WO2016059684A1 - 多重巻線電動機駆動制御装置 - Google Patents

多重巻線電動機駆動制御装置 Download PDF

Info

Publication number
WO2016059684A1
WO2016059684A1 PCT/JP2014/077443 JP2014077443W WO2016059684A1 WO 2016059684 A1 WO2016059684 A1 WO 2016059684A1 JP 2014077443 W JP2014077443 W JP 2014077443W WO 2016059684 A1 WO2016059684 A1 WO 2016059684A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
axis current
power converter
inverter
Prior art date
Application number
PCT/JP2014/077443
Other languages
English (en)
French (fr)
Inventor
恵子 多田
友里子 岡本
佐竹 彰
鈴木 寛充
昌彦 塚越
利孝 中村
雅史 中村
Original Assignee
三菱電機株式会社
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 東芝三菱電機産業システム株式会社 filed Critical 三菱電機株式会社
Priority to JP2016553784A priority Critical patent/JP6218961B2/ja
Priority to CN201480082648.6A priority patent/CN107005194B/zh
Priority to PCT/JP2014/077443 priority patent/WO2016059684A1/ja
Priority to DE112014007062.9T priority patent/DE112014007062T5/de
Priority to US15/507,885 priority patent/US10236818B2/en
Publication of WO2016059684A1 publication Critical patent/WO2016059684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to a multi-winding motor drive control device that drives a multi-winding motor having a plurality of independent windings in a single motor by a plurality of inverters to control the rotation at a variable speed.
  • Patent Document 1 is based on a triangular wave comparison PWM voltage. To eliminate the current amplitude difference and phase difference between the inverters, instantaneous voltage correction based on the instantaneous current difference is required, and a very fast response is required. become. For this reason, it is difficult to realize a high-voltage and large-capacity inverter that cannot speed up carriers. Further, in the method disclosed in Non-Patent Document 1, in the control of the response faster than the fundamental wave, the waveform that is symmetric with respect to the positive and negative of PWM and symmetric with respect to the 1 ⁇ 4 period collapses. There is a problem that control tends to become unstable compared with PWM.
  • the present invention has been made to solve the above-described problems. For a plurality of large-capacity inverters, the harmonics are reduced, and the voltage phase and amplitude imbalance of each inverter are corrected with high accuracy. It is an object of the present invention to provide a multi-winding motor drive control device that can be used.
  • a multi-winding motor drive control device includes a plurality of power converters that have a switching element for driving a multi-winding AC motor and convert a DC power source into a variable voltage and variable frequency AC power source.
  • a control unit for controlling the power converter, and the control unit calculates and outputs an output voltage and an output voltage phase for driving the multi-winding AC motor at a desired rotational speed and a switching element.
  • a PWM control unit that performs PWM control, and the output voltage control unit determines an output voltage based on the frequency command, and an output voltage phase that is calculated by integrating the output voltage phase based on the frequency command.
  • the d-axis current and q-axis current of the power converter are calculated based on the output voltage phase with the calculation unit, and the current flowing through each winding of the multi-winding AC motor is averaged based on the d-axis current and the q-axis current.
  • a modulation rate phase command generator for generating a modulation rate command and a phase command for controlling the power converter based on the calculated modulation rate and phase correction amount of the power converter
  • a modulation factor calculation unit that calculates the modulation factor based on the output voltage calculated by the output voltage control unit and the DC voltage of the DC power supply, and the number of pulses per half cycle in PWM control of the switching element is determined based on the frequency command
  • the switching element is driven using the switching pattern from the pattern table based on the number of pulses from the output voltage and the output voltage phase calculated by the output voltage control unit
  • a modulation rate phase command generation unit that performs control to equalize the current of the power converter, and the phase and frequency of control include the number of pulses, modulation rate, frequency command, It is changed according to one
  • the modulation rate phase command generation unit for generating the modulation rate command and the phase command for equalizing the current flowing through each winding of the motor, and the half cycle in the PWM control
  • a pulse number determination unit that determines the number of pulses per unit, a pattern table that stores a switching pattern in which low-order harmonics of the output voltage are reduced, according to the modulation factor according to the number of pulses, and a switching element using the switching pattern
  • the modulation factor phase command generator performs control to equalize the current of the power converter, and the phase and frequency of this control are changed according to the number of pulses. Therefore, even an inverter having a switching element with a slow switching speed can make maximum use of a small number of times of switching. Can be controlled at a reduced PWM, can be carried out multiple inverters of the voltage phase, the correction of the amplitude imbalance with high accuracy.
  • the control unit includes an output voltage control unit and a PWM control unit.
  • the output voltage control unit is based on the output voltage determination unit, the output voltage phase calculation unit, and the current of the inverter.
  • a modulation rate phase command generation unit for calculating a modulation rate command and a phase command for controlling an inverter based on the modulation rate and phase correction amount for equalizing the current flowing through each winding of the motor is provided, and PWM control is performed.
  • a modulation factor calculation unit a pulse number determination unit that determines the number of pulses per half cycle in PWM control based on a frequency command, and a pattern table that stores a switching pattern in which lower harmonics of the output voltage are reduced
  • a gate that generates a gate signal that drives a switching element using a switching pattern from a pattern table based on a modulation rate, the number of pulses, and an output voltage phase
  • a modulation rate phase command generation unit that controls the current of the power converter to be equal, and relates to a multiple winding motor drive control device that changes the phase and frequency of this control according to the number of pulses. Is.
  • FIG. 1 is an overall configuration diagram of a multiple winding motor drive control device and FIG. 1 is a partly detailed view of the configuration of the multiple winding motor drive control device 1 according to Embodiment 1 of the present invention.
  • FIG. 3 is a configuration diagram of the modulation factor phase command generation unit
  • FIG. 4 is a configuration diagram of the current equalization controller
  • FIG. 5, FIG. 6, each is an explanatory diagram of the relationship between the pulse pattern of each inverter and the control carrier A description will be given based on FIG. 7 which is an example of the output voltage of the low-order harmonic elimination PWM of the inverter, and FIGS. 8 and 9 which are switching pattern phase waveform diagrams of each inverter.
  • FIG. 1 shows the configuration of the entire system including the multi-winding motor drive control device 1 according to the first embodiment of the present invention.
  • FIG. 2 is a detailed configuration diagram of the first group inverter 2 constituting the multiple winding motor drive control device 1.
  • the detailed configuration diagram of the second group inverter 3 is omitted because it is the same as the first group inverter 2.
  • the entire system 100 including the multiple winding motor drive control device 1 includes a multiple winding motor drive control device 1, an external AC power source 40, a reactor 41, and an electric motor 5.
  • the multi-winding motor drive control device 1 receives AC power from an external AC power supply 40 via a reactor 41, converts it into DC internally, and controls the motor 5 using this DC power supply.
  • a multi-winding motor having two winding groups is assumed as the motor 5.
  • the multi-winding motor drive control device 1 includes an inverter unit 4 including a first group inverter 2 and a second group inverter 3, a control unit 8, and a current sensor 16 that detects the motor current of the motor 5.
  • an inverter unit 4 including a first group inverter 2 and a second group inverter 3, a control unit 8, and a current sensor 16 that detects the motor current of the motor 5.
  • two first group inverters 2 and second group inverters 3 are provided corresponding to the electric motor 5 which is a multiple winding electric motor having two winding groups.
  • the first group inverter 2 is referred to as a first inverter 2
  • the second group inverter 3 is referred to as a second inverter 3.
  • the power converters of the present invention are the first group inverter 2 and the second group inverter 3.
  • the internal configuration of the first inverter 2 of the inverter unit 4 is shown in FIG. 2 including the connection with the external AC power supply 40, the reactor 41, and the electric motor 5.
  • the controller 8 is largely composed of an output power controller 81 and a PWM controller 82.
  • the output power control unit 81 includes an output voltage phase calculation unit 9, an output voltage determination unit 10, and a modulation factor phase command generation unit 13.
  • the PWM control unit 82 includes a modulation factor calculation unit 11, a pulse number determination unit 12, a pattern table 14, and gate signal generators 15-1 and 15-2.
  • the gate signal generator 15-1 for the first inverter 2 and the gate signal generator 15-2 for the second inverter 3 do not need to be distinguished from each other. To do.
  • the AC input voltage is output as a DC voltage insulated from the U, V, and W phases by the transformer and diode of the rectifier circuit unit 6-1.
  • the first inverter 2 converts this DC power into AC power and supplies it to the electric motor 5.
  • the first inverter 2 includes a current sensor 16-1 that detects the U, V, and W phase motor currents of the windings at the connection portion with the motor 5.
  • the first inverter 2 is a three-phase five-level inverter circuit in which two legs (A leg 7a and B leg 7b) of a neutral-point clamped three-phase three-level inverter are connected in series. Then, the DC voltage rectified by the rectifier circuit unit 6-1 is converted into an AC voltage having an arbitrary magnitude and frequency by the switching operation of the switching element of each leg and output.
  • the first inverter 2 also includes first group DC voltage sensors (17-1a to 17-1c) that detect DC voltages (vdc1a to vdc1c) of the U, V, and W phases output from the rectifier circuit unit 6-1. ).
  • the second inverter 3 has the same configuration as that of the first inverter 2, and the AC input voltage is insulated from the U, V, and W phases by the transformer and diode of the rectifier circuit section 6-2. Output as a direct current voltage. Furthermore, the DC voltage is converted into an AC voltage having an arbitrary magnitude and frequency by the switching operation of the switching element of each leg of the second inverter 3 and output.
  • the second inverter 3 also includes second group DC voltage sensors (17-2a to 17-) that detect the DC voltages (vdc2a to vdc2c) of the U, V, and W phases output from the rectifier circuit unit 6-2. 2c).
  • the output power control unit 81 integrates the frequency command value Fc of the first and second inverters 2 and 3 to calculate the standard phase command value th * ref, and the frequency command value Fc from V / and an output voltage determination unit 10 that calculates the amplitude Vp of the phase voltage based on the f pattern. Further, the phase current iuvw1 flowing through the first inverter 2 and the motor winding first group detected by the current sensor 16-1, and the phase current flowing through the second inverter 3 and the motor winding second group detected by the current sensor 16-2.
  • a modulation rate phase command generation unit 13 is provided for generating modulation rate command values (inv1 * mod, inv2 * mod) and phase command values (inv1 * th, inv2 * th) of the inverters 2 and 3.
  • the PWM control unit 82 includes a modulation rate calculation unit 11 that calculates the modulation rate mod * ref based on the phase voltage amplitude command value Vp calculated by the output voltage determination unit 10, and frequency commands of the first and second inverters 2 and 3.
  • a pulse number determination unit 12 that determines the pulse number Pnum from the value Fc.
  • the pulse number Pnum is the number of pulses per half cycle output for each leg 7a, 7b, and 2 ⁇ number of pulses is simply This is the output voltage for the phase.
  • the PWM control unit 82 has switching patterns (th1a, th2a, th3a,..., Thna, th1b, th2b, th3b,...
  • a pattern table 14 is provided as a storage unit for storing thnb).
  • the pattern table 14 uses the same pattern table for two inverters, but a pattern table may be prepared for each inverter.
  • (Th1a, th2a, th3a... Thna) is a switching pattern for the A leg 7a
  • (th1b, th2b, th3b... Thnb) is a switching pattern for the B leg 7b. That is, the pattern table 14 stores a different switching pattern for each leg 7a, 7b, and combines two types of switching patterns into a switching pattern for two legs.
  • the PWM control unit 82 generates gate signal generators 15-1 and 15 which generate gate signals (gs1, gs2) for controlling the switching elements of the two switching legs 7a and 7b of the first and second inverters 2 and 3, respectively. -2.
  • the output voltage phase calculation unit 9 integrates the frequency command value Fc to generate the phase command value th * ref of the first and second inverters 2 and 3. Further, the output voltage determination unit 10 assumes that the inverter frequency and the induced voltage of the motor are in a certain proportional relationship, and the ratio Kvf between the rated phase voltage amplitude Vrated and the rated electrical angular frequency Frated is the frequency command value Fc. The phase voltage amplitude Vp is obtained. That is, the first and second inverters 2 and the three-phase voltage amplitude command Vp in Kvf and the frequency command value Fc of the inverter are obtained by the equations (1) and (2).
  • the modulation factor calculation unit 11 outputs the phase voltage amplitude command Vp of the first and second inverters 2 and 3 output from the output voltage determination unit 10 and the voltage sensors 17-1a to 17 of the first and second inverters 2 and 3. -1c, 17-2a to 17-2c, U voltage V phase W phase DC voltage (first group: vdc1a to vdc1c, second group: vdc2a to vdc2c) calculated from the average voltage Vdc, The modulation factor mod * ref is calculated by the equation (3). Then, the modulation factor calculation unit 11 outputs the average DC voltage Vdc and the modulation factor command value mod * ref to the modulation factor phase command generation unit 13.
  • the pulse number determination unit 12 determines the pulse number Pnum per half cycle in the PWM control according to the frequency command value Fc of the two first and second inverters 2 and 3.
  • the frequency command value Fc of the two first and second inverters 2 and 3.
  • the first embodiment has a pattern table 14 that stores switching patterns of five types of pulse numbers Pnum of 3 pulses / 5 pulses / 7 pulses / 9 pulses / 11 pulses, and the number of pulses increases as the frequency command value Fc increases. Pnum is switched between 11 pulses, 9 pulses, 7 pulses, 5 pulses, and 3 pulses.
  • the frequency command of the present invention is the frequency command value Fc.
  • the three-phase DC voltage (vdc1a to vdc1c) of the first inverter 2 due to a difference in constants of the rectifying circuit sections 6-1 and 6-2 of the two first and second inverters 2 and 3 and disturbance such as load fluctuations. If a voltage difference occurs in the three-phase DC voltages (vdc2a to vdc2c) of the second inverter 3, even if the same modulation rate command value mod * ref and phase command value th * ref are given, the two first and second inverters There is a difference in the amplitude of the voltage coming out of 2 and 3.
  • the modulation rate obtained by multiplying the ratio of the DC voltage rated value to the DC voltage of each of the first and second inverters 2 and 3 by mod * ref may be given as each modulation rate.
  • the fundamental wave is caused by the difference in the PWM waveform due to the modulation rate and the pulse shift due to the dead time, particularly the difference due to the difference in the positive and negative direction of the pulse due to the difference in the current direction near 0 voltage. A phase shift occurs.
  • the modulation factor phase command generation unit 13 the modulation factor correction amount and phase correction in each of the two first and second inverters 2 and 3 are eliminated by the current equalization controller 18 so as to eliminate the difference between the two inverter currents.
  • the amount is calculated, and based on this, the modulation rate command value and the phase command value of the two first and second inverters 2 and 3 are generated.
  • the modulation rate command is a modulation rate command value
  • the phase command is a phase command value.
  • the modulation factor phase command generation unit 13 calculates the modulation factor and the three-phase current iuvw1 of the first inverter 2 detected by the current sensor 16-1 and the three-phase current iuvw2 of the second inverter 3 detected by the current sensor 16-2. Using the modulation rate command value mod * ref and the average DC voltage Vdc from the unit 11, the modulation rate command value and the phase command value that eliminate the current difference flowing through the windings of the first and second inverters 2 and 3 are Generated for the second inverters 2 and 3.
  • the modulation factor phase command generator 13 generates a modulation factor command value inv1 * mod and a phase command value inv1 * th for the first inverter 2, a modulation factor command value inv2 * mod for the second inverter 3, and a phase command value. inv2 * th is generated. Then, the modulation factor phase command generation unit 13 outputs the modulation factor command values inv1 * mod1 and inv2 * mod to the pattern table 14 and outputs the phase command values inv1 * th and inv2 * th to the first and second inverters 2 and 3. To the gate signal generators 15-1 and 15-2.
  • the modulation factor phase command generation unit 13 performs control for equalizing the currents of the first and second inverters 2 and 3 at least once in one cycle with one or more phases, and the phase and frequency of the control are changed to pulses. Change according to any of the number, modulation factor, frequency command value, and switching pattern.
  • FIG. 3 is a configuration diagram of the modulation factor phase command generation unit 13.
  • the modulation factor phase command generator 13 calculates a current difference between the groups from the three-phase currents iuvw1 and iuvw2 flowing through the two inverters and the windings by the current equalization controller 18, and modulates the difference to zero.
  • a rate correction amount ⁇ mod12 and a phase correction amount ⁇ th12 are output.
  • FIG. 4 is a configuration diagram of the current equalization controller 18.
  • the current equalization controller 18 converts the currents of the first inverter 2 and the second inverter 3 into a three-phase / two-phase conversion based on the phase command value th * ref to obtain a current on the control axis ⁇ - ⁇ axis.
  • Phase / two-phase converters 21a and 21b are provided.
  • the current equalization controller 18 corrects the modulation factor from the difference between the ⁇ -axis (d-axis) currents in the control axes of the first and second inverters 2 and 3 (first group-second group: i ⁇ 1-i ⁇ 2).
  • the current equalization controller 18 is obtained by the correction amount / modulation rate converter 28 that converts the correction amount obtained by the C12d controller 22a into the modulation rate correction amount using the DC voltage Vdc and the C12q controller 22b.
  • a correction amount / phase converter 29 for converting the correction amount into a phase correction amount is provided.
  • vds1, vqs1, ids1, and iqs1 are a dq-axis voltage and a dq-axis current of the first group winding.
  • vds2, vqs2, ids2, and ids2 are the dq-axis voltage and dq-axis current of the second group winding.
  • Ld and Lq are d-axis and q-axis inductances of the respective windings
  • Ra is a winding resistance
  • Md and Mq are mutual inductances between the windings
  • P is a differential operator.
  • the speed electromotive force is ignored and only the first-order lag (d-axis is (Ld-Md) and Ra terms, q-axis is (Lq-Mq) and Ra terms) )
  • the voltage difference (vds1-vds2, vqs1-vqs2) of the two groups is calculated with the desired control response ⁇ c by PI control of the command value 0 from the current differences ids1-ids2 and iqs1-iqs2.
  • the modulation factor correction amount and the phase correction amount are calculated.
  • the inter-group difference current of the ⁇ -axis current is obtained by dividing the voltage difference V ⁇ 1 ⁇ V ⁇ 2 calculated by the C12d controller 22a by the DC voltage average value Vdc and multiplying by 1/2 to obtain the first and second values of the two units.
  • the modulation factor correction amount ⁇ mod 12 for the inverters 2 and 3 is assumed.
  • the difference current between the groups of the ⁇ -axis current is expressed as follows.
  • the angle ⁇ between the voltage absolute value V ⁇ and ⁇ V ⁇ on the ⁇ axis is Is represented by equation (8).
  • the phase correction amount is given only to the second inverter 3.
  • the modulation factor command value inv1 * mod of the first inverter 2 and the modulation factor command value inv2 of the second inverter 3 are determined by the modulation factor correction amount ⁇ mod12 and the phase correction amount ⁇ th12 obtained by the current equalization controller 18.
  • * Mod, the phase command value inv1 * th of the first inverter 2, and the phase command value inv2 * th of the second inverter 3 are obtained by the equation (10).
  • modulation rate command value and phase command value for the two first and second inverters 2 and 3 are generated by the method described above, the modulation rate command value is stored in the pattern table 14, and the phase command value is stored in the gate signal generator 15. Output.
  • a pattern table 14 that can be used to output PWM with reduced low-order harmonics is provided.
  • the pulse change time may be accelerated due to frequent modulation rate and phase correction, and switching may not be followed. There is. This can occur in both cases of low-order harmonic cancellation PWM and general triangular wave comparison PWM, but in the case of low-order harmonic cancellation PWM, if the change due to control of the voltage waveform is too fast, left and right Symmetrical and positive / negative symmetrical waveforms may be destroyed, which may cause unstable control, that is, increase current fluctuation. Therefore, in the first embodiment, stable and highly accurate correction can be performed by changing the frequency of the control according to the number of pulses and the modulation rate of the low-order harmonic elimination PWM.
  • the control cycle (carrier) is 6 times the command value frequency, and the 0 phase (0, ⁇ , 2 ⁇ ) and peak phase ( ⁇ / 2 Control is performed 12 times in one cycle at the peak or valley of the carrier so that the peak or valley of the carrier comes at 3 / 2 ⁇ ).
  • the control carrier looks like this, but since the pulse width becomes wider when the modulation rate is high, when the modulation rate is high (synonymous with high operating frequency for V / f), etc. As shown in FIG.
  • the control cycle (carrier) is reduced to 5.5 times the command value frequency, and the control is periodically performed at the peaks and valleys of the carrier (11 times per command value cycle).
  • the currents of the first and second inverters 2 and 3 are detected at the phase where the pulse waveform is considered to be stable depending on the number of pulses Pnum, and the correction amount is calculated so that there is no current difference.
  • the modulation rate command value and phase command value of the second inverters 2 and 3 are output. For this reason, the amplitude and phase of the PWM waveforms output from the two first and second inverters 2 and 3 can be accurately combined with a small number of times, resulting in control instability and loss due to an increase in current difference. Increase can be prevented.
  • the pattern table 14 stores a switching pattern that can reduce the lower harmonic of the output voltage for each magnitude of the modulation factor m for each pulse number Pnum, and the pulse number Pnum from the pulse number determination unit 12 and the modulation factor phase command. Based on the modulation rate command values inv1 * mod and inv2 * mod of the first inverter 2 and the second inverter 3 from the generation unit 13, the switching patterns for the respective inverters are read out.
  • the two switching legs 7a and 7b of each phase of the first and second inverters 2 and 3 are respectively three-level voltage of 3 pulses in a half cycle based on the switching patterns (th1a, th2a, th3a and th1b, th2b, th3b).
  • a combination of them is the output voltage for the single phase of the 5-level inverter of the first and second inverters 2 and 3.
  • Th3b is obtained by equation (11).
  • the fifth, eleventh, and thirteenth order voltage harmonics are reduced, and the fundamental wave is equally allocated to the three-level inverter for two legs.
  • FIG. 8 and FIG. 9 show phase waveform diagrams showing the switching pattern obtained by the above equation (11).
  • FIG. 8 shows the switching phase waveform of the A leg 7a
  • FIG. 9 shows the switching phase waveform of the B leg 7b.
  • the switching phases of the two switching legs are three in a quarter period, for a total of six, and this is the degree of freedom of the equation for obtaining the switching phase of the low-order harmonic reduction PWM.
  • the degree of freedom that can be used for the harmonics is 4, and the fifth, seventh, eleventh, and thirteenth voltage harmonics are eliminated. It was a method.
  • the phase may be obtained under conditions such as non-uniform distribution of the fundamental wave amplitude.
  • the gate signal generator 15-1 for the first inverter 2 and the gate signal generator 15-2 for the second inverter 3 have modulation rate command values inv1 * mod and inv2 * for the first and second inverters 2 and 3, respectively. Read from the pattern table based on mod.
  • the gate signal generator 15 generates a gate signal for turning on / off each switching element on the basis of the switching pattern for each switching leg 7a, 7b and the phase command values inv1 * th, inv2 * th.
  • the five-level output voltage described in FIG. 7 is output to each phase.
  • the control for equalizing the currents of the first and second inverters 2 and 3 is performed at the peaks and valleys based on the number of pulses, but the pulse output can be performed with a stable phase.
  • the phase to be controlled may be changed not by the number of pulses but by the modulation rate, output frequency, or pulse pattern, or the pulse phase of the pulse pattern may be used without having a control carrier.
  • the output frequency is obtained by converting the unit of the frequency command value Fc, and is calculated by multiplying by a constant. Therefore, the frequency command value may be used instead of the output frequency.
  • the response for calculating the modulation factor and the phase correction amount may be set lower than the output frequency.
  • fluctuations in the bus voltage in the case of the first embodiment, the DC voltage of each phase vibrates at 2f. F is the output frequency
  • torque ripple due to dead time vibrates at 6f. F is the output frequency
  • Control for generating the modulation rate command value and the phase command value up to a level where the fundamental waves coincide is effectively performed at the timing when the pulse is stabilized.
  • harmonics can be reduced even with a small number of control cycles (control load) or a small number of switching cycles, and even if a voltage difference occurs between the first and second inverters 2 and 3, a current difference is prevented.
  • the phase difference in the fundamental voltage of the output voltage is less than 0.01 deg which is hardly affected by the harmonic voltage difference), and it is possible to prevent instability of the motor control due to mutual interference due to magnetic coupling between windings caused by current imbalance. .
  • the voltage amplitude difference can be suppressed to 1/10 to 1/100 or less, and the current difference between the windings can be reduced for both the fundamental wave and the harmonic wave.
  • a control carrier is set according to the number of pulses (it may be adjusted not only to the number of pulses but also to a modulation rate, an output frequency, and a pulse pattern), and control is performed using the peaks and valleys.
  • the control unit is based on the output voltage determination unit, the output voltage phase calculation unit, and the current of the inverter, and each winding of the multi-winding AC motor.
  • a pulse number determination unit that determines the number of pulses per half cycle in control based on a frequency command, a pattern table that stores a switching pattern in which lower harmonics of the output voltage are reduced, a modulation rate, a pulse number, and an output voltage phase
  • a gate signal generator for generating a gate signal for driving the switching element using the switching pattern from the pattern table.
  • Rate phase command generating unit performs control to equalize the current of the power converter, the phase and frequency of the control is to change in accordance with the number of pulses. Therefore, even an inverter having a switching element with a slow switching speed can be controlled with PWM that reduces harmonics by making the most of a small number of switching times, and corrects the voltage phase and amplitude imbalance of multiple inverters with high accuracy. be able to.
  • the multi-winding motor drive control device can be controlled by PWM with reduced harmonics by utilizing a small number of times of switching even in an inverter having a switching element with a slow switching speed. Miniaturization and long life can be achieved.
  • FIG. 1 The multi-winding motor drive control device according to the second embodiment sets the current reference value, and controls the current of each inverter to match the current reference value, whereby the current flowing through each winding of the multi-winding AC motor. Are equalized.
  • FIG. 10 which is a configuration diagram of a modulation factor phase command generation unit
  • FIG. 11 which is a configuration diagram of a current equalization controller
  • the same or corresponding parts as those in FIGS. 3 and 4 are denoted by the same reference numerals.
  • the drawings described in the first embodiment are referred to as appropriate.
  • the configuration of the multi-winding motor drive control apparatus in the second embodiment is basically the same as that in FIGS. 1 and 2 of the first embodiment, and the configuration in the modulation factor phase command generation unit is different.
  • the multi-winding motor drive control device 201, the modulation factor phase command generation unit 213, and the current equalization controller 218 are used in order to distinguish from the first embodiment.
  • FIG. 10 shows the configuration of the modulation factor phase command generator 213 in the second embodiment. 10 is different from the configuration of FIG. 3 of the first embodiment in that the current reference values id * ref and iq * ref are input to the modulation factor phase command generation unit 213 and input to the current equalization controller 218. It is a point that has been added.
  • FIG. 11 is a diagram illustrating a configuration of the current equalization controller 218 in the modulation factor phase command generation unit 213. 11 is the same as that of the first embodiment except for the configuration described below.
  • the current equalization controller 218 receives the difference between the ⁇ current i ⁇ 1 of the first inverter 2 and the current reference value id * ref and calculates the ⁇ -axis voltage correction amount ⁇ V ⁇ 1 of the first inverter 2 and the ⁇ current.
  • a C1q controller 24b is provided that calculates the ⁇ -axis voltage correction amount ⁇ V ⁇ 1 of the first inverter 2 by inputting the difference between i ⁇ 1 and the current reference value iq * ref.
  • the current equalization controller 218 includes a C2d controller 25a and a C2q controller 25b that calculate the ⁇ -axis voltage correction amount ⁇ V ⁇ 2 and the ⁇ -axis voltage correction amount ⁇ V ⁇ 2 of the second inverter 3.
  • a correction amount / modulation rate converter 28 for calculating the modulation factor correction amounts ⁇ mod1 and ⁇ mod2 based on the ⁇ -axis voltage correction amounts ⁇ V ⁇ 1 and ⁇ V ⁇ 2 calculated by the C1d controller 24a and the C1q controller 24b and the average DC voltage Vdc is provided.
  • a correction amount / phase converter 29 is provided that calculates the phase correction amounts ⁇ th1 and ⁇ th2 by the same method as in the first embodiment based on the ⁇ -axis voltage correction amounts ⁇ V ⁇ 1 and ⁇ V ⁇ 2.
  • the current reference values id * ref and iq * ref are current ⁇ -axis currents obtained by adding or subtracting 1 ⁇ 2 of the difference between the current values of the two first and second inverters 2 and 3 to the respective inverter currents. , ⁇ -axis current may be averaged. Further, for example, a command in which the d-axis current reference value id * ref is set to a command value for power factor control in the first and second inverters 2 and 3 and the q-axis current reference value iq * ref is calculated from a torque command or the like. It may be a value.
  • PI control (C2d controller 25a, C2q controller 25b) of ⁇ -axis currents i ⁇ 2, i ⁇ 2 and command values id * ref, iq * ref of the second inverter 3 causes the second inverter 3 to have a desired control response ⁇ c.
  • Voltage correction amounts ⁇ V ⁇ 2 and ⁇ V ⁇ 2 are obtained, and based on these, modulation rate correction amounts ⁇ mod1, ⁇ mod2, and phase correction amounts ⁇ th1, ⁇ th2 can be calculated.
  • the transfer functions of the PI controller (C1d controller 24a, C1q controller 24b, C2d controller 25a, C2q controller 25b) are expressed by equations (14) and (15).
  • the d-axis current reference value id * ref and the q-axis current reference value iq * ref may be set to desired values as in vector control, and the correction amount from the V / f pattern voltage may be obtained.
  • the stability may be deteriorated as compared with the case where the respective voltage correction amounts are obtained so as to be the average value of the two first and second inverters 2 and 3. is there.
  • the respective d-axis current reference value id * ref and q-axis current reference value iq * ref are averaged between the ⁇ currents and ⁇ currents of the two first and second inverters 2 and 3 at the start of control. .
  • each reference value to a desired command value with a first-order lag or a second-order lag
  • the difference current between the two first and second inverters 2 and 3 is reduced to a desired command value.
  • the modulation rate command values inv1 * mod and inv2 * mod and the phase command values inv1 * th and inv2 * th of the two first and second inverters 2 and 3 are the modulation rate calculation unit 11. From the modulation rate command value mod * ref input from the output voltage phase calculation unit 9, the phase command value th * ref from the output voltage phase calculation unit 9, and the modulation rate correction amounts ⁇ mod1, ⁇ mod2 and phase correction amounts ⁇ th1, ⁇ th2 obtained as described above. , (16).
  • the output voltage of each of the first and second inverters 2 and 3 (after adding the dead time) at the voltage pattern level so as to equalize the currents of the two first and second inverters 2 and 3.
  • Control for generating the modulation rate command value and the phase command value so that the amplitude and phase of the fundamental wave coincide with each other is effectively performed at the timing when the pulse is stabilized.
  • harmonics can be reduced even with a small number of times of control (control load) or even a small number of times of switching.
  • production of a current difference can be prevented and the destabilization of the motor control by the mutual interference by the magnetic coupling between the windings caused by the current imbalance can be prevented.
  • even an electric motor with a small number of poles and strong coupling between windings can suppress loss due to current imbalance in both fundamental wave and harmonic wave.
  • the multi-winding motor drive control device sets a current reference value, and controls so that the current of each inverter matches the current reference value.
  • the current flowing through each winding is made uniform. Therefore, even an inverter having a switching element with a slow switching speed can be controlled with PWM that reduces harmonics by making the most of a small number of switching times, and corrects the voltage phase and amplitude imbalance of multiple inverters with high accuracy. be able to.
  • Embodiment 3 The multi-winding motor drive control device of the third embodiment uses one inverter as a reference power converter, and controls so that the current of the other inverter matches the current of this reference power converter.
  • the current flowing through each winding of the AC motor is made uniform.
  • FIG. 12 and FIG. 13 show the overall configuration of the multiple winding motor drive control device, and the configuration diagram of the modulation factor phase command generator.
  • FIG. 14 which are the block diagrams of a current equalization controller, it demonstrates centering on the difference with Embodiment 1,2. 12 to 18, the same or corresponding parts as those in the first and second embodiments are denoted by the same reference numerals.
  • the overall system 300 including the multiple winding motor drive control device 301 includes a multiple winding motor drive control device 301, an external AC power supply 40, a reactor 41, and an electric motor 305.
  • the multi-winding motor drive control device 301 receives AC power from the external AC power supply 40 via the reactor 41, converts it into direct current, and controls the motor 305 using this direct current power supply.
  • the motor 305 is assumed to be a field winding type salient pole type synchronous motor having three three-phase winding groups.
  • the configuration of the multi-winding motor drive control device in the third embodiment is the same as that in FIGS. 1 and 2 of the first embodiment, but the motor 305 has three three-phase winding groups.
  • the configuration of the control unit 308 related to is partially different.
  • the multi-winding motor drive control device 301, the control unit 308, the modulation factor phase command generation unit 313, the pattern table 314, and the current equalization controller 318 are distinguished from the first and second embodiments. And
  • a third (third group) inverter 20 is added to the inverter unit 304.
  • the third group inverter 20 is appropriately described as the third inverter 20.
  • the power converter of the present invention is the first group inverter 2, the second group inverter 3, and the third group inverter 20.
  • the modulation factor calculation unit 311 receives the three-phase DC voltages (vdc1a to vdc1c, vdc2a to vdc2c) of two inverters in FIGS. A three-phase DC voltage (vdc3a to vdc3c) of the third inverter 20 is newly added.
  • the current sensor 16-3 that detects the three-phase current flowing through the third winding group of the third inverter 20 and the motor 305, and the modulation factor phase command generation unit 313, the three-phase current iuvw3 of the third inverter 20 is newly added.
  • the pattern table 314 also adds the modulation rate command value inv3 * mod for the third inverter 20 to the input, and based on this, the pulse pattern (inv3 * th1a for the third inverter 20). , Inv3 * th2a... Inv3 * thnb) are taken out and output to the gate signal generator 15-3 for the third inverter 20.
  • the gate signal generator 15-3 for the third inverter 20 generates a gate signal (gs3) for controlling the switching element of the third inverter 20 based on the switching pattern from the pattern table 314 and the inverter phase command value inv3 * th.
  • a current sensor 31 for detecting a current flowing in the field windings, three-phase currents iuvw1, iuvw2, and iuvw3 of three inverters are converted into control coordinates ( ⁇ - ⁇ axes) for each group, and ⁇ of each winding group
  • a power factor control unit 32 that outputs a field current command value so that the total axial current value becomes a ⁇ -axis current command value that realizes a desired power factor, and a field current detected by the current sensor 31 is a power factor control unit 32.
  • a field current control unit 33 is added to control the field winding applied voltage so as to obtain a field current command value from.
  • the three-phase / two-phase converter that converts the three-phase current in the power factor control to the control coordinate axis ( ⁇ - ⁇ axis) is the same as the three-phase / two-phase converter in the current equalization controller 318. .
  • FIG. 14 is a configuration diagram of the modulation factor phase command generation unit 313 in the third embodiment.
  • the modulation factor command value (inv1) for each inverter is eliminated so as to eliminate the current difference between the currents iuvw1, iuvw2, and iuvw3 of the three groups of inverters.
  • * Mod, inv2 * mod, inv3 * mod) and a phase command value (inv1 * th, inv2 * th, inv3 * th) are generated. For this reason, the phase current iuvw3 of the third inverter 20 is added to the current input in the current equalization controller 318.
  • FIG. 15 is a configuration diagram of the current equalization controller 318A in the modulation factor phase command generation unit 313.
  • the first inverter 2 is a reference power converter
  • the difference between the current of the reference power converter and the current of the other power converters (second and third inverters 3 and 20) is Correction amounts for the modulation factor command value (mod * ref) and the phase command value (th * ref) by the controller so as to be 0 (first group: ⁇ mod1, second group: ⁇ mod2 and ⁇ th2, third group: ⁇ mod3 and ⁇ th3) are output.
  • the current equality controller of FIG. 15 is the current equality controller 318A
  • the current equality controller of FIG. 16 is the current equality controller 318B
  • the current equality control of FIG. This is a current equalization controller 318C.
  • the three-phase / two-phase converters 21a to 21c convert the three-phase current of each inverter into a current on the control axis ( ⁇ - ⁇ axis).
  • the ⁇ currents of the first group, the second group, and the third group after coordinate transformation are i ⁇ 1, i ⁇ 2, and i ⁇ 3, respectively.
  • the ⁇ currents of the first to third groups are i ⁇ 1, i ⁇ 2, and i ⁇ 3.
  • a controller for obtaining the ⁇ -axis voltage correction amount (V ⁇ 1-V ⁇ 2) of the first group and the second group from the ⁇ -axis current difference (i ⁇ 1-i ⁇ 2) among the differences between the first group and the second group is a C12d controller 22a.
  • a controller for obtaining the ⁇ -axis voltage correction amount (V ⁇ 1-V ⁇ 2) of the first group and the second group from the ⁇ -axis current difference (i ⁇ 1-i ⁇ 2) is defined as a C12q controller 22b.
  • a controller for obtaining the ⁇ -axis voltage correction amount (V ⁇ 1 ⁇ V ⁇ 3) from the ⁇ -axis current difference (i ⁇ 1 ⁇ i ⁇ 3) between the first group and the third group is a C13d controller 23a, and the ⁇ -axis current difference and the ⁇ -axis current are
  • a controller that obtains the ⁇ -axis voltage correction amount (V ⁇ 1-V ⁇ 3) from the difference (i ⁇ 1-i ⁇ 3) is referred to as a C13q controller 23b.
  • the C12d controller 22a and the C12q controller 22b have a first-order lag (d-axis is (Ld ⁇ Md)) from the equation (5) of the voltage difference and current difference between the two groups obtained based on the equation (4).
  • the Ra term and q-axis were PI control using (Lq-Mq) and Ra terms).
  • the electric motor 305 in the third embodiment is a field winding type salient pole type synchronous machine, but in the voltage equation, the terms of the damper winding and the field winding are the same in each winding group.
  • the relational expression between the voltage difference and the current difference is in accordance with the expression (5).
  • the number of winding groups of the electric motor 305 is three.
  • the relational expression of the voltage difference and current difference between the first group and the second group is the voltage difference between each group of IPM (Interior Permanent Magnet Synchronous Motor) having the two winding groups in the first embodiment.
  • (5) which is the relational expression of the current difference. Therefore, the C12d controller 22a and the C12q controller 22b are the same as those in the first embodiment, and the C13d controller 23a and the C13q controller 23b also have an input and an output having a current difference and a voltage difference (voltage difference) between the first group and the third group. It is the same control only by changing to the correction amount.
  • the current difference between the first inverter 2 and the second inverter 3 (i ⁇ 1 ⁇ i ⁇ 2 and i ⁇ 1 ⁇ i ⁇ 2) serving as the reference power converter is determined by the C12d controller 22a and the C12q controller 22b on the ⁇ axis and ⁇ axis. Voltage correction amounts (V ⁇ 1-V ⁇ 2 and V ⁇ 1-V ⁇ 2) are obtained.
  • the C13d controller 23a and the C13q controller 23b perform voltage correction amounts (V ⁇ 1 ⁇ V ⁇ 3 and V ⁇ 1 ⁇ ) on the ⁇ axis and ⁇ axis. V ⁇ 3) is obtained.
  • the first group and the second group include a correction amount / modulation rate converter 28 that converts the ⁇ -axis voltage correction amount into a modulation factor correction amount and a correction amount / phase converter 29 that converts the ⁇ -axis voltage correction amount into a phase correction amount.
  • Modulation rate correction amounts ⁇ mod1, ⁇ mod2, and ⁇ mod3 and phase correction amounts ⁇ th2 and ⁇ th3 of the third group are obtained.
  • the C12d controller 22a not only the configuration of the PI control by the C12d controller 22a, the C12q controller 22b, the C13d controller 23a, and the C13q controller 23b, but also a D12d controller 25a, a D12q controller different from this.
  • the case of using the 26b, the D13d controller 27a, and the D13q controller 27b will also be described with reference to FIG.
  • the C12d controller and the C12q controller are collectively referred to as a C12 controller.
  • the current equalization controller 318B in FIG. 16 is different from the current equalization controller 318A in FIG.
  • a C12d controller 22a, a C12q controller 22b, a C13d controller 23a, and a C13q controller 23b are described below as a D12d controller 25a.
  • D12q controller 26b, D13d controller 27a, and D13q controller 27b are described below as a D12d controller 25a.
  • D12q controller 26b, D13d controller 27a, and D13q controller 27b are described below as a D12d controller 25a.
  • D12q controller 26b, D13d controller 27a, and D13q controller 27b are described below as a D12d controller 25a.
  • D12q controller 26b, D13d controller 27a, and D13q controller 27b are described below as a D12d controller 25a.
  • D12q controller 26b, D13d controller 27a, and D13q controller 27b are described below as a D12d controller 25a.
  • D12q controller 26b, D13d controller 27a, and D13q controller 27b are described
  • the voltage correction amount was obtained by feedback control from the current difference between groups using the first-order lag term of the resistor Ra and the leakage inductance L in the equation (5).
  • a method of obtaining the voltage correction amounts (Vds1-Vds2 and Vqs1-Vqs2) from the current difference (ids1-ids2, iqs1-iqs2) using the equation (5) itself. is there.
  • weights Kd and Kq are added to the term of the speed electromotive force in the equation (5), and Kd and Kq are changed by feedback so that the current difference (ids1-ids2) becomes 0, so that the current difference becomes 0.
  • Formula (17) for obtaining voltage correction amounts (Vds1-Vds2, Vqs1-vqs2) is created.
  • ⁇ r is the electrical angular frequency of the motor rotor, but the configuration of the third embodiment is a configuration that does not have the magnetic pole position sensor of the motor. The machine frequency cannot be obtained.
  • the frequency of the inverter is used as the electric angular frequency ⁇ r (rad / s) of the electric motor. Therefore, as shown in FIG. 16, the frequency command value Fc (unit: Hz) converted into ⁇ r (unit: rad / s) is the D12d controller 25a, D12q controller 26b, D13d controller 27a, D13q controller 27b. Is input.
  • the D13d controller 27a and the D13q controller 27b can obtain the voltage correction amounts V ⁇ 1-V ⁇ 3 and V ⁇ 1-V ⁇ 3.
  • the voltage correction amount is obtained by the C12 controller, the C13 controller, the D12 controller, or the D13 controller, and this is converted by the correction amount / modulation rate converter 28 to the respective modulation rates of the first to third inverters.
  • Correction amounts ⁇ mod1, ⁇ mod2, and ⁇ mod3 are obtained, and phase correction amounts ⁇ th2 and ⁇ th3 are obtained by the correction amount / phase converter 29.
  • the modulation rate command value and the phase command value of each inverter are generated from the respective correction amounts.
  • one reference power converter is set, and a C12 controller, a C13 controller or a D12 controller, and a D13 controller are used by using a current difference from other inverters.
  • the modulation rate correction amount and the phase correction amount that eliminate the current difference are generated for each inverter.
  • equal current control of the reference power converter is performed by setting a current reference value in the same manner as in the second embodiment, and the C1d controller 24a and the C1q controller 24b are set so as to be the current reference value. To do so.
  • the modulation factor correction amount and the phase correction amount may be generated for each inverter using the current difference from the reference power converter in the same manner as in the third embodiment.
  • the output of the current equalization controller 318C is added with the first inverter phase correction amount ⁇ th1 relative to the output of the current equalization controller of FIGS. 14 and 15, and the configuration of the modulation factor phase command generation unit 313C is as shown in FIG.
  • current reference values id * ref and iq * ref are added.
  • the modulation factor phase command generation unit in FIG. 17 is used as the modulation factor phase command generation unit 313C in contrast to the modulation factor phase command generation unit 313 in FIG. Yes.
  • the electric motor in the third embodiment is not limited to the field winding type salient pole type synchronous machine, and the same effect can be obtained even if it is a permanent magnet type electric motor or an induction machine.
  • the multi-winding motor drive control device of the third embodiment controls one inverter as a reference power converter and adjusts the currents of the other inverters to the currents of the reference power converter.
  • the current flowing through each winding of the multi-winding AC motor is made uniform. Therefore, even an inverter having a switching element with a slow switching speed can be controlled with PWM that reduces harmonics by making the most of a small number of switching times, and corrects the voltage phase and amplitude imbalance of multiple inverters with high accuracy. be able to.
  • the PI controller (C12q controller, C13q controller, C1q control) is obtained. It is necessary to change the limit value according to the speed with respect to the output value of the C2q controller. For example, if the control frequency is set by setting the control carrier according to the number of pulses as described in the first embodiment, the control is performed more frequently because the number of pulses is large at a low speed. In addition, the amount of phase fluctuation per unit time is small. Therefore, depending on the disturbance, control instability due to overcorrection may occur.
  • the limit value is lowered and increased during high-speed operation, so that an accurate command can be obtained regardless of the speed (ie, output frequency or frequency command value) and the number of pulses without overcorrection as described above. Correction can be realized.
  • the amount of phase change per unit time differs depending on the speed, so in order to realize finer correction, the effective bit length of the phase correction amount is changed by the speed, the number of pulses, and the modulation rate. Is effective. For example, if the effective bit length of integration processing is short at low speed, long at high speed, and the decimal point position is changed according to speed, phase correction with high accuracy can be realized even at higher speed.
  • the modulation rate command value so that the amplitude and phase of the fundamental wave of the output voltage of each inverter (after adding the dead time) coincide with each other at the voltage pattern level so as to equalize the currents of two or more inverters.
  • the control for generating the phase command value is effectively performed at the timing when the pulse is stabilized. Thereby, even when the number of times of control (control load) is small and the number of times of switching is low, harmonics can be reduced, and even if a voltage difference occurs between the inverters, the occurrence of a current difference can be prevented. Furthermore, it is possible to prevent instability of motor control due to mutual interference caused by magnetic coupling between windings caused by current imbalance. In particular, even an electric motor with a small number of poles and strong coupling between windings can suppress loss due to current imbalance in both fundamental wave and harmonic wave.
  • the control Since the number of devices can be reduced by one from the number of inverters, the processing load can be reduced.
  • the reference power converter is set, and only the reference power converter is set with the current reference value as in the first inverter of the second embodiment, and the voltage correction amount and the modulation rate are controlled by PI control from the current difference from the reference value.
  • a control configuration that obtains the phase correction amount and obtains the modulation rate correction amount and the phase correction amount by using the two types of control methods described in the third embodiment for the other inverters based on the difference from the reference power converter. be able to.
  • the number of controllers required is the same as the number of inverters, but accurate and stable control can be performed, and an optimal combination of control methods can be selected according to a control response request and load.
  • the present invention relates to a control device for driving a multi-winding motor having a plurality of windings by a plurality of inverters, which reduces harmonics and can correct unbalance of each inverter with high accuracy.
  • the present invention can be widely applied to a capacity multi-winding motor drive control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

複数巻線三相電動機(5)を駆動する第1、第2インバータ(2,3)の電流を算出し、この電流を均等にするための変調率指令、位相指令を生成する変調率・位相指令生成部(13)と、周波数指令から半周期当たりのパルス数を決定するパルス数決定部(12)と、スイッチングパターンを記憶するパターンテーブル(14)と、パルス数に基づいた最適なスイッチングパターンで第1、第2インバータ(2,3)を制御するゲート信号発生器(15-1,15-2)を備えて、前記変調率・位相指令生成部(13)は、前記第1、第2インバータ(2,3)の電流を均等にする制御を行い、前記制御の位相や頻度は前記パルス数、前記変調率、前記周波数指令、前記スイッチングパターンのいずれかに合わせて変更する多重巻線電動機駆動制御装置(1)

Description

多重巻線電動機駆動制御装置
 この発明は、1台の電動機内に独立した複数の巻線を有する多重巻線電動機を複数のインバータにより駆動して、回転を可変速制御する多重巻線電動機駆動制御装置に関するものである。
 多重巻線電動機を巻線群毎に複数台のインバータにそれぞれ並列接続して制御する場合、1巻線電動機を複数インバータに並列接続して運転する場合に比べ、横流防止用に各インバータごとにリアクトルを配置する必要がないという利点がある。また、大容量の場合は、単位容量のインバータを負荷容量に合わせて組み合わせることができるため、インバータの開発・製造が効率化してコストダウンが図れるという利点がある。
 しかし、この方式では各巻線組に流れる電流に不平衡があると、平衡しているときに較べて大容量のインバータが必要になる、あるいは電流位相が不平衡になると、巻線間の磁気結合による干渉で巻線間のトルクリプルが発生する等の問題が発生する。
 この問題を解決するために、各巻線電流の平均と偏差を検出し、平均値は指令値に、偏差は0に制御して、各インバータと巻線に流れる電流を等しくする方式が開示されている(例えば、特許文献1)。
 また、スイッチング速度の遅いスイッチング素子では、PWMキャリアの周波数を大きくできないため、出力電圧に低次の高調波が残存する問題に対して、少ないスイッチング回数を有効利用し、特定の低次の高調波を低減するタイミングでスイッチングを行う、低次高調波消去PWMが開示されている(例えば、非特許文献1)。
特許第2733724号公報(段落[0006]、[0007]、図1、図3)
「Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters:Part I-Harmonic Elimination」(IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.IA-9,NO.3,MAY/JUNE 1973)(315~316頁)
 しかし、特許文献1開示方法は、三角波比較PWM電圧を前提にしており、インバータ間の電流振幅差、位相差をなくすには、瞬間電流差による瞬間電圧補正が必要で、非常に早い応答が必要になる。このため、キャリアを速くできない高電圧・大容量インバータでの実現は困難である。
 また、非特許文献1開示方法では、基本波より早い応答の制御ではPWMの正負対称で1/4周期で左右対称な波形が崩れてしまい、制御を高応答で行うと、キャリア周波数の高い三角波PWMに比べて制御が不安定化しやすいという問題がある。
 この発明は、上記のような問題を解決するためになされたものであり、複数台の大容量インバータに対し、高調波を低減し、各インバータの電圧位相、振幅アンバランスの補正を高い精度で行える多重巻線電動機駆動制御装置を提供することを目的とする。
 この発明に係る多重巻線電動機駆動制御装置は、多重巻線交流電動機を駆動するためにスイッチング素子を有して、直流電源を可変電圧および可変周波数の交流電源に変換する複数の電力変換器と、電力変換器を制御する制御部とを備え、制御部は多重巻線交流電動機を所望の回転速度で駆動するための出力電圧、出力電圧位相を算出して出力する出力電圧制御部とスイッチング素子をPWM制御するPWM制御部とを備え、出力電圧制御部は、周波数指令に基づいて出力電圧を決定する出力電圧決定部と、出力電圧位相を周波数指令に基づいて積分して算出する出力電圧位相算出部と、出力電圧位相に基づいて電力変換器のd軸電流、q軸電流を算出し、このd軸電流、q軸電流に基づき、多重巻線交流電動機の各巻線を流れる電流を均等にするための電力変換器の変調率、位相補正量を算出し、これに基づき電力変換器を制御する変調率指令および位相指令を生成する変調率位相指令生成部とを備え、PWM制御部は、出力電圧制御部で算出した出力電圧と直流電源の直流電圧とに基づいて変調率を演算する変調率演算部と、スイッチング素子のPWM制御における半周期当たりのパルス数を周波数指令に基づいて決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンをパルス数別に変調率の大きさに応じて記憶するパターンテーブルと、変調率演算部からの変調率とパルス数決定部からのパルス数および出力電圧制御部にて算出した出力電圧位相に基づいてパターンテーブルからのスイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器とを備え、変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、制御の位相や頻度はパルス数、変調率、周波数指令、スイッチングパターンのいずれかに合わせて変更するものである。
 この発明に係る多重巻線電動機駆動制御装置によれば、電動機の各巻線を流れる電流を均等にするための変調率指令および位相指令を生成する変調率位相指令生成部と、PWM制御における半周期当たりのパルス数を決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンをパルス数別に変調率の大きさに応じて記憶するパターンテーブルと、スイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器を備え、変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、この制御の位相や頻度はパルス数に合わせて変更するものであるため、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
この発明の実施の形態1の多重巻線電動機駆動制御装置に係る全体構成図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る構成の一部詳細図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのパルスパターンと制御キャリアの関係の説明図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのパルスパターンと制御キャリアの関係の説明図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータの低次高調波消去PWMの出力電圧例である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのスイッチングパターン位相波形図である。 この発明の実施の形態1の多重巻線電動機駆動制御装置に係る各インバータのスイッチングパターン位相波形図である。 この発明の実施の形態2の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態2の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る全体構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る全体構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る変調率位相指令生成部の構成図である。 この発明の実施の形態3の多重巻線電動機駆動制御装置に係る電流均等制御器の構成図である。
実施の形態1.
 実施の形態1は、制御部は出力電圧制御部とPWM制御部とを備え、出力電圧制御部は、出力電圧決定部と、出力電圧位相算出部と、インバータの電流に基づき、多重巻線交流電動機の各巻線を流れる電流を均等にするための変調率、位相補正量を算出し、これに基づきインバータを制御する変調率指令および位相指令を生成する変調率位相指令生成部を備え、PWM制御部は、変調率演算部と、PWM制御における半周期当たりのパルス数を周波数指令に基づいて決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンを記憶するパターンテーブルと、変調率、パルス数、出力電圧位相に基づいてパターンテーブルからのスイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器を備え、さらに変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、この制御の位相や頻度はパルス数に合わせて変更する多重巻線電動機駆動制御装置に関するものである。
 以下、本願発明の実施の形態1に係る多重巻線電動機駆動制御装置1の構成、動作について、多重巻線電動機駆動制御装置の全体構成図である図1、構成の一部詳細図である図2、変調率位相指令生成部の構成図である図3、電流均等制御器の構成図である図4、各インバータのパルスパターンと制御キャリアの関係の説明図である図5、図6、各インバータの低次高調波消去PWMの出力電圧例である図7、および各インバータのスイッチングパターン位相波形図である図8、図9に基づいて説明する。
 図1は、本発明の実施の形態1の多重巻線電動機駆動制御装置1を含めたシステム全体の構成を示している。また、図2は、多重巻線電動機駆動制御装置1を構成する第1群インバータ2の詳細構成図である。なお、第2群インバータ3の詳細構成図は、第1群インバータ2と同様であるため、省略している。
 図1において、多重巻線電動機駆動制御装置1を含む全体システム100は、多重巻線電動機駆動制御装置1と、外部交流電源40と、リアクトル41と、電動機5とから構成される。
 多重巻線電動機駆動制御装置1は、外部交流電源40からの交流電源をリアクトル41経由して受けて、内部で直流に変換し、この直流電源を使用して、電動機5を制御する。
 なお、実施の形態1では、電動機5として2つの巻線群を有する多重巻線電動機を想定している。
 次に、多重巻線電動機駆動制御装置1の内部構成を図1、図2に基づいて説明する。
 多重巻線電動機駆動制御装置1は、第1群インバータ2と第2群インバータ3を備えるインバータ部4と、制御部8と、電動機5の電動機電流を検出する電流センサ16とから構成される。実施の形態1では、2つの巻線群を有する多重巻線電動機である電動機5に対応して、2台の第1群インバータ2と第2群インバータ3を備える。
 なお、適宜、第1群インバータ2を第1インバータ2と、第2群インバータ3を第2インバータ3と記載する。また、第1インバータ2と第2インバータ3を区別する必要がなく、総称する場合は、適宜インバータと記載する。
 なお、本発明の電力変換器は、第1群インバータ2、第2群インバータ3である。
 インバータ部4の第1インバータ2の内部構成を、外部交流電源40、リアクトル41、および電動機5との接続も含めて、図2に示している。
 制御部8は、大きく出力電力制御部81とPWM制御部82とから構成される。
 出力電力制御部81は、出力電圧位相算出部9と、出力電圧決定部10と、変調率位相指令生成部13とを備える。
 PWM制御部82は、変調率演算部11と、パルス数決定部12と、パターンテーブル14と、ゲート信号発生器15-1、15-2とを備える。
 なお、第1インバータ2用のゲート信号発生器15-1と第2インバータ3用のゲート信号発生器15-2とを区別する必要がなく、総称する場合は、適宜ゲート信号発生器15と記載する。
 第1インバータ2では、交流入力電圧を整流回路部6-1のトランスとダイオードによりU、V、W相それぞれに絶縁された直流電圧として出力する。第1インバータ2は、この直流電力を交流電力に変換して、電動機5に供給する。また、第1インバータ2は電動機5との接続部分において、各巻線のU、V、W相の電動機電流を検出する電流センサ16-1を備えている。
 第1インバータ2は中性点クランプ式の3相の3レベルインバータの2つのレグ(Aレグ7a、Bレグ7b)を直列接続した5レベルインバータ回路を三相分用意したものである。そして、各レグのスイッチング素子のスイッチング動作により、整流回路部6-1が整流した直流電圧を任意の大きさおよび周波数の交流電圧に変換して出力する。また、第1インバータ2は、整流回路部6-1の出力するU、V、W各相の直流電圧(vdc1a~vdc1c)を検出する第1群用直流電圧センサ(17-1a~17-1c)を備えている。
 なお、図示していないが、第2インバータ3は、第1インバータ2と同様の構成であり、交流入力電圧を整流回路部6-2のトランスとダイオードによりU、V、W相それぞれに絶縁された直流電圧として出力する。さらに、第2インバータ3の各レグのスイッチング素子のスイッチング動作により、直流電圧を任意の大きさおよび周波数の交流電圧に変換して出力する。また、第2インバータ3はそれぞれ、整流回路部6-2の出力するU、V、W各相の直流電圧(vdc2a~vdc2c)を検出する第2群用直流電圧センサ(17-2a~17-2c)を備えている。
 次に、制御部8の出力電力制御部81とPWM制御部82との主要構成を各部の機能と合わせて説明する。
 出力電力制御部81は、第1および第2インバータ2、3の周波数指令値Fcを積分して標準位相指令値th*refを算出する出力電圧位相算出部9と、周波数指令値FcからV/fパターンにより相電圧の振幅Vpを演算する出力電圧決定部10とを備える。さらに、電流センサ16-1により検出した第1インバータ2と電動機巻線第1群を流れる相電流iuvw1、電流センサ16-2により検出した第2インバータ3と電動機巻線第2群を流れる相電流iuvw2を元に、2台の第1、第2インバータ2、3と電動機の2群の巻線に流れる電流差を算出し、その電流差が0になるように2台の第1、第2インバータ2、3の変調率指令値(inv1*mod、inv2*mod)および位相指令値(inv1*th、inv2*th)を生成する変調率位相指令生成部13を備える。
 PWM制御部82は、出力電圧決定部10が演算した相電圧振幅指令値Vpを元に変調率mod*refを演算する変調率演算部11と、第1、第2インバータ2、3の周波数指令値Fcからパルス数Pnumを決定するパルス数決定部12とを備える、ここで、パルス数Pnumとは、各レグ7a、7b毎に出力する半周期あたりのパルス数で、2×パルス数が単相分の出力電圧となる。
 また、PWM制御部82は、各インバータにパルス数別、変調率mの大きさ別に高調波を低減できるスイッチングパターン(th1a、th2a、th3a・・・・・thna、th1b、th2b、th3b・・・・・thnb)を記憶する記憶部としてのパターンテーブル14を備える。
 パターンテーブル14は2台のインバータで同じパターンテーブルを使用することとしているが、各インバータにパターンテーブルを用意してもよい。
 なお、(th1a、th2a、th3a・・・・・thna)はAレグ7aに対するスイッチングパターンであり、(th1b、th2b、th3b・・・・・thnb)はBレグ7bに対するスイッチングパターンである。すなわち、パターンテーブル14はレグ7a、7b毎に異なるスイッチングパターンを記憶し、2種のスイッチングパターンを組み合わせて2レグ分のスイッチングパターンとする。
 更にPWM制御部82は、第1、第2インバータ2、3のそれぞれ2つのスイッチングレグ7a、7bのスイッチング素子を制御するゲート信号(gs1、gs2)を生成するゲート信号発生器15-1、15-2を備える。
 次に制御部8の全体動作を図に基づいて説明する。
 出力電圧位相算出部9は周波数指令値Fcを積分し、第1、第2インバータ2、3の位相指令値th*refを生成する。
 また、出力電圧決定部10では、インバータ周波数と電動機の誘起電圧は一定の比例関係にあるという前提で定格の相電圧振幅Vratedと定格の電気角周波数Fratedの比Kvfより、周波数指令値Fcでの相電圧振幅Vpを求める。すなわち、Kvfとインバータの周波数指令値Fcにおける第1、第2インバータ2、3相電圧振幅指令Vpは(1)式および(2)式で求められる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 変調率演算部11は、出力電圧決定部10から出力される第1、第2インバータ2、3の相電圧振幅指令Vpと、第1、第2インバータ2、3の電圧センサ17-1a~17-1c、17-2a~17-2cで検出したU相V相W相の直流電圧(第1群:vdc1a~vdc1c、第2群:vdc2a~vdc2c)を用いて算出した平均電圧Vdcとから、(3)式により変調率mod*refを演算する。そして、変調率演算部11は、平均直流電圧Vdcと変調率指令値mod*refを変調率位相指令生成部13に出力する。
Figure JPOXMLDOC01-appb-M000003
 パルス数決定部12は、2台の第1、第2インバータ2、3の周波数指令値Fcに応じてPWM制御における半周期あたりのパルス数Pnumを決定する。容量インバータのようなスイッチング速度の遅い素子を持つインバータでは、周波数指令値Fcが高くなると半周期あたりのパルス数Pnumを段階的に少なくして、スイッチング回数を減らす必要がある。本実施の形態1では、3パルス/5パルス/7パルス/9パルス/11パルスの5種類のパルス数Pnumのスイッチングパターンを記憶したパターンテーブル14を持ち、周波数指令値Fcが上がるにつれて、パルス数Pnumを11パルス→9パルス→7パルス→5パルスと→3パルスとパルス数を切り替える。
 なお、本発明の周波数指令は周波数指令値Fcである。
 2台の第1、第2インバータ2、3の整流回路部6-1、6-2の定数の違いや負荷変動などの外乱により、第1インバータ2の三相直流電圧(vdc1a~vdc1c)と第2インバータ3の三相直流電圧(vdc2a~vdc2c)に電圧差が生じると、同じ変調率指令値mod*refと位相指令値th*refを与えても、2台の第1、第2インバータ2、3から出てくる電圧の振幅に差異が生じる。正弦波電圧で考えると、2台の第1、第2インバータ2、3のそれぞれの直流電圧に対する直流電圧定格値の比をmod*refに乗じた変調率をそれぞれの変調率として与えればよい。しかしPWMの場合、同じ振幅を出力しても、変調率によるPWM波形の違いやデッドタイムによるパルスずれ、特に0電圧付近での電流方向の違いによるパルスの正負方向の違いによるずれで、基本波の位相にずれが生じる。
 スイッチング速度の遅い素子を持つ大容量インバータでは、デッドタイムが長いためこうしたずれが大きくなり、2台の第1、第2インバータ2、3の差電流が大きくなる。そのため、変調率位相指令生成部13では、電流均等制御器18により、2台のインバータ電流の差をなくすよう、2台の第1、第2インバータ2、3それぞれにおける変調率補正量と位相補正量を算出し、これを基に2台の第1、第2インバータ2、3の変調率指令値、位相指令値を生成する。
 なお、本発明の変調率指令は変調率指令値であり、位相指令は位相指令値である。
 変調率位相指令生成部13は、電流センサ16-1で検出した第1インバータ2の三相電流iuvw1、および電流センサ16-2で検出した第2インバータ3の三相電流iuvw2と、変調率演算部11からの変調率指令値mod*refおよび平均直流電圧Vdcを用いて第1、第2インバータ2、3の巻線を流れる電流差をなくす変調率指令値と位相指令値を、第1、第2インバータ2、3用に生成する。
 さらに、変調率位相指令生成部13は、第1インバータ2用の変調率指令値inv1*mod、位相指令値inv1*thと、第2インバータ3用の変調率指令値inv2*mod、位相指令値inv2*thを生成する。そして、変調率位相指令生成部13は、変調率指令値inv1*mod1、inv2*modをパターンテーブル14に出力し、位相指令値inv1*th、inv2*thを第1、第2インバータ2、3のゲート信号発生器15-1、15-2に出力する。
 また、変調率位相指令生成部13は、第1、第2インバータ2、3の電流を均等にする制御を1つ以上の位相で1周期に1回以上行い、その制御の位相や頻度はパルス数、変調率、周波数指令値、スイッチングパターンのいずれかに合わせて変更する。
 図3は変調率位相指令生成部13の構成図である。変調率位相指令生成部13では、電流均等制御器18により、2台のインバータと巻線を流れる三相電流iuvw1、iuvw2から群間の電流差を算出し、これを0になるようにする変調率補正量Δmod12、位相補正量Δth12を出力する。
 図4は電流均等制御器18の構成図である。図4において、電流均等制御器18は、第1インバータ2および第2インバータ3の電流を位相指令値th*refにより3相/2相変換して制御軸γ-δ軸上の電流を得る3相/2相変換器21a、21bを備える。さらに、電流均等制御器18は、第1、第2インバータ2、3の制御軸におけるγ軸(d軸)電流同士の差(第1群-第2群:iγ1-iγ2)から変調率補正するための補正量を出力するC12d制御器22aと、第1、第2インバータ2、3の制御軸におけるδ軸(d軸)電流同士の差(第1群-第2群:iδ1-iδ2)から位相補正するための補正量を出力するC12q制御器22bとを備える。また、電流均等制御器18は、C12d制御器22aで得た補正量を、直流電圧Vdcを用いて変調率補正量に変換する補正量/変調率変換器28と、C12q制御器22bで得た補正量を位相補正量に変換する補正量/位相変換器29とを備える。
 一般に回転子の磁束ベクトルと同期して、回転角周波数ωrで回転する回転座標(d-q座標)における二重巻線IPMの電圧方程式は(4)式で表される。
 (4)式中vds1、vqs1、ids1、iqs1は、第1群巻線のdq軸電圧とdq軸電流である。vds2、vqs2、ids2、ids2は、第2群巻線のdq軸電圧とdq軸電流である。Ld、Lqは各巻線のd軸q軸のインダクタンス、Raは巻線抵抗、Md、Mqは巻線間の相互インダクタンス、Pは微分演算子である。
Figure JPOXMLDOC01-appb-M000004
 (4)式から1群巻線と2群巻線の電圧差を求めると、(5)式のようになる。
Figure JPOXMLDOC01-appb-M000005
 上記のように、各群間の電圧差と電流差の関係の式にすると、抵抗Ra、漏れインダクタンスL(Ld-Md、Lq-Mq)、および回転角周波数ωrのみの式となり、1群巻線の電流が2群巻線の電圧に、2群巻線の電流が1群巻線の電圧に影響を与える干渉項((4)式の行列における、PMの項とωrMの項)が含まれない。このため、巻線間の群間干渉を考慮せずに差電流をなくす電圧差(補正電圧量)を求めることができる。
 上記の電圧方程式から制御を簡易にするために速度起電力を無視して、1次遅れのみ(d軸は(Ld-Md)とRaの項、q軸は(Lq-Mq)とRaの項)を制御対象とする。
 具体的には、電流差ids1-ids2とiqs1-iqs2から指令値0のPI制御により、所望の制御応答ωcで2群の電圧差(vds1-vds2、vqs1-vqs2)を算出し、これを元に変調率補正量、位相補正量を算出する。
 本実施の形態1では、理想上の制御座標(γ-δ座標)が電動機5の回転座標(d-q座標)と同じであるとして、iγ1-iγ2、iδ1-iδ2、指令値0として、C12d制御器22a、C12q制御器22bにより電圧差Vγ1-Vγ2、Vδ1-Vδ2を求める。C12d制御器22aおよびC12q制御器22bのPI制御の伝達関数は(6)式、(7)式で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、PゲインKp=ωc×(Ld-Md)、IゲインKi=ωc×Ra
Figure JPOXMLDOC01-appb-M000007
 ここで、PゲインKp=ωc×(Lq-Mq)、IゲインKi=ωc×Ra
 γ軸電流の群間差電流は、C12d制御器22aによって算出された電圧差Vγ1-Vγ2を直流電圧平均値Vdcで除して、1/2を乗じた値を2台の第1、第2インバータ2、3への変調率補正量Δmod12とする。
 また、δ軸電流の群間差電流は、C12q制御器22bによって算出された電圧差Vδ1-Vδ2をδ軸の電圧補正量ΔVδとすると、γδ軸での電圧絶対値VγδとΔVδのなす角度θは(8)式で表される。
Figure JPOXMLDOC01-appb-M000008
 この時、ΔVδはVγδに比べて十分小さく補正量ΔVδによるVγδへの影響は無視できるとする。(8)式により求めるθが十分に小さい場合、θはΔVδ/Vγδと等価であることから、補正量ΔVδからの位相補正量Δth12への変換式は(9)式で表される。
Figure JPOXMLDOC01-appb-M000009
 ΔVδは第1インバータ2の電圧に対する第2インバータ3の電圧補正量と等価のため、位相補正量は第2インバータ3に対してのみ与えられる。
 図3に示すように、電流均等制御器18で得た変調率補正量Δmod12と位相補正量Δth12により、第1インバータ2の変調率指令値inv1*mod、第2インバータ3の変調率指令値inv2*mod、さらに第1インバータ2の位相指令値inv1*th、第2インバータ3の位相指令値inv2*thは、(10)式で求められる。
Figure JPOXMLDOC01-appb-M000010
 以上説明した方法により2つの第1、第2インバータ2、3用の変調率指令値、位相指令値を生成し、変調率指令値をパターンテーブル14に、位相指令値をゲート信号発生器15に出力する。
 本実施の形態1では、大容量インバータのようにスイッチング速度の遅い素子を持つインバータや、何らかの理由でキャリアを上げられず少ないスイッチング回数で高速運転が必要なインバータでも少ないスイッチング回数を最大限有効に利用し、低次高調波を低減したPWMを出力できるパターンテーブル14を備えている。
 このスイッチングパターン導出方法の詳細は後述する。スイッチング速度の遅い素子を有する実施例では、均等電流制御の頻度を高くするまたは制御応答を速くすると、頻繁な変調率や位相の補正によりパルスの変化時間が早くなり、スイッチングの追従ができなくなる恐れがある。これは低次高調波消去PWM、一般的な三角波比較PWMのどちらの場合でも起こりうるが、低次高調波消去PWMの場合は、更に、電圧波形の制御による変化が速すぎる場合には、左右対称且つ正負対称な波形が崩れてしまい、それにより制御が不安定になる、すなわち電流変動が大きくなることがある。そのため、本実施の形態1では、低次高調波消去PWMのパルス数や変調率によって上記の制御の頻度を変えることで安定した精度の高い補正を行えるようにした。
 図5、図6はパルス数Pnum=3の場合におけるパルスパターンと制御キャリアの関係を表したものである。
 パルス数Pnum=3の場合、スイッチングレグ7a、7bのスイッチング回数は1周期で12回ある。例えば、図5のように制御周期(キャリア)を指令値周波数の6倍とし、3レベルのスイッチング回数に合わせて、指令値の0位相(0、π、2π)およびピーク位相(π/2と3/2π)にキャリアの山谷が来るようにして、キャリアの山もしくは谷で1周期に12回制御をする。スイッチング回数を考慮すると制御キャリアはこのようになるが、高変調率になるとパルス幅が広くなるため、変調率が高い場合(V/fの場合は運転周波数が高いことと同義)などは、図6のように、制御周期(キャリア)を指令値周波数の5.5倍と減らして、キャリアの山谷(指令値1周期に11回)で定期的に制御を行う。このようにして、パルス数Pnumによって、パルス波形が安定すると思われる位相で第1、第2インバータ2、3の電流を検出し、電流差がなくなるように補正量を算出して、第1、第2インバータ2、3の変調率指令値、位相指令値を出力する。このため、2台の第1、第2インバータ2、3から出力されるPWM波形の振幅、位相を少ない回数で精度よく合わすことができ、結果として電流差の増加による制御不安定化や損失の増大が防止できる。
 パターンテーブル14では、パルス数Pnum別に、変調率mの大きさ毎に出力電圧の低次高調波を低減できるスイッチングパターンを記憶し、パルス数決定部12からのパルス数Pnumと、変調率位相指令生成部13からの第1インバータ2、および第2インバータ3の変調率指令値inv1*mod、inv2*modとに基づいて、それぞれのインバータ用のスイッチングパターンを読み出す。
 次に第1インバータ2および第2インバータ3のスイッチングパターンと出力電圧について図7に基づいて説明する。
 図7はPnum=3パルスの場合における、5レベルインバータの単相分の出力電圧と、直列接続された2つのスイッチングレグ7a、7bの出力電圧との関係の一例を示したものである。
 第1、第2インバータ2、3の各相の2つのスイッチングレグ7a、7bは、それぞれスイッチングパターン(th1a、th2a、th3aとth1b、th2b、th3b)に基づき、半周期に3パルスの3レベル電圧を出力し、それを合成したものが第1、第2インバータ2、3の5レベルインバータの単相分の出力電圧となる。
 低次高調波消去PWM方式では、パルス数が3の場合、特定の低次の高調波を低減するようにAレグ7aのスイッチングパターンth1a、th2a、th3aと、Bレグ7bのスイッチングパターンth1b、th2b、th3bを(11)式で求める。なお、(11)式では、5、7、11、13次の電圧高調波を低減し、2レグ分の3レベルインバータに基本波を等しく分担している。
Figure JPOXMLDOC01-appb-M000011
 上記(11)式により求めたスイッチングパターンを示す位相の波形図を図8、図9に示す。図8はAレグ7aのスイッチング位相波形、図9はBレグ7bのスイッチング位相波形である。
 3パルスの場合、2つのスイッチングレグのスイッチング位相は1/4周期でそれぞれ3つ、合計6つで、これが低次高調波低減PWMのスイッチング位相を求める方程式の自由度となる。本実施の形態1では、各スイッチングレグ7a、7bで出力する基本波振幅の配分を均等としたため高調波に使用できる自由度が4で5、7、11、13次の電圧高調波を消去する方法とした。しかし、他の次数を消去する、またはパルス幅制限を加えるほか、基本波振幅の配分を均等としないなどの条件で位相を求めることもありうる。
 第1インバータ2用ゲート信号発生器15-1、および第2インバータ3用ゲート信号発生器15-2は、それぞれの第1、第2インバータ2、3の変調率指令値inv1*mod、inv2*modに基づいてパターンテーブルから読み出す。そして、ゲート信号発生器15は、各スイッチングレグ7a、7b用のスイッチングパターンと、位相指令値inv1*th、inv2*thに基づいて、各スイッチング素子をゲートオン/オフするゲート信号を発生してスイッチングを行い、図7で説明した5レベルの出力電圧を各相に出力する。
 本実施の形態1では第1、第2インバータ2、3の電流を均等にする制御をパルス数に基づいて制御キャリアを設けてその山谷で行うようにしたが、パルス出力が安定した位相で行えればよい。具体的には、制御を行う位相をパルス数ではなく変調率、出力周波数やパルスパターンによって変えてもいいし、制御キャリアを持たずに、パルスパターンのパルス位相を用いてもよい。なお、出力周波数は、周波数指令値Fcの単位を変換したものであり、定数を乗して算出したものであるから、出力周波数の代わりに周波数指令値を用いてもよい。
 また、変調率、位相補正量を算出する応答を出力周波数よりも低く設定してもよい。これにより、母線電圧の変動(本実施の形態1の場合は、各相の直流電圧が2fで振動する。fは出力周波数)や、デッドタイムによるトルクリプル(6fで振動する。fは出力周波数)の変動の影響による誤補正が起こりにくく、安定した補正が行える。
 以上のように、2台の第1、第2インバータ2、3の電流を均等にするように電圧パターンレベルでそれぞれの第1、第2インバータ2、3の出力電圧(デッドタイム付加後)の基本波が一致するレベルまで変調率指令値、位相指令値を生成する制御を、パルスが安定するタイミングで効果的に行う。これにより、少ない制御回数(制御負荷)でも、また少ないスイッチング回数でも高調波を低減でき、かつ、第1、第2インバータ2、3間に電圧差が発生しても電流差の発生を防止し(出力電圧基本波での位相差は高調波電圧差の影響がほとんどない0.01deg未満)、電流アンバランスによって引き起こされる巻線間の磁気結合による相互干渉による電動機制御の不安定化を防止できる。
 特に、極数が少なく巻線間の結合が強い(漏れ磁束が少ない)電動機では、巻線間のわずかな電圧振幅差(定格の数%)や定格周波数運転でのデッドタイム相当の位相差であっても、巻線間の電流差が大きくなり、電流変動が発生しやすい、という問題がある。本実施の形態1の発明を適用することで、この電圧振幅差を1/10~1/100以下に抑えることができ、巻線間の電流差を基本波、高調波共に減らすことができる。
 また、直流電圧変動について説明しなかったが、非同期PWMのような指令値周波数とキャリアが整数倍関係にない三角波比較PWMの場合は、スイッチング回数が少ない時にこれらの周波数の不整合により加速中も直流電圧が不定な低周波で振動し、その影響で電流差が大きくなりやすい問題がある。本実施の形態1の発明を適用することで、低次高調波消去PWMの場合は、正負対象で指令値の周波数に同期した波形となるため、このような問題は起こらない。
 低次高調波消去PWMを用いた場合、あらかじめ用意した高調波を低減する基本波のパルスパターンを元にPWMを出力するため、上記のような制御を従来のような基本波より早い応答する、あるいは制御の頻度を高くすると、PWMの正負対称で1/4周期で左右対称な波形が崩れてしまい、制御が不安定になることがある。しかし、本実施の形態で説明したようにパルス数に合わせて(パルス数だけでなく、変調率や出力周波数、パルスパターンに合わせてもよい)制御キャリアを設定し、その山谷で制御するように、パルスが安定する位相で制御を行うことにより、複数巻線群の電流差をなくす制御のPWM制御に対する影響を少なくし、かつ電動機駆動制御を安定して精度よく行うことができる。
 更に、V/f制御のように回転数や回路定数等で一意に電動機印加電圧が決まるフィードフォワード制御でも適用できる。このため、制御上電圧余裕を必要とせず、インバータの出力電圧範囲を最大限利用でき、高圧電動機の制御におけるトルク変動や電圧変動による電流不均衡がもたらすトルクリプル等を低減した安定制御が可能となる。
 以上説明したように、実施の形態1の多重巻線電動機駆動制御装置は、制御部は出力電圧決定部と、出力電圧位相算出部と、インバータの電流に基づき、多重巻線交流電動機の各巻線を流れる電流を均等にするための変調率、位相補正量を算出し、これに基づきインバータを制御する変調率指令および位相指令を生成する変調率位相指令生成部と、変調率演算部と、PWM制御における半周期当たりのパルス数を周波数指令に基づいて決定するパルス数決定部と、出力電圧の低次高調波を低減したスイッチングパターンを記憶するパターンテーブルと、変調率、パルス数、出力電圧位相に基づいてパターンテーブルからのスイッチングパターンを用いてスイッチング素子を駆動するゲート信号を生成するゲート信号発生器を備え、さらに変調率位相指令生成部は、電力変換器の電流を均等にする制御を行い、この制御の位相や頻度はパルス数に合わせて変更するものである。したがって、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
 また、実施の形態1の多重巻線電動機駆動制御装置は、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御できるため、制御装置の小型化、長寿命化を図ることができる。
実施の形態2.
 実施の形態2の多重巻線電動機駆動制御装置は、電流基準値を設定し、この電流基準値に各インバータの電流を合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。
 以下、実施の形態2の多重巻線電動機駆動制御装置の構成および動作について、変調率位相指令生成部の構成図である図10、および電流均等制御器の構成図である図11に基づいて、実施の形態1との差異を中心に説明する。図10、11において、図3、4と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態2の説明で、実施の形態1で説明した図を適宜参照する。
 実施の形態2における多重巻線電動機駆動制御装置の構成は、実施の形態1の図1、図2と基本的に同じであり、変調率位相指令生成部内の構成が異なる。
 実施の形態2の説明では、実施の形態1と区別するために、多重巻線電動機駆動制御装置201、変調率位相指令生成部213、電流均等制御器218とする。
 図10は本実施の形態2における変調率位相指令生成部213の構成を示したものである。図10において、実施の形態1の図3の構成と異なるのは、変調率位相指令生成部213の入力で、かつ電流均等制御器218への入力として電流基準値id*refとiq*refが追加されている点である。
 実施の形態2では、実施の形態1の2台の第1、第2インバータ2、3の電流差を制御軸(γ―δ軸)上で0になるようにする制御の代わりに、γ―δ軸でそれぞれのインバータのγ軸電流、δ軸電流がそれぞれ同じ電流基準値id*ref、iq*refになるようにすることにより、両者の電流を均等にすることができる。
 図11は、変調率位相指令生成部213内の電流均等制御器218の構成を示した図である。図11において、以下に述べる構成以外は実施の形態1と同様である。
 電流均等制御器218は、第1インバータ2のγ電流iγ1と電流基準値id*refとの差を入力して第1インバータ2のγ軸電圧補正量ΔVγ1を算出するC1d制御器24aとδ電流iδ1と電流基準値iq*refとの差を入力して第1インバータ2のδ軸電圧補正量ΔVδ1を求めるC1q制御器24bを備える。同様に、電流均等制御器218は、第2インバータ3のγ軸電圧補正量ΔVγ2とδ軸電圧補正量ΔVδ2を求めるC2d制御器25aとC2q制御器25bを備える。さらに、C1d制御器24a、C1q制御器24bで算出したγ軸電圧補正量ΔVγ1およびΔVγ2と平均直流電圧Vdcを元に変調率補正量Δmod1およびΔmod2を算出する補正量/変調率変換器28を備える。さらに、Δ軸電圧補正量ΔVδ1、ΔVδ2を元に、実施の形態1と同じ方法で位相補正量Δth1、Δth2を算出する補正量/位相変換器29を備える。
 電流基準値id*ref、iq*refは、2つの第1、第2インバータ2、3の電流値の差の1/2をそれぞれのインバータ電流に加減することにより得られる現在の各γ軸電流、δ軸電流の平均にしてもよい。また、例えば第1、第2インバータ2、3でd軸電流基準値id*refを力率制御のための指令値に設定し、q軸電流基準値iq*refをトルク指令等から算出した指令値にしてもよい。
 仮にid*refとiq*refを2台の第1、第2インバータ2、3のγ軸δ軸のそれぞれの電流平均とすると、電圧補正量ΔVγ1、ΔVγ2、ΔVδ1、ΔVδ2は(12)式で表され、(13)式から算出できる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 実施の形態1と同様に、(13)式において1次遅れのみ(RL回路部分)を制御対象とし、第1インバータ2のγδ軸電流iγ1、iδ1と指令値id*ref、iq*refのPI制御(C1d制御器24a、C1q制御器24b)により、所望の制御応答ωcで第1インバータ2の電圧補正量ΔVγ1とΔVδ1を算出できる。また、第2インバータ3のγδ軸電流iγ2、iδ2と指令値id*ref、iq*refのPI制御(C2d制御器25a、C2q制御器25b)により、所望の制御応答ωcで第2インバータ3の電圧補正量ΔVγ2とΔVδ2を得て、これを元に変調率補正量Δmod1、Δmod2、位相補正量Δth1、Δth2を算出できる。
 上記の場合、PI制御器(C1d制御器24a、C1q制御器24b、C2d制御器25a、C2q制御器25b)の伝達関数は(14)式、(15)式で表される。
Figure JPOXMLDOC01-appb-M000014
 ここで、PゲインKp=ωc×Ld、IゲインKi=ωc×Ra
Figure JPOXMLDOC01-appb-M000015
 ここで、PゲインKp=ωc×Lq、IゲインKi=ωc×Ra
 先に説明したように、d軸電流基準値id*ref、q軸電流基準値iq*refをベクトル制御のように所望の値にし、V/fパターン電圧からの補正量を求めてもよい。
 しかし、それぞれの基準値からの偏差が大きい場合、2台の第1、第2インバータ2、3の平均値になるようにそれぞれの電圧補正量を求める場合に比べ、安定性が悪くなることがある。その場合は、それぞれのd軸電流基準値id*refとq軸電流基準値iq*refを制御開始時は2台の第1、第2インバータ2、3のγ電流、δ電流の平均とする。そして、それぞれの基準値を所望の指令値まで1次遅れもしくは2次遅れで変化させることにより、2台の第1、第2インバータ2、3の差電流を小さくしつつ、所望の指令値になるように2台のインバータの電圧を制御することが可能である。特に、その場合、基準値を所望の値まで変化させる応答を制御器C1d制御器24a、C1q制御器24b、C2d制御器25a、およびC2q制御器25bの応答より遅くすることが望ましい。
 図10にあるように、2台の第1、第2インバータ2、3の変調率指令値inv1*mod、inv2*mod、および位相指令値inv1*th、inv2*thは、変調率演算部11から入力された変調率指令値mod*refと出力電圧位相算出部9からの位相指令値th*ref、および上記のようにして求めた変調率補正量Δmod1、Δmod2、位相補正量Δth1、Δth2から、(16)式で求められる。
Figure JPOXMLDOC01-appb-M000016
 以上のようにして2台の第1、第2インバータ2、3の電流を均等にするように電圧パターンレベルでそれぞれの第1、第2インバータ2、3の出力電圧(デッドタイム付加後)の基本波の振幅と位相が一致するように変調率指令値、位相指令値を生成する制御を、パルスが安定するタイミングで効果的に行う。これにより、少ない制御回数(制御負荷)でも、また少ないスイッチング回数でも高調波を低減できる。かつ、インバータ間に電圧差が発生しても電流差の発生を防止し、電流アンバランスによって引き起こされる巻線間の磁気結合による相互干渉による電動機制御の不安定化を防止できる。
 特に極数が少なく巻線間の結合が強い電動機でも、電流アンバランスによる損失を基本波、高調波共に抑制できる。加えて、各巻線群の電流、周波数を駆動に最適な制御値に保って制御することが可能である。
 また、直流電圧変動について説明しなかったが、非同期PWMのような指令値周波数とキャリアが整数倍関係にない三角波比較PWMの場合は、スイッチング回数が少ない時にこれらの周波数の不整合により加速中も直流電圧が不定な低周波で振動し、その影響で電流差が大きくなりやすい問題がある。本実施の形態2の発明を適用することで、低次高調波消去PWMの場合は、正負対象で指令値の周波数に同期した波形となるため、このような問題は起こらない。
 以上説明したように、実施の形態2の多重巻線電動機駆動制御装置は、電流基準値を設定し、この電流基準値に各インバータの電流を合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。したがって、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
実施の形態3.
 実施の形態3の多重巻線電動機駆動制御装置は、1台のインバータを基準電力変換器とし、他のインバータの電流をこの基準電力変換器の電流に合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。
 以下、実施の形態3の多重巻線電動機駆動制御装置の構成および動作について、多重巻線電動機駆動制御装置の全体構成図である図12、図13、変調率位相指令生成部の構成図である図14、図17、および電流均等制御器の構成図である図15、図16、図18に基づいて、実施の形態1、2との差異を中心に説明する。図12~図18において、実施の形態1、2の各図と同一あるいは相当部分は、同一の符号を付している。
 図12、13は、本発明の実施の形態3の多重巻線電動機駆動制御装置301を含めたシステム全体の構成を示している。
 図12、13において、多重巻線電動機駆動制御装置301を含む全体システム300は、多重巻線電動機駆動制御装置301と、外部交流電源40と、リアクトル41と、電動機305とから構成される。
 多重巻線電動機駆動制御装置301は、外部交流電源40からの交流電源をリアクトル41経由して受けて、内部で直流に変換し、この直流電源を使用して、電動機305を制御する。電動機305は、3つの三相巻線群を有した界磁巻線式の突極型同期電動機を想定している。
 実施の形態3における多重巻線電動機駆動制御装置の構成は、実施の形態1の図1、図2と基本構成は同じであるが、電動機305は3つの三相巻線群を有し、これに関連する制御部308の構成が一部異なる。
 実施の形態3の説明では、実施の形態1、2と区別するために、多重巻線電動機駆動制御装置301、制御部308、変調率位相指令生成部313、パターンテーブル314、電流均等制御器318とする。
 次に、実施の形態3における多重巻線電動機駆動制御装置301の構成を、実施の形態1における多重巻線電動機駆動制御装置1との具体的差異を説明する。
 図12、13において、インバータ部304には3台目(第3群)のインバータ20が追加されている。第3群インバータ20は、第3インバータ20と適宜記載する。
 なお、本発明の電力変換器は、第1群インバータ2、第2群インバータ3、第3群インバータ20である。
 変調率演算部311は、実施の形態1、2の構成を示す図1、2では2台のインバータの三相の直流電圧(vdc1a~vdc1c、vdc2a~vdc2c)を入力していたのに対し、新たに第3インバータ20の三相の直流電圧(vdc3a~vdc3c)を追加している。
 第3インバータ20と電動機305の3つ目の巻線群を流れる三相電流を検出する電流センサ16-3、および変調率位相指令生成部313では、新たに第3インバータ20の三相電流iuvw3を入力に加え、出力に第3のインバータ20用の変調率指令値inv3*modと位相指令値inv3*thを追加している。そのため変調率位相指令生成部313内の電流均等制御器318内の制御構成も実施の形態1、2と異なっており、これについては後述する。
 パターンテーブル314も、変調率位相指令生成部313と同様に第3インバータ20用の変調率指令値inv3*modを入力に追加し、これを元に第3インバータ20用のパルスパターン(inv3*th1a、inv3*th2a・・・inv3*thnb)を取り出して、第3インバータ20用のゲート信号発生器15-3に出力している。
 第3インバータ20用のゲート信号発生器15-3は、パターンテーブル314からのスイッチングパターンとインバータ位相指令値inv3*thにより第3インバータ20のスイッチング素子を制御するゲート信号(gs3)を生成する。
 また、界磁巻線に流れる電流を検出する電流センサ31、3台のインバータの三相電流iuvw1、iuvw2、iuvw3を群毎に制御座標(γ-δ軸)に変換し、各巻線群のγ軸電流合計値が所望の力率を実現するγ軸電流指令値になるように界磁電流指令値を出力する力率制御部32、電流センサ31により検出した界磁電流が力率制御部32からの界磁電流指令値になるように界磁巻線印加電圧を制御する界磁電流制御部33が追加されている。
 なお、この力率制御における三相電流を制御座標軸(γ―δ軸)に変換する3相/2相変換器は、電流均等制御器318内にある3相/2相変換器と同じである。
 図14は本実施の形態3における変調率位相指令生成部313の構成図である。この変調率位相指令生成部313では、これまでの実施の形態1、2と異なり3群のインバータの電流iuvw1、iuvw2、iuvw3の電流差をなくすようにそれぞれのインバータ用の変調率指令値(inv1*mod、inv2*mod、inv3*mod)と位相指令値(inv1*th、inv2*th、inv3*th)を生成する。
 このため、電流均等制御器318内には、これまでの入力に、第3インバータ20の相電流iuvw3が追加されている。
 図15はこの変調率位相指令生成部313内の電流均等制御器318Aの構成図である。この電流均等制御器318Aでは、第1インバータ2を基準電力変換器とし、この基準電力変換器の電流とそれ以外の電力変換器(第2、第3インバータ3、20)の電流との差が0になるよう制御器によって変調率指令値(mod*ref)と位相指令値(th*ref)に対する補正量(第1群用:Δmod1、第2群用:Δmod2とΔth2、第3群用:Δmod3とΔth3)を出力する。
 なお、実施の形態3における電流均等制御器を区別するため、図15の電流均等制御器を電流均等制御器318A、図16の電流均等制御器を電流均等制御器318B、図18の電流均等制御器を電流均等制御器318Cとしている。
 まず3相/2相変換器21a~21cにより各インバータの三相電流を制御軸(γ-δ軸)上の電流に変換する。座標変換後の第1群、第2群、第3群のγ電流をそれぞれiγ1、iγ2、iγ3、同様にして第1群~第3群のδ電流はiδ1、iδ2、iδ3とする。まず、1群と2群との差のうち、γ軸電流差(iγ1-iγ2)より第1群、第2群のγ軸電圧補正量(Vγ1-Vγ2)を求める制御器をC12d制御器22aとし、δ軸電流差(iδ1-iδ2)より第1群、第2群のδ軸電圧補正量(Vδ1-Vδ2)を求める制御器をC12q制御器22bとする。同様にして、第1群と第3群のγ軸電流差(iγ1-iγ3)によりγ軸電圧補正量(Vγ1-Vγ3)を求める制御器をC13d制御器23aとし、δ軸電流差δ軸電流差(iδ1-iδ3)によりδ軸電圧補正量(Vδ1-Vδ3)を求める制御器をC13q制御器23bとする。
 実施の形態1では、C12d制御器22a、C12q制御器22bは(4)式に基づき得た2群の電圧差と電流差の(5)式から一次遅れ(d軸は(Ld-Md)とRaの項、q軸は(Lq-Mq)とRaの項)を用いたPI制御とした。本実施の形態3における電動機305は界磁巻線式の突極型同期機であるが、電圧方程式において、ダンパ巻線、界磁巻線の項は各巻線群で同一であるため、各群の電圧差と電流差の関係式は(5)式に準ずる。本実施の形態3では電動機305の巻線群の数は3である。このうち、例えば第1群と第2群の電圧差と電流差の関係式は、実施の形態1における2つの巻線群を持つIPM(Interior Permanent Magnet Synchronous Motor)の各々の群同士の電圧差と電流差の関係式である(5)式と同じである。そのため、C12d制御器22a、C12q制御器22bは実施の形態1と同じであり、C13d制御器23a、C13q制御器23bも入力と出力が第1群と第3群の電流差と電圧差(電圧補正量)に変わるだけで、同じ制御である。
 上記のように、基準電力変換器となる第1インバータ2と第2インバータ3との電流差(iγ1-iγ2とiδ1-iδ2)からC12d制御器22a、C12q制御器22bによりγ軸、δ軸での電圧補正量(Vγ1-Vγ2とVδ1―Vδ2)を求める。第1インバータと第2インバータとの電流差(iγ1-iγ3とiδ1-iδ3)を用いてC13d制御器23a、C13q制御器23bによりγ軸、δ軸での電圧補正量(Vγ1-Vγ3とVδ1―Vδ3)を求める。
 γ軸電圧補正量を変調率補正量に変換する補正量/変調率変換器28とδ軸電圧補正量を位相補正量に変換する補正量/位相変換器29により、第1群と第2群、第3群のそれぞれの変調率補正量Δmod1、Δmod2、Δmod3と位相補正量Δth2、Δth3を得る。
 本実施の形態3では、上記のC12d制御器22a、C12q制御器22b、C13d制御器23a、C13q制御器23bによるPI制御の構成だけではなく、これとは別のD12d制御器25a、D12q制御器26b、D13d制御器27a、D13q制御器27bとを用いる場合についても、図16に基づいて説明する。
 なお、C12d制御器、C12q制御器を総称する場合は、C12制御器と記載する。C13制御器、D12制御器、D13制御器も同様である。
 図16の電流均等制御器318Bは、図15の電流均等制御器318Aに対して、C12d制御器22a、C12q制御器22b、C13d制御器23a、C13q制御器23bを以下に説明するD12d制御器25a、D12q制御器26b、D13d制御器27a、D13q制御器27bに変更している。さらに周波数指令値Fcを電気角周波数ωrに変換するために、周波数指令値Fcに2πを乗算する乗算器51を追加している。
 C12制御器、C13制御器では(5)式の抵抗Raと漏れインダクタンスLの一次遅れの項を用いて群間電流差からフィードバック制御で電圧補正量を得た。しかし、例えば、早い応答が必要な場合などは、(5)式そのものを使って、電流差(ids1-ids2、iqs1-iqs2)から電圧補正量(Vds1-Vds2およびVqs1-Vqs2)を得る方法がある。しかし、その場合安定した補正量を得ることは難しい。
 そこで、(5)式の速度起電力の項に重みづけKd、Kqを加え、Kd、Kqを電流差(ids1-ids2)が0になるようにフィードバックで変化させることにより、電流差0となる電圧補正量(Vds1-Vds2、Vqs1-vqs2)を求める(17)式を作成する。
Figure JPOXMLDOC01-appb-M000017
 このうち、微分項を0とすると、D12d制御器25a、D12q制御器26bにおける電圧差(電圧補正量)は(18)式により求められる。(18)式中、KpはPI制御におけるPゲイン、KiはIゲイン、sは微分演算子である。
Figure JPOXMLDOC01-appb-M000018
 上記の(17)式、(18)式において、ωrは電動機回転子の電気角周波数であるが、本実施の形態3の構成は電動機の磁極位置センサを持たない構成であり、正確な電動機の機械周波数を得ることはできない。インバータの周波数を電動機の電気角周波数ωr(rad/s)として用いる。そのため、図16に示すように周波数指令値Fc(単位:Hz)をωr(単位:rad/s)に変換したものがD12d制御器25a、D12q制御器26b、D13d制御器27a、D13q制御器27bに入力される。
 同様にしてD13d制御器27a、D13q制御器27bでも電圧補正量Vγ1-Vγ3およびVδ1-Vδ3を得ることができる。
 上記のようにして、C12制御器、C13制御器あるいはD12制御器、D13制御器により電圧補正量を得てこれを補正量/変調率変換器28により第1~第3インバータのそれぞれの変調率補正量Δmod1、Δmod2、Δmod3を得て、補正量/位相変換器29により位相補正量Δth2、Δth3を得る。そして、図14に示すようにそれぞれの補正量から各インバータの変調率指令値、位相指令値を生成する。
 本実施の形態3の電流均等制御器318A、Bでは、基準電力変換器を1台設定し、他のインバータとの電流差を用いてC12制御器、C13制御器もしくはD12制御器、D13制御器で電流差をなくす変調率補正量、位相補正量を各インバータ用に生成する構成とした。
 しかし、図18に示すように、基準電力変換器の均等電流制御を実施の形態2と同様に電流基準値を設定して、この電流基準値となるようにC1d制御器24a、C1q制御器24bを用いて行うようにする。それ以外のインバータについては、本実施の形態3と同様の方法で基準電力変換器との電流差を用いて変調率補正量、位相補正量を各インバータ用に生成するようにしてもよい。
 この場合、電流均等制御器318Cの出力は図14、図15の電流均等制御器の出力に対し、第1インバータ用位相補正量Δth1が追加され、変調率位相指令生成部313Cの構成は図17に示すように、図14における入力のほかに、電流基準値id*ref、iq*refが追加される構成となる。
 上記のようにすることで、電流基準値と各インバータの電流値との差が大きい場合でも、各インバータの電流を均等にし、かつその電流を所望の値になるよう制御が安定して行える。
 なお、実施の形態3における変調率位相指令生成部を区別するため、図14の変調率位相指令生成部313に対して、図17の変調率位相指令生成部を変調率位相指令生成部313Cとしている。
 また、本実施の形態3では直流電圧変動について説明しなかったが、非同期PWMのような指令値周波数とキャリアが整数倍関係にない三角波比較PWMの場合は、スイッチング回数が少ない時にこれらの周波数の不整合により加速中も直流電圧が不定な低周波で振動し、その影響で電流差が大きくなりやすい問題がある。本実施の形態3の発明を適用することで、低次高調波消去PWMの場合は、正負対象で指令値の周波数に同期した波形となるため、このような問題は起こらない。
 また、本実施の形態3における電動機は、界磁巻線式突極型同期機に限らず、永久磁石式電動機や誘導機であっても同様の効果を奏する。
 以上説明したように、実施の形態3の多重巻線電動機駆動制御装置は、1台のインバータを基準電力変換器とし、他のインバータの電流をこの基準電力変換器の電流に合わせるように制御することで、多重巻線交流電動機の各巻線を流れる電流を均等にするものである。したがって、スイッチング速度の遅いスイッチング素子を持つインバータでも、少ないスイッチング回数を最大限利用して高調波を低減したPWMで制御でき、複数台のインバータの電圧位相、振幅アンバランスの補正を高い精度で行うことができる。
 また、本実施の形態1~3では説明しなかったが、運転周波数範囲の広いインバータで、電流均等制御器により位相補正量を得る場合、PI制御器(C12q制御器、C13q制御器、C1q制御器、C2q制御器)の出力値に対し速度に応じてリミット値を変える必要がある。
 例えば、実施の形態1で説明したようにパルス数により制御キャリアを設けて制御頻度を設定すると、低速度の場合であれば、パルス数が多いため、より頻度多く制御を行うことになる。また、単位時間あたりの位相変動分が小さい。そのため外乱によっては過補正による制御不安定化が起こる可能性がある。このため、こうした場合には、リミット値を低くし、高速運転時は高くすることにより、上記のような過補正なく、速度(すなわち出力周波数または周波数指令値)、パルス数に関係なく正確な指令補正が実現できる。
 更に、位相指令値については、速度の大小により単位時間の位相変化量が違うため、よりきめ細かな補正を実現するために、位相補正量の有効ビット長を速度やパルス数、変調率で変える方法が有効である。例えば、低速では積分処理の有効ビット長を短く、高速では長くとり、小数点位置を速度によって変えれば、より高速でも精度の高い位相補正が実現できる。
 以上のようにして2台以上のインバータの電流を均等にするように電圧パターンレベルでそれぞれのインバータの出力電圧(デッドタイム付加後)の基本波の振幅と位相が一致するように変調率指令値、位相指令値を生成する制御を、パルスが安定するタイミングで効果的に行う。これにより、少ない制御回数(制御負荷)でも、また少ないスイッチング回数でも高調波を低減でき、かつ、インバータ間に電圧差が発生しても電流差の発生を防止できる。さらに、電流アンバランスによって引き起こされる巻線間の磁気結合による相互干渉による電動機制御の不安定化を防止できる。特に極数が少なく巻線間の結合が強い電動機でも、電流アンバランスによる損失を基本波、高調波共に抑制できる。
 また、電流均等制御器において、基準電力変換器を設定し、それ以外の電力変換器との電流差から各インバータの変調率指令値、位相指令値の補正量を得る制御構成の場合は、制御器の数をインバータ台数より1つ減らすことができるため、処理負荷を低減できる。
 同様に、基準電力変換器を設定し、基準電力変換器のみ実施の形態2の第1インバータのように電流基準値を設定して基準値との電流差からPI制御により電圧補正量および変調率・位相補正量を得て、他のインバータについては基準電力変換器との差により実施の形態3で説明した2種類の制御方法を用いて変調率補正量、位相補正量を得る制御構成とすることができる。この場合は、制御器の数はインバータの台数分必要であるが、精度よく安定した制御が行え、制御応答要求や負荷によって、制御方法の最適な組み合わせを選択できる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、実施の形態を適宜、変形、省略したりすることが可能である。
 この発明は、複数の巻線を有する多重巻線電動機を複数のインバータにより駆動する制御装置に関するものであり、高調波を低減し、各インバータのアンバランスの補正を高精度で行えるため、特に大容量の多重巻線電動機駆動制御装置に広く適用できる。

Claims (8)

  1. 多重巻線交流電動機を駆動するためにスイッチング素子を有して、直流電源を可変電圧および可変周波数の交流電源に変換する複数の電力変換器と、前記電力変換器を制御する制御部とを備え、
    前記制御部は、前記多重巻線交流電動機を所望の回転速度で駆動するための出力電圧、出力電圧位相を算出して出力する出力電圧制御部と前記スイッチング素子をPWM制御するPWM制御部とを備え、
    前記出力電圧制御部は、周波数指令に基づいて前記出力電圧を決定する出力電圧決定部と、前記出力電圧位相を前記周波数指令に基づいて積分して算出する出力電圧位相算出部と、前記出力電圧位相に基づいて前記電力変換器のd軸電流、q軸電流を算出し、このd軸電流、q軸電流に基づき、前記多重巻線交流電動機の各巻線を流れる電流を均等にするための前記電力変換器の変調率、位相補正量を算出し、これに基づき前記電力変換器を制御する変調率指令および位相指令を生成する変調率位相指令生成部とを備え、
    前記PWM制御部は、前記出力電圧制御部で算出した前記出力電圧と前記直流電源の直流電圧とに基づいて変調率を演算する変調率演算部と、前記スイッチング素子のPWM制御における半周期当たりのパルス数を前記周波数指令に基づいて決定するパルス数決定部と、前記出力電圧の低次高調波を低減したスイッチングパターンをパルス数別に前記変調率の大きさに応じて記憶するパターンテーブルと、前記変調率演算部からの前記変調率と前記パルス数決定部からの前記パルス数および前記出力電圧制御部にて算出した前記出力電圧位相に基づいて前記パターンテーブルからの前記スイッチングパターンを用いて前記スイッチング素子を駆動するゲート信号を生成するゲート信号発生器とを備え、
    前記変調率位相指令生成部は、前記電力変換器の電流を均等にする制御を行い、前記制御の位相や頻度は前記パルス数、前記変調率、前記周波数指令、前記スイッチングパターンのいずれかに合わせて変更する多重巻線電動機駆動制御装置。
  2. 前記変調率位相指令生成部は、前記電力変換器間のd軸電流、q軸電流の差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  3. 前記変調率位相指令生成部は、前記電力変換器のd軸電流、q軸電流を用いてd軸電流、q軸電流の電流基準値を設定し、前記電力変換器のd軸電流、q軸電流と前記d軸電流、q軸電流の電流基準値との差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  4. 前記変調率位相指令生成部は、1つの特定の前記電力変換器を基準電力変換器とし、この前記基準電力変換器のd軸電流、q軸電流とそれ以外の前記電力変換器のd軸電流、q軸電流の差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  5. 前記変調率位相指令生成部は、
    前記電力変換器のd軸電流、q軸電流を用いてd軸電流、q軸電流の電流基準値を設定し、1つの特定の前記電力変換器を基準電力変換器とし、
    前記基準電力変換器については、この前記基準電力変換器のd軸電流、q軸電流と前記d軸電流、q軸電流の電流基準値との差を算出し、この差を0になるようにし、
    前記基準電力変換器以外の前記電力変換器については、前記電力変換器のd軸電流、q軸電流と前記基準電力変換器のd軸電流、q軸電流との差を算出し、この差を0になるようにする請求項1に記載の多重巻線電動機駆動制御装置。
  6. 前記変調率位相指令生成部は、
    前記変調率、位相補正量を算出する応答を前記周波数指令から算出した出力周波数よりも低く設定する請求項1から請求項5のいずれか1項に記載の多重巻線電動機駆動制御装置。
  7. 前記変調率位相指令生成部は、
    前記電力変換器の前記位相補正量の計算値に所定のリミット値を設定し、この前記リミット値を前記パルス数、前記変調率、前記周波数指令のいずれかに合わせて変更する請求項1から請求項5のいずれか1項に記載の多重巻線電動機駆動制御装置。
  8. 前記変調率位相指令生成部は、
    前記電力変換器の前記位相補正量の計算における有効小数点桁数または前記位相補正量のビット長を、前記パルス数、前記変調率、前記周波数指令のいずれかに合わせて変更する請求項1から請求項5のいずれか1項に記載の多重巻線電動機駆動制御装置。
PCT/JP2014/077443 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置 WO2016059684A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016553784A JP6218961B2 (ja) 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置
CN201480082648.6A CN107005194B (zh) 2014-10-15 2014-10-15 多绕组电动机驱动控制装置
PCT/JP2014/077443 WO2016059684A1 (ja) 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置
DE112014007062.9T DE112014007062T5 (de) 2014-10-15 2014-10-15 Antriebs- und steuerungsvorrichtung für mehrwicklungsmotor
US15/507,885 US10236818B2 (en) 2014-10-15 2014-10-15 Drive and control apparatus for multiple-winding motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077443 WO2016059684A1 (ja) 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置

Publications (1)

Publication Number Publication Date
WO2016059684A1 true WO2016059684A1 (ja) 2016-04-21

Family

ID=55746254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077443 WO2016059684A1 (ja) 2014-10-15 2014-10-15 多重巻線電動機駆動制御装置

Country Status (5)

Country Link
US (1) US10236818B2 (ja)
JP (1) JP6218961B2 (ja)
CN (1) CN107005194B (ja)
DE (1) DE112014007062T5 (ja)
WO (1) WO2016059684A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072679A (ja) * 2019-10-30 2021-05-06 株式会社明電舎 電力変換システム
RU2782698C1 (ru) * 2019-10-30 2022-11-01 Мейденша Корпорейшн Устройство преобразования энергии

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3319218A4 (en) * 2015-07-03 2019-03-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation CONTROL DEVICE FOR POWER CONVERTERS
JP6369517B2 (ja) * 2016-09-30 2018-08-08 ダイキン工業株式会社 電力変換器の制御装置
JP6563378B2 (ja) * 2016-11-04 2019-08-21 株式会社東芝 自動電圧調整器、自動電圧調整方法、自動電圧調整プログラム、発電機励磁システムおよび発電システム
EP3542458B1 (en) * 2016-11-18 2021-09-08 ABB Schweiz AG Switching an electrical voltage source converter
JP6316481B1 (ja) * 2017-04-21 2018-04-25 三菱電機株式会社 電動機の制御装置
JP7016249B2 (ja) * 2017-12-04 2022-02-04 日立Astemo株式会社 モータ駆動システム
WO2019150443A1 (ja) * 2018-01-30 2019-08-08 三菱電機株式会社 直列多重インバータ
US11088647B2 (en) * 2018-02-23 2021-08-10 Mitsubishi Electric Corporation Dynamoelectric machine control method, dynamoelectric machine control device, and drive system
JP7040192B2 (ja) * 2018-03-22 2022-03-23 株式会社デンソー 電動機駆動装置
US10498217B1 (en) * 2018-07-02 2019-12-03 Palo Alto Research Center Incorporated Coordinated power converters for increased efficiency and power electronics lifetime
US10826424B2 (en) * 2018-07-10 2020-11-03 GM Global Technology Operations LLC Method and apparatus for controlling a cascaded inverter circuit and an electric machine
WO2020013079A1 (ja) * 2018-07-12 2020-01-16 日本電産株式会社 駆動制御装置、駆動装置およびパワーステアリング装置
CN112913136B (zh) * 2018-11-02 2023-11-24 三菱电机株式会社 电动机控制装置
CN112997395B (zh) * 2018-11-14 2024-01-02 东芝三菱电机产业系统株式会社 电力转换装置
JP7235588B2 (ja) * 2019-05-14 2023-03-08 株式会社Soken 回転電機の制御装置
DE112019007496T5 (de) * 2019-06-28 2022-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Energiewandlervorrichtung und verfahren zum antreiben einer energiewandlervorrichtung
JP6743952B1 (ja) 2019-07-23 2020-08-19 株式会社明電舎 固定パルスパターンによる電力変換器の制御システムおよび制御方法
CN114128129B (zh) * 2019-09-02 2024-04-09 东芝三菱电机产业系统株式会社 电力转换装置及电动机驱动系统
WO2021149187A1 (ja) * 2020-01-22 2021-07-29 東芝三菱電機産業システム株式会社 ドライブシステム
CN112953351B (zh) * 2021-02-18 2023-04-18 中国第一汽车股份有限公司 一种逆变器系统
CN113715690B (zh) * 2021-08-31 2023-12-01 经纬恒润(天津)研究开发有限公司 一种电源系统及其控制方法
KR20230108609A (ko) * 2022-01-11 2023-07-18 현대자동차주식회사 모터 구동 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135797A (ja) * 1993-11-09 1995-05-23 Takao Kawabata インバータ装置
JPH11262293A (ja) * 1998-03-13 1999-09-24 Meidensha Corp 多重巻線電動機の制御方法
JP2003153585A (ja) * 2001-11-06 2003-05-23 Mitsubishi Electric Corp 多重巻線電動機の制御装置
JP2007209181A (ja) * 2006-02-06 2007-08-16 Meiji Univ 三相交流電動機の制御装置及び方法並びに制御プログラム
WO2014097918A1 (ja) * 2012-12-17 2014-06-26 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP2014138494A (ja) * 2013-01-17 2014-07-28 Denso Corp 多重巻線回転機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733724B2 (ja) 1992-03-12 1998-03-30 株式会社日立製作所 多巻線交流電動機の電流制御装置
JPH0638534A (ja) 1992-07-13 1994-02-10 Nippon Electric Ind Co Ltd インバータにおける各相平均値制御付き瞬時横流制御方法
JP2008199874A (ja) 2007-01-18 2008-08-28 Nissin Electric Co Ltd インバータの並列運転制御装置
JP4930085B2 (ja) * 2007-02-08 2012-05-09 株式会社富士通ゼネラル 位相検出方法、位相検出装置、同期モータの制御方法、および同期モータの制御装置
JP5045799B2 (ja) * 2010-08-27 2012-10-10 株式会社デンソー 電力変換装置、駆動装置、及び、これを用いた電動パワーステアリング装置
US9450479B2 (en) * 2015-02-20 2016-09-20 Ge Energy Power Conversion Technology Ltd Systems and methods to optimize active current sharing of parallel power converters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135797A (ja) * 1993-11-09 1995-05-23 Takao Kawabata インバータ装置
JPH11262293A (ja) * 1998-03-13 1999-09-24 Meidensha Corp 多重巻線電動機の制御方法
JP2003153585A (ja) * 2001-11-06 2003-05-23 Mitsubishi Electric Corp 多重巻線電動機の制御装置
JP2007209181A (ja) * 2006-02-06 2007-08-16 Meiji Univ 三相交流電動機の制御装置及び方法並びに制御プログラム
WO2014097918A1 (ja) * 2012-12-17 2014-06-26 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP2014138494A (ja) * 2013-01-17 2014-07-28 Denso Corp 多重巻線回転機の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072679A (ja) * 2019-10-30 2021-05-06 株式会社明電舎 電力変換システム
WO2021084847A1 (ja) * 2019-10-30 2021-05-06 株式会社明電舎 電力変換システム
RU2782698C1 (ru) * 2019-10-30 2022-11-01 Мейденша Корпорейшн Устройство преобразования энергии
US11563367B2 (en) 2019-10-30 2023-01-24 Meidensha Corporation Power conversion system

Also Published As

Publication number Publication date
US20170294864A1 (en) 2017-10-12
CN107005194A (zh) 2017-08-01
US10236818B2 (en) 2019-03-19
CN107005194B (zh) 2019-07-05
JP6218961B2 (ja) 2017-10-25
JPWO2016059684A1 (ja) 2017-04-27
DE112014007062T5 (de) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6218961B2 (ja) 多重巻線電動機駆動制御装置
JP5916526B2 (ja) 電力変換器制御装置および多重巻線型電動機駆動装置
Mukherjee et al. Voltage sensorless control of VIENNA rectifier in the input current oriented reference frame
JP2014087141A (ja) 回転機およびそのドライブシステム
CN113300407B (zh) 一种lcl型并网变换器的电压源控制方法
JP6369517B2 (ja) 電力変換器の制御装置
KR20160058676A (ko) 6단계 모드로 전기 기계를 제어하는 방법 및 장치
JP2011151916A (ja) 交流回転機の制御装置
Mink et al. Feedback control of high-speed PMSM with synchronous optimal PWM
Foti et al. Asymmetrical hybrid unidirectional T-type rectifier for high-speed gen-set applications
Charumit et al. Carrier-based unbalanced phase voltage space vector PWM strategy for asymmetrical parameter type two-phase induction motor drives
JP5888074B2 (ja) 電力変換装置
Metidji et al. A new fuzzy direct torque control strategy for induction machine based on indirect matrix converter
Piyarat et al. Simple speed control of an asymmetrical type two-phase induction motor drive
JP5923215B2 (ja) 回転機及び回転機ドライブシステム
Lee et al. Output voltage control of PWM inverters for stand-alone wind power generation systems using feedback linearization
Ouboubker et al. Comparison between DTC using a two-level inverters and DTC using a three level inverters of induction motor
Liu et al. Vector control system of induction machine supplied by three-level inverter based on a fast svpwm algorithm
JP2011217575A (ja) 電力変換装置
Agrawal et al. A review of speed control methods of induction motor
Purohit et al. Modeling, analysis and design of SPWM current controlled multilevel inverter fed PMSM drive
JP7042568B2 (ja) モータ制御装置及びモータ制御方法
JP2017017947A (ja) 電力変換装置
Jin et al. Simulation study of AC motor speed sensorless vector control system based on SVPWM
Moati et al. Fixed switching DTC of DSIM powered by NPC-matrix converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553784

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007062

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903962

Country of ref document: EP

Kind code of ref document: A1