JP6218961B2 - 多重巻線電動機駆動制御装置 - Google Patents

多重巻線電動機駆動制御装置 Download PDF

Info

Publication number
JP6218961B2
JP6218961B2 JP2016553784A JP2016553784A JP6218961B2 JP 6218961 B2 JP6218961 B2 JP 6218961B2 JP 2016553784 A JP2016553784 A JP 2016553784A JP 2016553784 A JP2016553784 A JP 2016553784A JP 6218961 B2 JP6218961 B2 JP 6218961B2
Authority
JP
Japan
Prior art keywords
phase
current
axis current
power converter
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016553784A
Other languages
English (en)
Other versions
JPWO2016059684A1 (ja
Inventor
恵子 多田
恵子 多田
友里子 岡本
友里子 岡本
佐竹 彰
彰 佐竹
鈴木 寛充
寛充 鈴木
昌彦 塚越
昌彦 塚越
利孝 中村
利孝 中村
雅史 中村
雅史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Mitsubishi Electric Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016059684A1 publication Critical patent/JPWO2016059684A1/ja
Application granted granted Critical
Publication of JP6218961B2 publication Critical patent/JP6218961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Description

この発明は、1台の電動機内に独立した複数の巻線を有する多重巻線電動機を複数のインバータにより駆動して、回転を可変速制御する多重巻線電動機駆動制御装置に関するものである。
多重巻線電動機を巻線群毎に複数台のインバータにそれぞれ並列接続して制御する場合、1巻線電動機を複数インバータに並列接続して運転する場合に比べ、横流防止用に各インバータごとにリアクトルを配置する必要がないという利点がある。また、大容量の場合は、単位容量のインバータを負荷容量に合わせて組み合わせることができるため、インバータの開発・製造が効率化してコストダウンが図れるという利点がある。
しかし、この方式では各巻線組に流れる電流に不平衡があると、平衡しているときに較べて大容量のインバータが必要になる、あるいは電流位相が不平衡になると、巻線間の磁気結合による干渉で巻線間のトルクリプルが発生する等の問題が発生する。
この問題を解決するために、各巻線電流の平均と偏差を検出し、平均値は指令値に、偏差は0に制御して、各インバータと巻線に流れる電流を等しくする方式が開示されている(例えば、特許文献1)。
また、スイッチング速度の遅いスイッチング素子では、PWMキャリアの周波数を大きくできないため、出力電圧に低次の高調波が残存する問題に対して、少ないスイッチング回数を有効利用し、特定の低次の高調波を低減するタイミングでスイッチングを行う、低次高調波消去PWMが開示されている(例えば、非特許文献1)。
特許第2733724号公報(段落[0006]、[0007]、図1、図3)
「Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters:Part I−Harmonic Elimination」(IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.IA−9,NO.3,MAY/JUNE 1973)(315〜316頁)
しかし、特許文献1開示方法は、三角波比較PWM電圧を前提にしており、インバータ間の電流振幅差、位相差をなくすには、瞬間電流差による瞬間電圧補正が必要で、非常に早い応答が必要になる。このため、キャリアを速くできない高電圧・大容量インバータでの実現は困難である。
また、非特許文献1開示方法では、基本波より早い応答の制御ではPWMの正負対称で1/4周期で左右対称な波形が崩れてしまい、制御を高応答で行うと、キャリア周波数の高い三角波PWMに比べて制御が不安定化しやすいという問題がある。
この発明は、上記のような問題を解決するためになされたものであり、複数台の大容量インバータに対し、高調波を低減し、各インバータの電圧位相、振幅アンバランスの補正を高い精度で行える多重巻線電動機駆動制御装置を提供することを目的とする。
この発明に係る多重巻線電動機駆動制御装置は、多重巻線交流電動機を駆動するためにスイッチング素子を有して、直流電源を可変電圧および可変周波数の交流電源に変換する複数の電力変換器と、電力変換器を制御する制御部とを備え、制御部は多重巻線交流電動機を所望の回転速度で駆動するための出力電圧、出力電圧位相を算出して出力する出力電圧制御部とスイッチング素子をPWM制御するPWM制御部とを備え、出力電圧制御部は、周波数指令に基づいて出力電圧を決定する出力電圧決定部と、出力電圧位相を周波数指令に基づいて積分して算出する出力電圧位相算出部と、出力電圧位相に基づいて電力変換器のd軸電流、q軸電流を算出し、このd軸電流、q軸電流に基づき、多重巻線交流電動機の各巻線を流れる電流を均等にするための電力変換器の変調率、位相補正量を算出し、これに基づき電力変換器を制御する変調率指令および位相指令を生成する変調率位相指令生成部とを備え、PWM制御部は、出力電圧制御部で算出した出力電圧と直流電源の直流電圧とに基づいて変調率を演算する変調率演算部と、スイッチング素子のPWM制御における半周期当たりのパルス数を周波数指令に基づいて決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンをパルス数別に変調率の大きさに応じて記憶するパターンテーブルと、変調率演算部からの変調率とパルス数決定部からのパルス数および出力電圧制御部にて算出した出力電圧位相に基づいてパターンテーブルからのスイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器とを備え、変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、制御の位相や頻度はパルス数、変調率、周波数指令、スイッチングパターンのいずれかに合わせて変更するものである。
この発明に係る多重巻線電動機駆動制御装置によれば、電動機の各巻線を流れる電流を均等にするための変調率指令および位相指令を生成する変調率位相指令生成部と、PWM制御における半周期当たりのパルス数を決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンをパルス数別に変調率の大きさに応じて記憶するパターンテーブルと、スイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器を備え、変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、この制御の位相や頻度はパルス数に合わせて変更するものであるため、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
この発明の実施の形態1の多重巻線電動機駆動制御装置に係る全体構成図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る構成の一部詳細図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのパルスパターンと制御キャリアの関係の説明図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのパルスパターンと制御キャリアの関係の説明図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータの低次高調波消去PWMの出力電圧例である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのスイッチングパターン位相波形図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのスイッチングパターン位相波形図である。 この発明の実施の形態2の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態2の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る全体構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る全体構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。
実施の形態1.
実施の形態1は、制御部は出力電圧制御部とPWM制御部とを備え、出力電圧制御部は、出力電圧決定部と、出力電圧位相算出部と、インバータの電流に基づき、多重巻線交流電動機の各巻線を流れる電流を均等にするための変調率、位相補正量を算出し、これに基づきインバータを制御する変調率指令および位相指令を生成する変調率位相指令生成部を備え、PWM制御部は、変調率演算部と、PWM制御における半周期当たりのパルス数を周波数指令に基づいて決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンを記憶するパターンテーブルと、変調率、パルス数、出力電圧位相に基づいてパターンテーブルからのスイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器を備え、さらに変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、この制御の位相や頻度はパルス数に合わせて変更する多重巻線電動機駆動制御装置に関するものである。
以下、本願発明の実施の形態1に係る多重巻線電動機駆動制御装置1の構成、動作について、多重巻線電動機駆動制御装置の全体構成図である図1、構成の一部詳細図である図2、変調率位相指令生成部の構成図である図3、電流均等制御器の構成図である図4、各インバータのパルスパターンと制御キャリアの関係の説明図である図5、図6、各インバータの低次高調波消去PWMの出力電圧例である図7、および各インバータのスイッチングパターン位相波形図である図8、図9に基づいて説明する。
図1は、本発明の実施の形態1の多重巻線電動機駆動制御装置1を含めたシステム全体の構成を示している。また、図2は、多重巻線電動機駆動制御装置1を構成する第1群インバータ2の詳細構成図である。なお、第2群インバータ3の詳細構成図は、第1群インバータ2と同様であるため、省略している。
図1において、多重巻線電動機駆動制御装置1を含む全体システム100は、多重巻線電動機駆動制御装置1と、外部交流電源40と、リアクトル41と、電動機5とから構成される。
多重巻線電動機駆動制御装置1は、外部交流電源40からの交流電源をリアクトル41経由して受けて、内部で直流に変換し、この直流電源を使用して、電動機5を制御する。
なお、実施の形態1では、電動機5として2つの巻線群を有する多重巻線電動機を想定している。
次に、多重巻線電動機駆動制御装置1の内部構成を図1、図2に基づいて説明する。
多重巻線電動機駆動制御装置1は、第1群インバータ2と第2群インバータ3を備えるインバータ部4と、制御部8と、電動機5の電動機電流を検出する電流センサ16とから構成される。実施の形態1では、2つの巻線群を有する多重巻線電動機である電動機5に対応して、2台の第1群インバータ2と第2群インバータ3を備える。
なお、適宜、第1群インバータ2を第1インバータ2と、第2群インバータ3を第2インバータ3と記載する。また、第1インバータ2と第2インバータ3を区別する必要がなく、総称する場合は、適宜インバータと記載する。
なお、本発明の電力変換器は、第1群インバータ2、第2群インバータ3である。
インバータ部4の第1インバータ2の内部構成を、外部交流電源40、リアクトル41、および電動機5との接続も含めて、図2に示している。
制御部8は、大きく出力電力制御部81とPWM制御部82とから構成される。
出力電力制御部81は、出力電圧位相算出部9と、出力電圧決定部10と、変調率位相指令生成部13とを備える。
PWM制御部82は、変調率演算部11と、パルス数決定部12と、パターンテーブル14と、ゲート信号発生器15−1、15−2とを備える。
なお、第1インバータ2用のゲート信号発生器15−1と第2インバータ3用のゲート信号発生器15−2とを区別する必要がなく、総称する場合は、適宜ゲート信号発生器15と記載する。
第1インバータ2では、交流入力電圧を整流回路部6−1のトランスとダイオードによりU、V、W相それぞれに絶縁された直流電圧として出力する。第1インバータ2は、この直流電力を交流電力に変換して、電動機5に供給する。また、第1インバータ2は電動機5との接続部分において、各巻線のU、V、W相の電動機電流を検出する電流センサ16−1を備えている。
第1インバータ2は中性点クランプ式の3相の3レベルインバータの2つのレグ(Aレグ7a、Bレグ7b)を直列接続した5レベルインバータ回路を三相分用意したものである。そして、各レグのスイッチング素子のスイッチング動作により、整流回路部6−1が整流した直流電圧を任意の大きさおよび周波数の交流電圧に変換して出力する。また、第1インバータ2は、整流回路部6−1の出力するU、V、W各相の直流電圧(vdc1a〜vdc1c)を検出する第1群用直流電圧センサ(17−1a〜17−1c)を備えている。
なお、図示していないが、第2インバータ3は、第1インバータ2と同様の構成であり、交流入力電圧を整流回路部6−2のトランスとダイオードによりU、V、W相それぞれに絶縁された直流電圧として出力する。さらに、第2インバータ3の各レグのスイッチング素子のスイッチング動作により、直流電圧を任意の大きさおよび周波数の交流電圧に変換して出力する。また、第2インバータ3はそれぞれ、整流回路部6−2の出力するU、V、W各相の直流電圧(vdc2a〜vdc2c)を検出する第2群用直流電圧センサ(17−2a〜17−2c)を備えている。
次に、制御部8の出力電力制御部81とPWM制御部82との主要構成を各部の機能と合わせて説明する。
出力電力制御部81は、第1および第2インバータ2、3の周波数指令値Fcを積分して標準位相指令値th*refを算出する出力電圧位相算出部9と、周波数指令値FcからV/fパターンにより相電圧の振幅Vpを演算する出力電圧決定部10とを備える。さらに、電流センサ16−1により検出した第1インバータ2と電動機巻線第1群を流れる相電流iuvw1、電流センサ16−2により検出した第2インバータ3と電動機巻線第2群を流れる相電流iuvw2を元に、2台の第1、第2インバータ2、3と電動機の2群の巻線に流れる電流差を算出し、その電流差が0になるように2台の第1、第2インバータ2、3の変調率指令値(inv1*mod、inv2*mod)および位相指令値(inv1*th、inv2*th)を生成する変調率位相指令生成部13を備える。
PWM制御部82は、出力電圧決定部10が演算した相電圧振幅指令値Vpを元に変調率mod*refを演算する変調率演算部11と、第1、第2インバータ2、3の周波数指令値Fcからパルス数Pnumを決定するパルス数決定部12とを備える、ここで、パルス数Pnumとは、各レグ7a、7b毎に出力する半周期あたりのパルス数で、2×パルス数が単相分の出力電圧となる。
また、PWM制御部82は、各インバータにパルス数別、変調率mの大きさ別に高調波を低減できるスイッチングパターン(th1a、th2a、th3a・・・・・thna、th1b、th2b、th3b・・・・・thnb)を記憶する記憶部としてのパターンテーブル14を備える。
パターンテーブル14は2台のインバータで同じパターンテーブルを使用することとしているが、各インバータにパターンテーブルを用意してもよい。
なお、(th1a、th2a、th3a・・・・・thna)はAレグ7aに対するスイッチングパターンであり、(th1b、th2b、th3b・・・・・thnb)はBレグ7bに対するスイッチングパターンである。すなわち、パターンテーブル14はレグ7a、7b毎に異なるスイッチングパターンを記憶し、2種のスイッチングパターンを組み合わせて2レグ分のスイッチングパターンとする。
更にPWM制御部82は、第1、第2インバータ2、3のそれぞれ2つのスイッチングレグ7a、7bのスイッチング素子を制御するゲート信号(gs1、gs2)を生成するゲート信号発生器15−1、15−2を備える。
次に制御部8の全体動作を図に基づいて説明する。
出力電圧位相算出部9は周波数指令値Fcを積分し、第1、第2インバータ2、3の位相指令値th*refを生成する。
また、出力電圧決定部10では、インバータ周波数と電動機の誘起電圧は一定の比例関係にあるという前提で定格の相電圧振幅Vratedと定格の電気角周波数Fratedの比Kvfより、周波数指令値Fcでの相電圧振幅Vpを求める。すなわち、Kvfとインバータの周波数指令値Fcにおける第1、第2インバータ2、3相電圧振幅指令Vpは(1)式および(2)式で求められる。
Figure 0006218961
Figure 0006218961
変調率演算部11は、出力電圧決定部10から出力される第1、第2インバータ2、3の相電圧振幅指令Vpと、第1、第2インバータ2、3の電圧センサ17−1a〜17−1c、17−2a〜17−2cで検出したU相V相W相の直流電圧(第1群:vdc1a〜vdc1c、第2群:vdc2a〜vdc2c)を用いて算出した平均電圧Vdcとから、(3)式により変調率mod*refを演算する。そして、変調率演算部11は、平均直流電圧Vdcと変調率指令値mod*refを変調率位相指令生成部13に出力する。
Figure 0006218961
パルス数決定部12は、2台の第1、第2インバータ2、3の周波数指令値Fcに応じてPWM制御における半周期あたりのパルス数Pnumを決定する。容量インバータのようなスイッチング速度の遅い素子を持つインバータでは、周波数指令値Fcが高くなると半周期あたりのパルス数Pnumを段階的に少なくして、スイッチング回数を減らす必要がある。本実施の形態1では、3パルス/5パルス/7パルス/9パルス/11パルスの5種類のパルス数Pnumのスイッチングパターンを記憶したパターンテーブル14を持ち、周波数指令値Fcが上がるにつれて、パルス数Pnumを11パルス→9パルス→7パルス→5パルスと→3パルスとパルス数を切り替える。
なお、本発明の周波数指令は周波数指令値Fcである。
2台の第1、第2インバータ2、3の整流回路部6−1、6−2の定数の違いや負荷変動などの外乱により、第1インバータ2の三相直流電圧(vdc1a〜vdc1c)と第2インバータ3の三相直流電圧(vdc2a〜vdc2c)に電圧差が生じると、同じ変調率指令値mod*refと位相指令値th*refを与えても、2台の第1、第2インバータ2、3から出てくる電圧の振幅に差異が生じる。正弦波電圧で考えると、2台の第1、第2インバータ2、3のそれぞれの直流電圧に対する直流電圧定格値の比をmod*refに乗じた変調率をそれぞれの変調率として与えればよい。しかしPWMの場合、同じ振幅を出力しても、変調率によるPWM波形の違いやデッドタイムによるパルスずれ、特に0電圧付近での電流方向の違いによるパルスの正負方向の違いによるずれで、基本波の位相にずれが生じる。
スイッチング速度の遅い素子を持つ大容量インバータでは、デッドタイムが長いためこうしたずれが大きくなり、2台の第1、第2インバータ2、3の差電流が大きくなる。そのため、変調率位相指令生成部13では、電流均等制御器18により、2台のインバータ電流の差をなくすよう、2台の第1、第2インバータ2、3それぞれにおける変調率補正量と位相補正量を算出し、これを基に2台の第1、第2インバータ2、3の変調率指令値、位相指令値を生成する。
なお、本発明の変調率指令は変調率指令値であり、位相指令は位相指令値である。
変調率位相指令生成部13は、電流センサ16−1で検出した第1インバータ2の三相電流iuvw1、および電流センサ16−2で検出した第2インバータ3の三相電流iuvw2と、変調率演算部11からの変調率指令値mod*refおよび平均直流電圧Vdcを用いて第1、第2インバータ2、3の巻線を流れる電流差をなくす変調率指令値と位相指令値を、第1、第2インバータ2、3用に生成する。
さらに、変調率位相指令生成部13は、第1インバータ2用の変調率指令値inv1*mod、位相指令値inv1*thと、第2インバータ3用の変調率指令値inv2*mod、位相指令値inv2*thを生成する。そして、変調率位相指令生成部13は、変調率指令値inv1*mod1、inv2*modをパターンテーブル14に出力し、位相指令値inv1*th、inv2*thを第1、第2インバータ2、3のゲート信号発生器15−1、15−2に出力する。
また、変調率位相指令生成部13は、第1、第2インバータ2、3の電流を均等にする制御を1つ以上の位相で1周期に1回以上行い、その制御の位相や頻度はパルス数、変調率、周波数指令値、スイッチングパターンのいずれかに合わせて変更する。
図3は変調率位相指令生成部13の構成図である。変調率位相指令生成部13では、電流均等制御器18により、2台のインバータと巻線を流れる三相電流iuvw1、iuvw2から群間の電流差を算出し、これを0になるようにする変調率補正量Δmod12、位相補正量Δth12を出力する。
図4は電流均等制御器18の構成図である。図4において、電流均等制御器18は、第1インバータ2および第2インバータ3の電流を位相指令値th*refにより3相/2相変換して制御軸γ−δ軸上の電流を得る3相/2相変換器21a、21bを備える。さらに、電流均等制御器18は、第1、第2インバータ2、3の制御軸におけるγ軸(d軸)電流同士の差(第1群−第2群:iγ1−iγ2)から変調率補正するための補正量を出力するC12d制御器22aと、第1、第2インバータ2、3の制御軸におけるδ軸(d軸)電流同士の差(第1群−第2群:iδ1−iδ2)から位相補正するための補正量を出力するC12q制御器22bとを備える。また、電流均等制御器18は、C12d制御器22aで得た補正量を、直流電圧Vdcを用いて変調率補正量に変換する補正量/変調率変換器28と、C12q制御器22bで得た補正量を位相補正量に変換する補正量/位相変換器29とを備える。
一般に回転子の磁束ベクトルと同期して、回転角周波数ωrで回転する回転座標(d−q座標)における二重巻線IPMの電圧方程式は(4)式で表される。
(4)式中vds1、vqs1、ids1、iqs1は、第1群巻線のdq軸電圧とdq軸電流である。vds2、vqs2、ids2、ids2は、第2群巻線のdq軸電圧とdq軸電流である。Ld、Lqは各巻線のd軸q軸のインダクタンス、Raは巻線抵抗、Md、Mqは巻線間の相互インダクタンス、Pは微分演算子である。
Figure 0006218961
(4)式から1群巻線と2群巻線の電圧差を求めると、(5)式のようになる。
Figure 0006218961
上記のように、各群間の電圧差と電流差の関係の式にすると、抵抗Ra、漏れインダクタンスL(Ld−Md、Lq−Mq)、および回転角周波数ωrのみの式となり、1群巻線の電流が2群巻線の電圧に、2群巻線の電流が1群巻線の電圧に影響を与える干渉項((4)式の行列における、PMの項とωrMの項)が含まれない。このため、巻線間の群間干渉を考慮せずに差電流をなくす電圧差(補正電圧量)を求めることができる。
上記の電圧方程式から制御を簡易にするために速度起電力を無視して、1次遅れのみ(d軸は(Ld−Md)とRaの項、q軸は(Lq−Mq)とRaの項)を制御対象とする。
具体的には、電流差ids1−ids2とiqs1−iqs2から指令値0のPI制御により、所望の制御応答ωcで2群の電圧差(vds1−vds2、vqs1−vqs2)を算出し、これを元に変調率補正量、位相補正量を算出する。
本実施の形態1では、理想上の制御座標(γ−δ座標)が電動機5の回転座標(d−q座標)と同じであるとして、iγ1−iγ2、iδ1−iδ2、指令値0として、C12d制御器22a、C12q制御器22bにより電圧差Vγ1−Vγ2、Vδ1−Vδ2を求める。C12d制御器22aおよびC12q制御器22bのPI制御の伝達関数は(6)式、(7)式で表される。
Figure 0006218961
ここで、PゲインKp=ωc×(Ld−Md)、IゲインKi=ωc×Ra
Figure 0006218961
ここで、PゲインKp=ωc×(Lq−Mq)、IゲインKi=ωc×Ra
γ軸電流の群間差電流は、C12d制御器22aによって算出された電圧差Vγ1−Vγ2を直流電圧平均値Vdcで除して、1/2を乗じた値を2台の第1、第2インバータ2、3への変調率補正量Δmod12とする。
また、δ軸電流の群間差電流は、C12q制御器22bによって算出された電圧差Vδ1−Vδ2をδ軸の電圧補正量ΔVδとすると、γδ軸での電圧絶対値VγδとΔVδのなす角度θは(8)式で表される。
Figure 0006218961
この時、ΔVδはVγδに比べて十分小さく補正量ΔVδによるVγδへの影響は無視できるとする。(8)式により求めるθが十分に小さい場合、θはΔVδ/Vγδと等価であることから、補正量ΔVδからの位相補正量Δth12への変換式は(9)式で表される。
Figure 0006218961
ΔVδは第1インバータ2の電圧に対する第2インバータ3の電圧補正量と等価のため、位相補正量は第2インバータ3に対してのみ与えられる。
図3に示すように、電流均等制御器18で得た変調率補正量Δmod12と位相補正量Δth12により、第1インバータ2の変調率指令値inv1*mod、第2インバータ3の変調率指令値inv2*mod、さらに第1インバータ2の位相指令値inv1*th、第2インバータ3の位相指令値inv2*thは、(10)式で求められる。
Figure 0006218961
以上説明した方法により2つの第1、第2インバータ2、3用の変調率指令値、位相指令値を生成し、変調率指令値をパターンテーブル14に、位相指令値をゲート信号発生器15に出力する。
本実施の形態1では、大容量インバータのようにスイッチング速度の遅い素子を持つインバータや、何らかの理由でキャリアを上げられず少ないスイッチング回数で高速運転が必要なインバータでも少ないスイッチング回数を最大限有効に利用し、低次高調波を低減したPWMを出力できるパターンテーブル14を備えている。
このスイッチングパターン導出方法の詳細は後述する。スイッチング速度の遅い素子を有する実施例では、均等電流制御の頻度を高くするまたは制御応答を速くすると、頻繁な変調率や位相の補正によりパルスの変化時間が早くなり、スイッチングの追従ができなくなる恐れがある。これは低次高調波消去PWM、一般的な三角波比較PWMのどちらの場合でも起こりうるが、低次高調波消去PWMの場合は、更に、電圧波形の制御による変化が速すぎる場合には、左右対称且つ正負対称な波形が崩れてしまい、それにより制御が不安定になる、すなわち電流変動が大きくなることがある。そのため、本実施の形態1では、低次高調波消去PWMのパルス数や変調率によって上記の制御の頻度を変えることで安定した精度の高い補正を行えるようにした。
図5、図6はパルス数Pnum=3の場合におけるパルスパターンと制御キャリアの関係を表したものである。
パルス数Pnum=3の場合、スイッチングレグ7a、7bのスイッチング回数は1周期で12回ある。例えば、図5のように制御周期(キャリア)を指令値周波数の6倍とし、3レベルのスイッチング回数に合わせて、指令値の0位相(0、π、2π)およびピーク位相(π/2と3/2π)にキャリアの山谷が来るようにして、キャリアの山もしくは谷で1周期に12回制御をする。スイッチング回数を考慮すると制御キャリアはこのようになるが、高変調率になるとパルス幅が広くなるため、変調率が高い場合(V/fの場合は運転周波数が高いことと同義)などは、図6のように、制御周期(キャリア)を指令値周波数の5.5倍と減らして、キャリアの山谷(指令値1周期に11回)で定期的に制御を行う。このようにして、パルス数Pnumによって、パルス波形が安定すると思われる位相で第1、第2インバータ2、3の電流を検出し、電流差がなくなるように補正量を算出して、第1、第2インバータ2、3の変調率指令値、位相指令値を出力する。このため、2台の第1、第2インバータ2、3から出力されるPWM波形の振幅、位相を少ない回数で精度よく合わすことができ、結果として電流差の増加による制御不安定化や損失の増大が防止できる。
パターンテーブル14では、パルス数Pnum別に、変調率mの大きさ毎に出力電圧の低次高調波を低減できるスイッチングパターンを記憶し、パルス数決定部12からのパルス数Pnumと、変調率位相指令生成部13からの第1インバータ2、および第2インバータ3の変調率指令値inv1*mod、inv2*modとに基づいて、それぞれのインバータ用のスイッチングパターンを読み出す。
次に第1インバータ2および第2インバータ3のスイッチングパターンと出力電圧について図7に基づいて説明する。
図7はPnum=3パルスの場合における、5レベルインバータの単相分の出力電圧と、直列接続された2つのスイッチングレグ7a、7bの出力電圧との関係の一例を示したものである。
第1、第2インバータ2、3の各相の2つのスイッチングレグ7a、7bは、それぞれスイッチングパターン(th1a、th2a、th3aとth1b、th2b、th3b)に基づき、半周期に3パルスの3レベル電圧を出力し、それを合成したものが第1、第2インバータ2、3の5レベルインバータの単相分の出力電圧となる。
低次高調波消去PWM方式では、パルス数が3の場合、特定の低次の高調波を低減するようにAレグ7aのスイッチングパターンth1a、th2a、th3aと、Bレグ7bのスイッチングパターンth1b、th2b、th3bを(11)式で求める。なお、(11)式では、5、7、11、13次の電圧高調波を低減し、2レグ分の3レベルインバータに基本波を等しく分担している。
Figure 0006218961
上記(11)式により求めたスイッチングパターンを示す位相の波形図を図8、図9に示す。図8はAレグ7aのスイッチング位相波形、図9はBレグ7bのスイッチング位相波形である。
3パルスの場合、2つのスイッチングレグのスイッチング位相は1/4周期でそれぞれ3つ、合計6つで、これが低次高調波低減PWMのスイッチング位相を求める方程式の自由度となる。本実施の形態1では、各スイッチングレグ7a、7bで出力する基本波振幅の配分を均等としたため高調波に使用できる自由度が4で5、7、11、13次の電圧高調波を消去する方法とした。しかし、他の次数を消去する、またはパルス幅制限を加えるほか、基本波振幅の配分を均等としないなどの条件で位相を求めることもありうる。
第1インバータ2用ゲート信号発生器15−1、および第2インバータ3用ゲート信号発生器15−2は、それぞれの第1、第2インバータ2、3の変調率指令値inv1*mod、inv2*modに基づいてパターンテーブルから読み出す。そして、ゲート信号発生器15は、各スイッチングレグ7a、7b用のスイッチングパターンと、位相指令値inv1*th、inv2*thに基づいて、各スイッチング素子をゲートオン/オフするゲート信号を発生してスイッチングを行い、図7で説明した5レベルの出力電圧を各相に出力する。
本実施の形態1では第1、第2インバータ2、3の電流を均等にする制御をパルス数に基づいて制御キャリアを設けてその山谷で行うようにしたが、パルス出力が安定した位相で行えればよい。具体的には、制御を行う位相をパルス数ではなく変調率、出力周波数やパルスパターンによって変えてもいいし、制御キャリアを持たずに、パルスパターンのパルス位相を用いてもよい。なお、出力周波数は、周波数指令値Fcの単位を変換したものであり、定数を乗して算出したものであるから、出力周波数の代わりに周波数指令値を用いてもよい。
また、変調率、位相補正量を算出する応答を出力周波数よりも低く設定してもよい。これにより、母線電圧の変動(本実施の形態1の場合は、各相の直流電圧が2fで振動する。fは出力周波数)や、デッドタイムによるトルクリプル(6fで振動する。fは出力周波数)の変動の影響による誤補正が起こりにくく、安定した補正が行える。
以上のように、2台の第1、第2インバータ2、3の電流を均等にするように電圧パターンレベルでそれぞれの第1、第2インバータ2、3の出力電圧(デッドタイム付加後)の基本波が一致するレベルまで変調率指令値、位相指令値を生成する制御を、パルスが安定するタイミングで効果的に行う。これにより、少ない制御回数(制御負荷)でも、また少ないスイッチング回数でも高調波を低減でき、かつ、第1、第2インバータ2、3間に電圧差が発生しても電流差の発生を防止し(出力電圧基本波での位相差は高調波電圧差の影響がほとんどない0.01deg未満)、電流アンバランスによって引き起こされる巻線間の磁気結合による相互干渉による電動機制御の不安定化を防止できる。
特に、極数が少なく巻線間の結合が強い(漏れ磁束が少ない)電動機では、巻線間のわずかな電圧振幅差(定格の数%)や定格周波数運転でのデッドタイム相当の位相差であっても、巻線間の電流差が大きくなり、電流変動が発生しやすい、という問題がある。本実施の形態1の発明を適用することで、この電圧振幅差を1/10〜1/100以下に抑えることができ、巻線間の電流差を基本波、高調波共に減らすことができる。
また、直流電圧変動について説明しなかったが、非同期PWMのような指令値周波数とキャリアが整数倍関係にない三角波比較PWMの場合は、スイッチング回数が少ない時にこれらの周波数の不整合により加速中も直流電圧が不定な低周波で振動し、その影響で電流差が大きくなりやすい問題がある。本実施の形態1の発明を適用することで、低次高調波消去PWMの場合は、正負対象で指令値の周波数に同期した波形となるため、このような問題は起こらない。
低次高調波消去PWMを用いた場合、あらかじめ用意した高調波を低減する基本波のパルスパターンを元にPWMを出力するため、上記のような制御を従来のような基本波より早い応答する、あるいは制御の頻度を高くすると、PWMの正負対称で1/4周期で左右対称な波形が崩れてしまい、制御が不安定になることがある。しかし、本実施の形態で説明したようにパルス数に合わせて(パルス数だけでなく、変調率や出力周波数、パルスパターンに合わせてもよい)制御キャリアを設定し、その山谷で制御するように、パルスが安定する位相で制御を行うことにより、複数巻線群の電流差をなくす制御のPWM制御に対する影響を少なくし、かつ電動機駆動制御を安定して精度よく行うことができる。
更に、V/f制御のように回転数や回路定数等で一意に電動機印加電圧が決まるフィードフォワード制御でも適用できる。このため、制御上電圧余裕を必要とせず、インバータの出力電圧範囲を最大限利用でき、高圧電動機の制御におけるトルク変動や電圧変動による電流不均衡がもたらすトルクリプル等を低減した安定制御が可能となる。
以上説明したように、実施の形態1の多重巻線電動機駆動制御装置は、制御部は出力電圧決定部と、出力電圧位相算出部と、インバータの電流に基づき、多重巻線交流電動機の各巻線を流れる電流を均等にするための変調率、位相補正量を算出し、これに基づきインバータを制御する変調率指令および位相指令を生成する変調率位相指令生成部と、変調率演算部と、PWM制御における半周期当たりのパルス数を周波数指令に基づいて決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンを記憶するパターンテーブルと、変調率、パルス数、出力電圧位相に基づいてパターンテーブルからのスイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器を備え、さらに変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、この制御の位相や頻度はパルス数に合わせて変更するものである。したがって、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
また、実施の形態1の多重巻線電動機駆動制御装置は、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御できるため、制御装置の小型化、長寿命化を図ることができる。
実施の形態2.
実施の形態2の多重巻線電動機駆動制御装置は、電流基準値を設定し、この電流基準値に各インバータの電流を合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。
以下、実施の形態2の多重巻線電動機駆動制御装置の構成および動作について、変調率位相指令生成部の構成図である図10、および電流均等制御器の構成図である図11に基づいて、実施の形態1との差異を中心に説明する。図10、11において、図3、4と同一あるいは相当部分は、同一の符号を付している。
なお、実施の形態2の説明で、実施の形態1で説明した図を適宜参照する。
実施の形態2における多重巻線電動機駆動制御装置の構成は、実施の形態1の図1、図2と基本的に同じであり、変調率位相指令生成部内の構成が異なる。
実施の形態2の説明では、実施の形態1と区別するために、多重巻線電動機駆動制御装置201、変調率位相指令生成部213、電流均等制御器218とする。
図10は本実施の形態2における変調率位相指令生成部213の構成を示したものである。図10において、実施の形態1の図3の構成と異なるのは、変調率位相指令生成部213の入力で、かつ電流均等制御器218への入力として電流基準値id*refとiq*refが追加されている点である。
実施の形態2では、実施の形態1の2台の第1、第2インバータ2、3の電流差を制御軸(γ―δ軸)上で0になるようにする制御の代わりに、γ―δ軸でそれぞれのインバータのγ軸電流、δ軸電流がそれぞれ同じ電流基準値id*ref、iq*refになるようにすることにより、両者の電流を均等にすることができる。
図11は、変調率位相指令生成部213内の電流均等制御器218の構成を示した図である。図11において、以下に述べる構成以外は実施の形態1と同様である。
電流均等制御器218は、第1インバータ2のγ電流iγ1と電流基準値id*refとの差を入力して第1インバータ2のγ軸電圧補正量ΔVγ1を算出するC1d制御器24aとδ電流iδ1と電流基準値iq*refとの差を入力して第1インバータ2のδ軸電圧補正量ΔVδ1を求めるC1q制御器24bを備える。同様に、電流均等制御器218は、第2インバータ3のγ軸電圧補正量ΔVγ2とδ軸電圧補正量ΔVδ2を求めるC2d制御器25aとC2q制御器25bを備える。さらに、C1d制御器24a、C1q制御器24bで算出したγ軸電圧補正量ΔVγ1およびΔVγ2と平均直流電圧Vdcを元に変調率補正量Δmod1およびΔmod2を算出する補正量/変調率変換器28を備える。さらに、Δ軸電圧補正量ΔVδ1、ΔVδ2を元に、実施の形態1と同じ方法で位相補正量Δth1、Δth2を算出する補正量/位相変換器29を備える。
電流基準値id*ref、iq*refは、2つの第1、第2インバータ2、3の電流値の差の1/2をそれぞれのインバータ電流に加減することにより得られる現在の各γ軸電流、δ軸電流の平均にしてもよい。また、例えば第1、第2インバータ2、3でd軸電流基準値id*refを力率制御のための指令値に設定し、q軸電流基準値iq*refをトルク指令等から算出した指令値にしてもよい。
仮にid*refとiq*refを2台の第1、第2インバータ2、3のγ軸δ軸のそれぞれの電流平均とすると、電圧補正量ΔVγ1、ΔVγ2、ΔVδ1、ΔVδ2は(12)式で表され、(13)式から算出できる。
Figure 0006218961
Figure 0006218961
実施の形態1と同様に、(13)式において1次遅れのみ(RL回路部分)を制御対象とし、第1インバータ2のγδ軸電流iγ1、iδ1と指令値id*ref、iq*refのPI制御(C1d制御器24a、C1q制御器24b)により、所望の制御応答ωcで第1インバータ2の電圧補正量ΔVγ1とΔVδ1を算出できる。また、第2インバータ3のγδ軸電流iγ2、iδ2と指令値id*ref、iq*refのPI制御(C2d制御器25a、C2q制御器25b)により、所望の制御応答ωcで第2インバータ3の電圧補正量ΔVγ2とΔVδ2を得て、これを元に変調率補正量Δmod1、Δmod2、位相補正量Δth1、Δth2を算出できる。
上記の場合、PI制御器(C1d制御器24a、C1q制御器24b、C2d制御器25a、C2q制御器25b)の伝達関数は(14)式、(15)式で表される。
Figure 0006218961
ここで、PゲインKp=ωc×Ld、IゲインKi=ωc×Ra
Figure 0006218961
ここで、PゲインKp=ωc×Lq、IゲインKi=ωc×Ra
先に説明したように、d軸電流基準値id*ref、q軸電流基準値iq*refをベクトル制御のように所望の値にし、V/fパターン電圧からの補正量を求めてもよい。
しかし、それぞれの基準値からの偏差が大きい場合、2台の第1、第2インバータ2、3の平均値になるようにそれぞれの電圧補正量を求める場合に比べ、安定性が悪くなることがある。その場合は、それぞれのd軸電流基準値id*refとq軸電流基準値iq*refを制御開始時は2台の第1、第2インバータ2、3のγ電流、δ電流の平均とする。そして、それぞれの基準値を所望の指令値まで1次遅れもしくは2次遅れで変化させることにより、2台の第1、第2インバータ2、3の差電流を小さくしつつ、所望の指令値になるように2台のインバータの電圧を制御することが可能である。特に、その場合、基準値を所望の値まで変化させる応答を制御器C1d制御器24a、C1q制御器24b、C2d制御器25a、およびC2q制御器25bの応答より遅くすることが望ましい。
図10にあるように、2台の第1、第2インバータ2、3の変調率指令値inv1*mod、inv2*mod、および位相指令値inv1*th、inv2*thは、変調率演算部11から入力された変調率指令値mod*refと出力電圧位相算出部9からの位相指令値th*ref、および上記のようにして求めた変調率補正量Δmod1、Δmod2、位相補正量Δth1、Δth2から、(16)式で求められる。
Figure 0006218961
以上のようにして2台の第1、第2インバータ2、3の電流を均等にするように電圧パターンレベルでそれぞれの第1、第2インバータ2、3の出力電圧(デッドタイム付加後)の基本波の振幅と位相が一致するように変調率指令値、位相指令値を生成する制御を、パルスが安定するタイミングで効果的に行う。これにより、少ない制御回数(制御負荷)でも、また少ないスイッチング回数でも高調波を低減できる。かつ、インバータ間に電圧差が発生しても電流差の発生を防止し、電流アンバランスによって引き起こされる巻線間の磁気結合による相互干渉による電動機制御の不安定化を防止できる。
特に極数が少なく巻線間の結合が強い電動機でも、電流アンバランスによる損失を基本波、高調波共に抑制できる。加えて、各巻線群の電流、周波数を駆動に最適な制御値に保って制御することが可能である。
また、直流電圧変動について説明しなかったが、非同期PWMのような指令値周波数とキャリアが整数倍関係にない三角波比較PWMの場合は、スイッチング回数が少ない時にこれらの周波数の不整合により加速中も直流電圧が不定な低周波で振動し、その影響で電流差が大きくなりやすい問題がある。本実施の形態2の発明を適用することで、低次高調波消去PWMの場合は、正負対象で指令値の周波数に同期した波形となるため、このような問題は起こらない。
以上説明したように、実施の形態2の多重巻線電動機駆動制御装置は、電流基準値を設定し、この電流基準値に各インバータの電流を合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。したがって、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
実施の形態3.
実施の形態3の多重巻線電動機駆動制御装置は、1台のインバータを基準電力変換器とし、他のインバータの電流をこの基準電力変換器の電流に合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。
以下、実施の形態3の多重巻線電動機駆動制御装置の構成および動作について、多重巻線電動機駆動制御装置の全体構成図である図12、図13、変調率位相指令生成部の構成図である図14、図17、および電流均等制御器の構成図である図15、図16、図18に基づいて、実施の形態1、2との差異を中心に説明する。図12〜図18において、実施の形態1、2の各図と同一あるいは相当部分は、同一の符号を付している。
図12、13は、本発明の実施の形態3の多重巻線電動機駆動制御装置301を含めたシステム全体の構成を示している。
図12、13において、多重巻線電動機駆動制御装置301を含む全体システム300は、多重巻線電動機駆動制御装置301と、外部交流電源40と、リアクトル41と、電動機305とから構成される。
多重巻線電動機駆動制御装置301は、外部交流電源40からの交流電源をリアクトル41経由して受けて、内部で直流に変換し、この直流電源を使用して、電動機305を制御する。電動機305は、3つの三相巻線群を有した界磁巻線式の突極型同期電動機を想定している。
実施の形態3における多重巻線電動機駆動制御装置の構成は、実施の形態1の図1、図2と基本構成は同じであるが、電動機305は3つの三相巻線群を有し、これに関連する制御部308の構成が一部異なる。
実施の形態3の説明では、実施の形態1、2と区別するために、多重巻線電動機駆動制御装置301、制御部308、変調率位相指令生成部313、パターンテーブル314、電流均等制御器318とする。
次に、実施の形態3における多重巻線電動機駆動制御装置301の構成を、実施の形態1における多重巻線電動機駆動制御装置1との具体的差異を説明する。
図12、13において、インバータ部304には3台目(第3群)のインバータ20が追加されている。第3群インバータ20は、第3インバータ20と適宜記載する。
なお、本発明の電力変換器は、第1群インバータ2、第2群インバータ3、第3群インバータ20である。
変調率演算部311は、実施の形態1、2の構成を示す図1、2では2台のインバータの三相の直流電圧(vdc1a〜vdc1c、vdc2a〜vdc2c)を入力していたのに対し、新たに第3インバータ20の三相の直流電圧(vdc3a〜vdc3c)を追加している。
第3インバータ20と電動機305の3つ目の巻線群を流れる三相電流を検出する電流センサ16−3、および変調率位相指令生成部313では、新たに第3インバータ20の三相電流iuvw3を入力に加え、出力に第3のインバータ20用の変調率指令値inv3*modと位相指令値inv3*thを追加している。そのため変調率位相指令生成部313内の電流均等制御器318内の制御構成も実施の形態1、2と異なっており、これについては後述する。
パターンテーブル314も、変調率位相指令生成部313と同様に第3インバータ20用の変調率指令値inv3*modを入力に追加し、これを元に第3インバータ20用のパルスパターン(inv3*th1a、inv3*th2a・・・inv3*thnb)を取り出して、第3インバータ20用のゲート信号発生器15−3に出力している。
第3インバータ20用のゲート信号発生器15−3は、パターンテーブル314からのスイッチングパターンとインバータ位相指令値inv3*thにより第3インバータ20のスイッチング素子を制御するゲート信号(gs3)を生成する。
また、界磁巻線に流れる電流を検出する電流センサ31、3台のインバータの三相電流iuvw1、iuvw2、iuvw3を群毎に制御座標(γ−δ軸)に変換し、各巻線群のγ軸電流合計値が所望の力率を実現するγ軸電流指令値になるように界磁電流指令値を出力する力率制御部32、電流センサ31により検出した界磁電流が力率制御部32からの界磁電流指令値になるように界磁巻線印加電圧を制御する界磁電流制御部33が追加されている。
なお、この力率制御における三相電流を制御座標軸(γ―δ軸)に変換する3相/2相変換器は、電流均等制御器318内にある3相/2相変換器と同じである。
図14は本実施の形態3における変調率位相指令生成部313の構成図である。この変調率位相指令生成部313では、これまでの実施の形態1、2と異なり3群のインバータの電流iuvw1、iuvw2、iuvw3の電流差をなくすようにそれぞれのインバータ用の変調率指令値(inv1*mod、inv2*mod、inv3*mod)と位相指令値(inv1*th、inv2*th、inv3*th)を生成する。
このため、電流均等制御器318内には、これまでの入力に、第3インバータ20の相電流iuvw3が追加されている。
図15はこの変調率位相指令生成部313内の電流均等制御器318Aの構成図である。この電流均等制御器318Aでは、第1インバータ2を基準電力変換器とし、この基準電力変換器の電流とそれ以外の電力変換器(第2、第3インバータ3、20)の電流との差が0になるよう制御器によって変調率指令値(mod*ref)と位相指令値(th*ref)に対する補正量(第1群用:Δmod1、第2群用:Δmod2とΔth2、第3群用:Δmod3とΔth3)を出力する。
なお、実施の形態3における電流均等制御器を区別するため、図15の電流均等制御器を電流均等制御器318A、図16の電流均等制御器を電流均等制御器318B、図18の電流均等制御器を電流均等制御器318Cとしている。
まず3相/2相変換器21a〜21cにより各インバータの三相電流を制御軸(γ−δ軸)上の電流に変換する。座標変換後の第1群、第2群、第3群のγ電流をそれぞれiγ1、iγ2、iγ3、同様にして第1群〜第3群のδ電流はiδ1、iδ2、iδ3とする。まず、1群と2群との差のうち、γ軸電流差(iγ1−iγ2)より第1群、第2群のγ軸電圧補正量(Vγ1−Vγ2)を求める制御器をC12d制御器22aとし、δ軸電流差(iδ1−iδ2)より第1群、第2群のδ軸電圧補正量(Vδ1−Vδ2)を求める制御器をC12q制御器22bとする。同様にして、第1群と第3群のγ軸電流差(iγ1−iγ3)によりγ軸電圧補正量(Vγ1−Vγ3)を求める制御器をC13d制御器23aとし、δ軸電流差δ軸電流差(iδ1−iδ3)によりδ軸電圧補正量(Vδ1−Vδ3)を求める制御器をC13q制御器23bとする。
実施の形態1では、C12d制御器22a、C12q制御器22bは(4)式に基づき得た2群の電圧差と電流差の(5)式から一次遅れ(d軸は(Ld−Md)とRaの項、q軸は(Lq−Mq)とRaの項)を用いたPI制御とした。本実施の形態3における電動機305は界磁巻線式の突極型同期機であるが、電圧方程式において、ダンパ巻線、界磁巻線の項は各巻線群で同一であるため、各群の電圧差と電流差の関係式は(5)式に準ずる。本実施の形態3では電動機305の巻線群の数は3である。このうち、例えば第1群と第2群の電圧差と電流差の関係式は、実施の形態1における2つの巻線群を持つIPM(Interior Permanent Magnet Synchronous Motor)の各々の群同士の電圧差と電流差の関係式である(5)式と同じである。そのため、C12d制御器22a、C12q制御器22bは実施の形態1と同じであり、C13d制御器23a、C13q制御器23bも入力と出力が第1群と第3群の電流差と電圧差(電圧補正量)に変わるだけで、同じ制御である。
上記のように、基準電力変換器となる第1インバータ2と第2インバータ3との電流差(iγ1−iγ2とiδ1−iδ2)からC12d制御器22a、C12q制御器22bによりγ軸、δ軸での電圧補正量(Vγ1−Vγ2とVδ1―Vδ2)を求める。第1インバータと第2インバータとの電流差(iγ1−iγ3とiδ1−iδ3)を用いてC13d制御器23a、C13q制御器23bによりγ軸、δ軸での電圧補正量(Vγ1−Vγ3とVδ1―Vδ3)を求める。
γ軸電圧補正量を変調率補正量に変換する補正量/変調率変換器28とδ軸電圧補正量を位相補正量に変換する補正量/位相変換器29により、第1群と第2群、第3群のそれぞれの変調率補正量Δmod1、Δmod2、Δmod3と位相補正量Δth2、Δth3を得る。
本実施の形態3では、上記のC12d制御器22a、C12q制御器22b、C13d制御器23a、C13q制御器23bによるPI制御の構成だけではなく、これとは別のD12d制御器25a、D12q制御器26b、D13d制御器27a、D13q制御器27bとを用いる場合についても、図16に基づいて説明する。
なお、C12d制御器、C12q制御器を総称する場合は、C12制御器と記載する。C13制御器、D12制御器、D13制御器も同様である。
図16の電流均等制御器318Bは、図15の電流均等制御器318Aに対して、C12d制御器22a、C12q制御器22b、C13d制御器23a、C13q制御器23bを以下に説明するD12d制御器25a、D12q制御器26b、D13d制御器27a、D13q制御器27bに変更している。さらに周波数指令値Fcを電気角周波数ωrに変換するために、周波数指令値Fcに2πを乗算する乗算器51を追加している。
C12制御器、C13制御器では(5)式の抵抗Raと漏れインダクタンスLの一次遅れの項を用いて群間電流差からフィードバック制御で電圧補正量を得た。しかし、例えば、早い応答が必要な場合などは、(5)式そのものを使って、電流差(ids1−ids2、iqs1−iqs2)から電圧補正量(Vds1−Vds2およびVqs1−Vqs2)を得る方法がある。しかし、その場合安定した補正量を得ることは難しい。
そこで、(5)式の速度起電力の項に重みづけKd、Kqを加え、Kd、Kqを電流差(ids1−ids2)が0になるようにフィードバックで変化させることにより、電流差0となる電圧補正量(Vds1−Vds2、Vqs1−vqs2)を求める(17)式を作成する。
Figure 0006218961
このうち、微分項を0とすると、D12d制御器25a、D12q制御器26bにおける電圧差(電圧補正量)は(18)式により求められる。(18)式中、KpはPI制御におけるPゲイン、KiはIゲイン、sは微分演算子である。
Figure 0006218961
上記の(17)式、(18)式において、ωrは電動機回転子の電気角周波数であるが、本実施の形態3の構成は電動機の磁極位置センサを持たない構成であり、正確な電動機の機械周波数を得ることはできない。インバータの周波数を電動機の電気角周波数ωr(rad/s)として用いる。そのため、図16に示すように周波数指令値Fc(単位:Hz)をωr(単位:rad/s)に変換したものがD12d制御器25a、D12q制御器26b、D13d制御器27a、D13q制御器27bに入力される。
同様にしてD13d制御器27a、D13q制御器27bでも電圧補正量Vγ1−Vγ3およびVδ1−Vδ3を得ることができる。
上記のようにして、C12制御器、C13制御器あるいはD12制御器、D13制御器により電圧補正量を得てこれを補正量/変調率変換器28により第1〜第3インバータのそれぞれの変調率補正量Δmod1、Δmod2、Δmod3を得て、補正量/位相変換器29により位相補正量Δth2、Δth3を得る。そして、図14に示すようにそれぞれの補正量から各インバータの変調率指令値、位相指令値を生成する。
本実施の形態3の電流均等制御器318A、Bでは、基準電力変換器を1台設定し、他のインバータとの電流差を用いてC12制御器、C13制御器もしくはD12制御器、D13制御器で電流差をなくす変調率補正量、位相補正量を各インバータ用に生成する構成とした。
しかし、図18に示すように、基準電力変換器の均等電流制御を実施の形態2と同様に電流基準値を設定して、この電流基準値となるようにC1d制御器24a、C1q制御器24bを用いて行うようにする。それ以外のインバータについては、本実施の形態3と同様の方法で基準電力変換器との電流差を用いて変調率補正量、位相補正量を各インバータ用に生成するようにしてもよい。
この場合、電流均等制御器318Cの出力は図14、図15の電流均等制御器の出力に対し、第1インバータ用位相補正量Δth1が追加され、変調率位相指令生成部313Cの構成は図17に示すように、図14における入力のほかに、電流基準値id*ref、iq*refが追加される構成となる。
上記のようにすることで、電流基準値と各インバータの電流値との差が大きい場合でも、各インバータの電流を均等にし、かつその電流を所望の値になるよう制御が安定して行える。
なお、実施の形態3における変調率位相指令生成部を区別するため、図14の変調率位相指令生成部313に対して、図17の変調率位相指令生成部を変調率位相指令生成部313Cとしている。
また、本実施の形態3では直流電圧変動について説明しなかったが、非同期PWMのような指令値周波数とキャリアが整数倍関係にない三角波比較PWMの場合は、スイッチング回数が少ない時にこれらの周波数の不整合により加速中も直流電圧が不定な低周波で振動し、その影響で電流差が大きくなりやすい問題がある。本実施の形態3の発明を適用することで、低次高調波消去PWMの場合は、正負対象で指令値の周波数に同期した波形となるため、このような問題は起こらない。
また、本実施の形態3における電動機は、界磁巻線式突極型同期機に限らず、永久磁石式電動機や誘導機であっても同様の効果を奏する。
以上説明したように、実施の形態3の多重巻線電動機駆動制御装置は、1台のインバータを基準電力変換器とし、他のインバータの電流をこの基準電力変換器の電流に合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。したがって、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
また、本実施の形態1〜3では説明しなかったが、運転周波数範囲の広いインバータで、電流均等制御器により位相補正量を得る場合、PI制御器(C12q制御器、C13q制御器、C1q制御器、C2q制御器)の出力値に対し速度に応じてリミット値を変える必要がある。
例えば、実施の形態1で説明したようにパルス数により制御キャリアを設けて制御頻度を設定すると、低速度の場合であれば、パルス数が多いため、より頻度多く制御を行うことになる。また、単位時間あたりの位相変動分が小さい。そのため外乱によっては過補正による制御不安定化が起こる可能性がある。このため、こうした場合には、リミット値を低くし、高速運転時は高くすることにより、上記のような過補正なく、速度(すなわち出力周波数または周波数指令値)、パルス数に関係なく正確な指令補正が実現できる。
更に、位相指令値については、速度の大小により単位時間の位相変化量が違うため、よりきめ細かな補正を実現するために、位相補正量の有効ビット長を速度やパルス数、変調率で変える方法が有効である。例えば、低速では積分処理の有効ビット長を短く、高速では長くとり、小数点位置を速度によって変えれば、より高速でも精度の高い位相補正が実現できる。
以上のようにして2台以上のインバータの電流を均等にするように電圧パターンレベルでそれぞれのインバータの出力電圧(デッドタイム付加後)の基本波の振幅と位相が一致するように変調率指令値、位相指令値を生成する制御を、パルスが安定するタイミングで効果的に行う。これにより、少ない制御回数(制御負荷)でも、また少ないスイッチング回数でも高調波を低減でき、かつ、インバータ間に電圧差が発生しても電流差の発生を防止できる。さらに、電流アンバランスによって引き起こされる巻線間の磁気結合による相互干渉による電動機制御の不安定化を防止できる。特に極数が少なく巻線間の結合が強い電動機でも、電流アンバランスによる損失を基本波、高調波共に抑制できる。
また、電流均等制御器において、基準電力変換器を設定し、それ以外の電力変換器との電流差から各インバータの変調率指令値、位相指令値の補正量を得る制御構成の場合は、制御器の数をインバータ台数より1つ減らすことができるため、処理負荷を低減できる。
同様に、基準電力変換器を設定し、基準電力変換器のみ実施の形態2の第1インバータのように電流基準値を設定して基準値との電流差からPI制御により電圧補正量および変調率・位相補正量を得て、他のインバータについては基準電力変換器との差により実施の形態3で説明した2種類の制御方法を用いて変調率補正量、位相補正量を得る制御構成とすることができる。この場合は、制御器の数はインバータの台数分必要であるが、精度よく安定した制御が行え、制御応答要求や負荷によって、制御方法の最適な組み合わせを選択できる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。
この発明は、複数の巻線を有する多重巻線電動機を複数のインバータにより駆動する制御装置に関するものであり、高調波を低減し、各インバータのアンバランスの補正を高精度で行えるため、特に大容量の多重巻線電動機駆動制御装置に広く適用できる。

Claims (8)

  1. 多重巻線交流電動機を駆動するためにスイッチング素子を有して、直流電源を可変電圧および可変周波数の交流電源に変換する複数の電力変換器と、前記電力変換器を制御する制御部とを備え、
    前記制御部は、前記多重巻線交流電動機を所望の回転速度で駆動するための出力電圧、出力電圧位相を算出して出力する出力電圧制御部と前記スイッチング素子をPWM制御するPWM制御部とを備え、
    前記出力電圧制御部は、周波数指令に基づいて前記出力電圧を決定する出力電圧決定部と、前記出力電圧位相を前記周波数指令に基づいて積分して算出する出力電圧位相算出部と、前記出力電圧位相に基づいて前記電力変換器のd軸電流、q軸電流を算出し、このd軸電流、q軸電流に基づき、前記多重巻線交流電動機の各巻線を流れる電流を均等にするための前記電力変換器の変調率、位相補正量を算出し、これに基づき前記電力変換器を制御する変調率指令および位相指令を生成する変調率位相指令生成部とを備え、
    前記PWM制御部は、前記出力電圧制御部で算出した前記出力電圧と前記直流電源の直流電圧とに基づいて変調率を演算する変調率演算部と、前記スイッチング素子のPWM制御における半周期当たりのパルス数を前記周波数指令に基づいて決定するパルス数決定部と、前記出力電圧の低次高調波を低減したスイッチングパターンをパルス数別に前記変調率の大きさに応じて記憶するパターンテーブルと、前記変調率演算部からの前記変調率と前記パルス数決定部からの前記パルス数および前記出力電圧制御部にて算出した前記出力電圧位相に基づいて前記パターンテーブルからの前記スイッチングパターンを用いて前記スイッチング素子を駆動するゲート信号を生成するゲート信号発生器とを備え、
    前記変調率位相指令生成部は、前記電力変換器の電流を均等にする制御を行い、前記制御の位相や頻度は前記パルス数、前記変調率、前記周波数指令、前記スイッチングパターンのいずれかに合わせて変更する多重巻線電動機駆動制御装置。
  2. 前記変調率位相指令生成部は、前記電力変換器間のd軸電流、q軸電流の差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  3. 前記変調率位相指令生成部は、前記電力変換器のd軸電流、q軸電流を用いてd軸電流、q軸電流の電流基準値を設定し、前記電力変換器のd軸電流、q軸電流と前記d軸電流、q軸電流の電流基準値との差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  4. 前記変調率位相指令生成部は、1つの特定の前記電力変換器を基準電力変換器とし、この前記基準電力変換器のd軸電流、q軸電流とそれ以外の前記電力変換器のd軸電流、q軸電流の差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  5. 前記変調率位相指令生成部は、
    前記電力変換器のd軸電流、q軸電流を用いてd軸電流、q軸電流の電流基準値を設定し、1つの特定の前記電力変換器を基準電力変換器とし、
    前記基準電力変換器については、この前記基準電力変換器のd軸電流、q軸電流と前記d軸電流、q軸電流の電流基準値との差を算出し、この差を0になるようにし、
    前記基準電力変換器以外の前記電力変換器については、前記電力変換器のd軸電流、q軸電流と前記基準電力変換器のd軸電流、q軸電流との差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  6. 前記変調率位相指令生成部は、
    前記変調率、位相補正量を算出する応答を前記周波数指令から算出した出力周波数よりも低く設定する請求項1から請求項5のいずれか1項に記載の多重巻線電動機駆動制御装置。
  7. 前記変調率位相指令生成部は、
    前記電力変換器の前記位相補正量の計算値に所定のリミット値を設定し、この前記リミット値を前記パルス数、前記変調率、前記周波数指令のいずれかに合わせて変更する請求項1から請求項5のいずれか1項に記載の多重巻線電動機駆動制御装置。
  8. 前記変調率位相指令生成部は、
    前記電力変換器の前記位相補正量の計算における有効小数点桁数または前記位相補正量のビット長を、前記パルス数、前記変調率、前記周波数指令のいずれかに合わせて変更する請求項1から請求項5のいずれか1項に記載の多重巻線電動機駆動制御装置。
JP2016553784A 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置 Active JP6218961B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077443 WO2016059684A1 (ja) 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置

Publications (2)

Publication Number Publication Date
JPWO2016059684A1 JPWO2016059684A1 (ja) 2017-04-27
JP6218961B2 true JP6218961B2 (ja) 2017-10-25

Family

ID=55746254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016553784A Active JP6218961B2 (ja) 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置

Country Status (5)

Country Link
US (1) US10236818B2 (ja)
JP (1) JP6218961B2 (ja)
CN (1) CN107005194B (ja)
DE (1) DE112014007062T5 (ja)
WO (1) WO2016059684A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006400A1 (ja) * 2015-07-03 2017-01-12 東芝三菱電機産業システム株式会社 電力変換装置の制御装置
JP6369517B2 (ja) * 2016-09-30 2018-08-08 ダイキン工業株式会社 電力変換器の制御装置
JP6563378B2 (ja) * 2016-11-04 2019-08-21 株式会社東芝 自動電圧調整器、自動電圧調整方法、自動電圧調整プログラム、発電機励磁システムおよび発電システム
WO2018091682A1 (en) * 2016-11-18 2018-05-24 Abb Schweiz Ag Switching an electrical voltage source converter
JP6316481B1 (ja) * 2017-04-21 2018-04-25 三菱電機株式会社 電動機の制御装置
JP7016249B2 (ja) * 2017-12-04 2022-02-04 日立Astemo株式会社 モータ駆動システム
US11349410B2 (en) * 2018-01-30 2022-05-31 Mitsubishi Electric Corporation Series multiplex inverter
US11088647B2 (en) * 2018-02-23 2021-08-10 Mitsubishi Electric Corporation Dynamoelectric machine control method, dynamoelectric machine control device, and drive system
JP7040192B2 (ja) * 2018-03-22 2022-03-23 株式会社デンソー 電動機駆動装置
US10848050B2 (en) 2018-07-02 2020-11-24 Palo Alto Research Center Incorporated Module-level shutdown electronics combined with module-level inverter for photovoltaic energy systems
US10826424B2 (en) * 2018-07-10 2020-11-03 GM Global Technology Operations LLC Method and apparatus for controlling a cascaded inverter circuit and an electric machine
US11926378B2 (en) * 2018-07-12 2024-03-12 Nidec Corporation Drive controller, drive unit, and power steering
EP3876415B1 (en) * 2018-11-02 2023-05-24 Mitsubishi Electric Corporation Electric motor control device
WO2020100225A1 (ja) * 2018-11-14 2020-05-22 東芝三菱電機産業システム株式会社 電力変換装置
JP7235588B2 (ja) * 2019-05-14 2023-03-08 株式会社Soken 回転電機の制御装置
JP6743952B1 (ja) * 2019-07-23 2020-08-19 株式会社明電舎 固定パルスパターンによる電力変換器の制御システムおよび制御方法
JP7154425B2 (ja) * 2019-09-02 2022-10-17 東芝三菱電機産業システム株式会社 電力変換装置及び電動機ドライブシステム
JP6813074B1 (ja) * 2019-10-30 2021-01-13 株式会社明電舎 電力変換システム
US11799401B2 (en) * 2020-01-22 2023-10-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Drive system
EP4024649A1 (en) * 2020-12-29 2022-07-06 Goodrich Control Systems Distributed control architecture for motor drives
CN112953351B (zh) * 2021-02-18 2023-04-18 中国第一汽车股份有限公司 一种逆变器系统
CN113715690B (zh) * 2021-08-31 2023-12-01 经纬恒润(天津)研究开发有限公司 一种电源系统及其控制方法
KR20230108609A (ko) * 2022-01-11 2023-07-18 현대자동차주식회사 모터 구동 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733724B2 (ja) 1992-03-12 1998-03-30 株式会社日立製作所 多巻線交流電動機の電流制御装置
JPH0638534A (ja) 1992-07-13 1994-02-10 Nippon Electric Ind Co Ltd インバータにおける各相平均値制御付き瞬時横流制御方法
JP3352182B2 (ja) * 1993-11-09 2002-12-03 三菱電機株式会社 インバータ装置
JP3899648B2 (ja) 1998-03-13 2007-03-28 株式会社明電舎 多重巻線電動機の制御方法
JP3938486B2 (ja) * 2001-11-06 2007-06-27 三菱電機株式会社 多重巻線電動機の制御装置
JP4798490B2 (ja) * 2006-02-06 2011-10-19 学校法人明治大学 三相交流電動機の制御装置及び方法並びに制御プログラム
JP2008199874A (ja) 2007-01-18 2008-08-28 Nissin Electric Co Ltd インバータの並列運転制御装置
JP4930085B2 (ja) * 2007-02-08 2012-05-09 株式会社富士通ゼネラル 位相検出方法、位相検出装置、同期モータの制御方法、および同期モータの制御装置
JP5045799B2 (ja) * 2010-08-27 2012-10-10 株式会社デンソー 電力変換装置、駆動装置、及び、これを用いた電動パワーステアリング装置
JP6064207B2 (ja) * 2012-12-17 2017-01-25 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP5725047B2 (ja) * 2013-01-17 2015-05-27 株式会社デンソー 多重巻線回転機の制御装置
US9450479B2 (en) * 2015-02-20 2016-09-20 Ge Energy Power Conversion Technology Ltd Systems and methods to optimize active current sharing of parallel power converters

Also Published As

Publication number Publication date
US20170294864A1 (en) 2017-10-12
WO2016059684A1 (ja) 2016-04-21
CN107005194A (zh) 2017-08-01
JPWO2016059684A1 (ja) 2017-04-27
US10236818B2 (en) 2019-03-19
DE112014007062T5 (de) 2017-06-29
CN107005194B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
JP6218961B2 (ja) 多重巻線電動機駆動制御装置
JP5916526B2 (ja) 電力変換器制御装置および多重巻線型電動機駆動装置
Mukherjee et al. Voltage sensorless control of VIENNA rectifier in the input current oriented reference frame
JP2014087141A (ja) 回転機およびそのドライブシステム
CN113300407B (zh) 一种lcl型并网变换器的电压源控制方法
JP5333256B2 (ja) 交流回転機の制御装置
JP6369517B2 (ja) 電力変換器の制御装置
KR20160058676A (ko) 6단계 모드로 전기 기계를 제어하는 방법 및 장치
Mink et al. Feedback control of high-speed PMSM with synchronous optimal PWM
Foti et al. Asymmetrical hybrid unidirectional T-type rectifier for high-speed gen-set applications
JP5888074B2 (ja) 電力変換装置
Piyarat et al. Simple speed control of an asymmetrical type two-phase induction motor drive
JP5923215B2 (ja) 回転機及び回転機ドライブシステム
Lee et al. Output voltage control of PWM inverters for stand-alone wind power generation systems using feedback linearization
JP2011217575A (ja) 電力変換装置
Liu et al. Vector control system of induction machine supplied by three-level inverter based on a fast svpwm algorithm
Agrawal et al. A review of speed control methods of induction motor
Purohit et al. Modeling, analysis and design of SPWM current controlled multilevel inverter fed PMSM drive
JP7042568B2 (ja) モータ制御装置及びモータ制御方法
JP2017017947A (ja) 電力変換装置
Mao et al. Research on SVM-DTC of speed sensorless PMSG for the direct-drive wind generation system with CSC
Jin et al. Simulation study of AC motor speed sensorless vector control system based on SVPWM
Halder et al. Capacitor voltage Boosting and balancing using a TLBC for three-level NPC inverter Fed RDC-less PMSM drives
JP5990970B2 (ja) モータ駆動装置
JP6409945B2 (ja) マトリックスコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250