JP6265117B2 - ニッケルコバルトマンガン複合水酸化物とその製造方法 - Google Patents

ニッケルコバルトマンガン複合水酸化物とその製造方法 Download PDF

Info

Publication number
JP6265117B2
JP6265117B2 JP2014259061A JP2014259061A JP6265117B2 JP 6265117 B2 JP6265117 B2 JP 6265117B2 JP 2014259061 A JP2014259061 A JP 2014259061A JP 2014259061 A JP2014259061 A JP 2014259061A JP 6265117 B2 JP6265117 B2 JP 6265117B2
Authority
JP
Japan
Prior art keywords
manganese composite
composite hydroxide
nickel
hydroxide
nickel cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014259061A
Other languages
English (en)
Other versions
JP2016117625A (ja
Inventor
元彬 猿渡
元彬 猿渡
寛子 大下
寛子 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014259061A priority Critical patent/JP6265117B2/ja
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to CN201580070370.5A priority patent/CN107108266B/zh
Priority to KR1020177017803A priority patent/KR102381595B1/ko
Priority to PL15872544T priority patent/PL3239103T3/pl
Priority to PCT/JP2015/082149 priority patent/WO2016103975A1/ja
Priority to EP15872544.0A priority patent/EP3239103B1/en
Priority to US15/538,146 priority patent/US10305105B2/en
Publication of JP2016117625A publication Critical patent/JP2016117625A/ja
Application granted granted Critical
Publication of JP6265117B2 publication Critical patent/JP6265117B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ニッケルコバルトマンガン複合水酸化物、及びニッケルコバルトマンガン複合水酸化物の製造方法に関する。
近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。このような要求を満たす二次電池としては、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極及び正極と電解液等で構成され、負極及び正極の活物質として、リチウムを脱離及び挿入することが可能な材料が用いられている。
リチウムイオン二次電池については、現在研究開発が盛んに行われているが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
リチウムイオン二次電池の正極材料として、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、既に様々な成果が得られている。しかしながら、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の代替が望まれている。
リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。
リチウムマンガン複合酸化物は原料が安価である上、熱安定性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であると言えるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。
一方、リチウムニッケル複合酸化物はリチウムコバルト複合酸化物よりもサイクル特性が劣り、また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点を有している。
そのため、リチウムコバルト複合酸化物と同程度の熱安定性、耐久性を有しているリチウムニッケルコバルトマンガン複合酸化物が、リチウムコバルト複合酸化物の代替として有力候補となっている。
たとえば、特許文献1には、一般式:Ni1−x−y−zCoMn(OH)(0<x≦1/3、0≦y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、窒素吸着BET法により測定される比表面積が1.0〜10.0m/gであり、かつ高周波−赤外燃焼法により測定される炭素含有量が0.1質量%以下であるニッケルコバルト複合水酸化物が提案されている。特許文献1によると、炭素含有量が0.1質量%を超えると、正極活物質表面に形成される不純物が多くなり、電池における出力が十分に得られないとされ、提案されたニッケルコバルト複合水酸化物を前駆体として得たリチウムニッケル複合酸化物を正極活物質として用いることにより、熱安定性に優れるとともに電池特性に優れた非水系電解質二次電池を得ることができるとされている。
しかしながら、特許文献1では、炭素含有量に着目されているものの、他の不純物については検討されておらず、正極活物質のさらなる高容量化が可能な複合水酸化物が求められている。
また、特許文献2には、ニッケルアンミン錯体、コバルトアンミン錯体及びM元素源を混合して得たニッケル−コバルト−M元素含有水溶液又は水性分散液を加熱し、ニッケルアンミン錯体及びコバルトアンミン錯体を熱分解させてニッケル−コバルト−M元素含有複合化合物を生成させることを特徴とするニッケル−コバルト−M元素含有複合化合物の製造方法が提案されている。特許文献2によると、アルカリで中和する共沈法では、原料に用いる塩のアニオンである硫酸イオン(SO 2−)及び塩化物イオン(Cl)並びに中和に用いるアルカリに含まれるナトリウムイオン(Na)は、洗浄が困難であり、これらのイオンが不純物として正極材料中に残留する。一方で、特許文献2で提案されたニッケル−コバルト−M元素含有複合化合物は、硫酸根、塩素、ナトリウム、鉄などの不純物の含有量が極めて少ないので、この複合化合物を用いて得られる正極活物質が優れた電池性能を発現するとされている。
しかしながら、特許文献2では、熱分解によってニッケル−コバルト−M元素含有複合化合物を得ているため、粒子の球状や粒度分布を狭くすることが困難であり、得られる正極活物質において十分な電池特性が得られるとは言い難い。
特開2013−171743号公報 国際公開第2012/020768号
リチウムニッケルコバルトマンガン複合酸化物は、通常、ニッケルコバルトマンガン複合水酸化物をリチウム化合物と混合して焼成する工程から製造される。ニッケルコバルトマンガン複合水酸化物は、その製造工程で原料由来の硫酸根などの不純物が含まれる。これら不純物は、リチウム化合物を混合し、焼成する工程において、リチウムとの反応を阻害することが多く、層状構造であるリチウムニッケルコバルトマンガン複合酸化物の結晶性を低下させる。結晶性の低いリチウムニッケルコバルトマンガン複合酸化物は、正極活物質として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題がある。
さらに、ニッケルコバルトマンガン複合水酸化物に含まれる不純物は、リチウム化合物と混合し、焼成した後もリチウムニッケルコバルトマンガン複合酸化物中に残留する。これらの不純物は、充放電反応に寄与しないため、電池を構成する際、正極活物質の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる。そのため、より不純物含有量の少ないリチウムニッケルコバルトマンガン複合酸化物が求められるが、そのためには不純物含有量の少ないニッケルコバルトマンガン複合水酸化物が必要となる。また、高い結晶性を有するリチウムニッケルコバルトマンガン複合酸化物を得るためには、リチウム化合物と混合して焼成する際の高い反応性も必要である。
本発明の目的は、リチウムとの反応を阻害する原因となり、充放電反応に寄与しない不純物量を低減させることで、リチウムとの反応性を高めて、高容量な非水系電解質二次電池を得ることが可能な正極活物質の前駆体であるニッケルコバルトマンガン複合水酸化物とその製造方法を提供することにある。
本発明者らは、鋭意検討したところ、晶析反応によってニッケルコバルトマンガン複合水酸化物を製造する工程において、アルカリ溶液をアルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根などを低減できるとの知見を得て、本発明を完成したものである。
すなわち、本発明のニッケルコバルトマンガン複合水酸化物は、一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm〜20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%〜2.5質量%であることを特徴とする。
また、ニッケルコバルトマンガン複合水酸化物の粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕は、0.55以下であることが好ましい。
また、ニッケルコバルトマンガン複合水酸化物の比表面積は、5〜60m/gであることが好ましい。
本発明のニッケルコバルトマンガン複合水酸化物の製造方法は、晶析反応によって一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表されるニッケルコバルトマンガン複合水酸化物を製造する製造方法であって、少なくともニッケル、コバルト及びマンガンを含む混合水溶液と、アンモニウムイオン供給体とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2−]/[OH]が0.002以上0.050以下であり、上記ニッケルコバルトマンガン複合水酸化物は、一般式Ni Co Mn (OH) 2+a (ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm〜20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%〜2.5質量%であることを特徴とする。
また、晶析工程は、核生成工程と、粒子成長工程とからなり、核生成工程では、液温25℃を基準として測定するpH値が12.0〜14.0になるようにアルカリ溶液を水溶液に添加して反応溶液中で核生成を行い、粒子成長工程では、核生成工程において形成された核を含有する反応溶液を、液温25℃を基準として測定するpH値が10.5〜12.0となるようにアルカリ溶液を添加することが好ましい。
また、アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種類以上であることが好ましい。
また、炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる少なくとも1種類以上であることが好ましい。
また、晶析工程において、各水溶液のアンモニア濃度を、3g/L〜25g/Lの範囲内に維持することが好ましい。
また、反応温度を20℃〜80℃の範囲内に維持することが好ましい。
本発明により、不可逆容量の小さい非水系電解質二次電池用の正極活物質の前駆体として用いることができ、不純物の含有量が少なく、正極活物質を合成する際の反応性の高いニッケルコバルトマンガン複合水酸化物を得ることができる。また、ニッケルコバルトマンガン複合水酸化物の製造方法は、容易で生産性が高く、その工業的価値は極めて大きいものである。
以下、本発明の実施の形態について、下記順序にて詳細に説明する。なお、以下で説明する実施形態は例示に過ぎず、本発明のニッケルコバルトマンガン複合水酸化物、及びニッケルコバルトマンガン複合水酸化物の製造方法は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
1.ニッケルコバルトマンガン複合水酸化物
2.ニッケルコバルトマンガン複合水酸化物の製造方法
<1.ニッケルコバルトマンガン複合水酸化物>
本発明のニッケルコバルトマンガン複合水酸化物は、一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3〜20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、さらに炭酸根含有量が1.0質量%〜2.5質量%であることを特徴としている。以下、各要素の特徴を詳細に説明する。
[粒子の組成]
ニッケルコバルトマンガン複合水酸化物は、その組成が、一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表されるように調整されるものである。
上記一般式においてニッケル含有量を示すxは、0.20≦x≦0.80が好ましい。また、ニッケル含有量を示すxは、電気特性、熱安定性を考慮するとx≦0.6がより好ましい。
次に、上記一般式においてコバルト含有量を示すyは、0.10≦y≦0.50が好ましい。コバルトを適度に添加することで、サイクル特性や充放電に伴うLiの脱挿入による結晶格子の膨張収縮挙動を低減できるが、yが0.10未満になると、結晶格子の膨張収縮挙動の低減効果を十分に得ることができないため好ましくない。一方、コバルトの含有量が多すぎてyが0.50を超えると、初期放電容量の低下が大きくなってしまい、さらにコスト面で不利となる問題もあるため好ましくない。
また、マンガン含有量を示すzは、0.10≦z≦0.90が好ましい。この範囲でマンガンを添加すると、電池の正極活物質として用いられた場合に電池の耐久特性や安全性を向上させることができる。zが0.10未満になると電池の耐久特性や安全性の向上という効果を十分に得ることができず、一方、zが0.90を超えるとRedox反応に貢献する金属元素が減少し、電池容量が低下するため好ましくない。
添加元素Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素であり、サイクル特性や出力特性などの電池特性を向上させるために添加するものである。添加元素Mの含有量を示すtは、0≦t≦0.10が好ましい。tが0.1を超える場合には、Redox反応に貢献する金属元素が減少して電池容量が低下するため好ましくない。
組成の分析方法は特に限定されないが、ICP発光分光法による化学分析から求めることができる。
[粒子構造]
ニッケルコバルトマンガン複合水酸化物は、複数の一次粒子が凝集して形成された球状の二次粒子により構成される。二次粒子を構成する一次粒子の形状としては、板状、針状、直方体状、楕円状、菱面体状などのさまざまな形態を採りうる。また、複数の一次粒子の凝集状態も、ランダムな方向に凝集する場合のほか、中心から放射状に粒子の長径方向が凝集する場合も本発明に適用することは可能である。
凝集状態としては、板状及び/又は針状の一次粒子がランダムな方向に凝集して二次粒子を形成していることが好ましい。このような構造の場合、一次粒子間にほぼ均一に空隙が生じて、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物が二次粒子内へ行きわたり、リチウムの拡散が十分に行われるからである。
なお、一次粒子及び二次粒子の形状観察方法は特に限定されないが、ニッケルコバルトマンガン複合水酸化物の断面を走査型電子顕微鏡を用いて観察することによって測定できる。
[平均粒径]
ニッケルコバルトマンガン複合水酸化物は、粒子の平均粒径が3μm〜20μmに調整されている。平均粒径が3μm未満の場合には、正極を形成したときに粒子の充填密度が低下して正極の容積あたりの電池容量が低下するため好ましくない。一方、平均粒径が20μmを超えると、正極活物質の比表面積が低下して電池の電解液との界面が減少することにより正極の抵抗が上昇して電池の出力特性が低下するため好ましくない。したがって、ニッケルコバルトマンガン複合水酸化物は、粒子の平均粒径を3μm〜20μm、好ましくは3μm〜15μm、より好ましくは4μm〜12μmとなるように調整すれば、この正極活物質を正極に用いた電池において、容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好である。
平均粒径の測定方法は、特に限定されないが、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
[不純物含有量]
ニッケルコバルトマンガン複合水酸化物は、硫酸根及び塩素を含有する。硫酸根含有量は、1.0質量%以下、好ましくは0.6質量%以下であり、塩素含有量は0.5質量%以下、好ましくは0.3質量%以下である。ここで、ニッケルコバルトマンガン複合水酸化物粒子に含有される硫酸根や塩素は、以下の晶析工程で用いた原料に由来する。
ニッケルコバルトマンガン複合水酸化物中の硫酸根含有量が1.0質量%を超えると、リチウム化合物と混合し焼成する工程においてリチウムとの反応を阻害し、層状構造であるリチウムニッケルコバルトマンガン複合酸化物の結晶性を低下させる。結晶性の低いリチウムニッケルコバルトマンガン複合酸化物は、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題が生じる。さらに、ニッケルコバルトマンガン複合水酸化物に含まれる不純物は、リチウム化合物と混合し焼成後もリチウムニッケルコバルトマンガン複合酸化物中に残留する。これらの不純物は、充放電反応に寄与しないため、電池を構成する際、正極材料の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となる。
一方、塩素含有量が0.5質量%を超えると、硫酸根の場合と同様に、電池容量の低下や安全性の問題がある。さらに、塩素は主にLiClやNaClの形態でリチウムニッケルコバルトマンガン複合酸化物中に残留する。これらは吸湿性が高いため、電池内部に水分を持ち込む要因となり、電池の劣化の原因となる。
[炭酸根含有量]
ニッケルコバルトマンガン複合水酸化物は、炭酸根含有量が1.0質量%〜2.5質量%である。ここで、ニッケルコバルトマンガン複合水酸化物に含有される炭酸根は、後述する晶析工程で用いた炭酸塩に由来する。また炭酸根は、ニッケルコバルトマンガン複合水酸化物とリチウム化合物を混合し、焼成する工程において揮発するため正極材料であるリチウムニッケルコバルトマンガン複合酸化物中には残留しない。ニッケルコバルトマンガン複合水酸化物に含有される炭酸根含有量が1.0質量%〜2.5質量%の範囲であれば、リチウム化合物と混合して焼成する際にニッケルコバルトマンガン複合水酸化物に含有される炭酸根の揮発に伴い粒子内に細孔が形成されて、溶融したリチウム化合物と適度に接触でき、リチウムニッケルコバルトマンガン複合酸化物の結晶成長が適度に進行する。炭酸根含有量は、例えば、ニッケルコバルトマンガン複合水酸化物の全炭素元素含有量を測定し、この測定された全炭素元素の量をCOに換算することにより求めることができる。
一方、炭酸根含有量が1.0質量%を下回ると、リチウム化合物と混合し焼成する際に溶融したリチウム化合物との接触が不十分となり、得られるリチウムニッケルコバルトマンガン複合酸化物の結晶性が低下し、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題が生じる。炭酸根含有量が2.5質量%を超えると、リチウム化合物と混合し、焼成してリチウムニッケルコバルトマンガン複合酸化物を得る工程で、発生する炭酸ガスが反応を阻害して、リチウムニッケルコバルトマンガン複合酸化物の結晶性が低下する。
[粒度分布]
ニッケルコバルトマンガン複合水酸化物は、粒子の粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下となるように調整されていることが好ましい。
粒度分布が広範囲になっており、その粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55を超える場合、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粒子(大粒粒子)が多く存在することになる。微粒子が多く存在する正極活物質を用いて正極を形成した場合には、微粒子の局所的な反応に起因して発熱する可能性があり安全性が低下し、比表面積が大きい微粒子が選択的に劣化するので、サイクル特性が悪化してしまうため好ましくない。一方、大径粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず反応抵抗の増加による電池出力が低下するため好ましくない。
したがって、正極活物質の粒度分布が、前記指標〔(d90−d10)/平均粒径〕が0.55以下となるように調整されていれば、微粒子や大径粒子の割合が少ないので、この正極活物質を正極に用いた電池では、安全性に優れ、良好なサイクル特性及び電池出力を得ることができる。
なお、粒度分布の広がりを示す指標〔(d90−d10)/平均粒径〕において、d10は、各粒径における粒子数を粒径が小さいほうから累積したときにおいて、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、d90は、各粒径における粒子数を粒径が小さいほうから累積したときにおいて、その累積体積が全粒子の合計体積の90%となる粒径を意味している。
平均粒径や、d90、d10を求める方法は特に限定されないが、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
[比表面積]
ニッケルコバルトマンガン複合水酸化物は、比表面積が5m/g〜60m/gとなるように調整されていることが好ましく、5m/g〜50m/gとなるように調整されていることがより好ましい。比表面積が上記範囲であれば、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物と接触できる粒子表面積が十分に得られるからである。一方、比表面積が5m/gを下回ると、リチウム化合物と混合し焼成する際に溶融したリチウム化合物との接触が不十分となり、得られるリチウムニッケルコバルトマンガン複合酸化物の結晶性が低下し、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題がある。比表面積が60m/gを超えると、リチウム化合物と混合し焼成する際に、結晶成長が進みすぎて、層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こり、充放電容量が減少するため好ましくない。
[非水系電解質二次電池用正極活物質]
ニッケルコバルトマンガン複合水酸化物は、リチウム化合物と混合し焼成することでリチウムニッケルコバルトマンガン複合酸化物を生成することができる。リチウムニッケルコバルトマンガン複合酸化物は、非水系電解質二次電池の正極活物質の原料として用いることができる。
正極活物質に用いられるリチウムニッケルコバルトマンガン複合酸化物は、リチウム化合物と混合後の焼成において炭酸根は揮発するが、その他の成分や粒度分布は前駆体であるニッケルコバルトマンガン複合水酸化物の性状を引き継ぐ。ニッケルコバルトマンガン複合水酸化物は、硫酸根含有量が1.0質量%以下、好ましくは0.6質量%以下であり、かつ塩素含有量が0.5質量%以下、好ましくは0.3質量%以下である。また、ニッケルコバルトマンガン複合水酸化物は、平均粒径が3μm〜25μmであり、これにより容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性も良好となる。
また、ニッケルコバルトマンガン複合水酸化物の粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が、0.55以下であり、粒子や大径粒子の割合が少ないので、このニッケルコバルトマンガン複合水酸化物を原料とする正極活物質を正極に用いた電池では、安全性に優れ、良好なサイクル特性及び電池出力を得ることができる。
<2.ニッケルコバルトマンガン複合水酸化物の製造方法>
本発明のニッケルコバルトマンガン複合水酸化物の製造方法は、晶析反応によって例えば上述のニッケルコバルトマンガン複合水酸化物を製造する。ニッケルコバルトマンガン複合水酸化物の製造方法は、少なくともニッケル、コバルト及びマンガンを含む混合水溶液と、アンモニウムイオン供給体とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2−]/[OH]が0.002以上0.050以下であることを特徴とする。
また、晶析工程は、核生成工程と、粒子成長工程とからなり、核生成工程では、液温25℃を基準として測定するpH値が12.0〜14.0になるようにアルカリ溶液を水溶液に添加して反応溶液中で核生成を行い、粒子成長工程では、核生成工程において形成された核を含有する反応溶液を、液温25℃を基準として測定するpH値が10.5〜12.0となるようにアルカリ溶液を添加することが好ましい。
従来の連続晶析法では、核生成反応と核成長反応とが同じ反応槽内において同時に進行するため、得られるニッケル複合水酸化物の粒度分布が広範囲となってしまう。これに対して、ニッケルコバルトマンガン複合水酸化物の製造方法は、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することにより、両工程を同じ反応槽内で行ったとしても、狭い粒度分布を持つ複合水酸化物を得ることができる。また、アルカリ溶液をアルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根などを低減することができる。
以下に、ニッケルコバルトマンガン複合水酸化物の製造方法で用いる材料や条件について詳細に説明する。
[ニッケル、コバルト及びマンガンを含む混合水溶液]
ニッケル、コバルト及びマンガンを含む混合水溶液に用いられる、ニッケル塩、コバルト塩、マンガン塩などの塩としては、水溶性の化合物であれば特に限定するものではないが、硫酸塩、硝酸塩、塩化物などを使用することができる。例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガンが好ましく用いられる。
また、必要に応じて1種以上の添加元素を含む化合物を所定の割合で混合して、混合水溶液を生成することもできる。晶析工程では、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の添加元素を含む水溶性の化合物を用いることが好ましく、例えば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム等を用いることができる。
また、晶析によって得られたニッケルコバルトマンガン複合水酸化物を、添加元素を含む水溶液と混合してスラリー化し、pHを調整することによって、添加元素を含む化合物でニッケルコバルトマンガン複合水酸化物を被覆してもよい。
混合水溶液の濃度は、金属塩の合計で1mol/L〜2.6mol/Lとすることが好ましく、1mol/L〜2.2mol/Lとすることがより好ましい。1mol/L未満であると、得られる水酸化物スラリー濃度が低く、生産性に劣る。一方、2.6mol/Lを超えると、−5℃以下で結晶析出や凍結が起こり、設備の配管を詰まらせる恐れがあり、配管の保温もしくは加温を行う必要があり、コストがかかる。
さらに、混合水溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30g/L〜250g/L、好ましくは80g/L〜150g/Lになるようにすることが好ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、晶析物濃度が250g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがあるからである。
[アンモニウムイオン供給体]
反応液中のアンモニウムイオン供給体は、水溶性の化合物であれば特に限定するものではないが、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができ、例えば、アンモニア、硫酸アンモニウムが好ましく用いられる。
反応液中のアンモニア濃度は、好ましくは3g/L〜25g/L、より好ましくは5g/L〜20g/L、さらに好ましくは5g/L〜15g/Lとなるように調節する。反応液中にアンモニウムイオンが存在することで、金属イオン、特にNiイオンはアンミン錯体を形成し、金属イオンの溶解度が大きくなり、一次粒子の成長が促進され、緻密な複合水酸化物粒子が得られ易い。さらに、金属イオンの溶解度が安定するため、形状及び粒径が整った複合水酸化物粒子が得られ易い。特に、反応液中のアンモニア濃度を3g/L〜25g/Lとすることで、より緻密で形状及び粒径が整った複合水酸化物粒子が得られ易い。
反応液中のアンモニア濃度が3g/L未満であると、金属イオンの溶解度が不安定になる場合があり、形状及び粒径が整った一次粒子が形成されず、ゲル状の核が生成して粒度分布が広くなることがある。一方、反応液中のアンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれが起きる場合がある。アンモニウムイオンの濃度は、一般的なイオンメータによって測定可能である。
[アルカリ溶液]
アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液で調整される。アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2−]/[OH]が、0.002以上0.050以下であることが好ましく、0.005以上0.030以下であることがより好ましく、0.010以上、0.025以下であることがさらに好ましい。
アルカリ溶液を、アルカリ金属水酸化物と炭酸塩の混合水溶液とすることで、晶析工程において得られるニッケルコバルトマンガン複合水酸化物中に不純物として残留する硫酸根や塩素などのアニオンを、炭酸根とイオン交換することができる。炭酸根は、ニッケルコバルトマンガン複合水酸化物とリチウム化合物を混合し、焼成する工程において揮発するため正極材料であるリチウムニッケルコバルトマンガン複合酸化物中には残留しない。
[CO 2−]/[OH]が0.002未満であると、晶析工程において、原料由来の不純物である硫酸根や塩素と炭酸イオンの置換が不十分となり、これらの不純物をニッケルコバルトマンガン複合水酸化物中に取り込みやすくなる。一方、[CO 2−]/[OH]が0.050を超えても、原料由来の不純物である硫酸根や塩素の低減は変わらず、過剰に加えた炭酸塩は、コストを増加させる。
アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種類以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。
炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる少なくとも1種類以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。
また、アルカリ溶液を反応槽に添加する方法については、特に限定されるものではなく、定量ポンプなど、流量制御が可能なポンプで、反応液のpH値が後述する範囲に保持されるように、添加すればよい。
[pH制御]
晶析工程では、25℃を基準として測定する反応液のpH値が12.0〜14.0になるようにアルカリ溶液を添加して、核生成を行う核生成工程と、核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃を基準として測定するpH値が10.5〜12.0となるようにアルカリ溶液を添加して、制御して核を成長させる粒子成長工程とからなることがより好ましい。すなわち、核生成反応と粒子成長反応とが同じ槽内において同じ時期に進行するのではなく、主として核生成反応(核生成工程)が生じる時間と、主として粒子成長反応(粒子成長工程)が生じる時間とを明確に分離したことを特徴としている。
核生成工程においては、反応水溶液のpH値が、液温25℃基準で12.0〜14.0の範囲となるように制御する必要がある。pH値が14.0を超える場合、生成する核が微細になり過ぎ、反応水溶液がゲル化する問題がある。また、pH値が12.0未満では、核形成とともに核の成長反応が生じるので、形成される核の粒度分布の範囲が広くなり不均質なものとなってしまう。すなわち、核生成工程において、12.0〜14.0の範囲に反応水溶液のpH値を制御することで、核の成長を抑制してほぼ核生成のみを起こすことができ、形成される核も均質かつ粒度分布の範囲が狭いものとすることができる。
一方、粒子成長工程においては、反応水溶液のpH値が、液温25℃基準で10.5〜12.0、好ましくは11.0〜12.0の範囲となるように制御する必要がある。pH値が12.0を超える場合、新たに生成される核が多くなり、微細二次粒子が生成するため、粒径分布が良好な水酸化物が得られない。また、pH値が10.5未満では、アンモニウムイオンによる溶解度が高く、析出せずに液中に残る金属イオンが増えるため、生産効率が悪化する。すなわち、粒子成長工程において、10.5〜12.0の範囲に反応水溶液のpHを制御することで、核生成工程で生成した核の成長のみを優先的に起こさせ、新たな核形成を抑制することができ、得られるニッケルコバルトマンガン複合水酸化物を均質かつ粒度分布の範囲を狭いものとすることができる。
なお、pH値が12の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程もしくは粒子成長工程のいずれかの条件とすることができる。すなわち、核生成工程のpH値を12より高くして多量に核生成させた後、粒子成長工程でpH値を12とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、粒径分布が狭く比較的大きな粒径の前記水酸化物が得られる。
一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程においてpH値を12とした場合、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12より小さくすることで、生成した核が成長して良好な水酸化物が得られる。
いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
以上のように、核生成工程と粒子成長工程をpH値により明確に分離することで、核生成工程では核生成が優先して起こり、核の成長はほとんど生じず、逆に、粒子成長工程では核成長のみが生じ、ほとんど新しい核は生成されない。このため、核生成工程では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程では、均質に核を成長させることができる。よって、ニッケルコバルトマンガン複合水酸化物の製造方法では、粒度分布の範囲が狭く均質なニッケルコバルトマンガン複合水酸化物粒子を得ることができる。
[反応液温度]
反応槽内において、反応液の温度は、好ましくは20〜80℃、より好ましくは30〜70℃、さらに好ましくは35〜60℃に設定する。反応液の温度が20℃未満の場合、金属イオンの溶解度が低いため核発生が起こりやすく制御が難しくなる。一方、反応液の温度が80℃を超えると、アンモニアの揮発が促進されるため、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
[反応雰囲気]
ニッケルコバルトマンガン複合水酸化物の粒径及び粒子構造は、晶析工程における反応雰囲気によっても制御される。
晶析工程中の反応槽内の雰囲気を非酸化性雰囲気に制御した場合、ニッケルコバルトマンガン複合水酸化物を形成する一次粒子の成長が促進され、一次粒子が大きく緻密で、粒径が適度に大きな二次粒子が形成される。特に、晶析工程において、酸素濃度が5.0容量%以下、好ましくは2.5容量%以下、より好ましくは1.0容量%以下の非酸化性雰囲気とすることで、比較的大きな一次粒子からなる核が生成されるとともに、粒子の凝集により粒子成長が促進され、適度な大きさの二次粒子を得ることができる。
このような雰囲気に反応槽内空間を保つための手段としては、窒素などの不活性ガスを反応槽内空間部へ流通させること、さらには反応液中に不活性ガスをバブリングさせることが挙げられる。
以下、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、実施例及び比較例は、以下の装置及び方法を用いた測定結果により評価した。
実施例1〜12、比較例1〜4について、晶析工程により得られたニッケルコバルトマンガン複合水酸化物を洗浄、固液分離、乾燥し粉体として回収後、以下の方法で各種分析を実施した。
ニッケルコバルトマンガン複合水酸化物の組成は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS−8100)で測定した。
硫酸根含有量は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS−8100)により硫黄元素を測定し、この測定された硫黄元素の量をSOに換算することにより求めた。
塩素含有量は、自動滴定装置(平沼産業株式会社製、COM−1600)で測定した。
炭酸根含有量は、炭素硫黄分析装置(LECO社製CS−600)で全炭素元素含有量を測定し、この測定された全炭素元素の量をCOに換算することにより求めた。
比表面積は、比表面積測定装置(ユアサアイオニクス株式会社製、カンタソーブQS−10)を用いて、BET法により測定した。
また、リチウムニッケルコバルトマンガン複合酸化物は、以下の方法で作製及び評価を行った。ニッケルコバルトマンガン複合水酸化物粒子を、空気(酸素:21容量%)気流中にて温度700℃で6時間の熱処理を行い、複合酸化物粒子を回収した。続いて、Li/Me=1.025となるように水酸化リチウムを秤量し、回収した複合酸化物粒子と混合して混合物を形成した。混合は、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて行った。
次に、得られたこの混合物を酸素気流中(酸素:100容量%)にて500℃で4時間仮焼した後、730℃で24時間焼成し、冷却した後に解砕してリチウムニッケルコバルトマンガン複合酸化物を得た。
得られたリチウムニッケルコバルトマンガン複合酸化物の硫酸根含有量は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS−8100)により硫黄元素を測定し、この測定された硫黄元素の量をSOに換算することにより求めた。
また、リチウムニッケルコバルトマンガン複合酸化物の結晶性を示すMe席占有率は、X線回折装置(パナリティカル社製、X‘Pert PRO)を用いて得られた回折パターンから、リートベルト解析を行い算出した。なお、Me席占有率は、ニッケルコバルトマンガン酸化物中のNi,Co,Mn及び添加元素Mが、層状構造のメタル層(Me席)中に占める金属元素の存在割合を示す。Me席占有率は電池特性と相関があり、Me席占有率が高いほど良好な電池特性を示す。
なお、実施例及び比較例では、ニッケルコバルトマンガン複合水酸化物の製造には、和光純薬工業株式会社製の特級試薬を各試料に使用した。
(実施例1)
実施例1では、ニッケルコバルトマンガン複合水酸化物を、本発明の方法を用いて、以下のように作製した。
まず、反応槽(5L)内に水を0.9L入れて撹拌しながら、槽内温度を40℃に設定し、反応槽に窒素ガスを流通させて窒素雰囲気とした。このときの反応槽内空間の酸素濃度は2.0%であった。
反応槽内の水に25%水酸化ナトリウム水溶液と25%アンモニア水を適量加えて、液温25℃を基準として測定するpH値として、槽内の反応液のpHが12.8となるように調整した。また、反応液中アンモニア濃度は10g/Lに調節した。
次に、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成した。この混合水溶液では、各金属の元素モル比が、Ni:Co:Mn=1:1:1となるように調整した。さらに、水酸化ナトリウムと炭酸ナトリウムを[CO 2−]/[OH]が0.025となるように水に溶解してアルカリ溶液を調整した。
上記混合水溶液を、反応槽内の反応液に12.9ml/分で加えた。同時に、25%アンモニア水、アルカリ溶液も反応槽内の反応液に一定速度で加えていき、反応液中のアンモニア濃度を10g/Lに保持した状態で、pH値を12.8(核生成工程pH値)に制御しながら2分30秒間晶析を行い、核生成を行った。
その後、反応液のpH値が液温25℃を基準として測定するpH値として11.6(粒子成長工程pH値)になるまで、64%硫酸を添加した。液温25℃を基準として測定するpH値として、反応液のpH値が11.6に到達した後、混合水溶液、25%アンモニア水、アルカリ溶液の供給を再開し、pH値を11.6に制御したまま、4時間晶析を継続し粒子成長を行うことにより、ニッケルコバルトマンガン複合水酸化物を得た。
(実施例2)
実施例2では、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成する際に、この混合水溶液の各金属元素モル比が、Ni:Co:Mn=6:2:2となるように調整した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例3)
実施例3では、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成する際に、この混合水溶液の各金属元素モル比が、Ni:Co:Mn=2:1:7となるように調整した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例4)
実施例4では、アルカリ溶液を調整する際に、[CO 2−]/[OH]が0.003となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例5)
実施例5では、アルカリ溶液を調整する際に、[CO 2−]/[OH]が0.040となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例6)
実施例6では、核生成工程のpHを13.6とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例7)
実施例7では、核生成工程のpHを11.8とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例8)
実施例8では、粒子成長工程のpHを12.3とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例9)
実施例9では、粒子成長工程のpHを10.2とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例10)
実施例10では、アルカリ溶液を調整する際のアルカリ金属水酸化物を水酸化カリウムとし、炭酸塩を炭酸カリウムとした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例11)
実施例11では、アルカリ溶液を調整する際の炭酸塩を炭酸アンモニウムにするとともにアンモニア濃度を20g/Lに調整した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例12)
実施例12では、槽内温度を35℃に設定した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例1)
比較例1では、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成する際に、この混合水溶液の各金属元素モル比が、Ni:Co:Mn=2:2:6となるように調整したことと、[CO 2−]/[OH]が0.001となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例2)
比較例2では、アルカリ溶液を水酸化ナトリウムのみとし、[CO 2−]/[OH]が0.000となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例3)
比較例3では、アルカリ溶液を調整する際に、[CO 2−]/[OH]が0.001となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例4)
比較例4では、アルカリ溶液を調整する際に、[CO 2−]/[OH]が0.055となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(評価)
実施例1〜12及び比較例1〜4のニッケルコバルトマンガン複合水酸化物の製造条件を表1に示す。さらに得られたニッケルコバルトマンガン複合水酸化物の評価結果を表2に、リチウムニッケルコバルトマンガン複合酸化物の評価結果を表3に示す。
表1及び表2に示すように、本発明の要件を満たす実施例1〜12では、得られたニッケルコバルトマンガン複合水酸化物の平均粒径が3μm〜20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、さらに炭酸根含有量が1.0質量%〜2.5質量%である。さらに、表3に示すように、実施例1〜12では、リチウムニッケルコバルトマンガン複合酸化物とした場合の結晶性を示すMe席占有率が90.0%を超えており、結晶性に優れたリチウムニッケルコバルトマンガン複合酸化物が得られ、正極活物質として有用であることが分かる。
比較例1〜3では、アルカリ溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2−]/[OH]が0.002を下回るため、硫酸根や塩素含有量が高く、リチウムニッケルコバルトマンガン複合酸化物とした場合の結晶性を示すMe席占有率が90.0%を下回り、同様の組成比などを有する実施例1と比較して劣っていた。
比較例4では、アルカリ溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2−]/[OH]が0.050を上回るため、炭酸根含有量が高く、リチウムニッケルコバルトマンガン複合酸化物とした場合の結晶性を示すMe席占有率が90.0%を下回り、同様の組成比などを有する実施例1と比較して劣っていた。
以上の結果より、本発明の製造方法を用いて、ニッケルコバルトマンガン複合水酸化物を製造すれば、結晶性の高いリチウムニッケルコバルトマンガン複合酸化物が得られ、高容量な非水系電解質二次電池の正極材料として有用であることが分かる。
Figure 0006265117
Figure 0006265117
Figure 0006265117
本発明のニッケルコバルトマンガン複合水酸化物は、純粋に電気エネルギーで駆動する電気自動車用のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電池材料の前駆体として用いることができる。なお、電気自動車用の電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源も含み、本発明のニッケルコバルトマンガン複合水酸化物を原料とする非水系電解質二次電池は、これらのハイブリッド車用の電源としても好適に用いることができる。

Claims (9)

  1. 一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、
    複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm〜20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%〜2.5質量%であることを特徴とするニッケルコバルトマンガン複合水酸化物。
  2. 当該ニッケルコバルトマンガン複合水酸化物の粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.55以下であることを特徴とする請求項1に記載のニッケルコバルトマンガン複合水酸化物。
  3. 比表面積が5m/g〜60m/gであることを特徴とする請求項1又は請求項2に記載のニッケルコバルトマンガン複合水酸化物。
  4. 晶析反応によってニッケルコバルトマンガン複合水酸化物を製造するニッケルコバルトマンガン複合水酸化物の製造方法であって、
    少なくともニッケル、コバルト及びマンガンを含む混合水溶液と、アンモニウムイオン供給体とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、
    前記アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2−]/[OH]が0.002以上0.050以下であり、
    上記ニッケルコバルトマンガン複合水酸化物は、
    一般式Ni Co Mn (OH) 2+a (ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、
    複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm〜20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%〜2.5質量%であることを特徴とするニッケルコバルトマンガン複合水酸化物の製造方法。
  5. 前記晶析工程は、核生成工程と、粒子成長工程とからなり、
    前記核生成工程では、液温25℃を基準として測定するpH値が12.0〜14.0になるようにアルカリ溶液を前記水溶液に添加して前記反応溶液中で核生成を行い、
    前記粒子成長工程では、前記核生成工程において形成された核を含有する前記反応溶液を、液温25℃を基準として測定するpH値が10.5〜12.0となるようにアルカリ溶液を添加することを特徴とする請求項4に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  6. 前記アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種類以上であることを特徴とする請求項4又は請求項5に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  7. 前記炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる少なくとも1種類以上であることを特徴とする請求項4乃至請求項6のいずれか1項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  8. 前記晶析工程では、前記反応溶液のアンモニア濃度を、3g/L〜25g/Lの範囲内に維持することを特徴とする請求項4乃至請求項7のいずれか1項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  9. 前記晶析工程では、反応温度を20℃〜80℃の範囲内に維持することを特徴とする請求項4乃至請求項8のいずれか1項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
JP2014259061A 2014-12-22 2014-12-22 ニッケルコバルトマンガン複合水酸化物とその製造方法 Active JP6265117B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014259061A JP6265117B2 (ja) 2014-12-22 2014-12-22 ニッケルコバルトマンガン複合水酸化物とその製造方法
KR1020177017803A KR102381595B1 (ko) 2014-12-22 2015-11-16 니켈 코발트 망간 복합 수산화물과 그 제조 방법
PL15872544T PL3239103T3 (pl) 2014-12-22 2015-11-16 Złożony wodorotlenek niklowo-kobaltowo-manganowy i sposób jego wytwarzania
PCT/JP2015/082149 WO2016103975A1 (ja) 2014-12-22 2015-11-16 ニッケルコバルトマンガン複合水酸化物とその製造方法
CN201580070370.5A CN107108266B (zh) 2014-12-22 2015-11-16 镍钴锰复合氢氧化物和其制造方法
EP15872544.0A EP3239103B1 (en) 2014-12-22 2015-11-16 Nickel cobalt manganese composite hydroxide and process for producing same
US15/538,146 US10305105B2 (en) 2014-12-22 2015-11-16 Nickel cobalt manganese composite hydroxide and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259061A JP6265117B2 (ja) 2014-12-22 2014-12-22 ニッケルコバルトマンガン複合水酸化物とその製造方法

Publications (2)

Publication Number Publication Date
JP2016117625A JP2016117625A (ja) 2016-06-30
JP6265117B2 true JP6265117B2 (ja) 2018-01-24

Family

ID=56150009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259061A Active JP6265117B2 (ja) 2014-12-22 2014-12-22 ニッケルコバルトマンガン複合水酸化物とその製造方法

Country Status (7)

Country Link
US (1) US10305105B2 (ja)
EP (1) EP3239103B1 (ja)
JP (1) JP6265117B2 (ja)
KR (1) KR102381595B1 (ja)
CN (1) CN107108266B (ja)
PL (1) PL3239103T3 (ja)
WO (1) WO2016103975A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287970B2 (ja) * 2014-10-30 2018-03-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法
CN108352528B (zh) * 2015-11-05 2022-08-02 住友化学株式会社 锂二次电池用正极活性物质及其制造方法
CN116514184A (zh) * 2016-07-29 2023-08-01 住友金属矿山株式会社 镍锰复合氢氧化物及其制造方法、正极活性物质及其制造方法、以及非水系电解质二次电池
KR102390594B1 (ko) * 2016-07-29 2022-04-26 스미토모 긴조쿠 고잔 가부시키가이샤 니켈망간 복합 수산화물과 그 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지
JP6724769B2 (ja) * 2016-12-22 2020-07-15 住友金属鉱山株式会社 ニッケル複合水酸化物の製造方法
JP7124305B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
JP7124308B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
JP7124306B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
CN110970614A (zh) * 2018-09-29 2020-04-07 浙江遨优动力系统有限公司 一种富锂锰基正极材料及其制备方法
CN109721109B (zh) * 2018-12-07 2022-05-10 北京理工大学 一种锂电池用镍钴锰三元正极材料前驱体及其制备方法和制备得到的正极材料
WO2020153094A1 (ja) 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法、リチウムニッケルマンガンコバルト複合酸化物及び、リチウムイオン二次電池
US20220106198A1 (en) 2019-01-22 2022-04-07 Sumitomo Metal Mining Co., Ltd. Nickel cobalt aluminum composite hydroxide, method for producing nickel cobalt aluminum composite hydroxide, lithium nickel cobalt aluminum composite oxide, and lithium ion secondary battery
WO2020152769A1 (ja) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
WO2020152768A1 (ja) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
WO2020152771A1 (ja) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
WO2020153096A1 (ja) 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法、リチウムニッケルマンガンコバルト複合酸化物及び、リチウムイオン二次電池
US20220102718A1 (en) 2019-01-22 2022-03-31 Sumitomo Metal Mining Co., Ltd. Nickel manganese cobalt composite hydroxide, method for producing nickel manganese cobalt composite hydroxide, lithium nickel manganese cobalt composite oxide, and lithium ion secondary battery
CN112186138B (zh) * 2019-07-02 2022-06-28 巴斯夫杉杉电池材料(宁乡)有限公司 含w高镍三元正极材料及其制备方法
CN111403728B (zh) * 2019-11-11 2022-07-08 余姚市鑫和电池材料有限公司 一种高镍低钴共沉覆镁正极材料的制备方法
CN111717941A (zh) * 2020-06-22 2020-09-29 华友新能源科技(衢州)有限公司 一种针状晶须的镍钴锰氢氧化物及其制备方法
CN114873654B (zh) * 2022-03-31 2024-04-02 高点(深圳)科技有限公司 一种接枝型正极材料前驱体及其制备方法和应用
CN114590852B (zh) * 2022-03-31 2024-04-02 高点(深圳)科技有限公司 氢氧化物接枝氧化物型正极材料前驱体及其制备方法、应用
CN114890482B (zh) * 2022-06-15 2023-11-03 荆门市格林美新材料有限公司 一种三元正极前驱体及其制备方法和应用
CN116282190A (zh) * 2023-01-19 2023-06-23 华北理工大学 一种钠离子电池用低氯氧化铁、制备方法及正极材料

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548988B1 (ko) 2003-11-26 2006-02-02 학교법인 한양학원 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
CN100547829C (zh) * 2005-07-01 2009-10-07 深圳市比克电池有限公司 锂复合金属氧化物的制备方法
JP4996117B2 (ja) 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP5103923B2 (ja) * 2007-02-08 2012-12-19 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
KR101403828B1 (ko) 2007-03-05 2014-06-03 도다 고교 가부시끼가이샤 비수전해질 이차 전지용 Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법 및 비수전해질 이차 전지
WO2009021651A1 (en) * 2007-08-10 2009-02-19 Umicore Doped lithium transition metal oxides containing sulfur
JP5638232B2 (ja) * 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN102639443B (zh) 2009-12-07 2015-04-15 住友化学株式会社 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池
JP5584456B2 (ja) * 2009-12-10 2014-09-03 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
WO2012020768A1 (ja) 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 ニッケル-コバルト含有複合化合物の製造方法
JP5742193B2 (ja) * 2010-10-19 2015-07-01 住友化学株式会社 リチウム複合金属酸化物および非水電解質二次電池
CN103283083A (zh) * 2011-03-16 2013-09-04 松下电器产业株式会社 锂二次电池的充放电方法和充放电系统
CN103249678B (zh) * 2011-03-28 2016-06-15 住友金属矿山株式会社 镍锰复合氢氧化物粒子及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法、以及非水系电解质二次电池
WO2013021955A1 (ja) * 2011-08-05 2013-02-14 旭硝子株式会社 リチウムイオン二次電池用正極活物質
KR101920484B1 (ko) 2011-09-26 2019-02-11 전자부품연구원 리튬 이차전지용 양극 활물질의 전구체 및 그의 제조방법, 양극 활물질 및 이를 포함하는 리튬 이차전지
JP5799849B2 (ja) 2012-02-21 2015-10-28 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物及びその製造方法
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
CN103413926B (zh) * 2013-08-31 2015-04-15 张宝 一种镍钴锰酸锂材料前驱体的制备方法
JP6287970B2 (ja) * 2014-10-30 2018-03-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法

Also Published As

Publication number Publication date
PL3239103T3 (pl) 2021-09-20
US10305105B2 (en) 2019-05-28
US20170352884A1 (en) 2017-12-07
EP3239103A1 (en) 2017-11-01
JP2016117625A (ja) 2016-06-30
CN107108266A (zh) 2017-08-29
WO2016103975A1 (ja) 2016-06-30
KR20170097666A (ko) 2017-08-28
EP3239103A4 (en) 2018-06-20
KR102381595B1 (ko) 2022-04-04
EP3239103B1 (en) 2021-03-31
CN107108266B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
JP6265117B2 (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
JP6287970B2 (ja) ニッケル複合水酸化物とその製造方法
JP5316726B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP6252010B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP5638232B2 (ja) 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
KR101694086B1 (ko) 비수계 전해질 2차 전지용 정극 활물질의 전구체가 되는 전이 금속 복합 수산화물과 그 제조방법, 그 비수계 전해질 2차 전지용 정극 활물질과 그 제조방법, 및 상기 정극 활물질을 이용한 비수계 전해질 2차 전지
KR101644258B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP5971109B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6244713B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP2011116580A5 (ja)
JP6583418B2 (ja) マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
WO2020152771A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
JP2022116215A (ja) ニッケルマンガンコバルト複合水酸化物及び、リチウムニッケルマンガンコバルト複合酸化物
JP2011116582A5 (ja)
WO2020152768A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
JPWO2017033894A1 (ja) 非水系電解質二次電池用正極活物質及びその製造方法、非水系電解質二次電池
WO2016067960A1 (ja) ニッケル複合水酸化物とその製造方法
WO2020152769A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6265117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150