JP6248993B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6248993B2
JP6248993B2 JP2015152617A JP2015152617A JP6248993B2 JP 6248993 B2 JP6248993 B2 JP 6248993B2 JP 2015152617 A JP2015152617 A JP 2015152617A JP 2015152617 A JP2015152617 A JP 2015152617A JP 6248993 B2 JP6248993 B2 JP 6248993B2
Authority
JP
Japan
Prior art keywords
compressor
supercharging
internal combustion
combustion engine
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152617A
Other languages
English (en)
Other versions
JP2017031884A (ja
Inventor
正和 田畑
正和 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015152617A priority Critical patent/JP6248993B2/ja
Priority to CN201610500527.XA priority patent/CN106401734B/zh
Priority to EP16179523.2A priority patent/EP3133273B1/en
Priority to US15/221,071 priority patent/US10190484B2/en
Publication of JP2017031884A publication Critical patent/JP2017031884A/ja
Application granted granted Critical
Publication of JP6248993B2 publication Critical patent/JP6248993B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/125Control for avoiding pump stall or surge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

この発明は、内燃機関の制御装置に係り、特に、排気によって駆動される第1コンプレッサと排気以外の動力によって駆動される第2コンプレッサとが吸気通路に並列に配置される内燃機関を制御する装置として好適な内燃機関の制御装置に関する。
特許文献1には、第1および第2ターボ過給機を備える内燃機関の過給機制御装置が開示されている。第1および第2ターボ過給機のコンプレッサは、吸気通路に並列に配置されており、同様に、第1および第2ターボ過給機のタービンは、排気通路に並列に配置されている。第1および第2ターボ過給機は、可変過給機構としての可変ノズルをそれぞれ備えている。吸気通路には、第2ターボ過給機のコンプレッサを通過する空気の流量を調整するための吸気切替弁が配置されている。排気通路には、第2ターボ過給機のタービンに流入する排気ガスの流量を調整するための排気切替弁が配置されている。また、排気通路は、第2ターボ過給機のタービンの上流において排気切替弁をバイパスする排気バイパス通路と、排気バイパス通路を開閉する排気バイパス弁とを備えている。
上記過給機制御装置によれば、第1および第2ターボ過給機の双方を用いて過給を行うモードにおいては、2つのターボ過給機の空気量比が所定の目標空気量比となるように、第1ターボ過給機の可変ノズルの開度が制御される。また、第1ターボ過給機のみを用いるモードから双方のターボ過給機を用いる上記モードへの切替時には、トルクショックの抑制のために次のような動作が実行される。すなわち、この切替のために吸気切替弁、排気切替弁および排気バイパス弁のそれぞれを閉状態から開状態に制御する場合に、これら3つの弁が排気バイパス弁、排気切替弁および吸気切替弁という順番で開かれるようになっている。
特開2008−190412号公報 特開2004−278430号公報 特開2008−045524号公報 特開平09−195781号公報 特開平06−207522号公報
ところで、排気によって駆動される第1コンプレッサを有する第1過給機(ターボ過給機)と、排気以外の動力によって駆動される第2コンプレッサを有する第2過給機(例えば、電動過給機)とを備え、第1コンプレッサと第2コンプレッサとが吸気通路に並列に配置される内燃機関が知られている。このような構成を有する内燃機関においてエンジントルクを高める要求が出された場合には、第1コンプレッサによる過給を第2コンプレッサによる過給によってアシストすることにより、トルク応答性を高めることができる。このため、トルク要求が出された場合には、第2コンプレッサによる過給を速やかに開始させることが望ましい。しかしながら、トルク要求が出された場合において第1コンプレッサの仕事率が小さい状態で第2コンプレッサによる過給が開始されると、第1コンプレッサにてサージが発生する可能性がある。第1コンプレッサにサージが発生すると、第2コンプレッサの作動中は第1コンプレッサがサージ状態から抜けることができなくなってしまう。そして、サージの発生中には第1コンプレッサは過給圧を高めることができないため、高いトルク応答性を確保できなくなる。このため、第1コンプレッサの仕事率を高めてから第2コンプレッサによる過給を開始する必要がある。そして、このように第1コンプレッサの仕事率を高めるためには、トルク要求が出されてから第2コンプレッサによる過給を開始するまでの間に、第1コンプレッサに所定量のエネルギを与える必要がある。したがって、第1コンプレッサの仕事率を高めてから第2コンプレッサによる過給を開始するためには、排気エネルギ調整機構の開度と第2コンプレッサによる過給の開始タイミングとを適切に調整する必要がある。
この発明は、上述のような課題を解決するためになされたもので、排気によって駆動される第1コンプレッサと、排気以外の動力によって駆動される第2コンプレッサとが吸気通路に並列に配置される内燃機関において、エンジントルクを高める要求が出された場合に、第2コンプレッサによる過給の開始に伴って第1コンプレッサにサージが発生することを抑制できるようにした内燃機関の制御装置を提供することを目的とする。
本発明に係る内燃機関の制御装置は、内燃機関の排気通路に設けられ、排気によって駆動されるタービンと、前記内燃機関の吸気通路に設けられ、前記タービンにより駆動されて吸気を過給する第1コンプレッサと、前記タービンが回収する排気エネルギの量を調整することで前記第1コンプレッサの仕事率を変更する排気エネルギ調整機構と、前記吸気通路に設けられ、排気以外の動力によって駆動されて吸気を過給する第2コンプレッサと、前記第2コンプレッサによる過給の実行と停止を切り替え可能な過給制御機構と、を備え、前記第1コンプレッサよりも下流側の前記吸気通路と前記第2コンプレッサよりも下流側の前記吸気通路とが接続された前記内燃機関を制御する内燃機関の制御装置であって、過給制御手段を備えている。過給制御手段は、エンジントルクを高める要求が出されたときに前記第2コンプレッサによる過給が必要とされる場合には、前記排気エネルギ調整機構を用いて前記第1コンプレッサの仕事率を所定値以上に増加させてから遅れ時間が経過したときに、前記第2コンプレッサによる過給を開始する。
前記遅れ時間は、エンジントルクを高める前記要求の度合いが高いほど短い値とされていてもよい。
前記第1コンプレッサの仕事率の前記所定値は、前記遅れ時間が長いほど小さい値とされていてもよい。
本発明によれば、エンジントルクを高める要求が出されたときに第2コンプレッサによる過給が必要とされる場合には、排気エネルギ調整機構を用いて第1コンプレッサの仕事率を所定値以上に増加させてから遅れ時間が経過したときに、第2コンプレッサによる過給が開始される。すなわち、本発明によれば、第1コンプレッサの仕事率を高めてから第2コンプレッサによる過給が開始されるように、排気エネルギ調整機構の開度と第2コンプレッサによる過給の開始タイミングとを適切に調整することができる。これにより、上記要求が出された場合に直ちに第2コンプレッサによる過給を開始する場合と比べて、第1コンプレッサの仕事率がより高くなってから第2コンプレッサによる過給を開始できるようになる。その結果、第1コンプレッサと第2コンプレッサとが吸気通路に並列に配置された内燃機関において、第2コンプレッサによる過給の開始に伴って第1コンプレッサにサージが発生することを抑制できるようになる。
本発明の実施の形態1のシステムの構成を概略的に説明するための図である。 エンジントルクを高める要求が出されたときにツイン過給モードを開始するときの課題を説明するための図である。 本発明の実施の形態1においてツイン過給モードを必要とするトルク要求が出されたときに行われる制御を説明するためのタイムチャートである。 本発明の実施の形態1においてツイン過給モードを必要とするトルク要求が出されたときに行われる制御を説明するためのタイムチャートである。 実施の形態1の制御が行われた場合における各コンプレッサの作動点の軌跡を模式的に説明するためのコンプレッサマップである。 本発明の実施の形態1に係る制御の流れを示すメインのフローチャートである。 図6に示すフローチャートにおけるステップ104のWGV開度制御の流れを示すフローチャートである。 遅れ時間Tdとアクセル開度との関係を定めたマップの設定の一例を表した図である。 図7に示すフローチャートにおけるステップ204のエネルギAの算出処理の流れを示すフローチャートである。 目標ターボ回転速度Nttrgと吸入空気流量Gaとの関係を定めたマップの設定の一例を表した図である。 目標ターボ回転速度Nttrgおよび現在のターボ回転速度Ntと、エネルギAとの関係を定めたマップの設定の一例を表した図である。 仕事率B0と吸入空気流量Gaとの関係を定めたマップの設定の一例を表した図である。 タービンの出力仕事率Ltと吸入空気流量GaとWGV開度との関係を表した図である。
実施の形態1.
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1のシステムの構成を概略的に説明するための図である。図1に示す内燃機関10は、内燃機関本体12を備えている。内燃機関10は、火花点火式エンジン(一例として、ガソリンエンジン)であり、車両に搭載され、その動力装置とされている。内燃機関本体12の各気筒には、吸気通路14および排気通路16が連通している。
吸気通路14は、内燃機関本体12の各気筒に吸入される空気が流れる第1吸気通路14aを備えている。第1吸気通路14aの入口付近には、エアクリーナ18が設けられている。エアクリーナ18には、第1吸気通路14aを流れる吸気の流量に応じた信号を出力するエアフローメータ20が取り付けられている。
エアクリーナ18よりも下流側の第1吸気通路14aには、吸気を過給するために、ターボ過給機22のコンプレッサ(以下、「ターボコンプレッサ」と称する)22aが配置されている。ターボコンプレッサ22aとしては、遠心式、斜流式、または軸流式のコンプレッサが用いられる。ターボ過給機22は、タービン22bを排気通路16に備えている。ターボコンプレッサ22aは、連結軸22cを介してタービン22bと一体的に連結されており、タービン22bに流れる排気によって回転駆動される。また、ターボ過給機22には、ターボコンプレッサ22aの回転速度(以下、「ターボ回転速度」とも称する)Ntを検出するためのターボ回転速度センサ22dが取り付けられている。さらに、ターボコンプレッサ22aよりも下流側の第1吸気通路14aには、ターボコンプレッサ22a、もしくはターボコンプレッサ22aと後述の電動コンプレッサ26aの双方によって圧縮された吸気を冷却するためのインタークーラ24が配置されている。
吸気通路14は、第2吸気通路14bを備えている。第2吸気通路14bは、第1吸気通路14aにおけるターボコンプレッサ22aの上流側の部位と下流側の部位とを接続する。すなわち、第2吸気通路14bは、ターボコンプレッサ22aをバイパスする吸気通路である。第2吸気通路14bには、電動過給機26のコンプレッサ(以下、「電動コンプレッサ」と称する)26aが配置されている。このような構成によって、本実施形態のターボコンプレッサ22aと電動コンプレッサ26aとは、吸気通路14に並列に配置されている。なお、本明細書中において、ターボコンプレッサである「第1コンプレッサ」と、電動コンプレッサ等の「第2コンプレッサ」とが吸気通路に「並列」に配置されているという構成は、ターボコンプレッサの下流と電動コンプレッサの下流とが接続されているものであれば、図1に示す構成のようにターボコンプレッサ22aの上流および下流が電動コンプレッサ26aの上流および下流にそれぞれ接続されたものには限られない。すなわち、「第1コンプレッサ」の上流と「第2コンプレッサ」の上流とは、互いに独立したものであってもよい。したがって、「第1コンプレッサ」の上流と「第2コンプレッサ」の上流のそれぞれに対し、エアフローメータやエアクリーナなどが独立して設けられていてもよい。
電動コンプレッサ26aも遠心式、斜流式、または軸流式である。電動コンプレッサ26aは、電動機26bによって駆動される。電動機26bは、モータコントローラ28に電気的に接続されている。モータコントローラ28は、後述のECU46からの指令に基づいて、電動機26bの通電を制御する。電動機26bには、バッテリ30から電力が供給される。電動過給機26によれば、電動機26bにより電動コンプレッサ26aを駆動することで吸気を過給することができる。
電動コンプレッサ26aよりも下流側の第2吸気通路14bには、逆止弁32が配置されている。逆止弁32は、第2吸気通路14bを通ってインタークーラ24側に向かう空気の流れを許容し、その逆向きの流れを制限するように構成されている。なお、逆止弁32に代え、電動コンプレッサ26aよりも下流側の第2吸気通路14bを、電動コンプレッサ26aを稼動させるときには開き、電動コンプレッサ26aを稼動させないときには閉じるように構成された開閉弁(例えば、電磁弁)が備えられていてもよい。
インタークーラ24よりも下流側の第1吸気通路14aには、電子制御式のスロットル弁34が配置されている。スロットル弁34は、アクセル開度に応じて作動し、その開度に応じて吸入空気流量を変化させる。スロットル弁34よりも下流側の第1吸気通路14aは、吸気マニホールド14cとして構成されており、吸気は、吸気マニホールド14cを介して各気筒に分配される。吸気マニホールド14cには、吸気圧(吸気マニホールド圧)を検出する吸気圧力センサ36が取り付けられている。
各気筒からの排気は、排気通路16の排気マニホールド38によって集められて下流側に排出される。排気通路16には、タービン22bをバイパスする排気バイパス通路40が接続されている。排気バイパス通路40には、排気バイパス通路40を開閉するバイパス弁として、電子制御式のウェイストゲートバルブ(WGV)42が配置されている。WGV42の開度を所定の開度制御範囲内で調整することにより、タービン22bが回収する排気エネルギの量を制御することができ、その結果として、ターボコンプレッサ22aの仕事率を変更することができる。WGV42には、WGV開度を検出するための開度センサ44が取り付けられている。なお、WGV開度の取得方法は、開度センサ44を用いたものに限られない。すなわち、WGV開度は、例えば、WGV42を駆動する電動アクチュエータ(図示省略)の電圧もしくは電流に基づいて算出されるものであってもよい。また、内燃機関10が備えるWGVが調圧式のものである場合には、WGV開度は、駆動圧力(ダイアフラム圧力)の検出値もしくは推定値に基づいて算出されてもよい。さらには、WGV開度が閉じられると、吸気マニホールド圧は高くなり、タービン上流の排気圧も高くなる。このため、WGV開度は、吸気マニホールド圧、もしくはタービン上流の排気圧に基づいて算出されてもよい。
さらに、本実施形態のシステムは、内燃機関10を制御する制御装置として、電子制御ユニット(ECU)46とともに、下記の各種アクチュエータを駆動するための駆動回路(図示省略)などを備えている。ECU46は、少なくとも入出力インターフェースとメモリと演算処理装置(CPU)とを備え、システム全体の制御を行うものである。入出力インターフェースは、内燃機関10もしくはこれを搭載する車両に取り付けられた各種センサからセンサ信号を取り込むとともに、内燃機関10が備える各種アクチュエータに対して操作信号を出力するために設けられている。メモリには、内燃機関10を制御するための各種の制御プログラムおよびマップ等が記憶されている。CPUは、制御プログラム等をメモリから読み出して実行し、取り込んだセンサ信号に基づいて各種アクチュエータの操作信号を生成する。
ECU46が信号を取り込むセンサには、上述したエアフローメータ20、吸気圧力センサ36および開度センサ44に加え、クランク軸の回転位置およびエンジン回転速度を取得するためのクランク角センサ48等のエンジン運転状態を取得するための各種センサが含まれる。上記センサには、内燃機関10を搭載する車両のアクセルペダルの踏み込み量(アクセル開度)を検出するためのアクセルポジションセンサ50も含まれる。ECU46が操作信号を出すアクチュエータには、上述した電動機26b、スロットル弁34およびWGV42に加え、各気筒に燃料を供給するための燃料噴射弁、および、筒内の混合気に点火するための点火装置等のエンジン運転を制御するための各種アクチュエータ(図示省略)が含まれる。
[実施の形態1の制御]
(電動コンプレッサによる過給アシスト)
上述したように、内燃機関10は、ターボ過給機22とともに電動過給機26を備えている。本実施形態のシステムは、シングル過給モードとツイン過給モードとを選択可能となっている。シングル過給モードは、ターボ過給機22のみを用いて過給が行われるモードであり、したがって、シングル過給モードでは、電動コンプレッサ26aの稼働が停止される。一方、ツイン過給モードは、ターボ過給機22とともに電動過給機26を用いて過給を行うモードである。ツイン過給モードでは、電動コンプレッサ26aによってターボコンプレッサ22aによる過給がアシストされる。ツイン過給モードは、内燃機関10の運転領域が所定の低回転低負荷領域にある状況下においてエンジントルクを高める要求(車両の加速要求)が出されたときに使用される。一方、シングル過給モードは、ツイン過給モードが使用されるとき以外の状況下で過給が行われる場合の過給モードに相当する。
電動機26bによって電動コンプレッサ26aを駆動する構成の電動過給機26によれば、排気を動力としてターボコンプレッサ22aを駆動する構成のターボ過給機22と比べて、より高い応答性で過給圧を高めることができる。このため、エンジントルクを高める要求(車両の加速要求)が出されたときにツイン過給モードを選択することにより、トルク応答性(加速応答性)を高めることができる。
(電動コンプレッサの稼働時の課題)
図2は、エンジントルクを高める要求が出されたときにツイン過給モードを開始するときの課題を説明するための図である。図2中の左側の図は、ターボコンプレッサ22aに関するコンプレッサマップを示し、同図中の右側の図は、電動コンプレッサ26aに関するコンプレッサマップを示している。これらのコンプレッサマップの縦軸は、各コンプレッサ22a、26aの入口圧に対する出口圧の圧力比(=出口圧/入口圧)であり、横軸は、各コンプレッサ22a、26aの通過空気流量である。図2において、サージラインよりも低空気流量かつ高圧力比側の領域は、コンプレッサ22aもしくは26aにサージが発生するサージ領域に該当する。
本実施形態のシステムでは、WGV42は、ターボ過給機22による過給を必要としない低負荷領域では、ポンプロスの低減による燃費向上のために開かれるようになっている。図2中の作動点P1は、このようにWGV42が開かれている状態におけるターボコンプレッサ22aの作動点Pに相当する。
ここで、作動点Pが作動点P1にある状態からツイン過給モードを開始してエンジントルクを高めるケースについて考える。ツイン過給モードを開始する場合には、ターボコンプレッサ22aが過給を行えるようにするためにWGV42が閉じられ、かつ、電動コンプレッサ26aが過給を行えるようにするために電動機26bの通電が制御される。
図2は、エンジントルクを高める要求が検知された時点で、WGV42を閉じる動作と電動コンプレッサ26aを稼働させる動作とが同時に開始された例に対応している。上述したように、内燃機関10は、ターボコンプレッサ22aと電動コンプレッサ26aとを吸気通路14(14a、14b)に並列に備えている。このような並列配置が用いられている場合には、ターボコンプレッサ22aの下流と電動コンプレッサ26aの下流とが連通しているので、ターボコンプレッサ22aの下流圧力と電動コンプレッサ26aの下流圧力とが等しくなる。また、並列配置が用いられている場合には、コンプレッサ22a、26aの通過空気流量は、それぞれのコンプレッサ22a、26aの仕事率の比率によって定まることになる。ここで、ターボコンプレッサ22aの仕事率は、通過空気流量と圧力比に比例する(このことは、電動コンプレッサ26aの仕事率も同様である)。
電動コンプレッサ26aの稼働開始後の電動コンプレッサ26aの仕事率の上昇の応答性は、排気を動力とするターボコンプレッサ22aのそれと比べて高い。このため、WGV42が開いているためにターボコンプレッサ22aの仕事率が低い状態において、トルク要求が出されたことを受けてWGV42を閉じる動作と同時(図2に示す例はこれに該当)またはそれより前に電動コンプレッサ26aによる過給が直ちに開始されると、次のような問題が生じることがある。すなわち、ターボコンプレッサ22aの通過空気流量が減少しつつ圧力比が上昇し、その結果として、ターボコンプレッサ22aにサージが発生してしまう可能性がある。
より具体的には、電動コンプレッサ26aの仕事率の上昇は、WGV42を閉じることによるターボコンプレッサ22aの仕事率の上昇よりも早い。このため、並列配置の場合、ターボコンプレッサ22aの仕事率が低い状態において電動コンプレッサ26aによる過給が開始されると、ターボコンプレッサ22aおよび電動コンプレッサ26aの共通の下流圧力は、電動コンプレッサ26aの作動特性に依存して定まることとなる。また、上記状態において電動コンプレッサ26aによる過給が開始されると、ターボコンプレッサ22aの出口圧が上昇することでターボコンプレッサ22aの通過空気流量が大きく減少してしまう。この動作に関連し、作動点Pは、作動点P1から図2における左上方向(すなわち、高圧力比かつ低流量方向)に移動していく。この移動の量が大きいと、作動点Pがサージ領域に入ってしまう可能性がある。
電動コンプレッサ26aの稼働後、電動コンプレッサ26aの通過空気流量は増加していく。しかしながら、ターボコンプレッサ22aにサージが発生すると、電動コンプレッサ26aによって昇圧した空気はターボコンプレッサ22a側に逆流してしまう。その結果、電動コンプレッサ26aの作動点Qは、稼働開始に伴って作動点Q1から図2における右方向に(すなわち、高流量方向に)移動していくようになるが、稼働開始後の電動コンプレッサ26aの圧力比は、ターボコンプレッサ22aにサージが発生するまでの間は上昇し、ターボコンプレッサ22aにサージが発生した後は下降する。さらに付け加えると、ターボコンプレッサ22aに上記態様でのサージが発生すると、ターボコンプレッサ22aは圧力を高める能力がない状態となってしまうので、サージが発生した状態が継続されてしまう。
上述の態様でのサージがターボコンプレッサ22aに発生すると、ツイン過給モードを開始したにもかかわらず、内燃機関10のシステム全体の過給圧(すなわち、ターボコンプレッサ22aを通過した吸気と電動コンプレッサ26aを通過した吸気とが合流した後の部位の吸気圧)を高めることができなくなる。なお、以上の説明は、WGV42が一例として最大開度(全開開度)にて開かれている状態から電動コンプレッサ26aが作動する例についてのものである。しかしながら、WGV42がある開度にて閉じられている状態から電動コンプレッサ26aを作動する場合であっても、ターボコンプレッサ22aの仕事率が低ければ、上述の課題は発生する。
(実施の形態1の制御の概要)
図3および図4は、本発明の実施の形態1においてツイン過給モードを必要とするトルク要求が出されたときに行われる制御を説明するためのタイムチャートである。より具体的には、図3は、WGV42の目標WGV開度WGVtrgが、上述の開度制御範囲内の最小開度(ここでは、一例として全閉開度)とされた場合の制御例を示し、図4は、目標WGV開度WGVtrgが全閉開度よりも開き側の開度WGV1とされた場合の制御例を示している。
本実施形態の制御によれば、図3および図4に示すように、ツイン過給モードが必要とされるトルク要求が時点T0において検知された場合(すなわち、エンジントルクを高める要求が出されたときに電動コンプレッサ26aによる過給が必要とされる場合)には、ターボコンプレッサ22aの仕事率を増加させるために、目標WGV開度WGVtrgとなるようにWGV42が閉じられる。
図3に示す例における時点T1は、WGV開度が目標WGV開度WGVtrgである全閉開度に到達した時点を示し、図4に示す例における時点T1’は、WGV開度が目標WGV開度WGVtrgである開度WGV1に到達した時点を示している。なお、トルク要求の開始前の開度WGV0は、ターボコンプレッサ22aによる過給を実質的に利用せずにスロットル弁34にてエンジントルクが制御される低負荷領域において用いられるWGV開度である。より具体的には、開度WGV0は、上述の開度制御範囲内の最大開度(ここでは、一例として全開開度)である。
過給アシストのための電動コンプレッサ26aの稼動は、本実施形態の制御では、図2を参照して説明した上記のケースとは異なり、トルク要求の検知後に直ちに開始されない。すなわち、図3に示す例では、電動コンプレッサ26aの過給開始は、WGV開度が目標開度WGVtrg(全閉開度)に到達する時点T1から開始される遅れ時間Tdが経過した時点T2において、電動機26bへの通電が開始されることによって実行される。このことは、図4に示す例についても同様であり、WGV開度が目標開度WGVtrg(開度WGV1)に到達する時点T1’から開始される遅れ時間Tdが経過した時点T2’において、電動機26bへの通電が開始されることによって電動コンプレッサ26aの過給が開始される。その後、電動機出力は、過給アシスト時の所定の出力値に向けて高められていく。
図5は、実施の形態1の制御が行われた場合における各コンプレッサ22a、26aの作動点の軌跡を模式的に説明するためのコンプレッサマップである。なお、図5中の作動点PおよびQにそれぞれ付される数字が同じ作動点(例えば、P1とQ1)は、同じ時点での作動点を示している。
図3および図4を参照して上述のように、本実施形態の制御によれば、トルク要求が検知された場合には、開度WGV1(後述の目標仕事率Bに対応するWGV開度)もしくは全閉開度である目標WGV開度WGVtrgとなるようにWGV42が閉じられる。その結果、WGV42が閉じられたことに伴ってターボコンプレッサ22aの仕事率が増加し始めると、ターボコンプレッサ22aの作動点Pは、トルク要求検知時の作動点P1から図5における右方向(すなわち、高流量方向)に移動し始める。これは、ターボコンプレッサ22aの仕事率の増加の初期には、出口圧は未だ上昇させられないが通過空気流量が高められるためである。
作動点Pは、WGV開度が目標WGV開度WGVtrgに到達してから(すなわち、ターボコンプレッサ22aの仕事率が所定値(具体的には、後述の所定値C1もしくはC2)以上に増加してから)開始する遅れ時間Tdが経過したときに作動点P2に到達する。本実施形態の制御によれば、遅れ時間Tdが経過したときに、電動コンプレッサ26aの過給が開始される。これに伴い、作動点Pは作動点P2から離れるとともに、電動コンプレッサ26aの作動点Qは、それまでの作動点Q2(=作動点Q1)から移動し始める。
電動コンプレッサ26aの過給が開始されると、並列配置のため電動コンプレッサ26aの出口圧の上昇に伴ってターボコンプレッサ22aの出口圧が上昇し、ターボコンプレッサ22aの通過空気流量が減少する。この動作は、コンプレッサマップ上においては、作動点P2において向きを変えて、作動点P2から図5における左上方向(すなわち、高圧力比かつ低流量方向)にほぼ等仕事の状態で移動していくという作動点Pの動作に対応している。より具体的には、既述したように、並列配置の場合の2つのコンプレッサ22a、26aの通過空気流量の比率は、2つのコンプレッサ22a、26aの仕事率の比率で定まることになる。しかしながら、電動コンプレッサ26aの過給開始直後(すなわち、作動点P2、Q2付近)においては、2つのコンプレッサ22a、26aの通過空気流量は、2つのコンプレッサ22a、26aの仕事率の比率でバランスがとれた状態となっておらず、その結果として、作動点PはP2からP3に向けて移動し、作動点QはQ2からQ3に向けて移動していく。
作動点Pおよび作動点Qが作動点P3およびQ3にそれぞれ到達すると、2つのコンプレッサ22a、26aの通過空気流量は、2つのコンプレッサ22a、26aの仕事率の比率でバランスがとれた状態となる。このようにバランスが取れた状態になると、ターボコンプレッサ22aにおいても、出口圧を高めるための仕事(すなわち、過給)を開始できるようになる。その結果、作動点Pは、作動点P3から図5における右上方向(すなわち、高圧力比かつ高流量方向)に移動していくことになる。一方、作動点Qは、ターボコンプレッサ22aによる過給が加わったことで、作動点Q3への到達時点前と比べて空気流量の変化に対する圧力比の変化の割合が大きい状態で、作動点Q3から図5における右上方向(すなわち、高圧力比かつ高流量方向)に移動していく。
本実施形態の制御が反映された図5に示す動作例では、遅れ時間Tdが設けられているため、図2に示す制御例と比べてターボコンプレッサ22aの仕事率がより高くなった状態(より具体的には、ターボ過給機22がサージ回避に必要なエネルギ(後述のエネルギA)相当の仕事量を回収できている状態)で電動コンプレッサ26aの過給が開始されることになる。その結果、このような電動コンプレッサ26aの過給開始タイミングへの配慮のない図2に示す制御例とは異なり、電動コンプレッサ26aの過給開始に伴ってターボコンプレッサ22aの通過空気流量が減少しても、作動点Pがサージ領域に入らずに済んでいる。すなわち、電動コンプレッサ26aによる過給の開始に伴ってターボコンプレッサ22aにサージが発生することが好適に抑制されている。
(実施の形態1における具体的処理)
図6は、本発明の実施の形態1に係る制御の流れを示すメインのフローチャートである。図6に示すように、ECU46は、まず、ステップ100に進み、ツイン過給モードを必要とするトルク要求(すなわち、車両の加速要求)があるか否かを判定する。このトルク要求の有無は、例えば、アクセルポジションセンサ50を用いてアクセルペダルの踏み込みの有無を判断することによって行うことができる。トルク要求がない場合には、本フローチャートに従う今回の処理が速やかに終了される。
ステップ100においてツイン過給モードを必要とするトルク要求があると判定した場合には、ECU46は、ステップ102に進む。ステップ102では、電動コンプレッサ26aが現時点で非作動状態にあるか否かが判定される。その結果、本判定が成立する場合には、ECU46は、ステップ104に進み、図7に示すサブのフローチャートの処理に従うWGV開度制御を実行する。
図7は、ステップ104のWGV開度制御の流れを示すフローチャートである。図7に示すように、ECU46は、まず、ステップ200において、アクセルポジションセンサ50を用いてアクセル開度を計測する。次いで、ECU46は、ステップ202に進み、計測したアクセル開度に基づいて遅れ時間Tdを算出する。
図8は、遅れ時間Tdとアクセル開度との関係を定めたマップの設定の一例を表した図である。トルク要求(加速要求)の度合いが高い場合には、電動コンプレッサ26aをできるだけ早く作動させることが必要とされる。このため、図8に示すマップによれば、遅れ時間Tdは、アクセル開度が大きくなるにつれて次第に短くなるように設定されている。本ステップ202では、このようなマップを参照して、遅れ時間Tdが算出される。なお、遅れ時間Tdは、内燃機関10を搭載する車両の速度、エンジン回転速度およびエンジントルクのうちの少なくとも1つに応じて修正されるようになっていてもよい。
次に、ECU46は、ステップ204に進む。ステップ204では、図9に示すサブのフローチャートの処理にしたがって、ターボコンプレッサ22aのサージ回避に必要なエネルギA(単位はジュール)が算出される。
図9は、ステップ204のエネルギAの算出処理の流れを示すフローチャートである。図9に示すように、ECU46は、まず、ステップ300に進み、エアフローメータ20を用いて吸入空気流量Gaを計測する。次いで、ECU46は、ステップ302に進み、ターボコンプレッサ22aのサージ回避に必要なターボ回転速度Ntの目標値である目標ターボ回転速度Nttrgを算出する。
図10は、目標ターボ回転速度Nttrgと吸入空気流量Gaとの関係を定めたマップの設定の一例を表した図である。図10に示す関係によれば、目標ターボ回転速度Nttrgは、吸入空気流量Gaが多くなるにつれて次第に高くなるように設定されている。本ステップ302では、このようなマップを参照して、吸入空気流量Gaから目標ターボ回転速度Nttrgが算出される。
次に、ECU46は、ステップ304に進み、ターボ回転速度センサ22dを用いて、現在のターボ回転速度Nt(ステップ304に進むときが初回である場合には、ツイン過給モードを必要とするトルク要求が出されたときのターボ回転速度Nt)を計測する。次いで、ECU46は、ステップ306に進む。ステップ306では、ターボコンプレッサ22aのサージ回避に必要なエネルギAが、現在のターボ回転速度Ntと目標ターボ回転速度Nttrgとに基づいて算出される。
図11は、目標ターボ回転速度Nttrgおよび現在のターボ回転速度Ntと、エネルギAとの関係を定めたマップの設定の一例を表した図である。図11に示す関係によれば、エネルギAは、目標ターボ回転速度Nttrgが高いほど大きくなり、また、現在のターボ回転速度Ntが高いほど大きくなるように設定されている。本ステップ306では、このようなマップを参照して、現在のターボ回転速度Ntと目標ターボ回転速度NttrgとからエネルギAが算出される。
ここで、図7に示すフローチャートの説明に戻る。ECU46は、ステップ204においてエネルギAを算出した後には、ステップ206に進む。ステップ206では、ターボコンプレッサ22aの目標仕事率Bが算出される。目標仕事率Bは、ステップ204にて算出されたエネルギAをステップ202にて算出された遅れ時間Tdで除することにより算出される。
次に、ECU46は、ステップ208に進み、WGV42が全閉であるときのターボコンプレッサ22aの仕事率B0を算出する。図12は、仕事率B0と吸入空気流量Gaとの関係を定めたマップの設定の一例を表した図である。図12に示すように、WGV42が全閉であるときのターボコンプレッサ22aの仕事率B0は、吸入空気流量Gaが多くなるにつれて次第に高くなる。本ステップ208では、このようなマップを参照して、吸入空気流量Gaから仕事率B0が算出される。
次に、ECU46は、ステップ210に進み、目標仕事率Bが仕事率B0よりも低いか否かを判定する。その結果、この判定が成立する場合、すなわち、仕事率B0よりも低い仕事率が目標仕事率Bとして必要とされている場合には、ECU46は、ステップ212に進む。本ステップ212では、吸入空気流量Gaと目標仕事率Bとに基づいて目標WGV開度WGVtrgが算出される。より具体的には、目標WGV開度WGVtrgは、現在の吸入空気流量Gaおよび目標仕事率Bの下でターボコンプレッサ22aのサージ回避のために必要とされる最大のWGV開度に相当する。
図13は、タービン22bの出力仕事率Ltと吸入空気流量GaとWGV開度との関係を表した図である。図13に示す関係をECU46にマップとして記憶させておくことにより、この関係を利用して、現在の吸入空気流量Gaの下で目標とするタービン22bの出力仕事率Ltを実現するために必要とされる最大のWGV開度を算出することができる。ここで、上述の目標仕事率Bは、より具体的にはタービン22bの出力仕事率Ltの目標値であり、ターボコンプレッサ22aの(駆動)仕事率は、タービン22bの出力仕事率Ltからターボ過給機22の軸受損失(既知の値)を引いて得られる値となる。本ステップ212では、図13に示すような関係を定めたマップを参照して、目標仕事率Bと現在の吸入空気流量Gaから目標WGV開度WGVtrgが算出される(図4に示す例がこの場合に該当)。
一方、ステップ210の判定が不成立となる場合、すなわち、仕事率B0以上の仕事率が目標仕事率Bとして必要とされている場合には、ECU46は、ステップ214に進み、目標WGV開度WGVtrgとして全閉開度が設定される(図3に示す例がこの場合に該当)。
ECU46は、ステップ214の処理の後に、目標仕事率Bが仕事率B0よりも高いか否かを判定する(ステップ216)。上述のように、本実施形態では、目標仕事率Bはサージ回避に必要なエネルギAを遅れ時間Tdで除することによって算出され、遅れ時間Tdはアクセル開度に応じた値に設定される。したがって、ステップ216の判定が成立する場合(すなわち、仕事率B0よりも高い仕事率が目標仕事率Bとして必要とされている場合)には、アクセル開度に応じた遅れ時間Tdの値が用いられていると、仕事率B0の下で遅れ時間Tdを経過してもエネルギAを得ることはできない。このため、この場合には、ECU46は、ステップ218に進み、目標仕事率Bと遅れ時間Tdとの積を仕事率B0で除することで得られる値(=B/B0×Td)となるように、遅れ時間Tdを修正する。なお、ステップ216の判定が不成立となる場合(すなわち、目標仕事率Bと仕事率B0とが等しい場合)には、遅れ時間Tdの修正は必要とされない。
ステップ212の処理もしくは218の処理が実行された後には、ECU46は、ステップ220に進み、WGV開度が目標WGV開度WGVtrgとなるようにWGV42を閉じる動作を開始する。これに伴い、ターボコンプレッサ22aの仕事率が増加し始める。
ここで、図6に示すフローチャートの説明に戻る。ECU46は、ステップ104においてWGV開度制御を実行した後には、ステップ106に進む。ステップ106では、WGV開度が目標WGV開度WGVtrgに到達したか否かが判定される。その結果、本ステップ106の判定が不成立となる場合には、ステップ100以降の処理が繰り返し実行される。
一方、ステップ106においてWGV開度が目標WGV開度WGVtrgに到達したと判定した場合には、ECU46は、ステップ108に進む。ステップ108では、遅れ時間Tdの経過のカウントが実施中であることを示すカウント実施中フラグがONであるか否かが判定される。
ステップ108においてカウント実施中フラグがONではないと判定した場合には、ECU46は、ステップ110に進み、カウント実施中フラグをONに設定するとともに、ECU46が有する機能の1つであるカウントダウンタイマに、遅れ時間Tdを設定する。次いで、ECU46は、ステップ112に進み、ステップ110の処理の実行時点からの時間経過分を、カウントダウンタイマの残り時間から差し引くための処理を実行する。一方、ステップ108においてカウント実施中フラグがONであると判定した場合には、ECU46は、直ちにステップ112に進む。
ECU46は、ステップ112の処理を実行した後にステップ114に進む。ステップ114では、カウントダウンタイマの残り時間がゼロになったか否かが判定される。その結果、本ステップ114の判定が不成立となる場合には、ステップ100以降の処理が繰り返し実行される。
一方、ステップ114においてカウントダウンタイマの残り時間がゼロになったと判定した場合には、ECU46は、ステップ116に進み、カウント実施中フラグをOFFに設定する。次いで、ECU46は、ステップ118に進み、電動機26bの通電を制御して電動コンプレッサ26aの過給を開始する。なお、カウント実施中フラグは、ステップ100もしくは102の判定が不成立となる場合にもOFFとされる(ステップ120、122)。
以上説明した図6、図7および図9に示すフローチャートに従う処理によれば、ツイン過給モードが必要とされたことに伴って電動コンプレッサ26aの作動を開始することに起因するターボコンプレッサ22aのサージを回避するために必要なエネルギAが算出される。そして、このエネルギA(単位はジュール)と上記の遅れ時間Tdとに基づいて、ターボコンプレッサ22aの目標仕事率Bが、エネルギAを遅れ時間Tdで除して得られる値(B=A/Td)として算出される。このようなエネルギAと遅れ時間Tdと目標仕事率Bとの関係によれば、目標仕事率Bの下で遅れ時間Tdに渡ってターボコンプレッサ22aが稼動した場合には、ターボ過給機22はサージ回避に必要なエネルギA相当の仕事量を遅れ時間Td中に回収できたことになるといえる。
上述の処理によれば、目標仕事率BがWGV全閉時の仕事率B0よりも低い場合には、現在の吸入空気流量Gaの下で目標仕事率Bを充足する開度WGV1(全閉開度よりも大きなWGV開度)が目標WGV開度WGVtrgに設定される。そして、この場合には、WGV開度が目標WGV開度WGVtrgに到達してから(すなわち、ターボコンプレッサ22aの仕事率が所定値C1(目標仕事率Bから上記軸受損失を引いて得られる値)以上に増加してから)遅れ時間Tdが経過したときに、電動コンプレッサ26aによる過給が開始されるようになる。このため、電動コンプレッサ26aによる過給の開始に伴ってターボコンプレッサ22aにサージが発生することを好適に抑制することができる。
また、上述の処理によれば、目標仕事率BがWGV全閉時の仕事率B0以上である場合には、全閉開度が目標WGV開度WGVtrgに設定される。そして、この場合にも、WGV開度が目標WGV開度WGVtrgに到達してから(すなわち、ターボコンプレッサ22aの仕事率が所定値C2(仕事率B0から上記軸受損失を引いて得られる値)以上に増加してから)遅れ時間Td(ステップ218の処理による修正を伴う場合がある)が経過したときに、電動コンプレッサ26aによる過給が開始されるようになる。このため、この場合においても、電動コンプレッサ26aによる過給の開始に伴ってターボコンプレッサ22aにサージが発生することを好適に抑制することができる。
また、本実施形態の制御によれば、遅れ時間Tdは、(目標仕事率BがWGV全閉時の仕事率B0よりも高い場合は対象から除外されることになるが)アクセル開度が大きいほど(すなわち、エンジントルクを高める要求の度合いが高いほど)短くなるように設定される(図8参照)。遅れ時間Tdが長くなることは、加速応答性を下げることに繋がる。このため、上記要求の度合いに応じて遅れ時間Tdを決定することにより、車両の運転者によるトルク要求(車両の加速要求)の度合いを考慮しつつ、サージ発生を抑制できるようになる。
また、上述の関係(B=A/Td)を利用する本実施形態の制御によれば、目標仕事率(タービン22bの出力仕事率Ltの目標値)Bは、遅れ時間Tdが長いほど低くなるように設定される。その結果、タービン22bの出力仕事率Ltと相関のあるターボコンプレッサ22aの仕事率の上記所定値C1についても、遅れ時間Tdが長いほど低くなるように設定されることになる。これにより、遅れ時間Tdの大きさに応じた必要最小限の変更をWGV開度に対して施すための値として目標仕事率B(換言すると、所定値C1)を設定することができる。
なお、上述した実施の形態1においては、ターボコンプレッサ22aが本発明における「第1コンプレッサ」に相当し、排気バイパス通路40とWGV42とが本発明における「排気エネルギ調整機構」に、電動コンプレッサ26aが本発明における「第2コンプレッサ」に、電動機26bとモータコントローラ28とバッテリ30とが本発明における「過給制御機構」に、それぞれ相当している。また、図6、図7および図9に示すフローチャートに従う処理を実行するECU46が本発明における「過給制御手段」に相当している。また、目標仕事率Bに対応する所定値C1もしくはWGV全閉時の仕事率B0に対応する所定値C2が本発明における「所定値」に相当している。
ところで、上述した実施の形態1においては、図3および図4に示すように、遅れ時間Tdが経過したときに電動機26bへの通電を開始することによって、電動コンプレッサ26aの過給を開始するようにしている。しかしながら、本発明において「第2コンプレッサの過給を開始するとき」とは、上記態様における「電動機26bへの通電を開始するとき」に限られず、例えば、以下のようなものであってもよい。
第2コンプレッサに相当する電動コンプレッサと、電動コンプレッサをバイパスする吸気バイパス通路と、吸気バイパス通路を開閉する吸気バイパス弁とを備える内燃機関において、吸気バイパス弁を開いた状態で電動コンプレッサを作動させることによって予め電動コンプレッサの回転速度を高めておくことにより、過給を開始したときに速やかに所望の過給圧が得られるようにするという予回転制御を行うことが公知である。このような予回転制御を利用している場合であれば、遅れ時間Tdの経過を待たずに予回転のための通電は行われることになる(具体的には、予回転のための通電は、上述の図6に示すフローチャートに従う処理の場合であれば、例えば、ステップ102の判定が成立したとき、もしくはステップ106の判定が成立したときに開始されることになる)。しかしながら、予回転のための通電がなされただけでは、電動コンプレッサによる過給は開始されない。そして、本構成においては、遅れ時間Tdの経過に伴って吸気バイパス弁を閉じて電動機出力を増加することにより、電動コンプレッサの回転速度が予回転制御時の回転速度よりも高くなり始める。したがって、この構成では、「吸気バイパス弁を閉じるとき」、換言すると、「電動コンプレッサの回転速度が予回転制御時の回転速度よりも高くなり始めるとき」が、「第2コンプレッサの過給を開始するとき」に相当する。
また、上述した実施の形態1においては、タービン22bが回収する排気エネルギの量を調整するために排気バイパス通路40とWGV42とを備える内燃機関10を例示した。しかしながら、本発明における「排気エネルギ調整機構」は、例えば、第1コンプレッサとしてのターボコンプレッサを有するターボ過給機に組み合わされる可変ノズル機構であってもよい。そして、可変ノズル機構を利用する場合には、エンジントルクを高める要求が出されたときに第2コンプレッサによる過給が必要とされる場合には、可変ノズルの開度を閉じ側に制御することによって第1コンプレッサの仕事率を所定値以上に増加させてから遅れ時間Tdが経過したときに、第2コンプレッサによる過給を開始するようにすればよい。
また、上述した実施の形態1においては、電動コンプレッサ26aを備える内燃機関10を例示した。しかしながら、本発明における「第2コンプレッサ」は、例えば、内燃機関のクランク軸のトルクを動力とする機械式過給機のコンプレッサであってもよい。そして、機械式過給機を備える場合の「過給制御機構」としては、例えば、機械式過給機のコンプレッサをバイパスする吸気バイパス通路と、当該コンプレッサによる過給を行わないときには吸気バイパス通路を開き、過給を開始するときに吸気バイパス通路を閉じるように構成された吸気バイパス弁とを備える機構が相当する。また、このような機構以外にも、この場合の「過給制御機構」としては、例えば、クランク軸と機械式過給機のコンプレッサの回転軸との連結とその解除とを切り替え可能なクラッチ機構が相当する。
また、上述した実施の形態1においては、火花点火式の内燃機関10を例に挙げたが、本発明は、ディーゼルエンジン等の圧縮着火式の内燃機関にも適用することができる。
10 内燃機関
14a 第1吸気通路
14b 第2吸気通路
16 排気通路
20 エアフローメータ
22a ターボコンプレッサ
22b タービン
22d ターボ回転速度センサ
26a 電動コンプレッサ
26b 電動機
28 モータコントローラ
30 バッテリ
32 逆止弁
34 スロットル弁
36 吸気圧力センサ
40 排気バイパス通路
42 ウェイストゲートバルブ(WGV)
44 開度センサ
46 電子制御ユニット(ECU)
48 クランク角センサ
50 アクセルポジションセンサ

Claims (3)

  1. 内燃機関の排気通路に設けられ、排気によって駆動されるタービンと、
    前記内燃機関の吸気通路に設けられ、前記タービンにより駆動されて吸気を過給する第1コンプレッサと、
    前記タービンが回収する排気エネルギの量を調整することで前記第1コンプレッサの仕事率を変更する排気エネルギ調整機構と、
    前記吸気通路に設けられ、排気以外の動力によって駆動されて吸気を過給する第2コンプレッサと、
    前記第2コンプレッサによる過給の実行と停止を切り替え可能な過給制御機構と、
    を備え、前記第1コンプレッサよりも下流側の前記吸気通路と前記第2コンプレッサよりも下流側の前記吸気通路とが接続された前記内燃機関を制御する内燃機関の制御装置であって、
    エンジントルクを高める要求が出されたときに前記第2コンプレッサによる過給が必要とされる場合には、前記排気エネルギ調整機構を用いて前記第1コンプレッサの仕事率を所定値以上に増加させてから遅れ時間が経過したときに、前記第2コンプレッサによる過給を開始する過給制御手段と、
    を備え
    前記遅れ時間は、エンジントルクを高める前記要求の度合いに基づいて算出されることを特徴とする内燃機関の制御装置。
  2. 前記遅れ時間は、エンジントルクを高める前記要求の度合いが高いほど短いことを特徴とする
    請求項1に記載の内燃機関の制御装置。
  3. 前記第1コンプレッサの仕事率の前記所定値は、前記遅れ時間が長いほど小さいことを特徴とする
    請求項2に記載の内燃機関の制御装置。
JP2015152617A 2015-07-31 2015-07-31 内燃機関の制御装置 Active JP6248993B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015152617A JP6248993B2 (ja) 2015-07-31 2015-07-31 内燃機関の制御装置
CN201610500527.XA CN106401734B (zh) 2015-07-31 2016-06-29 用于内燃机的控制设备
EP16179523.2A EP3133273B1 (en) 2015-07-31 2016-07-14 Control device for a supercharged internal combustion engine
US15/221,071 US10190484B2 (en) 2015-07-31 2016-07-27 Control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152617A JP6248993B2 (ja) 2015-07-31 2015-07-31 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2017031884A JP2017031884A (ja) 2017-02-09
JP6248993B2 true JP6248993B2 (ja) 2017-12-20

Family

ID=56800123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152617A Active JP6248993B2 (ja) 2015-07-31 2015-07-31 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US10190484B2 (ja)
EP (1) EP3133273B1 (ja)
JP (1) JP6248993B2 (ja)
CN (1) CN106401734B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599013B2 (en) * 2013-04-15 2017-03-21 Ford Global Technologies, Llc Direct manifold boost assist device with throttle body manifold volume isolation
EP2995798A1 (en) * 2014-09-11 2016-03-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
GB2541201A (en) * 2015-08-11 2017-02-15 Gm Global Tech Operations Llc Method of operating a turbocharged automotive system
US9790849B2 (en) * 2015-09-03 2017-10-17 Ford Global Technologies, Llc Method and system to operate a compressor for an engine
KR20170041320A (ko) * 2015-10-06 2017-04-17 현대자동차주식회사 엔진 시스템의 제어방법
JP6786233B2 (ja) * 2016-03-22 2020-11-18 三菱パワー株式会社 ガスタービンの特性評価装置及びガスタービンの特性評価方法
US10066541B2 (en) * 2016-04-29 2018-09-04 Fca Us Llc Physics-based vehicle turbocharger control techniques
US10584630B2 (en) 2016-06-06 2020-03-10 Fca Us Llc Power-based turbocharger boost control techniques
KR102440581B1 (ko) * 2016-12-13 2022-09-05 현대자동차 주식회사 엔진 시스템
US10400693B2 (en) * 2017-07-07 2019-09-03 GM Global Technology Operations LLC Vehicle turbocharger systems and methods with improved aftertreatment activation
JP6825541B2 (ja) * 2017-11-15 2021-02-03 トヨタ自動車株式会社 Egr制御装置
JP6939460B2 (ja) * 2017-11-20 2021-09-22 トヨタ自動車株式会社 内燃機関の制御装置
CN108952982B (zh) * 2018-06-06 2020-09-08 上海汽车集团股份有限公司 柴油机配高压废气再循环增压器防喘振的控制方法
JP7121563B2 (ja) * 2018-06-29 2022-08-18 株式会社豊田自動織機 過給システム
CN111271173B (zh) * 2020-02-11 2021-01-15 吉利汽车研究院(宁波)有限公司 一种用于车辆的电子增压器控制方法和控制系统
CN113864041B (zh) * 2021-09-30 2022-08-09 上海交通大学 基于电动增压的高背压柴油机功率恢复方法及其实施装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921403A (en) * 1974-04-30 1975-11-25 Garrett Corp Auxiliary air supply system and method for turbocharged engines
JPS5282608U (ja) * 1975-12-19 1977-06-20
US4258550A (en) * 1979-06-11 1981-03-31 General Motors Corporation Engine charging system with dual function charge supplying and charge cooling blower
DE3100732C2 (de) * 1981-01-13 1983-08-18 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Brennkraftmaschine mit Abgasturbolader
JPS6046250B2 (ja) * 1981-06-22 1985-10-15 株式会社日立製作所 タ−ボチヤ−ジヤ
JPS6026125A (ja) * 1983-07-21 1985-02-09 Nissan Motor Co Ltd 過給内燃機関
ES8701301A1 (es) * 1985-05-15 1986-12-01 Mtu Friedrichshafen Gmbh Maquina motriz de combustion sobrealimentada
JPS6276250U (ja) * 1985-10-31 1987-05-15
JPH0791994B2 (ja) * 1986-07-09 1995-10-09 マツダ株式会社 エンジンの過給装置
JP2795696B2 (ja) * 1989-09-14 1998-09-10 マツダ株式会社 過給機付エンジンの制御装置
JP3312411B2 (ja) 1993-01-11 2002-08-05 いすゞ自動車株式会社 ターボチャージャ制御装置
JPH09195781A (ja) * 1996-01-23 1997-07-29 Kubota Corp エンジンの過給装置
US6062026A (en) * 1997-05-30 2000-05-16 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
US5771868A (en) * 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
US6938420B2 (en) * 2002-08-20 2005-09-06 Nissan Motor Co., Ltd. Supercharger for internal combustion engine
JP3952974B2 (ja) * 2003-03-17 2007-08-01 トヨタ自動車株式会社 内燃機関の制御装置
JP3951942B2 (ja) * 2003-03-17 2007-08-01 日産自動車株式会社 電動過給システム
JP3846463B2 (ja) * 2003-08-07 2006-11-15 日産自動車株式会社 電動過給装置
JP2006242065A (ja) * 2005-03-02 2006-09-14 Denso Corp 過給機付き内燃機関の制御装置
JP2008014281A (ja) * 2006-07-10 2008-01-24 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2008045524A (ja) * 2006-08-21 2008-02-28 Mazda Motor Corp ディーゼルエンジンの過給装置
JP2008190412A (ja) * 2007-02-05 2008-08-21 Toyota Motor Corp 内燃機関の過給機制御装置
JP2010048225A (ja) * 2008-08-25 2010-03-04 Toyota Motor Corp 内燃機関の過給システム
EP2449225B1 (en) * 2009-07-02 2015-06-17 Honeywell International Inc. Turbocharger system for air-throttled engines
US20140208745A1 (en) * 2009-10-28 2014-07-31 Eaton Corporation Control strategy for an engine
JP2012097606A (ja) * 2010-10-29 2012-05-24 Isuzu Motors Ltd ターボ過給システム
EP2673486A1 (en) * 2011-02-09 2013-12-18 Synapse Engineering, Inc. Turbocharger control strategy to increase exhaust manifold pressure
JP5724844B2 (ja) * 2011-11-24 2015-05-27 トヨタ自動車株式会社 内燃機関の運転制御方法
US9599013B2 (en) * 2013-04-15 2017-03-21 Ford Global Technologies, Llc Direct manifold boost assist device with throttle body manifold volume isolation
JP6206163B2 (ja) * 2013-12-20 2017-10-04 トヨタ自動車株式会社 内燃機関の制御システム
JP6269330B2 (ja) * 2014-06-06 2018-01-31 トヨタ自動車株式会社 内燃機関の制御装置
JP2016011641A (ja) * 2014-06-30 2016-01-21 トヨタ自動車株式会社 過給システム
JP6015724B2 (ja) * 2014-09-02 2016-10-26 トヨタ自動車株式会社 内燃機関システム
JP6128081B2 (ja) * 2014-09-02 2017-05-17 トヨタ自動車株式会社 内燃機関システム
EP2995798A1 (en) * 2014-09-11 2016-03-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
DE112015004006T5 (de) * 2014-10-07 2017-06-08 Borgwarner Inc. BYPASS-Ventil FÜR KOMPRESSOR
JP6245221B2 (ja) * 2015-06-01 2017-12-13 トヨタ自動車株式会社 内燃機関の制御装置
JP6264326B2 (ja) * 2015-06-09 2018-01-24 トヨタ自動車株式会社 内燃機関の制御装置
JP6287979B2 (ja) * 2015-07-01 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
AT518258B1 (de) * 2016-02-19 2017-09-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine
US9890697B2 (en) * 2016-05-20 2018-02-13 Ford Global Technologies, Llc Method and system for boost pressure control
US10054069B2 (en) * 2016-08-22 2018-08-21 GM Global Technology Operations LLC Method and apparatus for model based control of electrical boosting system
US10132252B2 (en) * 2016-08-22 2018-11-20 Hyundai Motor Company Engine system
KR101826571B1 (ko) * 2016-08-30 2018-02-07 현대자동차 주식회사 엔진 시스템

Also Published As

Publication number Publication date
US10190484B2 (en) 2019-01-29
EP3133273A1 (en) 2017-02-22
US20170030259A1 (en) 2017-02-02
CN106401734B (zh) 2019-07-16
EP3133273B1 (en) 2020-12-16
JP2017031884A (ja) 2017-02-09
CN106401734A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6248993B2 (ja) 内燃機関の制御装置
JP6264326B2 (ja) 内燃機関の制御装置
JP6128081B2 (ja) 内燃機関システム
JP5389238B1 (ja) 内燃機関のウェイストゲートバルブ制御装置
JP6015724B2 (ja) 内燃機関システム
JP4375369B2 (ja) 過給機付き内燃機関の制御装置
JP4306703B2 (ja) 過給機付き内燃機関の制御装置
JP5680169B1 (ja) 内燃機関の制御装置および制御方法
JP4434174B2 (ja) 過給機付き内燃機関の制御装置
US20170002726A1 (en) Control apparatus for internal combustion engine
KR101826551B1 (ko) 엔진 제어 장치 및 방법
WO2013118263A1 (ja) 内燃機関の制御装置
JP5991405B2 (ja) 内燃機関の制御装置
JP2018159271A (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP2007198253A (ja) 電動過給機を備える内燃機関の制御装置
JP2016130489A (ja) 内燃機関の制御装置
JP2015209815A (ja) 内燃機関
JP2007332822A (ja) 過給機付き内燃機関の制御装置
JP2016138502A (ja) 内燃機関の気筒休止制御装置
JP2006233881A (ja) エンジンの過給装置
JP2005163674A (ja) 内燃機関の過給装置
JP2009228585A (ja) 電動過給機付き内燃機関の制御装置
JP6154232B2 (ja) 過給機付きエンジンの制御装置
JP2017110549A (ja) 内燃機関の制御装置
JP2018131987A (ja) 過給制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151