュールを備える。図15では各単位ブロックE1〜E6の搬送アームはF1〜F6として示している。
処理ブロックD2におけるキャリアブロックD1側には、各単位ブロックE1〜E6に跨って上下に伸びるタワーT1と、タワーT1に対してウエハWの受け渡しを行うための昇降自在な受け渡し機構である受け渡しアーム175とが設けられている。タワーT1は互いに積層された複数のモジュールにより構成されており、単位ブロックE1〜E6の各高さに設けられるモジュールは、当該単位ブロックE1〜E6の各搬送アームF1〜F6との間でウエハWを受け渡す。これらのモジュールとしては、各単位ブロックの高さ位置に設けられた受け渡しモジュールTRS、ウエハWの温度調整を行う温調モジュール、複数枚のウエハWを一時的に保管するバッファモジュール、及びウエハWの表面を疎水化する疎水化処理モジュールなどが含まれている。説明を簡素化するために、前記疎水化処理モジュール、温調モジュール、前記バッファモジュールについての図示は省略している。
インターフェイスブロックD3は、単位ブロックE1〜E6に跨って上下に伸びるタワーT2、T3、T4を備えており、タワーT2とタワーT3に対してウエハWの受け渡しを行うための昇降自在な受け渡し機構であるインターフェイスアーム176と、タワーT2とタワーT4に対してウエハWの受け渡しを行うための昇降自在な受け渡し機構であるインターフェイスアーム177と、タワーT2と露光装置D4の間でウエハWの受け渡しを行うためのインターフェイスアーム178とが設けられている。
タワーT2は、受け渡しモジュールTRS、露光処理前の複数枚のウエハWを格納して滞留させるバッファモジュール、露光処理後の複数枚のウエハWを格納するバッファモジュール、及びウエハWの温度調整を行う温調モジュールなどが互いに積層されて構成されているが、ここでは、バッファモジュール及び温調モジュールの図示は省略する。なお、タワーT3、T4にも夫々モジュールが設けられているが、ここでは説明を省略する。
この塗布、現像装置1及び露光装置D4からなるシステムの通常の処理動作が行われる際のウエハWの搬送経路について説明する。ウエハWは、キャリアCから移載機構173により、処理ブロックD2におけるタワーT1の受け渡しモジュールTRS0に搬送される。ウエハWは、この受け渡しモジュールTRS0から、単位ブロックE1、E2に振り分けられて搬送される。例えばウエハWを単位ブロックE1に受け渡す場合には、タワーT1の受け渡しモジュールTRSのうち、単位ブロックE1に対応する受け渡しモジュールTRS1(搬送アームF1によりウエハWの受け渡しが可能な受け渡しモジュール)に対して、前記TRS0からウエハWが受け渡される。またウエハWを単位ブロックE2に受け渡す場合には、タワーT1の受け渡しモジュールTRSのうち、単位ブロックE2に対応する受け渡しモジュールTRS2に対して、前記TRS0からウエハWが受け渡される。これらのウエハWの受け渡しは、受け渡しアーム175により行われる。
このように振り分けられたウエハWは、TRS1(TRS2)→反射防止膜形成モジュール→加熱モジュール5→TRS1(TRS2)の順に搬送され、続いて受け渡しアーム175により単位ブロックE3に対応する受け渡しモジュールTRS3と、単位ブロックE4に対応する受け渡しモジュールTRS4とに振り分けられる。
TRS3、TRS4に振り分けられたウエハWは、TRS3(TRS4)→レジスト塗布モジュール12Aまたは12B→加熱モジュール5→保護膜形成モジュールITC→加熱モジュール5→タワーT2の受け渡しモジュールTRSの順で搬送される。然る後、このウエハWは、インターフェイスアーム176、178により、タワーT3を介して露光装置D4へ搬入される。露光後のウエハWは、インターフェイスアーム177によりタワーT2、T4間を搬送されて、単位ブロックE5、E6に対応するタワーT2の受け渡しモジュールTRS5、TRS6に夫々搬送される。然る後、加熱モジュール5→現像モジュール→加熱モジュール5→受け渡しモジュールTRSに搬送された後、移載機構173を介してキャリアCに戻される。
当該塗布、現像装置1における各機器の動作制御についても既述の制御部8により実行される。
(液処理モジュール)
以上に概要を説明した塗布、現像装置1において、BCT層E1、E2の反射防止膜形成モジュール、COT層E3、E4のレジスト塗布モジュール12A、12B及び保護膜形成モジュールITC、DEV層E5、E6の現像モジュールは、既述のように、ウエハWに供給する液体が異なることを除き同様の液処理モジュール4として構成されている。
以下、図17、図18を参照しながら液処理モジュール4に共通の構成について説明する。各液処理モジュール4内には、複数個、この例では4個の液処理部4a〜4dが横方向(図14に示した塗布、現像装置1の前後方向)に配列され、共通の筐体40内に収容されている。これら液処理部4a〜4dは互いに同様に構成されている。
図18に示すように液処理部4a〜4dはスピンチャック(保持機構)42を備え、筐体40に形成された搬入出口43を介して進入してきた搬送アームF1〜F6によってスピンチャック42上にウエハWが載置される。スピンチャック42はウエハWの裏面側中央部を吸引吸着して水平に保持する。このスピンチャック42は、ウエハWを保持した状態で駆動機構421により回転及び昇降自在に構成されている。このスピンチャック42に保持されたウエハWの周縁外側には、このウエハWを囲むようにして上部側が開口するカップ体41が設けられている。
回転するウエハWに供給された液体は、カップ体41に受け止められ、その底部側に設けられた不図示の排液口から排出される。また、カップ体41の底部には、排液口へ排出される液体が流れ込まないように、カップ体41の底面から突出した位置に開口する排気口453を介して個別排気路45が接続されている。
図17に示すように、4個の液処理部4a〜4dに対しては、スピンチャック42上のウエハWに液体を供給するための共通の液ノズル(液体供給機構)44が設けられている。液ノズル44の先端側には、液体が吐出される吐出口を備えた不図示のノズル部が形成されている。液ノズル44は、移動機構441により上下(Z’方向)に昇降自在、及び液処理部4a〜4dの並び方向(Y’方向)に沿って設けられたガイドレール442上を移動自在に構成されている。また、液体の供給を行っていないとき、液ノズル44は、液処理モジュール4の一端側に設けられた待機領域443にて待機している。
そして、ウエハWに対して液体の供給を行うときは、処理対象のウエハWを保持した液処理部4a〜4dまで液ノズル44を移動させ、ウエハWの回転中心の上方側にノズル部を位置させて液体を吐出する。
さらに筐体40の天井部には、不図示のフィルタユニットが設けられ、筐体40の床面側に不図示の排気部が設けられていることにより、当該筐体40内には、天井部側から床面側へ向けて流れる清浄空気のダウンフローが形成されている。
当該ダウンフローの一部は、各カップ体41に取り込まれ、既述の排気口453を介して個別排気路45に排気される。この個別排気路45には排気量調節部451が介設されており、排気量調節部451の内部には、液処理部4a〜4dより排出される気体の排出量の調節を実行するダンパ452が設けられている。
さらに図18に示すように各液処理部4a〜4dの個別排気路45は、排気量調節部451の下流側にて共通のモジュール排気路3aに接続されている。当該モジュール排気路3aは、図1〜図3などに示した排気管3に相当すると共に、各液処理部4a〜4dから排出された気体が合流する合流排気路を構成している。そして、このモジュール排気路3aに対する各個別排気路45の接続位置よりも下流側には、既述の流量測定部2である液処理部側流量測定部2Aが設けられている。
上述の液処理部側流量測定部2Aは、図18に例示したCOT層E3、E4、BCT層E2を含むすべての単位ブロックE1〜E6に設けられた各モジュール排気路3aの下流側位置に配置されると共に、これらモジュール排気路3aは、集合排気路35aを介して工場排気36に接続されている。
このように各モジュール排気路3aが共通の工場排気36に接続された単位ブロックE1〜E6の液処理モジュール4において、各液処理部4a〜4dの排気量は、制御部8からの制御信号に基づいて排気量調節部451のダンパ452の開度を切り替えることにより調節される。
そして、各単位ブロックE1〜E6に設けられている液処理モジュール4では、これら複数の液処理部4a〜4dに対して共通の液処理部側流量測定部2Aを用いて気体の流量の測定を行っている。
上述の構成を備える液処理モジュール4において、液処理部4a〜4dにてウエハWに対する液体の供給が行われている期間中は、ダンパ452の開度を大きくして当該液処理部4a〜4dの個別排気路45からの排気量を「高排気量E」に調節するものとする。一方で、液体の供給が行われていない液処理部4a〜4dでは、ダンパ452の開度を小さくしてその排気量を「低排気量E」に調節するものとする。
従って、n個の液処理部4a〜4dにて、ウエハWに対する液体の供給を実行している場合には、制御部8は処理を実行している液処理部4a〜4dの数に基づいて、モジュール排気路3aにおける予測排気量Qを下記(6)式に基づいて算出できる。
=nE+(4−n)E …(6)
例えば全ての液処理部4a〜4dがアイドリング状態にある期間中(n=0)、液処理部側流量測定部2Aにて測定された実排気量Qが「Q>4E」であった場合には、いずれかのダンパ452にて開度調節異常が発生していることが把握できる。
一方で、1台の液処理部4a〜4dのみでウエハWに対する液体の供給が行われている期間中(n=1)、液処理部側流量測定部2Aにて測定された実排気量Qが「Q<E+3E」である場合には、当該液体の供給が行われている液処理部4a〜4dの個別排気路45などで詰まりなどが発生し、排気量低下が発生していることが把握できる。これらダンパ452にて開度調節異常や個別排気路45にて排気量低下が発生していることの判断は、制御部8にて行われる。また、前記実排気量Qが予測排気量Qからずれている場合に、このずれが解消される方向に、ずれの原因となっているダンパ452の開度を調節してもよい。
以上に説明した各液処理モジュール4から排出される気体の流量を測定する手法は、熱処理モジュール5側にも採用されている。以下、図19を参照しながら熱処理モジュール5側の構成に簡単に説明しておく。
(熱処理モジュール)
例えば図19は、塗布膜であるレジスト膜が表面に形成されたウエハWの加熱処理を行う複数の熱処理部5a〜5cが設けられた熱処理モジュール5(棚ユニットU)における気体の排気系統を示している。
熱処理部5a〜5cは偏平な角形の筐体511を備えており、筐体511の側壁に設けられ、ウエハWの搬入出が行われる搬送口は、シャッタ512により開閉される。筐体511内には搬送口側から見て手前側の位置と、その奥手側に配置された熱板54の上方位置との間でウエハWを搬送する冷却プレート52が設けられている。加熱機構である熱板54を挟んで対向するように配置されたガス吐出部551と排気部552との間には、熱板54上に載置されたウエハWと、当該ウエハWと対向するように設けられた天板53との間の空間に、例えば窒素ガスなどの不活性ガスの一方向流が形成される。
上述の構成により、冷却プレート52によって搬送され熱板54上に載置されたウエハWは、熱板54によって加熱され、各種塗布膜の加熱処理が行われる。この加熱処理に伴い、塗布膜から放出された成分は、不活性ガスの一方向流に乗って個別排気路56から排出される。
熱処理モジュール5側の個別排気路56にも排気量調節部561が介設され、この排気量調節部561の内部には、熱処理部5a〜5cより排出される気体の排出量の調節を実行するダンパ562が設けられている。
さらに各熱処理部5a〜5cの個別排気路56は、排気量調節部561の下流側にて共通のモジュール排気路3bに接続されている。当該モジュール排気路3bは、図1〜図3などに示した排気管3に相当すると共に、各熱処理部5a〜5cから排出された気体が合流する合流排気路を構成している。そして、このモジュール排気路3bに対する個別排気路56の接続位置よりも下流側には、既述の流量測定部2である熱処理部側流量測定部2Bが設けられている。
BCT層E1、E2、COT層E3、E4、DEV層E5、E6の各モジュール排気路3bの下流側位置にも熱処理部側流量測定部2Bが配置されると共に、これらモジュール排気路3bは、集合排気路35bを介して工場排気36に接続されている。
従って、単位ブロックE1〜E6の熱処理モジュール5においても、各モジュール排気路3bは共通の工場排気36に接続されているので、各熱処理部5a〜5cの排気量は、制御部8からの制御信号に基づいて、排気量調節部561のダンパ562の開度を切り替えることにより調節される点は、既述の液処理モジュール4と同様である。
このように、熱処理部5a〜5cの個別排気路56からの排気量が高排気量Eと低排気量Eとの間で切り替えられるとき、制御部8はウエハWの処理を実行している熱処理部5a〜5cの数に基づいて、予測排気量Qを算出することができる。この予測排気量と、熱処理部側流量測定部2Bにて測定された実排気量Qとの比較により、ダンパ562における開度調節異常や個別排気路56における排気量低下の発生を把握可能な点や、実排気量Qと予測排気量Qとのずれ量を解消する方向に、ずれの原因となっているダンパ562の開度を調節してもよい点についても液処理モジュール4側の例と同様である。
なお、m個の熱処理部5a〜5cが設けられている熱処理モジュール5においては、既述の(6)式は以下の(6)’に修正される。
=nE+(m−n)E …(6)’
図20は、図18、図19に示した集合排気路35a、35bに、流量測定部2からなる集合排気路流量測定部2Cを更に設けた例を示している。液処理部側流量測定部2A、熱処理部側流量測定部2Bにて実施される、各単位ブロックE1〜E6の液処理モジュール4側、熱処理モジュール5側より排出される気体の排出量の測定と合わせて、集合排気路35a、35bを流れる気体の流量測定を行えば、各単位ブロックE1〜E6間での総合的な排気バランスの調節も行うことができる。
さらに各液処理部4a〜4dにおいて、既述の高排気量Eは2.6〜3.0m/min程度であり、例えば4個の液処理部4a〜4dを備える液処理モジュール4からの排気量は最大で8.0〜10.0m/min程度となる。また、各熱処理部5a〜5cにおいて、高排気量Eは70L/min程度であり、例えば図14に示した棚ユニットU(熱処理モジュール5)に7個の熱処理部5a〜5cが配置されていたとき、熱処理モジュール5からの排気量は最大で200L/min程度となる。
このため、各モジュール排気路3a、3bや集合排気路35a、35bに設けられる流量計は、幅広い流量範囲にて正確な流量測定を実行可能であることが要請される。
これに対して従来の超音波流量計は、高排気量領域(排気管3内の風速が高くなる領域)となるほど流量測定が困難になることが知られている。一方で図20に示した各流量測定部2A、2B、2Cは、後述の実施例にも示すように、予め把握した流量測定範囲に基づいて適切な形状や重量を有する受風板21を選択することによって、高排気量領域を含む幅広い流量範囲で正確な流量測定を行うことができる。
以上、図17〜図20を用いて説明した実施の形態では、複数の液処理部4a〜4d、熱処理部5a〜5c間で流量測定部2A、2Bを共有する例について説明した。これに対して、液処理部4a〜4d、熱処理部5a〜5cの個別排気路45、56の全てに流量測定部2を設け、個別の処理部からの気体の排出量を測定し、さらには、その測定結果に基づいて各ダンパ452、562の開度調節を行ってもよいことは勿論である。
さらに、流量測定部2の適用対象は、塗布、現像装置に設けられている液処理部4a〜4d、熱処理部5a〜5cに限定されるものではない。例えば、酸性やアルカリ性の洗浄液を用いてウエハWの洗浄処理を行う液処理部4aから排出される気体の流量について、流量測定部2を利用した測定を行ってもよい。また、当該流量測定部2を用い、表面に塗布膜が形成されたウエハWに対し、紫外線ランプなどからなる紫外線照射機構を用いて紫外線を照射することにより、塗布膜の特性を変化させる紫外線処理部から排出される気体の流量の測定を行ってもよいことは勿論である。
図1〜図4に示した構成の流量測定部2を備える流量測定装置を用いて排気管3を流れる気体の流量測定を行った。
A.実験条件
模擬の排気路30を構成する排気管3の下流端に、開度調節可能なバルブと、排気管3内の排気を行う送風ファンとをこの順で設置し、バルブの上流側に図1〜図4に示した構成の流量測定部2と、検証用の羽根車式の流速計とを設けた。送風ファンを稼働させバルブの開度を増減することにより排気管3内を流れる気体の流量を調節しながら、傾斜センサ24にて流量測定部2の傾き(x軸方向、y軸方向)を検出した結果に基づいて風速(指示風速)を算出すると共に、検証用の流速計による風速(実風速)測定を行った。
B.実験結果
検証用の流速計による実風速の測定結果と、流量測定部2の傾きに基づいて算出した指示風速との対応関係を図21に示す。図21の横軸は、実風速の測定結果を示し、縦軸は指示風速の値を示している。図中、傾斜センサ24のx軸方向の出力に基づいて算出した指示風速は、バツ印(×)でプロットし、y軸方向の出力に基づいて算出した指示風速は、白抜きの四角(□)でプロットしてある。また、実風速と指示風速とが一致した場合の参照ラインを破線で併記してある。
図21に示した結果によれば、x軸方向出力に基づく指示風速は、およそ0.75〜7m/sの広い範囲で、実風速との間に線形的な対応関係を示している。一方、y軸方向出力に基づく指示風速についても、およそ1.25〜7m/sの広い範囲で、実風速との間に線形的な対応関係を示している。これらの領域では、実風速との対応関係に基づいて、風速の算出式の校正することにより、精度の高い風速測定(即ち、気体の流量測定)を行うことが可能であると言える。
一方で、小流量領域(x軸方向出力では0.75m/s未満、y軸方向出力では1.25m/s未満)や、大流量領域(7m/sを超える風速)では、有効な指示風速が得られなかった。これは、傾斜センサ24による傾斜の検出限界や、受風板21の可動角度の限界に基づくものと考えられる。
従って、流量測定部2を用いて気体の流量を測定するにあたっては、受風板21の形状や重量などに応じて有効な流量測定範囲を予め把握しておき、排気管3を流れる気体の設計上の流量範囲などに基づいて、適切な受風板21を選択することが重要であることが分かる。
W ウエハ
1 塗布、現像装置
2、2a、2b
流量測定部
21 受風板
210 受風面
211 受風板ヒータ
212 温度センサ
22 支軸
24 傾斜センサ
27 歪みセンサ
3 排気管
31 排気管ヒータ
32 温度センサ
4a〜4d 液処理部
45 個別排気路
451 排気量調節部
5a〜5c 熱処理部
56 個別排気路
561 排気量調節部
8 制御部

Claims (11)

  1. 被処理体に対する処理が行われる処理部から排出され、排気路を流れる気体の流量を測定する流量測定装置において、
    前記排気路を流れる気体の流れと交差するように配置される受風面を備え、この受風面を介して気体から受ける力に応じて状態が変化する受風部材と、
    前記受風部材の状態の変化量を検出し、当該変化量に応じた信号を出力するセンサ部と、
    前記センサ部から出力された信号に基づき、前記排気路を流れる気体の流量を算出する流量算出部と、を備え
    前記受風部材は、この受風部材に働く重力方向と交差する方向へ向けて伸びる支軸によって、当該支軸回りに回転自在に支持され、前記センサ部は、前記受風部材の状態の変化量として、前記処理部から気体が排出されていないときのホームポジションからの前記支軸回りの受風部材の回転角を検出することと、
    前記処理部から排出される気体には、受風面に付着する付着物となる物質が含まれ、前記受風面への付着物の付着により、当該受風面側の重量が増大したことに起因する前記ホームポジションからの支軸回りの受風部材の回転角を、前記処理部から気体が排出されていない期間中にセンサ部から取得して、当該受風部材への付着物の付着を検出する付着物検出部を備えたことと、を特徴とする流量測定装置。
  2. 前記センサ部は、前記受風部材、または受風部材と一体に回転する前記支軸に取り付けられた加速度センサであることを特徴とする請求項に記載の流量測定装置。
  3. 記受風部材の周囲に、当該受風部材の表面から離れるに連れて次第に温度が低くなる温度勾配を形成して付着物の付着を抑制するために、受風部材の加熱を行う受風部材加熱機構が設けられていることを特徴とする請求項1または2に記載の流量測定装置。
  4. 記受風部材に付着した付着物が除去される温度まで、当該受風部材を加熱するための受風部材加熱機構が設けられていることを特徴とする請求項1または2に記載の流量測定装置。
  5. 前記受風部材の温度を計測する受風部材温度計測部と、
    前記受風部材加熱機構により、予め設定された付着確認温度となるまで前記受風部材を加熱している期間中に、前記受風部材温度計測部により計測した受風部材の温度の経時変化プロファイルに基づいて、付着物の除去の要否を判断する判断部を備えたことを特徴とする請求項に記載の流量測定装置。
  6. 前記処理部から排出される気体には、前記排気路を構成する配管の内壁面に付着する付着物となる物質が含まれ、
    前記配管の内壁面から離れるに連れて次第に温度が低くなる温度勾配を形成して付着物の付着を抑制するために、前記受風部材が配置されている領域の配管の加熱を行う配管加熱機構が設けられていることを特徴とする請求項1ないしのいずれか一つに記載の流量測定装置。
  7. 前記処理部から排出される気体には、前記を構成する配管の内壁面に付着する付着物となる物質が含まれ、
    前記受風部材が配置されている領域の配管には、内壁面に付着した付着物が除去される温度まで、当該配管を加熱するための配管加熱機構が設けられていることを特徴とする請求項1ないしのいずれか一つに記載の流量測定装置。
  8. 前記配管加熱機構により加熱されている領域の配管の温度を計測する配管温度計測部と、
    前記配管加熱機構により、予め設定された付着確認温度となるまで前記配管を加熱している期間中に、前記配管温度計測部により計測した配管の温度の経時変化プロファイルに基づいて、付着物の除去の要否を判断する判断部を備えたことを特徴とする請求項に記載の流量測定装置。
  9. 被処理体に対する処理を行う処理部と、
    前記処理部から排気路へ排出される気体の流量を調節する排気量調節部と、
    請求項1ないしのいずれか一つに記載の流量測定装置と、
    前記排気量調節部を操作し、前記排気路へ排出される気体の流量を調節する制御部と、を備えたことを特徴とする処理装置。
  10. 前記処理部と排気量調節部との組が複数けられ、
    前記流量測定装置の受風部材は、前記複数の処理部から排出された気体が合流する合流排気路に設けられ、
    前記制御部は、被処理体の処理を実行している処理部の数から予測される予測排気流量と、前記流量算出部にて算出された気体の流量との差に基づいて、いずれかの排気量調節部における排気量調節の異常を検出することを特徴とする請求項に記載の処理装置。
  11. 以下の(1)〜(3)より選択された少なくとも1つの種類の処理部を備えたことを特徴とする請求項または10に記載の処理装置。
    (1)被処理体を鉛直軸周りに回転自在に保持する保持機構と、前記保持機構に保持され被処理体の表面に液体を供給する液体供給機構と、前記保持部の周囲を囲むように配置され、回転する被処理体から振り切られた液体を受け止め、液体と気体とを分離して排出するカップ体と、を備えた液処理部。
    (2)表面に塗布膜が形成された被処理体を加熱する加熱機構を備えた加熱処理部。
    (3)表面に塗布膜が形成された被処理体に紫外線を照射する紫外線照射機構を備えた紫外線処理部。
JP2015123949A 2015-06-19 2015-06-19 流量測定装置、及び処理装置 Active JP6369398B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015123949A JP6369398B2 (ja) 2015-06-19 2015-06-19 流量測定装置、及び処理装置
TW105118287A TWI647428B (zh) 2015-06-19 2016-06-13 流量測定裝置及處理裝置
KR1020160075721A KR102637165B1 (ko) 2015-06-19 2016-06-17 유량 측정 장치 및 처리 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123949A JP6369398B2 (ja) 2015-06-19 2015-06-19 流量測定装置、及び処理装置

Publications (2)

Publication Number Publication Date
JP2017009380A JP2017009380A (ja) 2017-01-12
JP6369398B2 true JP6369398B2 (ja) 2018-08-08

Family

ID=57724740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123949A Active JP6369398B2 (ja) 2015-06-19 2015-06-19 流量測定装置、及び処理装置

Country Status (3)

Country Link
JP (1) JP6369398B2 (ja)
KR (1) KR102637165B1 (ja)
TW (1) TWI647428B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214827A1 (en) * 2018-05-10 2019-11-14 Kostov Mihail Apparatus and method for estimating fluid parameters
JP2020118476A (ja) * 2019-01-21 2020-08-06 Tdk株式会社 風速測定方法および風速計
CN110567537A (zh) * 2019-09-10 2019-12-13 贵阳学院 一种重力杆式光纤流量传感器及其流量检测方法
CN111604324A (zh) * 2020-05-15 2020-09-01 北京北方华创微电子装备有限公司 晶片清洗机的控制方法及晶片清洗机
KR102246720B1 (ko) * 2020-06-23 2021-04-30 (주)발맥스기술 초음파 유량 측정 장치
TWI764654B (zh) * 2021-03-30 2022-05-11 明泰科技股份有限公司 用以檢測出風路徑暢通或阻塞的風量檢測裝置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172723U (ja) * 1980-05-23 1981-12-19
JPS5977024U (ja) * 1982-11-15 1984-05-24 東京瓦斯株式会社 ベ−ン式流量検出装置
US4599907A (en) * 1985-04-19 1986-07-15 Kraus Robert A Mass-flow sensing transducer
US5041009A (en) 1987-08-31 1991-08-20 Amp Incorporated Daisy chain connector and method
JPH02223822A (ja) * 1989-02-23 1990-09-06 Maezawa Ind Inc 流速または流量の測定方法及び測定装置
JPH05280735A (ja) * 1992-03-30 1993-10-26 Ubukata Seisakusho:Kk 風量計及びそれを用いた装置
US7024945B2 (en) * 2002-02-22 2006-04-11 Compumedics Limited Flow sensing apparatus
TWM321522U (en) * 2007-04-19 2007-11-01 Tong Dean Tech Co Ltd Flow sensing device
JP5609827B2 (ja) * 2011-09-07 2014-10-22 株式会社デンソー 空気流量測定装置
JP5162046B1 (ja) * 2012-08-29 2013-03-13 アンデックス株式会社 風速計、及びこれを備えた塗装ブース

Also Published As

Publication number Publication date
TW201704721A (zh) 2017-02-01
JP2017009380A (ja) 2017-01-12
KR20160150047A (ko) 2016-12-28
KR102637165B1 (ko) 2024-02-16
TWI647428B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
JP6369398B2 (ja) 流量測定装置、及び処理装置
KR100855777B1 (ko) 기판 처리장치와 기판 처리방법
US8242417B2 (en) Temperature control method of heat processing plate, computer storage medium, and temperature control apparatus of heat processing plate
US6229116B1 (en) Heat treatment apparatus
US9349624B2 (en) Semiconductor wafer monitoring apparatus and method
US9786537B2 (en) Wafer edge measurement and control
US8308381B2 (en) Substrate processing method, computer-readable storage medium, and substrate processing system
JP5398785B2 (ja) スパイラル塗布装置及びスパイラル塗布方法
TWI454667B (zh) 半導體晶圓量測裝置和方法
JP4531778B2 (ja) 温度制御方法、温度調節器および加熱処理装置
JP6953286B2 (ja) 基板処理装置、基板処理方法及び記憶媒体
KR102184055B1 (ko) 기판 처리 장치 및 기판 처리 방법
US20090076763A1 (en) Method of detecting extraneous matter on heat processing plate, heat processing apparatus, program, and computer-readable recording medium with program recorded thereon
KR101853505B1 (ko) 기판 처리 장치의 데이터 취득 방법 및 센서용 기판
JP5299442B2 (ja) 基板加熱装置、基板加熱方法及び記憶媒体
CN102564631B (zh) 物理量测量装置及物理量测量方法
JP6299624B2 (ja) 塗布膜形成方法、塗布膜形成装置及び記憶媒体
JP6811097B2 (ja) 基板処理装置
KR101197170B1 (ko) 열처리 장치, 열처리 방법 및 기억 매체
JP4662466B2 (ja) 塗布膜形成装置及びその制御方法
JP3256462B2 (ja) レジスト処理方法及びレジスト処理システム
JP5954239B2 (ja) 液処理方法
JP3641162B2 (ja) 塗布膜形成装置及びその方法並びにパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250