WO2016103975A1 - ニッケルコバルトマンガン複合水酸化物とその製造方法 - Google Patents

ニッケルコバルトマンガン複合水酸化物とその製造方法 Download PDF

Info

Publication number
WO2016103975A1
WO2016103975A1 PCT/JP2015/082149 JP2015082149W WO2016103975A1 WO 2016103975 A1 WO2016103975 A1 WO 2016103975A1 JP 2015082149 W JP2015082149 W JP 2015082149W WO 2016103975 A1 WO2016103975 A1 WO 2016103975A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese composite
nickel cobalt
cobalt manganese
composite hydroxide
hydroxide
Prior art date
Application number
PCT/JP2015/082149
Other languages
English (en)
French (fr)
Inventor
元彬 猿渡
寛子 大下
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US15/538,146 priority Critical patent/US10305105B2/en
Priority to PL15872544T priority patent/PL3239103T3/pl
Priority to CN201580070370.5A priority patent/CN107108266B/zh
Priority to EP15872544.0A priority patent/EP3239103B1/en
Priority to KR1020177017803A priority patent/KR102381595B1/ko
Publication of WO2016103975A1 publication Critical patent/WO2016103975A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel cobalt manganese composite hydroxide and a method for producing a nickel cobalt manganese composite hydroxide.
  • a lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of detaching and inserting lithium is used as an active material for the negative electrode and the positive electrode.
  • lithium ion secondary batteries using a layered or spinel type lithium metal composite oxide as a positive electrode material have a high voltage of 4V. Therefore, practical use is progressing as a battery having a high energy density.
  • LiCoO 2 lithium cobalt composite oxide
  • the lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material, it causes an increase in the cost of the active material and the battery, and an alternative to the active material is desired.
  • New materials for the positive electrode active material for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel. ).
  • Lithium-manganese composite oxide is an inexpensive alternative and excellent thermal stability, so it can be said that it is a powerful alternative to lithium-cobalt composite oxide, but its theoretical capacity is only about half that of lithium-cobalt composite oxide. Therefore, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year.
  • the lithium-nickel composite oxide has inferior cycle characteristics as compared with the lithium-cobalt composite oxide, and has a drawback that the battery performance is relatively easily lost when used or stored in a high temperature environment.
  • lithium nickel cobalt manganese composite oxide having the same thermal stability and durability as lithium cobalt composite oxide has become a promising candidate as an alternative to lithium cobalt composite oxide.
  • Patent Document 1 discloses a general formula: Ni 1-xyz Co x Mn y M z (OH) 2 (0 ⁇ x ⁇ 1/3, 0 ⁇ y ⁇ 1/3, 0 ⁇ z ⁇ 0.1, M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, W), and is measured by a nitrogen adsorption BET method Has been proposed, and a nickel-cobalt composite hydroxide having a carbon content measured by a high-frequency-infrared combustion method of 0.1% by mass or less is 1.0-10.0 m 2 / g.
  • Patent Document 1 if the carbon content exceeds 0.1% by mass, the amount of impurities formed on the surface of the positive electrode active material increases, and sufficient output in the battery cannot be obtained. It is said that by using a lithium nickel composite oxide obtained using a hydroxide as a precursor as a positive electrode active material, a non-aqueous electrolyte secondary battery having excellent thermal stability and battery characteristics can be obtained.
  • Patent Document 1 Although attention is paid to the carbon content, other impurities are not studied, and a composite hydroxide capable of further increasing the capacity of the positive electrode active material is demanded.
  • Patent Document 2 a nickel-cobalt-M element-containing aqueous solution or aqueous dispersion obtained by mixing a nickel ammine complex, a cobalt ammine complex, and an M element source is heated, and the nickel ammine complex and the cobalt ammine complex are heated.
  • a method for producing a nickel-cobalt-M element-containing composite compound which is decomposed to produce a nickel-cobalt-M element-containing composite compound.
  • Patent Document 2 in the coprecipitation method of neutralizing with alkali, sulfate ions (SO 4 2 ⁇ ) and chloride ions (Cl ⁇ ), which are anions of salts used as raw materials, and sodium contained in the alkali used for neutralization Ions (Na + ) are difficult to wash, and these ions remain as impurities in the positive electrode material.
  • the nickel-cobalt-M element-containing composite compound proposed in Patent Document 2 has a very low content of impurities such as sulfate radicals, chlorine, sodium, and iron, so that a positive electrode active material obtained using this composite compound can be obtained. The substance is said to exhibit excellent battery performance.
  • Patent Document 2 since the nickel-cobalt-M element-containing composite compound is obtained by thermal decomposition, it is difficult to narrow the spherical shape and particle size distribution of the particles, and the obtained positive electrode active material has sufficient battery characteristics. Is hard to say.
  • the lithium nickel cobalt manganese composite oxide is usually manufactured from a step in which nickel cobalt manganese composite hydroxide is mixed with a lithium compound and fired.
  • Nickel cobalt manganese composite hydroxide contains impurities such as sulfate radicals derived from raw materials in the production process. These impurities often inhibit the reaction with lithium in the step of mixing and baking the lithium compound, and lower the crystallinity of the lithium nickel cobalt manganese composite oxide having a layered structure.
  • Lithium nickel cobalt manganese composite oxide with low crystallinity has a problem in that when a battery is formed as a positive electrode active material, Li diffusion in the solid phase is inhibited and the capacity is reduced.
  • the impurities contained in the nickel cobalt manganese composite hydroxide remain in the lithium nickel cobalt manganese composite oxide even after mixing with the lithium compound and firing. Since these impurities do not contribute to the charge / discharge reaction, when the battery is constructed, the negative electrode material must be used in the battery by an amount corresponding to the irreversible capacity of the positive electrode active material. The capacity per weight and the volume per volume is reduced. For this reason, a lithium nickel cobalt manganese composite oxide with a lower impurity content is required, but for that purpose, a nickel cobalt manganese composite hydroxide with a low impurity content is required. In addition, in order to obtain a lithium nickel cobalt manganese composite oxide having high crystallinity, high reactivity is required when mixed with a lithium compound and fired.
  • An object of the present invention is to increase the reactivity with lithium by reducing the amount of impurities that do not contribute to the charge / discharge reaction, resulting in a high capacity non-aqueous electrolyte secondary battery.
  • An object of the present invention is to provide a nickel-cobalt-manganese composite hydroxide that is a precursor of a positive electrode active material that can be produced and a method for producing the same.
  • the present inventors have found that in the process of producing nickel cobalt manganese composite hydroxide by crystallization reaction, the alkaline solution is an impurity by making the mixed solution of alkali metal hydroxide and carbonate.
  • the present invention has been completed with the knowledge that sulfate radicals can be reduced.
  • M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo Is a spherical secondary particle formed by aggregating a plurality of plate-like primary particles, and the secondary particles have an average particle size of 3 ⁇ m to 20 ⁇ m, the sulfate group content is 1.0 mass% or less, the chlorine content is 0.5 mass% or less, and the carbonate group content is 1.0 mass% to 2.5 mass%. It is characterized by being.
  • [(d90 ⁇ d10) / average particle diameter] which is an index indicating the spread of the particle size distribution of the nickel cobalt manganese composite hydroxide, is preferably 0.55 or less.
  • the specific surface area of the nickel cobalt manganese composite hydroxide is preferably 5 to 60 m 2 / g.
  • the crystallization step includes a nucleation step and a particle growth step.
  • an alkaline solution is added so that the pH value measured on the basis of a liquid temperature of 25 ° C. is 12.0 to 14.0.
  • Nucleation is performed in the reaction solution by adding to the aqueous solution.
  • the particle growth step the reaction solution containing the nuclei formed in the nucleation step is measured at a pH value of 10.5 to It is preferable to add an alkaline solution so as to be 12.0.
  • the alkali metal hydroxide is preferably at least one selected from lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • the carbonate is preferably at least one selected from sodium carbonate, potassium carbonate, and ammonium carbonate.
  • the ammonia concentration of each aqueous solution is preferably maintained within the range of 3 g / L to 25 g / L.
  • reaction temperature within the range of 20 ° C to 80 ° C.
  • nickel cobalt manganese that can be used as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery with a small irreversible capacity, has a low impurity content, and has high reactivity when synthesizing a positive electrode active material.
  • a composite hydroxide can be obtained.
  • the manufacturing method of nickel cobalt manganese composite hydroxide is easy and highly productive, and its industrial value is extremely large.
  • M is Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo
  • W Is a spherical secondary particle formed by aggregating a plurality of plate-like primary particles, and the secondary particles have an average particle size of 3 to 20 ⁇ m
  • the sulfate radical content is 1.0 mass% or less
  • the chlorine content is 0.5 mass% or less
  • the carbonate radical content is 1.0 mass% to 2.5 mass%. It is characterized by that.
  • the characteristics of each element will be described in detail.
  • x indicating the nickel content is preferably 0.20 ⁇ x ⁇ 0.80. Further, x indicating the nickel content is more preferably x ⁇ 0.6 in consideration of electrical characteristics and thermal stability.
  • y indicating the cobalt content in the above general formula is preferably 0.10 ⁇ y ⁇ 0.50.
  • the expansion / contraction behavior of the crystal lattice due to cycle characteristics and Li insertion / desorption due to charge / discharge can be reduced.
  • y is less than 0.10, the expansion / contraction behavior of the crystal lattice is reduced. Is not preferable because sufficient cannot be obtained.
  • the cobalt content is too high and y exceeds 0.50, the initial discharge capacity is greatly reduced, and there is a problem in that it is disadvantageous in terms of cost.
  • z indicating the manganese content is preferably 0.10 ⁇ z ⁇ 0.90.
  • the durability characteristics and safety of the battery can be improved when used as a positive electrode active material of the battery. If z is less than 0.10, the effect of improving the durability and safety of the battery cannot be sufficiently obtained. On the other hand, if z exceeds 0.90, the metal element contributing to the Redox reaction decreases, and the battery This is not preferable because the capacity decreases.
  • the additive element M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W, in order to improve battery characteristics such as cycle characteristics and output characteristics. It is to be added. T indicating the content of the additive element M is preferably 0 ⁇ t ⁇ 0.10. When t exceeds 0.1, the metal element contributing to the Redox reaction is reduced and the battery capacity is lowered, which is not preferable.
  • composition analysis method is not particularly limited, but can be determined from chemical analysis by ICP emission spectroscopy.
  • the nickel cobalt manganese composite hydroxide is composed of spherical secondary particles formed by aggregation of a plurality of primary particles.
  • shape of the primary particles constituting the secondary particles various forms such as a plate shape, a needle shape, a rectangular parallelepiped shape, an elliptical shape, and a rhombohedral shape can be adopted.
  • the aggregation state of a plurality of primary particles can be applied to the present invention not only in the case of aggregation in a random direction, but also in the case where the major axis direction of particles aggregates radially from the center.
  • plate-like and / or needle-like primary particles are aggregated in random directions to form secondary particles.
  • voids are formed almost uniformly between the primary particles, and when mixed with the lithium compound and fired, the molten lithium compound reaches the secondary particles, and the lithium is sufficiently diffused. Because it is.
  • shape observation method of a primary particle and a secondary particle is not specifically limited, It can measure by observing the cross section of a nickel cobalt manganese composite hydroxide using a scanning electron microscope.
  • the nickel cobalt manganese composite hydroxide has an average particle size adjusted to 3 ⁇ m to 20 ⁇ m.
  • An average particle size of less than 3 ⁇ m is not preferable because when the positive electrode is formed, the packing density of the particles decreases and the battery capacity per positive electrode volume decreases.
  • the average particle size exceeds 20 ⁇ m, the specific surface area of the positive electrode active material is decreased and the interface with the battery electrolyte is decreased, whereby the resistance of the positive electrode is increased and the output characteristics of the battery are decreased. .
  • the average particle size of the nickel cobalt manganese composite hydroxide is adjusted to 3 ⁇ m to 20 ⁇ m, preferably 3 ⁇ m to 15 ⁇ m, more preferably 4 ⁇ m to 12 ⁇ m, this positive electrode active material is used for the positive electrode.
  • the battery capacity per volume can be increased, the safety is high, and the cycle characteristics are good.
  • the measuring method of the average particle diameter is not particularly limited, but can be determined from, for example, a volume integrated value measured by a laser light diffraction / scattering particle size analyzer.
  • the nickel cobalt manganese composite hydroxide contains a sulfate group and chlorine.
  • the sulfate radical content is 1.0 mass% or less, preferably 0.6 mass% or less, and the chlorine content is 0.5 mass% or less, preferably 0.3 mass% or less.
  • the sulfate radical and chlorine contained in the nickel cobalt manganese composite hydroxide particles are derived from the raw materials used in the following crystallization process.
  • the reaction with lithium is inhibited in the step of mixing and firing with a lithium compound, and lithium-nickel-cobalt-manganese composite oxidation having a layered structure Reduce the crystallinity of the product.
  • the lithium nickel cobalt manganese composite oxide having low crystallinity has a problem in that, when a battery is formed as a positive electrode material, the Li diffusion in the solid phase is inhibited and the capacity is reduced. Furthermore, the impurities contained in the nickel cobalt manganese composite hydroxide remain in the lithium nickel cobalt manganese composite oxide after mixing with the lithium compound and firing.
  • the negative electrode material Since these impurities do not contribute to the charge / discharge reaction, when the battery is constructed, the negative electrode material must be used in the battery by an amount corresponding to the irreversible capacity of the positive electrode material. The capacity per weight and volume is reduced, and excess lithium accumulated in the negative electrode as an irreversible capacity becomes a problem from the viewpoint of safety.
  • the nickel cobalt manganese composite hydroxide has a carbonate radical content of 1.0 mass% to 2.5 mass%.
  • the carbonate radical contained in the nickel cobalt manganese composite hydroxide is derived from the carbonate used in the crystallization step described later.
  • Carbonic acid radicals do not remain in the lithium nickel cobalt manganese composite oxide as the positive electrode material because they volatilize in the step of mixing and firing the nickel cobalt manganese composite hydroxide and lithium compound.
  • the carbonate group content in the nickel cobalt manganese composite hydroxide is in the range of 1.0 mass% to 2.5 mass%, the nickel cobalt manganese composite hydroxide is mixed with the lithium compound and fired.
  • the carbonate radical content can be determined, for example, by measuring the total carbon element content of the nickel cobalt manganese composite hydroxide and converting the measured total carbon element amount into CO 3 .
  • the carbonate group content is less than 1.0% by mass, the contact with the molten lithium compound becomes insufficient when mixed with the lithium compound and fired, and the crystallinity of the resulting lithium nickel cobalt manganese composite oxide is low.
  • the battery is configured as the positive electrode material, there is a problem in that the capacity is reduced by inhibiting Li diffusion in the solid phase.
  • the carbonate group content exceeds 2.5% by mass, in the step of mixing with a lithium compound and firing to obtain a lithium nickel cobalt manganese composite oxide, the generated carbon dioxide gas inhibits the reaction, and lithium nickel cobalt manganese. The crystallinity of the composite oxide decreases.
  • the nickel-cobalt-manganese composite hydroxide is preferably adjusted so that [(d90-d10) / average particle diameter], which is an index indicating the spread of the particle size distribution of the particles, is 0.55 or less.
  • the particle size distribution is wide and [(d90 ⁇ d10) / average particle size], which is an index indicating the spread of the particle size distribution, exceeds 0.55, the particle size is very small with respect to the average particle size. There are many fine particles and particles having a very large particle size (large particles) with respect to the average particle size.
  • a positive electrode is formed using a positive electrode active material in which a large amount of fine particles are present, heat may be generated due to a local reaction of the fine particles, safety is reduced, and fine particles having a large specific surface area are selectively used. Since it deteriorates, the cycle characteristics deteriorate, which is not preferable.
  • the particle size distribution of the positive electrode active material is adjusted so that the index [(d90 ⁇ d10) / average particle size] is 0.55 or less, the proportion of fine particles and large particles is small.
  • a battery using a positive electrode active material for the positive electrode is excellent in safety, and good cycle characteristics and battery output can be obtained.
  • d10 is the cumulative volume of all particles when the number of particles in each particle size is accumulated from the smallest particle size. It means the particle size which becomes 10% of the total volume. Further, d90 means a particle size in which the cumulative volume becomes 90% of the total volume of all particles when the number of particles in each particle size is accumulated from the smallest particle size.
  • the method for obtaining the average particle diameter and d90 and d10 is not particularly limited, but for example, it can be obtained from the volume integrated value measured with a laser light diffraction / scattering particle size analyzer.
  • the nickel cobalt manganese composite hydroxide is preferably adjusted to have a specific surface area of 5 m 2 / g to 60 m 2 / g, and is adjusted to be 5 m 2 / g to 50 m 2 / g. It is more preferable. This is because, when the specific surface area is in the above range, a sufficient particle surface area capable of contacting the molten lithium compound can be obtained when the mixture is calcined with the lithium compound.
  • the specific surface area is less than 5 m 2 / g, the contact with the molten lithium compound becomes insufficient when mixed and fired with the lithium compound, the crystallinity of the resulting lithium nickel cobalt manganese composite oxide is reduced,
  • the specific surface area exceeds 60 m 2 / g, when mixed with a lithium compound and baked, crystal growth proceeds too much, and cation mixing in which nickel is mixed into the lithium layer of the lithium transition metal composite oxide, which is a layered compound, occurs. This is not preferable because the charge / discharge capacity decreases.
  • the nickel cobalt manganese composite hydroxide can produce a lithium nickel cobalt manganese composite oxide by mixing with a lithium compound and firing.
  • the lithium nickel cobalt manganese composite oxide can be used as a raw material for a positive electrode active material of a non-aqueous electrolyte secondary battery.
  • the lithium nickel cobalt manganese composite oxide used for the positive electrode active material volatilizes the carbonate radical in the firing after mixing with the lithium compound, but other components and particle size distribution are the properties of the precursor nickel cobalt manganese composite hydroxide Take over.
  • the nickel cobalt manganese composite hydroxide has a sulfate radical content of 1.0% by mass or less, preferably 0.6% by mass or less, and a chlorine content of 0.5% by mass or less, preferably 0.3% by mass. % Or less. Further, the nickel cobalt manganese composite hydroxide has an average particle size of 3 ⁇ m to 25 ⁇ m, which makes it possible to increase the battery capacity per volume, high safety, and good cycle characteristics.
  • [(d90-d10) / average particle size] which is an index indicating the spread of the particle size distribution of nickel cobalt manganese composite hydroxide is 0.55 or less, and the ratio of particles and large particles is small.
  • the battery is excellent in safety, and good cycle characteristics and battery output can be obtained.
  • Method for producing nickel cobalt manganese composite hydroxide> in the method for producing a nickel cobalt manganese composite hydroxide of the present invention, for example, the above-described nickel cobalt manganese composite hydroxide is produced by a crystallization reaction.
  • a method for producing nickel-cobalt-manganese composite hydroxide is a crystal that crystallizes in a reaction solution obtained by adding an alkaline solution to an aqueous solution containing at least nickel, cobalt and manganese and an aqueous solution containing ammonium ions.
  • the alkali solution is a mixed aqueous solution of an alkali metal hydroxide and a carbonate, and the ratio of the carbonate to the alkali metal hydroxide in the mixed aqueous solution [CO 3 2 ⁇ ] / [OH ⁇ ] Is 0.002 or more and 0.050 or less.
  • the crystallization step includes a nucleation step and a particle growth step.
  • an alkaline solution is added so that the pH value measured on the basis of a liquid temperature of 25 ° C. is 12.0 to 14.0.
  • Nucleation is performed in the reaction solution by adding to the aqueous solution.
  • the particle growth step the reaction solution containing the nuclei formed in the nucleation step is measured at a pH value of 10.5 to It is preferable to add an alkaline solution so as to be 12.0.
  • the particle size distribution of the obtained nickel composite hydroxide becomes wide.
  • the nickel cobalt manganese composite hydroxide production method clearly separates mainly the time during which the nucleation reaction occurs (nucleation process) and the time during which the particle growth reaction mainly occurs (particle growth process).
  • the alkali solution a mixed solution of alkali metal hydroxide and carbonate, sulfate radicals and the like that are impurities can be reduced.
  • the salt such as nickel salt, cobalt salt and manganese salt used in the mixed aqueous solution containing nickel, cobalt and manganese is not particularly limited as long as it is a water-soluble compound, but sulfate, nitrate, chloride, etc. Can be used.
  • nickel sulfate, cobalt sulfate, and manganese sulfate are preferably used.
  • a mixed aqueous solution can be generated by mixing a compound containing one or more additional elements at a predetermined ratio.
  • a water-soluble compound containing one or more additional elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, and W.
  • titanium sulfate Use ammonium peroxotitanate, potassium potassium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate, niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate, etc. Can do.
  • the nickel cobalt manganese composite hydroxide obtained by crystallization is mixed with an aqueous solution containing an additive element to form a slurry, and the pH is adjusted to adjust the nickel cobalt manganese composite hydroxide with the compound containing the additive element. It may be coated.
  • the concentration of the mixed aqueous solution is preferably 1 mol / L to 2.6 mol / L, more preferably 1 mol / L to 2.2 mol / L in total of the metal salts. If the concentration is less than 1 mol / L, the resulting hydroxide slurry concentration is low and the productivity is poor. On the other hand, if it exceeds 2.6 mol / L, crystal precipitation and freezing occur at ⁇ 5 ° C. or less, which may clog the piping of the equipment, and it is necessary to keep the piping warm or warm, which is expensive.
  • the amount of the mixed aqueous solution supplied to the reaction tank is such that the concentration of the crystallized product at the time when the crystallization reaction is completed is approximately 30 g / L to 250 g / L, preferably 80 g / L to 150 g / L. It is preferable to do.
  • the crystallized substance concentration is less than 30 g / L, the primary particles may be insufficiently aggregated.
  • the crystallized substance concentration exceeds 250 g / L, the mixture is added in the reaction tank of the aqueous solution. This is because the diffusion of the particles is not sufficient and the grain growth may be biased.
  • ammonium ion supplier in the reaction solution is not particularly limited as long as it is a water-soluble compound, but ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be used, for example, ammonia, Ammonium sulfate is preferably used.
  • the ammonia concentration in the reaction solution is preferably adjusted to 3 g / L to 25 g / L, more preferably 5 g / L to 20 g / L, and even more preferably 5 g / L to 15 g / L. Due to the presence of ammonium ions in the reaction solution, metal ions, particularly Ni ions, form ammine complexes, the solubility of metal ions increases, the growth of primary particles is promoted, and dense composite hydroxide particles are obtained. It is easy to be done. Furthermore, since the solubility of metal ions is stabilized, composite hydroxide particles having a uniform shape and particle size are easily obtained. In particular, by setting the ammonia concentration in the reaction solution to 3 g / L to 25 g / L, it is easier to obtain composite hydroxide particles having a finer shape and a uniform particle size.
  • the solubility of metal ions may become unstable, primary particles having a uniform shape and particle size are not formed, and gel-like nuclei are formed. The particle size distribution may be broadened.
  • the solubility of metal ions becomes too high, the amount of metal ions remaining in the reaction aqueous solution increases, and the composition may shift.
  • the concentration of ammonium ions can be measured with a general ion meter.
  • the alkaline solution is prepared with a mixed aqueous solution of alkali metal hydroxide and carbonate.
  • [CO 3 2 ⁇ ] / [OH ⁇ ] representing the mixing ratio of the alkali metal hydroxide and the carbonate is preferably 0.002 or more and 0.050 or less, and 0.005 or more and 0.0. It is more preferably 030 or less, and further preferably 0.010 or more and 0.025 or less.
  • anions such as sulfate radicals and chlorine remaining as impurities in the nickel cobalt manganese composite hydroxide obtained in the crystallization step are converted into carbonate radicals. And ion exchange.
  • the carbonate radical is volatilized in the step of mixing and firing the nickel cobalt manganese composite hydroxide and the lithium compound, and therefore does not remain in the lithium nickel cobalt manganese composite oxide as the positive electrode material.
  • the alkali metal hydroxide is preferably at least one selected from lithium hydroxide, sodium hydroxide, and potassium hydroxide, and a compound that is easily dissolved in water is preferable because the amount added can be easily controlled.
  • the carbonate is preferably at least one selected from sodium carbonate, potassium carbonate, and ammonium carbonate, and a compound that is easily dissolved in water is preferable because the amount added can be easily controlled.
  • the method of adding the alkaline solution to the reaction vessel is not particularly limited, and a pump capable of controlling the flow rate, such as a metering pump, so that the pH value of the reaction solution is maintained in a range described later. What is necessary is just to add.
  • a nucleation step is performed in which an alkali solution is added so that the pH value of the reaction solution measured on the basis of 25 ° C. is 12.0 to 14.0, and nucleation is performed.
  • Particles for growing nuclei by adding an alkaline solution to the aqueous solution for particle growth containing the formed nuclei and adding an alkaline solution so that the pH value measured on the basis of a liquid temperature of 25 ° C. is 10.5 to 12.0 More preferably, it comprises a growth step.
  • the nucleation reaction and the particle growth reaction do not proceed at the same time in the same tank, but mainly the time when the nucleation reaction (nucleation process) occurs and the time when the particle growth reaction (particle growth process) occurs mainly. Is characterized by a clear separation.
  • the pH value of the aqueous reaction solution it is necessary to control the pH value of the aqueous reaction solution to be in the range of 12.0 to 14.0 based on the liquid temperature of 25 ° C.
  • the pH value exceeds 14.0, the produced nuclei become too fine and the reaction aqueous solution gels.
  • the pH value is less than 12.0, a nucleus growth reaction occurs together with nucleation, so that the range of the particle size distribution of the nuclei formed becomes wide and non-uniform.
  • the nucleation step by controlling the pH value of the reaction aqueous solution in the range of 12.0 to 14.0, it is possible to suppress the growth of nuclei and cause almost only nucleation, It can be homogeneous and have a narrow range of particle size distribution.
  • the pH value of the aqueous reaction solution it is necessary to control the pH value of the aqueous reaction solution to be in the range of 10.5 to 12.0, preferably 11.0 to 12.0 on the basis of the liquid temperature of 25 ° C.
  • the pH value exceeds 12.0, more nuclei are newly generated and fine secondary particles are generated, so that a hydroxide having a good particle size distribution cannot be obtained.
  • the pH value is less than 10.5, the solubility by ammonium ions is high, and the metal ions remaining in the liquid without being precipitated increase, so that the production efficiency is deteriorated.
  • the resulting nickel cobalt manganese composite hydroxide can be made homogeneous and have a narrow particle size distribution range.
  • the pH value When the pH value is 12, it is a boundary condition between nucleation and nucleation, and therefore, it can be set as either a nucleation process or a particle growth process depending on the presence or absence of nuclei present in the reaction aqueous solution. . That is, if the pH value in the nucleation step is higher than 12 and a large amount of nuclei are produced, and if the pH value is set to 12 in the particle growth step, a large amount of nuclei are present in the reaction aqueous solution, so the growth of nuclei takes priority. As a result, the hydroxide having a narrow particle size distribution and a relatively large particle size can be obtained.
  • the pH value of the particle growth process may be controlled to a value lower than the pH value of the nucleation process.
  • the pH value of the particle growth process is It is preferably 0.5 or more lower than the pH value of the production step, more preferably 1.0 or more.
  • the nucleation step and the particle growth step are clearly separated by the pH value, so that nucleation takes precedence in the nucleation step and almost no nucleation occurs.
  • the particle growth step Only nuclear growth occurs, and almost no new nuclei are generated.
  • nuclei can be grown homogeneously. Therefore, in the method for producing nickel cobalt manganese composite hydroxide, uniform nickel cobalt manganese composite hydroxide particles having a narrow particle size distribution range can be obtained.
  • the temperature of the reaction solution is preferably set to 20 to 80 ° C., more preferably 30 to 70 ° C., and further preferably 35 to 60 ° C.
  • the solubility of metal ions is low, so that nucleation is likely to occur and control becomes difficult.
  • the temperature of the reaction liquid exceeds 80 ° C., volatilization of ammonia is promoted, so that an excess ammonium ion supplier must be added to maintain a predetermined ammonia concentration, resulting in high cost. .
  • reaction atmosphere The particle size and particle structure of the nickel cobalt manganese composite hydroxide are also controlled by the reaction atmosphere in the crystallization process.
  • the atmosphere in the reaction vessel during the crystallization process is controlled to a non-oxidizing atmosphere, the growth of primary particles forming nickel cobalt manganese composite hydroxide is promoted, the primary particles are large and dense, and the particle size is moderate. Large secondary particles are formed.
  • relatively large primary particles can be obtained by setting a non-oxidizing atmosphere having an oxygen concentration of 5.0% by volume or less, preferably 2.5% by volume or less, more preferably 1.0% by volume or less.
  • the growth of particles is promoted by the aggregation of the particles, and secondary particles having an appropriate size can be obtained.
  • Means for maintaining the reaction vessel space in such an atmosphere include circulating an inert gas such as nitrogen to the reaction vessel space, and further bubbling the inert gas in the reaction solution. .
  • the composition of the nickel cobalt manganese composite hydroxide was measured with an ICP emission spectroscopic analyzer (ICPS-8100, manufactured by Shimadzu Corporation) after dissolving the sample in nitric acid.
  • ICP emission spectroscopic analyzer ICPS-8100, manufactured by Shimadzu Corporation
  • the sulfate radical content was determined by dissolving the sample with nitric acid and then measuring the elemental sulfur with an ICP emission spectrophotometer (ICPS-8100, manufactured by Shimadzu Corporation) and converting the measured amount of elemental sulfur to SO 4 .
  • ICP emission spectrophotometer ICPS-8100, manufactured by Shimadzu Corporation
  • the chlorine content was measured with an automatic titration apparatus (Hiranuma Sangyo Co., Ltd., COM-1600).
  • the carbonate radical content was determined by measuring the total carbon element content with a carbon sulfur analyzer (CS-600 manufactured by LECO) and converting the measured total carbon element amount into CO 3 .
  • the specific surface area was measured by a BET method using a specific surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Kantasorb QS-10).
  • the lithium nickel cobalt manganese composite oxide was produced and evaluated by the following method.
  • the nickel cobalt manganese composite hydroxide particles were heat-treated at 700 ° C. for 6 hours in an air stream (oxygen: 21 vol%) to recover the composite oxide particles.
  • this obtained mixture was calcined at 500 ° C. for 4 hours in an oxygen stream (oxygen: 100% by volume), then calcined at 730 ° C. for 24 hours, cooled, crushed, and lithium nickel cobalt manganese A composite oxide was obtained.
  • the sulfate group content of the obtained lithium nickel cobalt manganese composite oxide was obtained by dissolving the sample with nitric acid and then measuring the elemental sulfur using an ICP emission spectroscopic analyzer (ICPS-8100, manufactured by Shimadzu Corporation). the amount of elemental sulfur was determined by converting the SO 4.
  • the Me-occupancy ratio indicating the crystallinity of the lithium nickel cobalt manganese composite oxide was determined by performing a Rietveld analysis from the diffraction pattern obtained using an X-ray diffractometer (X'Pert PRO, manufactured by Panalical). Calculated.
  • the Me seat occupancy indicates the abundance ratio of the metal element in the layered metal layer (Me seat) by Ni, Co, Mn and the additive element M in the nickel cobalt manganese oxide.
  • the Me seat occupancy has a correlation with the battery characteristics, and the higher the Me seat occupancy, the better the battery characteristics.
  • Example 1 In Example 1, a nickel cobalt manganese composite hydroxide was prepared as follows using the method of the present invention.
  • Ni: Co: Mn 1: 1: 1.
  • an alkali solution was prepared by dissolving sodium hydroxide and sodium carbonate in water such that [CO 3 2 ⁇ ] / [OH ⁇ ] was 0.025.
  • the above mixed aqueous solution was added to the reaction solution in the reaction tank at 12.9 ml / min.
  • 25% ammonia water and an alkaline solution are also added to the reaction solution in the reaction tank at a constant rate, and the pH value is 12.8 (nucleation step) while maintaining the ammonia concentration in the reaction solution at 10 g / L.
  • Crystallization was carried out for 2 minutes and 30 seconds while controlling to a pH value) to perform nucleation.
  • a nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the ratio was adjusted to 1: 7.
  • Example 4 nickel cobalt manganese composite hydroxide was prepared in the same manner as in Example 1 except that [CO 3 2 ⁇ ] / [OH ⁇ ] was 0.003 when adjusting the alkaline solution. And evaluated.
  • Example 5 nickel cobalt manganese composite hydroxide was prepared in the same manner as in Example 1 except that [CO 3 2 ⁇ ] / [OH ⁇ ] was 0.040 when adjusting the alkaline solution. And evaluated.
  • Example 6 a nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the nucleation step was 13.6.
  • Example 7 nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the nucleation step was 11.8.
  • Example 8 nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the particle growth step was 12.3.
  • Example 9 nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the particle growth step was 10.2.
  • Example 10 a nickel cobalt manganese composite hydroxide was obtained in the same manner as in Example 1 except that the alkali metal hydroxide used for preparing the alkaline solution was potassium hydroxide and the carbonate was potassium carbonate. evaluated.
  • Example 11 In Example 11, a nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the carbonate when adjusting the alkaline solution was ammonium carbonate and the ammonia concentration was adjusted to 20 g / L. did.
  • Example 12 In Example 12, a nickel cobalt manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the bath temperature was set to 35 ° C.
  • Comparative Example 2 nickel cobalt manganese composite hydroxide was used in the same manner as in Example 1 except that the alkali solution was only sodium hydroxide and [CO 3 2 ⁇ ] / [OH ⁇ ] was 0.000. The product was obtained and evaluated.
  • Comparative Example 3 nickel cobalt manganese composite hydroxide was prepared in the same manner as in Example 1 except that [CO 3 2 ⁇ ] / [OH ⁇ ] was 0.001 when adjusting the alkaline solution. And evaluated.
  • Comparative Example 4 nickel cobalt manganese composite hydroxide was prepared in the same manner as in Example 1 except that [CO 3 2 ⁇ ] / [OH ⁇ ] was set to 0.055 when adjusting the alkaline solution. And evaluated.
  • Table 1 shows the production conditions of the nickel cobalt manganese composite hydroxides of Examples 1 to 12 and Comparative Examples 1 to 4. Furthermore, the evaluation result of the obtained nickel cobalt manganese composite hydroxide is shown in Table 2, and the evaluation result of lithium nickel cobalt manganese composite oxide is shown in Table 3.
  • the average particle size of the obtained nickel cobalt manganese composite hydroxide was 3 ⁇ m to 20 ⁇ m, and the sulfate group content was 1.0 mass% or less, chlorine content is 0.5 mass% or less, and carbonate radical content is 1.0 mass% to 2.5 mass%.
  • the Me seat occupancy indicating the crystallinity when the lithium nickel cobalt manganese composite oxide was used exceeded 90.0%, and the crystallinity was excellent. It turns out that lithium nickel cobalt manganese complex oxide is obtained and is useful as a positive electrode active material.
  • the nickel-cobalt-manganese composite hydroxide of the present invention is used not only for electric vehicles driven purely by electric energy but also as a precursor for battery materials for so-called hybrid vehicles used in combination with combustion engines such as gasoline engines and diesel engines. be able to.
  • the power source for electric vehicles includes not only purely electric vehicles driven by electric energy but also power sources for so-called hybrid vehicles used in combination with combustion engines such as gasoline engines and diesel engines.
  • a non-aqueous electrolyte secondary battery using a composite hydroxide as a raw material can be suitably used as a power source for these hybrid vehicles.

Abstract

 不可逆容量の小さい非水系電解質二次電池用の正極活物質の前駆体として用いることができ、不純物の含有量が少なく、正極活物質を合成する際の反応性の高いニッケルコバルトマンガン複合水酸化物を提供する。一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%である。

Description

ニッケルコバルトマンガン複合水酸化物とその製造方法
 本発明は、ニッケルコバルトマンガン複合水酸化物、及びニッケルコバルトマンガン複合水酸化物の製造方法に関する。本出願は、日本国において2014年12月22日に出願された日本特許出願番号特願2014-259061を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。このような要求を満たす二次電池としては、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極及び正極と電解液等で構成され、負極及び正極の活物質として、リチウムを脱離及び挿入することが可能な材料が用いられている。
 リチウムイオン二次電池については、現在研究開発が盛んに行われているが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
 リチウムイオン二次電池の正極材料として、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、既に様々な成果が得られている。しかしながら、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の代替が望まれている。
 リチウムイオン二次電池用正極活物質の新たなる材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。
 リチウムマンガン複合酸化物は原料が安価である上、熱安定性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であると言えるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。
 一方、リチウムニッケル複合酸化物はリチウムコバルト複合酸化物よりもサイクル特性が劣り、また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点を有している。
 そのため、リチウムコバルト複合酸化物と同程度の熱安定性、耐久性を有しているリチウムニッケルコバルトマンガン複合酸化物が、リチウムコバルト複合酸化物の代替として有力候補となっている。
 たとえば、特許文献1には、一般式:Ni1-x-y-zCoMn(OH)(0<x≦1/3、0≦y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、窒素吸着BET法により測定される比表面積が1.0~10.0m/gであり、かつ高周波-赤外燃焼法により測定される炭素含有量が0.1質量%以下であるニッケルコバルト複合水酸化物が提案されている。特許文献1によると、炭素含有量が0.1質量%を超えると、正極活物質表面に形成される不純物が多くなり、電池における出力が十分に得られないとされ、提案されたニッケルコバルト複合水酸化物を前駆体として得たリチウムニッケル複合酸化物を正極活物質として用いることにより、熱安定性に優れるとともに電池特性に優れた非水系電解質二次電池を得ることができるとされている。
 しかしながら、特許文献1では、炭素含有量に着目されているものの、他の不純物については検討されておらず、正極活物質のさらなる高容量化が可能な複合水酸化物が求められている。
 また、特許文献2には、ニッケルアンミン錯体、コバルトアンミン錯体及びM元素源を混合して得たニッケル-コバルト-M元素含有水溶液又は水性分散液を加熱し、ニッケルアンミン錯体及びコバルトアンミン錯体を熱分解させてニッケル-コバルト-M元素含有複合化合物を生成させることを特徴とするニッケル-コバルト-M元素含有複合化合物の製造方法が提案されている。特許文献2によると、アルカリで中和する共沈法では、原料に用いる塩のアニオンである硫酸イオン(SO 2-)及び塩化物イオン(Cl)並びに中和に用いるアルカリに含まれるナトリウムイオン(Na)は、洗浄が困難であり、これらのイオンが不純物として正極材料中に残留する。一方で、特許文献2で提案されたニッケル-コバルト-M元素含有複合化合物は、硫酸根、塩素、ナトリウム、鉄などの不純物の含有量が極めて少ないので、この複合化合物を用いて得られる正極活物質が優れた電池性能を発現するとされている。
 しかしながら、特許文献2では、熱分解によってニッケル-コバルト-M元素含有複合化合物を得ているため、粒子の球状や粒度分布を狭くすることが困難であり、得られる正極活物質において十分な電池特性が得られるとは言い難い。
特開2013-171743号公報 国際公開第2012/020768号
 リチウムニッケルコバルトマンガン複合酸化物は、通常、ニッケルコバルトマンガン複合水酸化物をリチウム化合物と混合して焼成する工程から製造される。ニッケルコバルトマンガン複合水酸化物は、その製造工程で原料由来の硫酸根などの不純物が含まれる。これら不純物は、リチウム化合物を混合し、焼成する工程において、リチウムとの反応を阻害することが多く、層状構造であるリチウムニッケルコバルトマンガン複合酸化物の結晶性を低下させる。結晶性の低いリチウムニッケルコバルトマンガン複合酸化物は、正極活物質として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題がある。
 さらに、ニッケルコバルトマンガン複合水酸化物に含まれる不純物は、リチウム化合物と混合し、焼成した後もリチウムニッケルコバルトマンガン複合酸化物中に残留する。これらの不純物は、充放電反応に寄与しないため、電池を構成する際、正極活物質の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる。そのため、より不純物含有量の少ないリチウムニッケルコバルトマンガン複合酸化物が求められるが、そのためには不純物含有量の少ないニッケルコバルトマンガン複合水酸化物が必要となる。また、高い結晶性を有するリチウムニッケルコバルトマンガン複合酸化物を得るためには、リチウム化合物と混合して焼成する際の高い反応性も必要である。
 本発明の目的は、リチウムとの反応を阻害する原因となり、充放電反応に寄与しない不純物量を低減させることで、リチウムとの反応性を高めて、高容量な非水系電解質二次電池を得ることが可能な正極活物質の前駆体であるニッケルコバルトマンガン複合水酸化物とその製造方法を提供することにある。
 本発明者らは、鋭意検討したところ、晶析反応によってニッケルコバルトマンガン複合水酸化物を製造する工程において、アルカリ溶液をアルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根などを低減できるとの知見を得て、本発明を完成したものである。
 すなわち、本発明のニッケルコバルトマンガン複合水酸化物は、一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%であることを特徴とする。
 また、ニッケルコバルトマンガン複合水酸化物の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕は、0.55以下であることが好ましい。
 また、ニッケルコバルトマンガン複合水酸化物の比表面積は、5~60m/gであることが好ましい。
 本発明のニッケルコバルトマンガン複合水酸化物の製造方法は、晶析反応によって一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表されるニッケルコバルトマンガン複合水酸化物を製造する製造方法であって、少なくともニッケル、コバルト及びマンガンを含む混合水溶液と、アンモニウムイオン供給体とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2-]/[OH]が0.002以上0.050以下であることを特徴とする。
 また、晶析工程は、核生成工程と、粒子成長工程とからなり、核生成工程では、液温25℃を基準として測定するpH値が12.0~14.0になるようにアルカリ溶液を水溶液に添加して反応溶液中で核生成を行い、粒子成長工程では、核生成工程において形成された核を含有する反応溶液を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加することが好ましい。
 また、アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種類以上であることが好ましい。
 また、炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる少なくとも1種類以上であることが好ましい。
 また、晶析工程において、各水溶液のアンモニア濃度を、3g/L~25g/Lの範囲内に維持することが好ましい。
 また、反応温度を20℃~80℃の範囲内に維持することが好ましい。
 本発明により、不可逆容量の小さい非水系電解質二次電池用の正極活物質の前駆体として用いることができ、不純物の含有量が少なく、正極活物質を合成する際の反応性の高いニッケルコバルトマンガン複合水酸化物を得ることができる。また、ニッケルコバルトマンガン複合水酸化物の製造方法は、容易で生産性が高く、その工業的価値は極めて大きいものである。
 以下、本発明の実施の形態について、下記順序にて詳細に説明する。なお、以下で説明する実施形態は例示に過ぎず、本発明のニッケルコバルトマンガン複合水酸化物、及びニッケルコバルトマンガン複合水酸化物の製造方法は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。
1.ニッケルコバルトマンガン複合水酸化物
2.ニッケルコバルトマンガン複合水酸化物の製造方法
<1.ニッケルコバルトマンガン複合水酸化物>
 本発明のニッケルコバルトマンガン複合水酸化物は、一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、MはMg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、さらに炭酸根含有量が1.0質量%~2.5質量%であることを特徴としている。以下、各要素の特徴を詳細に説明する。
 [粒子の組成]
 ニッケルコバルトマンガン複合水酸化物は、その組成が、一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表されるように調整されるものである。
 上記一般式においてニッケル含有量を示すxは、0.20≦x≦0.80が好ましい。また、ニッケル含有量を示すxは、電気特性、熱安定性を考慮するとx≦0.6がより好ましい。
 次に、上記一般式においてコバルト含有量を示すyは、0.10≦y≦0.50が好ましい。コバルトを適度に添加することで、サイクル特性や充放電に伴うLiの脱挿入による結晶格子の膨張収縮挙動を低減できるが、yが0.10未満になると、結晶格子の膨張収縮挙動の低減効果を十分に得ることができないため好ましくない。一方、コバルトの含有量が多すぎてyが0.50を超えると、初期放電容量の低下が大きくなってしまい、さらにコスト面で不利となる問題もあるため好ましくない。
 また、マンガン含有量を示すzは、0.10≦z≦0.90が好ましい。この範囲でマンガンを添加すると、電池の正極活物質として用いられた場合に電池の耐久特性や安全性を向上させることができる。zが0.10未満になると電池の耐久特性や安全性の向上という効果を十分に得ることができず、一方、zが0.90を超えるとRedox反応に貢献する金属元素が減少し、電池容量が低下するため好ましくない。
 添加元素Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素であり、サイクル特性や出力特性などの電池特性を向上させるために添加するものである。添加元素Mの含有量を示すtは、0≦t≦0.10が好ましい。tが0.1を超える場合には、Redox反応に貢献する金属元素が減少して電池容量が低下するため好ましくない。
 組成の分析方法は特に限定されないが、ICP発光分光法による化学分析から求めることができる。
 [粒子構造]
 ニッケルコバルトマンガン複合水酸化物は、複数の一次粒子が凝集して形成された球状の二次粒子により構成される。二次粒子を構成する一次粒子の形状としては、板状、針状、直方体状、楕円状、菱面体状などのさまざまな形態を採りうる。また、複数の一次粒子の凝集状態も、ランダムな方向に凝集する場合のほか、中心から放射状に粒子の長径方向が凝集する場合も本発明に適用することは可能である。
 凝集状態としては、板状及び/又は針状の一次粒子がランダムな方向に凝集して二次粒子を形成していることが好ましい。このような構造の場合、一次粒子間にほぼ均一に空隙が生じて、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物が二次粒子内へ行きわたり、リチウムの拡散が十分に行われるからである。
 なお、一次粒子及び二次粒子の形状観察方法は特に限定されないが、ニッケルコバルトマンガン複合水酸化物の断面を走査型電子顕微鏡を用いて観察することによって測定できる。
 [平均粒径]
 ニッケルコバルトマンガン複合水酸化物は、粒子の平均粒径が3μm~20μmに調整されている。平均粒径が3μm未満の場合には、正極を形成したときに粒子の充填密度が低下して正極の容積あたりの電池容量が低下するため好ましくない。一方、平均粒径が20μmを超えると、正極活物質の比表面積が低下して電池の電解液との界面が減少することにより正極の抵抗が上昇して電池の出力特性が低下するため好ましくない。したがって、ニッケルコバルトマンガン複合水酸化物は、粒子の平均粒径を3μm~20μm、好ましくは3μm~15μm、より好ましくは4μm~12μmとなるように調整すれば、この正極活物質を正極に用いた電池において、容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好である。
 平均粒径の測定方法は、特に限定されないが、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 [不純物含有量]
 ニッケルコバルトマンガン複合水酸化物は、硫酸根及び塩素を含有する。硫酸根含有量は、1.0質量%以下、好ましくは0.6質量%以下であり、塩素含有量は0.5質量%以下、好ましくは0.3質量%以下である。ここで、ニッケルコバルトマンガン複合水酸化物粒子に含有される硫酸根や塩素は、以下の晶析工程で用いた原料に由来する。
 ニッケルコバルトマンガン複合水酸化物中の硫酸根含有量が1.0質量%を超えると、リチウム化合物と混合し焼成する工程においてリチウムとの反応を阻害し、層状構造であるリチウムニッケルコバルトマンガン複合酸化物の結晶性を低下させる。結晶性の低いリチウムニッケルコバルトマンガン複合酸化物は、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題が生じる。さらに、ニッケルコバルトマンガン複合水酸化物に含まれる不純物は、リチウム化合物と混合し焼成後もリチウムニッケルコバルトマンガン複合酸化物中に残留する。これらの不純物は、充放電反応に寄与しないため、電池を構成する際、正極材料の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となる。
 一方、塩素含有量が0.5質量%を超えると、硫酸根の場合と同様に、電池容量の低下や安全性の問題がある。さらに、塩素は主にLiClやNaClの形態でリチウムニッケルコバルトマンガン複合酸化物中に残留する。これらは吸湿性が高いため、電池内部に水分を持ち込む要因となり、電池の劣化の原因となる。
 [炭酸根含有量]
 ニッケルコバルトマンガン複合水酸化物は、炭酸根含有量が1.0質量%~2.5質量%である。ここで、ニッケルコバルトマンガン複合水酸化物に含有される炭酸根は、後述する晶析工程で用いた炭酸塩に由来する。また炭酸根は、ニッケルコバルトマンガン複合水酸化物とリチウム化合物を混合し、焼成する工程において揮発するため正極材料であるリチウムニッケルコバルトマンガン複合酸化物中には残留しない。ニッケルコバルトマンガン複合水酸化物に含有される炭酸根含有量が1.0質量%~2.5質量%の範囲であれば、リチウム化合物と混合して焼成する際にニッケルコバルトマンガン複合水酸化物に含有される炭酸根の揮発に伴い粒子内に細孔が形成されて、溶融したリチウム化合物と適度に接触でき、リチウムニッケルコバルトマンガン複合酸化物の結晶成長が適度に進行する。炭酸根含有量は、例えば、ニッケルコバルトマンガン複合水酸化物の全炭素元素含有量を測定し、この測定された全炭素元素の量をCOに換算することにより求めることができる。
 一方、炭酸根含有量が1.0質量%を下回ると、リチウム化合物と混合し焼成する際に溶融したリチウム化合物との接触が不十分となり、得られるリチウムニッケルコバルトマンガン複合酸化物の結晶性が低下し、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題が生じる。炭酸根含有量が2.5質量%を超えると、リチウム化合物と混合し、焼成してリチウムニッケルコバルトマンガン複合酸化物を得る工程で、発生する炭酸ガスが反応を阻害して、リチウムニッケルコバルトマンガン複合酸化物の結晶性が低下する。
 [粒度分布]
 ニッケルコバルトマンガン複合水酸化物は、粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55以下となるように調整されていることが好ましい。
 粒度分布が広範囲になっており、その粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55を超える場合、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粒子(大粒粒子)が多く存在することになる。微粒子が多く存在する正極活物質を用いて正極を形成した場合には、微粒子の局所的な反応に起因して発熱する可能性があり安全性が低下し、比表面積が大きい微粒子が選択的に劣化するので、サイクル特性が悪化してしまうため好ましくない。一方、大径粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず反応抵抗の増加による電池出力が低下するため好ましくない。
 したがって、正極活物質の粒度分布が、前記指標〔(d90-d10)/平均粒径〕が0.55以下となるように調整されていれば、微粒子や大径粒子の割合が少ないので、この正極活物質を正極に用いた電池では、安全性に優れ、良好なサイクル特性及び電池出力を得ることができる。
 なお、粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕において、d10は、各粒径における粒子数を粒径が小さいほうから累積したときにおいて、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、d90は、各粒径における粒子数を粒径が小さいほうから累積したときにおいて、その累積体積が全粒子の合計体積の90%となる粒径を意味している。
 平均粒径や、d90、d10を求める方法は特に限定されないが、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 [比表面積]
 ニッケルコバルトマンガン複合水酸化物は、比表面積が5m/g~60m/gとなるように調整されていることが好ましく、5m/g~50m/gとなるように調整されていることがより好ましい。比表面積が上記範囲であれば、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物と接触できる粒子表面積が十分に得られるからである。一方、比表面積が5m/gを下回ると、リチウム化合物と混合し焼成する際に溶融したリチウム化合物との接触が不十分となり、得られるリチウムニッケルコバルトマンガン複合酸化物の結晶性が低下し、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題がある。比表面積が60m/gを超えると、リチウム化合物と混合し焼成する際に、結晶成長が進みすぎて、層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こり、充放電容量が減少するため好ましくない。
 [非水系電解質二次電池用正極活物質]
 ニッケルコバルトマンガン複合水酸化物は、リチウム化合物と混合し焼成することでリチウムニッケルコバルトマンガン複合酸化物を生成することができる。リチウムニッケルコバルトマンガン複合酸化物は、非水系電解質二次電池の正極活物質の原料として用いることができる。
 正極活物質に用いられるリチウムニッケルコバルトマンガン複合酸化物は、リチウム化合物と混合後の焼成において炭酸根は揮発するが、その他の成分や粒度分布は前駆体であるニッケルコバルトマンガン複合水酸化物の性状を引き継ぐ。ニッケルコバルトマンガン複合水酸化物は、硫酸根含有量が1.0質量%以下、好ましくは0.6質量%以下であり、かつ塩素含有量が0.5質量%以下、好ましくは0.3質量%以下である。また、ニッケルコバルトマンガン複合水酸化物は、平均粒径が3μm~25μmであり、これにより容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性も良好となる。
 また、ニッケルコバルトマンガン複合水酸化物の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が、0.55以下であり、粒子や大径粒子の割合が少ないので、このニッケルコバルトマンガン複合水酸化物を原料とする正極活物質を正極に用いた電池では、安全性に優れ、良好なサイクル特性及び電池出力を得ることができる。
<2.ニッケルコバルトマンガン複合水酸化物の製造方法>
 本発明のニッケルコバルトマンガン複合水酸化物の製造方法は、晶析反応によって例えば上述のニッケルコバルトマンガン複合水酸化物を製造する。ニッケルコバルトマンガン複合水酸化物の製造方法は、少なくともニッケル、コバルト及びマンガンを含む混合水溶液と、アンモニウムイオン供給体とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2-]/[OH]が0.002以上0.050以下であることを特徴とする。
 また、晶析工程は、核生成工程と、粒子成長工程とからなり、核生成工程では、液温25℃を基準として測定するpH値が12.0~14.0になるようにアルカリ溶液を水溶液に添加して反応溶液中で核生成を行い、粒子成長工程では、核生成工程において形成された核を含有する反応溶液を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加することが好ましい。
 従来の連続晶析法では、核生成反応と核成長反応とが同じ反応槽内において同時に進行するため、得られるニッケル複合水酸化物の粒度分布が広範囲となってしまう。これに対して、ニッケルコバルトマンガン複合水酸化物の製造方法は、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することにより、両工程を同じ反応槽内で行ったとしても、狭い粒度分布を持つ複合水酸化物を得ることができる。また、アルカリ溶液をアルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根などを低減することができる。
 以下に、ニッケルコバルトマンガン複合水酸化物の製造方法で用いる材料や条件について詳細に説明する。
 [ニッケル、コバルト及びマンガンを含む混合水溶液]
 ニッケル、コバルト及びマンガンを含む混合水溶液に用いられる、ニッケル塩、コバルト塩、マンガン塩などの塩としては、水溶性の化合物であれば特に限定するものではないが、硫酸塩、硝酸塩、塩化物などを使用することができる。例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガンが好ましく用いられる。
 また、必要に応じて1種以上の添加元素を含む化合物を所定の割合で混合して、混合水溶液を生成することもできる。晶析工程では、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の添加元素を含む水溶性の化合物を用いることが好ましく、例えば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウム等を用いることができる。
 また、晶析によって得られたニッケルコバルトマンガン複合水酸化物を、添加元素を含む水溶液と混合してスラリー化し、pHを調整することによって、添加元素を含む化合物でニッケルコバルトマンガン複合水酸化物を被覆してもよい。
 混合水溶液の濃度は、金属塩の合計で1mol/L~2.6mol/Lとすることが好ましく、1mol/L~2.2mol/Lとすることがより好ましい。1mol/L未満であると、得られる水酸化物スラリー濃度が低く、生産性に劣る。一方、2.6mol/Lを超えると、-5℃以下で結晶析出や凍結が起こり、設備の配管を詰まらせる恐れがあり、配管の保温もしくは加温を行う必要があり、コストがかかる。
 さらに、混合水溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30g/L~250g/L、好ましくは80g/L~150g/Lになるようにすることが好ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、晶析物濃度が250g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがあるからである。
 [アンモニウムイオン供給体]
 反応液中のアンモニウムイオン供給体は、水溶性の化合物であれば特に限定するものではないが、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができ、例えば、アンモニア、硫酸アンモニウムが好ましく用いられる。
 反応液中のアンモニア濃度は、好ましくは3g/L~25g/L、より好ましくは5g/L~20g/L、さらに好ましくは5g/L~15g/Lとなるように調節する。反応液中にアンモニウムイオンが存在することで、金属イオン、特にNiイオンはアンミン錯体を形成し、金属イオンの溶解度が大きくなり、一次粒子の成長が促進され、緻密な複合水酸化物粒子が得られ易い。さらに、金属イオンの溶解度が安定するため、形状及び粒径が整った複合水酸化物粒子が得られ易い。特に、反応液中のアンモニア濃度を3g/L~25g/Lとすることで、より緻密で形状及び粒径が整った複合水酸化物粒子が得られ易い。
 反応液中のアンモニア濃度が3g/L未満であると、金属イオンの溶解度が不安定になる場合があり、形状及び粒径が整った一次粒子が形成されず、ゲル状の核が生成して粒度分布が広くなることがある。一方、反応液中のアンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれが起きる場合がある。アンモニウムイオンの濃度は、一般的なイオンメータによって測定可能である。
 [アルカリ溶液]
 アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液で調整される。アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2-]/[OH]が、0.002以上0.050以下であることが好ましく、0.005以上0.030以下であることがより好ましく、0.010以上、0.025以下であることがさらに好ましい。
 アルカリ溶液を、アルカリ金属水酸化物と炭酸塩の混合水溶液とすることで、晶析工程において得られるニッケルコバルトマンガン複合水酸化物中に不純物として残留する硫酸根や塩素などのアニオンを、炭酸根とイオン交換することができる。炭酸根は、ニッケルコバルトマンガン複合水酸化物とリチウム化合物を混合し、焼成する工程において揮発するため正極材料であるリチウムニッケルコバルトマンガン複合酸化物中には残留しない。
 [CO 2-]/[OH]が0.002未満であると、晶析工程において、原料由来の不純物である硫酸根や塩素と炭酸イオンの置換が不十分となり、これらの不純物をニッケルコバルトマンガン複合水酸化物中に取り込みやすくなる。一方、[CO 2-]/[OH]が0.050を超えても、原料由来の不純物である硫酸根や塩素の低減は変わらず、過剰に加えた炭酸塩は、コストを増加させる。
 アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種類以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。
 炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる少なくとも1種類以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。
 また、アルカリ溶液を反応槽に添加する方法については、特に限定されるものではなく、定量ポンプなど、流量制御が可能なポンプで、反応液のpH値が後述する範囲に保持されるように、添加すればよい。
 [pH制御]
 晶析工程では、25℃を基準として測定する反応液のpH値が12.0~14.0になるようにアルカリ溶液を添加して、核生成を行う核生成工程と、核生成工程において形成された核を含有する粒子成長用水溶液を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加して、制御して核を成長させる粒子成長工程とからなることがより好ましい。すなわち、核生成反応と粒子成長反応とが同じ槽内において同じ時期に進行するのではなく、主として核生成反応(核生成工程)が生じる時間と、主として粒子成長反応(粒子成長工程)が生じる時間とを明確に分離したことを特徴としている。
 核生成工程においては、反応水溶液のpH値が、液温25℃基準で12.0~14.0の範囲となるように制御する必要がある。pH値が14.0を超える場合、生成する核が微細になり過ぎ、反応水溶液がゲル化する問題がある。また、pH値が12.0未満では、核形成とともに核の成長反応が生じるので、形成される核の粒度分布の範囲が広くなり不均質なものとなってしまう。すなわち、核生成工程において、12.0~14.0の範囲に反応水溶液のpH値を制御することで、核の成長を抑制してほぼ核生成のみを起こすことができ、形成される核も均質かつ粒度分布の範囲が狭いものとすることができる。
 一方、粒子成長工程においては、反応水溶液のpH値が、液温25℃基準で10.5~12.0、好ましくは11.0~12.0の範囲となるように制御する必要がある。pH値が12.0を超える場合、新たに生成される核が多くなり、微細二次粒子が生成するため、粒径分布が良好な水酸化物が得られない。また、pH値が10.5未満では、アンモニウムイオンによる溶解度が高く、析出せずに液中に残る金属イオンが増えるため、生産効率が悪化する。すなわち、粒子成長工程において、10.5~12.0の範囲に反応水溶液のpHを制御することで、核生成工程で生成した核の成長のみを優先的に起こさせ、新たな核形成を抑制することができ、得られるニッケルコバルトマンガン複合水酸化物を均質かつ粒度分布の範囲を狭いものとすることができる。
 なお、pH値が12の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程もしくは粒子成長工程のいずれかの条件とすることができる。すなわち、核生成工程のpH値を12より高くして多量に核生成させた後、粒子成長工程でpH値を12とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、粒径分布が狭く比較的大きな粒径の前記水酸化物が得られる。
 一方、反応水溶液中に核が存在しない状態、すなわち、核生成工程においてpH値を12とした場合、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12より小さくすることで、生成した核が成長して良好な水酸化物が得られる。
 いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
 以上のように、核生成工程と粒子成長工程をpH値により明確に分離することで、核生成工程では核生成が優先して起こり、核の成長はほとんど生じず、逆に、粒子成長工程では核成長のみが生じ、ほとんど新しい核は生成されない。このため、核生成工程では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程では、均質に核を成長させることができる。よって、ニッケルコバルトマンガン複合水酸化物の製造方法では、粒度分布の範囲が狭く均質なニッケルコバルトマンガン複合水酸化物粒子を得ることができる。
 [反応液温度]
 反応槽内において、反応液の温度は、好ましくは20~80℃、より好ましくは30~70℃、さらに好ましくは35~60℃に設定する。反応液の温度が20℃未満の場合、金属イオンの溶解度が低いため核発生が起こりやすく制御が難しくなる。一方、反応液の温度が80℃を超えると、アンモニアの揮発が促進されるため、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
 [反応雰囲気]
 ニッケルコバルトマンガン複合水酸化物の粒径及び粒子構造は、晶析工程における反応雰囲気によっても制御される。
 晶析工程中の反応槽内の雰囲気を非酸化性雰囲気に制御した場合、ニッケルコバルトマンガン複合水酸化物を形成する一次粒子の成長が促進され、一次粒子が大きく緻密で、粒径が適度に大きな二次粒子が形成される。特に、晶析工程において、酸素濃度が5.0容量%以下、好ましくは2.5容量%以下、より好ましくは1.0容量%以下の非酸化性雰囲気とすることで、比較的大きな一次粒子からなる核が生成されるとともに、粒子の凝集により粒子成長が促進され、適度な大きさの二次粒子を得ることができる。
 このような雰囲気に反応槽内空間を保つための手段としては、窒素などの不活性ガスを反応槽内空間部へ流通させること、さらには反応液中に不活性ガスをバブリングさせることが挙げられる。
 以下、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、実施例及び比較例は、以下の装置及び方法を用いた測定結果により評価した。
 実施例1~12、比較例1~4について、晶析工程により得られたニッケルコバルトマンガン複合水酸化物を洗浄、固液分離、乾燥し粉体として回収後、以下の方法で各種分析を実施した。
 ニッケルコバルトマンガン複合水酸化物の組成は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)で測定した。
 硫酸根含有量は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)により硫黄元素を測定し、この測定された硫黄元素の量をSOに換算することにより求めた。
 塩素含有量は、自動滴定装置(平沼産業株式会社製、COM-1600)で測定した。
 炭酸根含有量は、炭素硫黄分析装置(LECO社製CS-600)で全炭素元素含有量を測定し、この測定された全炭素元素の量をCOに換算することにより求めた。
 比表面積は、比表面積測定装置(ユアサアイオニクス株式会社製、カンタソーブQS-10)を用いて、BET法により測定した。
 また、リチウムニッケルコバルトマンガン複合酸化物は、以下の方法で作製及び評価を行った。ニッケルコバルトマンガン複合水酸化物粒子を、空気(酸素:21容量%)気流中にて温度700℃で6時間の熱処理を行い、複合酸化物粒子を回収した。続いて、Li/Me=1.025となるように水酸化リチウムを秤量し、回収した複合酸化物粒子と混合して混合物を形成した。混合は、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて行った。
 次に、得られたこの混合物を酸素気流中(酸素:100容量%)にて500℃で4時間仮焼した後、730℃で24時間焼成し、冷却した後に解砕してリチウムニッケルコバルトマンガン複合酸化物を得た。
 得られたリチウムニッケルコバルトマンガン複合酸化物の硫酸根含有量は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)により硫黄元素を測定し、この測定された硫黄元素の量をSOに換算することにより求めた。
 また、リチウムニッケルコバルトマンガン複合酸化物の結晶性を示すMe席占有率は、X線回折装置(パナリティカル社製、X‘Pert PRO)を用いて得られた回折パターンから、リートベルト解析を行い算出した。なお、Me席占有率は、ニッケルコバルトマンガン酸化物中のNi,Co,Mn及び添加元素Mが、層状構造のメタル層(Me席)中に占める金属元素の存在割合を示す。Me席占有率は電池特性と相関があり、Me席占有率が高いほど良好な電池特性を示す。
 なお、実施例及び比較例では、ニッケルコバルトマンガン複合水酸化物の製造には、和光純薬工業株式会社製の特級試薬を各試料に使用した。
(実施例1)
 実施例1では、ニッケルコバルトマンガン複合水酸化物を、本発明の方法を用いて、以下のように作製した。
 まず、反応槽(5L)内に水を0.9L入れて撹拌しながら、槽内温度を40℃に設定し、反応槽に窒素ガスを流通させて窒素雰囲気とした。このときの反応槽内空間の酸素濃度は2.0%であった。
 反応槽内の水に25%水酸化ナトリウム水溶液と25%アンモニア水を適量加えて、液温25℃を基準として測定するpH値として、槽内の反応液のpHが12.8となるように調整した。また、反応液中アンモニア濃度は10g/Lに調節した。
 次に、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成した。この混合水溶液では、各金属の元素モル比が、Ni:Co:Mn=1:1:1となるように調整した。さらに、水酸化ナトリウムと炭酸ナトリウムを[CO 2-]/[OH]が0.025となるように水に溶解してアルカリ溶液を調整した。
 上記混合水溶液を、反応槽内の反応液に12.9ml/分で加えた。同時に、25%アンモニア水、アルカリ溶液も反応槽内の反応液に一定速度で加えていき、反応液中のアンモニア濃度を10g/Lに保持した状態で、pH値を12.8(核生成工程pH値)に制御しながら2分30秒間晶析を行い、核生成を行った。
 その後、反応液のpH値が液温25℃を基準として測定するpH値として11.6(粒子成長工程pH値)になるまで、64%硫酸を添加した。液温25℃を基準として測定するpH値として、反応液のpH値が11.6に到達した後、混合水溶液、25%アンモニア水、アルカリ溶液の供給を再開し、pH値を11.6に制御したまま、4時間晶析を継続し粒子成長を行うことにより、ニッケルコバルトマンガン複合水酸化物を得た。
(実施例2)
 実施例2では、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成する際に、この混合水溶液の各金属元素モル比が、Ni:Co:Mn=6:2:2となるように調整した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例3)
 実施例3では、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成する際に、この混合水溶液の各金属元素モル比が、Ni:Co:Mn=2:1:7となるように調整した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例4)
 実施例4では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.003となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例5)
 実施例5では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.040となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例6)
 実施例6では、核生成工程のpHを13.6とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例7)
 実施例7では、核生成工程のpHを11.8とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例8)
 実施例8では、粒子成長工程のpHを12.3とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例9)
 実施例9では、粒子成長工程のpHを10.2とした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例10)
 実施例10では、アルカリ溶液を調整する際のアルカリ金属水酸化物を水酸化カリウムとし、炭酸塩を炭酸カリウムとした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例11)
 実施例11では、アルカリ溶液を調整する際の炭酸塩を炭酸アンモニウムにするとともにアンモニア濃度を20g/Lに調整した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(実施例12)
 実施例12では、槽内温度を35℃に設定した以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例1)
 比較例1では、硫酸ニッケルと塩化コバルト、硫酸マンガンを水に溶かして2.0mol/Lの混合水溶液を形成する際に、この混合水溶液の各金属元素モル比が、Ni:Co:Mn=2:2:6となるように調整したことと、[CO 2-]/[OH]が0.001となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例2)
 比較例2では、アルカリ溶液を水酸化ナトリウムのみとし、[CO 2-]/[OH]が0.000となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例3)
 比較例3では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.001となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(比較例4)
 比較例4では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.055となるようにした以外は、実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに評価した。
(評価)
 実施例1~12及び比較例1~4のニッケルコバルトマンガン複合水酸化物の製造条件を表1に示す。さらに得られたニッケルコバルトマンガン複合水酸化物の評価結果を表2に、リチウムニッケルコバルトマンガン複合酸化物の評価結果を表3に示す。
 表1及び表2に示すように、本発明の要件を満たす実施例1~12では、得られたニッケルコバルトマンガン複合水酸化物の平均粒径が3μm~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、さらに炭酸根含有量が1.0質量%~2.5質量%である。さらに、表3に示すように、実施例1~12では、リチウムニッケルコバルトマンガン複合酸化物とした場合の結晶性を示すMe席占有率
が90.0%を超えており、結晶性に優れたリチウムニッケルコバルトマンガン複合酸化物が得られ、正極活物質として有用であることが分かる。
 比較例1~3では、アルカリ溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2-]/[OH]が0.002を下回るため、硫酸根や塩素含有量が高く、リチウムニッケルコバルトマンガン複合酸化物とした場合の結晶性を示すMe席占有率が90.0%を下回り、同様の組成比などを有する実施例1と比較して劣っていた。
 比較例4では、アルカリ溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2-]/[OH]が0.050を上回るため、炭酸根含有量が高く、リチウムニッケルコバルトマンガン複合酸化物とした場合の結晶性を示すMe席占有率が90.0%を下回り、同様の組成比などを有する実施例1と比較して劣っていた。
 以上の結果より、本発明の製造方法を用いて、ニッケルコバルトマンガン複合水酸化物を製造すれば、結晶性の高いリチウムニッケルコバルトマンガン複合酸化物が得られ、高容量な非水系電解質二次電池の正極材料として有用であることが分かる。




































Figure JPOXMLDOC01-appb-T000001







Figure JPOXMLDOC01-appb-T000002
























Figure JPOXMLDOC01-appb-T000003
 本発明のニッケルコバルトマンガン複合水酸化物は、純粋に電気エネルギーで駆動する電気自動車用のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電池材料の前駆体として用いることができる。なお、電気自動車用の電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源も含み、本発明のニッケルコバルトマンガン複合水酸化物を原料とする非水系電解質二次電池は、これらのハイブリッド車用の電源としても好適に用いることができる。

Claims (9)

  1.  一般式NiCoMn(OH)2+a(ただし、x+y+z+t=1、0.20≦x≦0.80、0.10≦y≦0.50、0.10≦z≦0.90、0≦t≦0.10、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される少なくとも1種の添加元素である)で表され、
     複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%であることを特徴とするニッケルコバルトマンガン複合水酸化物。
  2.  当該ニッケルコバルトマンガン複合水酸化物の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55以下であることを特徴とする請求項1に記載のニッケルコバルトマンガン複合水酸化物。
  3.  比表面積が5m/g~60m/gであることを特徴とする請求項1又は請求項2に記載のニッケルコバルトマンガン複合水酸化物。
  4.  晶析反応によってニッケルコバルトマンガン複合水酸化物を製造するニッケルコバルトマンガン複合水酸化物の製造方法であって、
     少なくともニッケル、コバルト及びマンガンを含む混合水溶液と、アンモニウムイオン供給体とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、
     前記アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2-]/[OH]が0.002以上0.050以下であることを特徴とするニッケルコバルトマンガン複合水酸化物の製造方法。
  5.  前記晶析工程は、核生成工程と、粒子成長工程とからなり、
     前記核生成工程では、液温25℃を基準として測定するpH値が12.0~14.0になるようにアルカリ溶液を前記水溶液に添加して前記反応溶液中で核生成を行い、
     前記粒子成長工程では、前記核生成工程において形成された核を含有する前記反応溶液を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加することを特徴とする請求項4に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  6.  前記アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種類以上であることを特徴とする請求項4又は請求項5に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  7.  前記炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる少なくとも1種類以上であることを特徴とする請求項4乃至請求項6のいずれか1項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  8.  前記晶析工程では、前記反応溶液のアンモニア濃度を、3g/L~25g/Lの範囲内に維持することを特徴とする請求項4乃至請求項7のいずれか1項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  9.  前記晶析工程では、反応温度を20℃~80℃の範囲内に維持することを特徴とする請求項4乃至請求項8のいずれか1項に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
PCT/JP2015/082149 2014-12-22 2015-11-16 ニッケルコバルトマンガン複合水酸化物とその製造方法 WO2016103975A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/538,146 US10305105B2 (en) 2014-12-22 2015-11-16 Nickel cobalt manganese composite hydroxide and process for producing same
PL15872544T PL3239103T3 (pl) 2014-12-22 2015-11-16 Złożony wodorotlenek niklowo-kobaltowo-manganowy i sposób jego wytwarzania
CN201580070370.5A CN107108266B (zh) 2014-12-22 2015-11-16 镍钴锰复合氢氧化物和其制造方法
EP15872544.0A EP3239103B1 (en) 2014-12-22 2015-11-16 Nickel cobalt manganese composite hydroxide and process for producing same
KR1020177017803A KR102381595B1 (ko) 2014-12-22 2015-11-16 니켈 코발트 망간 복합 수산화물과 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-259061 2014-12-22
JP2014259061A JP6265117B2 (ja) 2014-12-22 2014-12-22 ニッケルコバルトマンガン複合水酸化物とその製造方法

Publications (1)

Publication Number Publication Date
WO2016103975A1 true WO2016103975A1 (ja) 2016-06-30

Family

ID=56150009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082149 WO2016103975A1 (ja) 2014-12-22 2015-11-16 ニッケルコバルトマンガン複合水酸化物とその製造方法

Country Status (7)

Country Link
US (1) US10305105B2 (ja)
EP (1) EP3239103B1 (ja)
JP (1) JP6265117B2 (ja)
KR (1) KR102381595B1 (ja)
CN (1) CN107108266B (ja)
PL (1) PL3239103T3 (ja)
WO (1) WO2016103975A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403728A (zh) * 2019-11-11 2020-07-10 余姚市鑫和电池材料有限公司 一种高镍低钴共沉覆镁正极材料的制备方法
US20220041465A1 (en) * 2016-07-29 2022-02-10 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287970B2 (ja) 2014-10-30 2018-03-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法
WO2017078136A1 (ja) * 2015-11-05 2017-05-11 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
JP7120012B2 (ja) * 2016-07-29 2022-08-17 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6724769B2 (ja) * 2016-12-22 2020-07-15 住友金属鉱山株式会社 ニッケル複合水酸化物の製造方法
JP7124306B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
JP7124305B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
JP7124308B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物の製造方法
CN110970614A (zh) * 2018-09-29 2020-04-07 浙江遨优动力系统有限公司 一种富锂锰基正极材料及其制备方法
CN109721109B (zh) * 2018-12-07 2022-05-10 北京理工大学 一种锂电池用镍钴锰三元正极材料前驱体及其制备方法和制备得到的正极材料
US20220102718A1 (en) 2019-01-22 2022-03-31 Sumitomo Metal Mining Co., Ltd. Nickel manganese cobalt composite hydroxide, method for producing nickel manganese cobalt composite hydroxide, lithium nickel manganese cobalt composite oxide, and lithium ion secondary battery
US20220131144A1 (en) 2019-01-22 2022-04-28 Sumitomo Metal Mining Co., Ltd. Nickel manganese cobalt composite hydroxide, method for producing nickel manganese cobalt composite hydroxide, lithium nickel manganese cobalt composite oxide, and lithium ion secondary battery
WO2020152771A1 (ja) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
WO2020153095A1 (ja) 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合水酸化物、ニッケルコバルトアルミニウム複合水酸化物の製造方法、リチウムニッケルコバルトアルミニウム複合酸化物及び、リチウムイオン二次電池
WO2020152768A1 (ja) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
WO2020153096A1 (ja) 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法、リチウムニッケルマンガンコバルト複合酸化物及び、リチウムイオン二次電池
WO2020152769A1 (ja) * 2019-01-22 2020-07-30 住友金属鉱山株式会社 ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
CN112186138B (zh) * 2019-07-02 2022-06-28 巴斯夫杉杉电池材料(宁乡)有限公司 含w高镍三元正极材料及其制备方法
CN111717941A (zh) * 2020-06-22 2020-09-29 华友新能源科技(衢州)有限公司 一种针状晶须的镍钴锰氢氧化物及其制备方法
CN114590852B (zh) * 2022-03-31 2024-04-02 高点(深圳)科技有限公司 氢氧化物接枝氧化物型正极材料前驱体及其制备方法、应用
CN114873654B (zh) * 2022-03-31 2024-04-02 高点(深圳)科技有限公司 一种接枝型正极材料前驱体及其制备方法和应用
CN114890482B (zh) * 2022-06-15 2023-11-03 荆门市格林美新材料有限公司 一种三元正极前驱体及其制备方法和应用
CN116282190A (zh) * 2023-01-19 2023-06-23 华北理工大学 一种钠离子电池用低氯氧化铁、制备方法及正极材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535699A (ja) * 2007-08-10 2010-11-25 ユミコア ソシエテ アノニム 硫黄を含むドープされたリチウム遷移金属酸化物
JP2011124086A (ja) * 2009-12-10 2011-06-23 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2012109191A (ja) * 2010-10-19 2012-06-07 Sumitomo Chemical Co Ltd リチウム複合金属酸化物および非水電解質二次電池
JP2014531719A (ja) * 2011-09-26 2014-11-27 コリア エレクトロニクス テクノロジ インスティチュート リチウム二次電池用正極活物質の前駆体及びその製造方法、正極活物質及びこれを含むリチウム二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548988B1 (ko) * 2003-11-26 2006-02-02 학교법인 한양학원 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
US20070298512A1 (en) * 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
CN100547829C (zh) * 2005-07-01 2009-10-07 深圳市比克电池有限公司 锂复合金属氧化物的制备方法
JP4996117B2 (ja) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP5103923B2 (ja) * 2007-02-08 2012-12-19 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP4258676B2 (ja) * 2007-03-05 2009-04-30 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5638232B2 (ja) * 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US9822015B2 (en) 2009-12-07 2017-11-21 Sumitomo Chemical Company, Limited Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
AU2011290195B2 (en) 2010-08-10 2014-04-10 Agc Seimi Chemical Co., Ltd. Production method for a composite compound comprising nickel and cobalt
EP2688135A4 (en) 2011-03-16 2014-09-10 Panasonic Corp METHOD FOR LOADING AND UNLOADING A LITHIUM SUBSTANCE BATTERY AND SYSTEM FOR LOADING AND UNLOADING A LITHIUM CENTRAL BATTERY
CN103249678B (zh) * 2011-03-28 2016-06-15 住友金属矿山株式会社 镍锰复合氢氧化物粒子及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法、以及非水系电解质二次电池
KR101979970B1 (ko) * 2011-08-05 2019-05-17 스미또모 가가꾸 가부시끼가이샤 리튬 이온 이차 전지용 정극 활물질
JP5799849B2 (ja) 2012-02-21 2015-10-28 住友金属鉱山株式会社 ニッケルコバルト複合水酸化物及びその製造方法
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
CN103413926B (zh) * 2013-08-31 2015-04-15 张宝 一种镍钴锰酸锂材料前驱体的制备方法
JP6287970B2 (ja) * 2014-10-30 2018-03-07 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535699A (ja) * 2007-08-10 2010-11-25 ユミコア ソシエテ アノニム 硫黄を含むドープされたリチウム遷移金属酸化物
JP2011124086A (ja) * 2009-12-10 2011-06-23 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2012109191A (ja) * 2010-10-19 2012-06-07 Sumitomo Chemical Co Ltd リチウム複合金属酸化物および非水電解質二次電池
JP2014531719A (ja) * 2011-09-26 2014-11-27 コリア エレクトロニクス テクノロジ インスティチュート リチウム二次電池用正極活物質の前駆体及びその製造方法、正極活物質及びこれを含むリチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220041465A1 (en) * 2016-07-29 2022-02-10 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US11658297B2 (en) * 2016-07-29 2023-05-23 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
CN111403728A (zh) * 2019-11-11 2020-07-10 余姚市鑫和电池材料有限公司 一种高镍低钴共沉覆镁正极材料的制备方法

Also Published As

Publication number Publication date
JP2016117625A (ja) 2016-06-30
EP3239103A1 (en) 2017-11-01
KR20170097666A (ko) 2017-08-28
CN107108266B (zh) 2019-05-17
CN107108266A (zh) 2017-08-29
EP3239103B1 (en) 2021-03-31
US20170352884A1 (en) 2017-12-07
JP6265117B2 (ja) 2018-01-24
PL3239103T3 (pl) 2021-09-20
KR102381595B1 (ko) 2022-04-04
US10305105B2 (en) 2019-05-28
EP3239103A4 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6265117B2 (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
JP6287970B2 (ja) ニッケル複合水酸化物とその製造方法
JP6252010B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP5316726B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
US11374220B2 (en) Manganese-cobalt composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
JP5638232B2 (ja) 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR101644258B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP2011116580A5 (ja)
JP2013147416A (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2020152771A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
JP6583418B2 (ja) マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
JP7124307B2 (ja) ニッケルコバルトアルミニウム複合水酸化物の製造方法
JP2020510981A (ja) 改善された二次電池性能を有するカソード材料の前駆体及び前駆体を調製する方法
JP2022116215A (ja) ニッケルマンガンコバルト複合水酸化物及び、リチウムニッケルマンガンコバルト複合酸化物
JP2016031854A (ja) 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法
US20210399330A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and nonaqueous electrolyte secondary battery
WO2020152768A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
WO2020152770A1 (ja) ニッケルコバルトアルミニウム複合水酸化物、ニッケルコバルトアルミニウム複合水酸化物の製造方法及び、リチウムニッケルコバルトアルミニウム複合酸化物
WO2016067960A1 (ja) ニッケル複合水酸化物とその製造方法
WO2020152769A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177017803

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872544

Country of ref document: EP