WO2020013079A1 - 駆動制御装置、駆動装置およびパワーステアリング装置 - Google Patents

駆動制御装置、駆動装置およびパワーステアリング装置 Download PDF

Info

Publication number
WO2020013079A1
WO2020013079A1 PCT/JP2019/026707 JP2019026707W WO2020013079A1 WO 2020013079 A1 WO2020013079 A1 WO 2020013079A1 JP 2019026707 W JP2019026707 W JP 2019026707W WO 2020013079 A1 WO2020013079 A1 WO 2020013079A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
inverter
motor
value
Prior art date
Application number
PCT/JP2019/026707
Other languages
English (en)
French (fr)
Inventor
香織 鍋師
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US17/259,906 priority Critical patent/US11926378B2/en
Publication of WO2020013079A1 publication Critical patent/WO2020013079A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures

Definitions

  • the present invention relates to a drive control device, a drive device, and a power steering device.
  • Patent Document 1 stores a test pattern that is a combination of turning on a switching element, and stores the test pattern, a current detection value detected by the current detector as a response to the test pattern, and a rotation angle detection value.
  • a motor control device specifies a short-circuit fault location based on a result of determining whether or not a short-circuit fault is in a range affected by a back electromotive force.
  • An object of the present invention is to provide a drive control device, a drive device, and a power steering device that can shift to backup control in a shorter time than when only test patterns are used.
  • One aspect of a drive control device is a drive control device that controls driving of a three-phase motor, based on an electric value generated in the three-phase motor, which is at least one of a current value and a voltage value.
  • An electric value calculation unit for calculating an electric value of each rotation axis of the three-phase motor on each coordinate axis; a calculated electric value calculated by the electric value calculation unit; and a target representing a control target of the electric value on each of the coordinate axes.
  • a failure determining unit that determines a failed phase of each of the three-phase motors by combining positive and negative information of at least one of a difference from an electric value and a change amount of the difference with respect to each of the coordinate axes.
  • one aspect of the drive device includes the drive control device, and a three-phase motor whose drive is controlled by the drive control device.
  • One embodiment of a power steering device includes the drive control device, a three-phase motor whose drive is controlled by the drive control device, and a power steering mechanism driven by the three-phase motor. .
  • FIG. 1 is a diagram schematically illustrating a block configuration of a motor drive unit according to the present embodiment.
  • FIG. 2 is a diagram illustrating current values flowing through coils of each phase of the motor in a normal state.
  • FIG. 3 is a functional block diagram focusing on switching between normal control and abnormal control.
  • FIG. 4 is a flowchart illustrating a procedure for switching from the normal control to the abnormal control.
  • FIG. 5 is a diagram illustrating current values flowing through the coils of each phase of the motor 200 at the time of abnormality.
  • FIG. 6 is a diagram schematically illustrating the configuration of the power steering device according to the present embodiment.
  • FIG. 1 is a diagram schematically showing a block configuration of the motor driving unit 1000 according to the present embodiment.
  • the motor drive unit 1000 includes the power supply device 100, the motor 200, and the control circuit 300.
  • a motor drive unit 1000 including a motor 200 as a component will be described.
  • the motor drive unit 1000 including the motor 200 corresponds to an example of the drive device of the present invention.
  • the motor drive unit 1000 may be a device for driving the motor 200 in which the motor 200 is omitted as a component.
  • the motor drive unit 1000 in which the motor 200 is omitted corresponds to an example of the drive control device of the present invention.
  • the motor 200 is, for example, a three-phase AC motor.
  • Motor 200 has a-phase, b-phase, and c-phase coils.
  • the winding method of the coil is, for example, concentrated winding or distributed winding.
  • the motor drive unit 1000 can convert electric power from an external power supply into electric power supplied to the motor 200 by the electric power supply device 100.
  • the first inverter 110 and the second inverter 120 can convert DC power into three-phase AC power that is a pseudo sine wave of a phase, b phase, and c phase.
  • the power supply device 100 includes a first inverter 110, a second inverter 120, and a current sensor 130.
  • the first inverter 110 is connected to one end 210 of the coil of the motor 200
  • the second inverter 120 is connected to the other end 220 of the coil of the motor 200.
  • “connection” between components (components) mainly means electrical connection.
  • the motor 200 is a so-called non-connection motor in which no connection exists between the coils of each phase.
  • the first inverter 110 and the second inverter 120 each include a switching element connected to a coil of the motor 200, and power is converted by the switching operation of the switching element and supplied to the motor 200.
  • the current sensor 130 includes, for example, a shunt resistor and a current detection circuit.
  • the current sensor 130 detects a current flowing through the first inverter 110 and the second inverter 120 to detect a current value flowing through each phase coil of the motor 200.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a microcontroller 340, a drive circuit 350, and a ROM 360.
  • Control circuit 300 drives motor 200 by controlling the overall operation of power conversion device 100. Specifically, the control circuit 300 can realize closed-loop control by controlling the target motor torque and rotation speed.
  • the power supply circuit 310 generates a DC voltage (for example, 3 V, 5 V) required for each block in the circuit.
  • the angle sensor 320 is, for example, a resolver or a Hall IC, or is realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. Angle sensor 320 detects the rotation angle of the rotor of motor 200 and outputs a rotation signal indicating the detected rotation angle to microcontroller 340. Depending on the motor control method (for example, sensorless control), the angle sensor 320 may be omitted.
  • the input circuit 330 receives a current value detected by the current sensor 130 (hereinafter, referred to as an “actual current value”), and converts the level of the actual current value into an input level of the microcontroller 340 as necessary. , And outputs the actual current value to the microcontroller 340.
  • the input circuit 330 is an analog-to-digital conversion circuit.
  • the microcontroller 340 receives the rotation signal of the rotor detected by the angle sensor 320 and receives the actual current value output from the input circuit 330.
  • the microcontroller 340 sets a target current value in accordance with the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs the generated PWM signal to the drive circuit 350.
  • the microcontroller 340 generates a PWM signal for controlling a switching operation (turn-on or turn-off) of each switch element in the first inverter 110 and the second inverter 120 of the power supply device 100.
  • Drive circuit 350 is typically a gate driver.
  • the drive circuit 350 generates a control signal (for example, a gate control signal) for controlling the switching operation of each switch element in the first and second inverters 110 and 120 according to the PWM signal, and supplies the generated control signal to each switch element.
  • a control signal for example, a gate control signal
  • the microcontroller 340 may have the function of the drive circuit 350. In that case, the control circuit 300 may not include the drive circuit 350.
  • the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the ROM 360 stores a control program including a group of instructions for causing the microcontroller 340 to control the power supply device 100 (mainly, the inverters 110 and 120).
  • the power supply device 100 has normal and abnormal controls.
  • the microcontroller 340 of the control circuit 300 can switch the control of the power supply device 100 between the normal control and the abnormal control.
  • FIG. 2 is a diagram showing current values flowing through the coils of each phase of the motor 200 in a normal state.
  • FIG. 2 is a plot of current values flowing through the coils of phase a, phase b, and phase c of motor 200 when first inverter 110 and second inverter 120 are controlled in accordance with normal three-phase conduction control.
  • An obtained current waveform (sine wave) is exemplified.
  • the horizontal axis in FIG. 2 indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • Ipk represents the maximum current value (peak current value) of each phase.
  • the power supply device 100 can also drive the motor 200 using, for example, a rectangular wave other than the sine wave illustrated in FIG.
  • Table 1 shows the current values flowing to the terminals of each inverter for each electrical angle in the sine wave of FIG.
  • Table 1 specifically shows a current value for each electrical angle of 30 ° flowing through a connection point between the first inverter 110 and one end 210 of each of the a-phase, b-phase, and c-phase coils.
  • Table 1 shows the current value at each electrical angle of 30 ° flowing through the connection point between the second inverter 120 and the other end 220 of each of the a-phase, b-phase, and c-phase coils.
  • the direction of the current flowing from one end 210 of the motor 200 to the other end 220 is defined as a positive direction.
  • the direction of the current flowing from the other end 220 of the motor 200 to the one end 210 is defined as a positive direction.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk and the magnitude of the current value I 2 is I pk / 2.
  • the current of the a-phase coil becomes “0”.
  • a current of magnitude I 1 flows from the second inverter 120 to the first inverter 110 in the b-phase coil, and a magnitude I flows from the first inverter 110 to the second inverter 120 in the c-phase coil. 1 current flows.
  • the coils of a phase current of magnitude I 2 flows from the first inverter 110 to the second inverter 120, the coil of the b-phase magnitude I from the second inverter 120 to the first inverter 110 pk of current flows, the coil of the c-phase current of magnitude I 2 flows from the first inverter 110 to the second inverter 120.
  • a current of magnitude I 1 flows from the first inverter 110 to the second inverter 120 in the a-phase coil, and a magnitude I flows from the second inverter 120 to the first inverter 110 in the b-phase coil. 1 current flows.
  • the current of the c-phase coil becomes “0”.
  • the a-phase coil has a magnitude of I p from the first inverter 110 to the second inverter 120.
  • k current flow the coil of the b-phase current of magnitude I 2 flows from the second inverter 120 to the first inverter 110, the coil of the c-phase magnitude I from the second inverter 120 to the first inverter 110 2 flows.
  • a current of magnitude I 1 flows from the first inverter 110 to the second inverter 120 through the a-phase coil, and a magnitude I 1 flows from the second inverter 120 to the first inverter 110 through the c-phase coil. 1 current flows.
  • the current of the b-phase coil becomes “0”.
  • the coils of a phase current of magnitude I 2 flows from the first inverter 110 to the second inverter 120, the coil of the b-phase magnitude I from the first inverter 110 to the second inverter 120 2, a current of magnitude Ipk flows from the second inverter 120 to the first inverter 110 in the c-phase coil.
  • the current of the a-phase coil becomes “0”.
  • the coil of the b-phase current of magnitude I 1 flows from the first inverter 110 to the second inverter 120, the coil of the c-phase magnitude I from the second inverter 120 to the first inverter 110 1 current flows.
  • a current of magnitude I 2 flows from the second inverter 120 to the first inverter 110 through the a-phase coil, and magnitude I 2 flows from the first inverter 110 to the second inverter 120 through the b-phase coil.
  • pk of current flows, the coil of the c-phase current of magnitude I 2 flows from the second inverter 120 to the first inverter 110.
  • a current of magnitude I 1 flows from the second inverter 120 to the first inverter 110 in the a-phase coil, and a magnitude I 1 flows from the first inverter 110 to the second inverter 120 in the b-phase coil. 1 current flows.
  • the current of the c-phase coil becomes “0”.
  • a current of magnitude I pk flows through the a-phase coil from the second inverter 120 to the first inverter 110, and a magnitude I pk flows from the first inverter 110 to the second inverter 120 through the b-phase coil.
  • second current flows to the coil of the c-phase current of magnitude I 2 flows from the first inverter 110 to the second inverter 120.
  • a current of magnitude I 1 flows from the second inverter 120 to the first inverter 110 in the a-phase coil, and a magnitude I flows from the first inverter 110 to the second inverter 120 in the c-phase coil. 1 current flows.
  • the current of the b-phase coil becomes “0”.
  • the coil of a phase current of magnitude I 2 flows from the second inverter 120 to the first inverter 110, the coil of the b-phase magnitude I from the second inverter 120 to the first inverter 110 2, a current of magnitude Ipk flows from the first inverter 110 to the second inverter 120 in the c-phase coil.
  • FIG. 3 is a functional block diagram focusing on switching between normal control and abnormal control.
  • the microcontroller 340 includes a current control unit 341, a failure determination unit 342, and a code information storage unit 343 as internal functions. Further, the drive circuit 350 includes a detection circuit 351 as an internal function.
  • the current control unit 341 of the microcontroller 340 receives inputs of the actual current values ia, ib, ic and the electrical angle ⁇ obtained from the rotation signal, sets a target current value, and generates a PWM signal.
  • This target current value is set as a target current value in the rotation coordinate system of the motor 200, and the current control unit 341 supplies the actual current values ia, ib, and ic of each phase of the motor 200 to the actual current values iq in the rotation coordinate system. , Id are also provided.
  • the current control unit 341 includes an electric value calculation unit that calculates an electric value in each coordinate axis of the rotation coordinates of the motor 200 based on an electric value generated in the motor 200, which is at least one of the current value and the voltage value. Function is provided. That is, it has an electric value calculation unit that calculates an electric value in each coordinate axis of the rotation coordinates of the three-phase motor based on an electric value generated in the three-phase motor, which is at least one of a current value and a voltage value. In the present embodiment, a current value is calculated from the electric values.
  • the current control unit 341 sets different target current values for normal times and abnormal times. For example, in the case of the normal three-phase conduction control shown in FIG. 2, the current control unit 341 sets a constant current value as the target current value in the rotating coordinate system.
  • the detection circuit 351 of the drive circuit 350 is a circuit that detects an abnormality that has occurred in the switch elements of the inverters 110 and 120, and uses a failure detection function based on a response of the motor 200 to a normal control signal and a test pattern. It has a failure identification function.
  • failure detection a sharp detection is performed so that a failure can always be detected when a failure occurs, so that erroneous detection may occur due to noise or the like.
  • the failure identification a test pattern is used, so that the failure can be more reliably detected and the switch element that has caused the failure can be identified.
  • failure detection can be performed in a short time
  • failure identification requires a long time.
  • the microcontroller 340 is provided with a failure determination unit 342 and a code information storage unit 343 as a mechanism for reducing the number of test patterns used in fault identification to shorten the time.
  • the failure determination unit 342 determines a phase in which a failure has occurred among the phases of the motor 200 based on a response of the motor 200 to a normal control signal.
  • the code information stored in the code information storage unit 343 is used for the determination in the failure determination unit 342.
  • the code information and the principle of determination will be described.
  • the drive is performed under the condition that the current value in the axial direction of the rotating coordinate system is constant as described above, for example.
  • the current values Iq, Id, Iz in each axis direction of the rotating coordinate system are constant, the current values Ia, a, b, and c for the current values Iq, Id, Iz, respectively.
  • the contribution components contributed (influenced) by Ib and Ic change according to the electrical angle ⁇ .
  • Table 2 shows the contribution rates (influence rates) of the current values Ia, Ib, and Ic of the a-phase, b-phase, and c-phase to the current in the d-axis direction (hereinafter, referred to as “d-axis current”) of the rotating coordinate system. Is shown for each electrical angle of 30 °.
  • Table 3 shows the contribution rates (influence rates) of the current values Ia, Ib, and Ic of each of the a-phase, b-phase, and c-phase to the current in the q-axis direction (hereinafter, referred to as “q-axis current”) in the rotating coordinate system. Is shown for each electrical angle of 30 °.
  • the influence ratios of the current values Ia, Ib, and Ic of the a-phase, b-phase, and c-phase depend on the electrical angle when they affect the + direction and when they affect the-direction. And alternately.
  • the electrical angle range where the influence rate is in the positive direction and the electrical angle range where the influence rate is in the negative direction are different for each phase. In other words, the electrical angle at which the sign of the influence rate switches differs for each phase.
  • the influence rate on the d-axis current and the influence rate on the q-axis current are different in the electrical angle range where the influence rate is in the positive direction and the electrical angle range where the influence rate is in the negative direction.
  • the influence rates shown in Tables 2 and 3 are the rates at which the currents flowing in the respective a-phase, b-phase, and c-phase contribute (influence) to the d-axis current and the q-axis current. If the current in any of the phases is lost or reduced (i.e., the phase has failed), the effect of the sign opposite to the sign of the influence rate shown in Tables 2 and 3 will occur. .
  • the sign information extracted from the sign at every electrical angle of 30 ° regarding the effect that occurs at the time of such a phase failure is expressed by the following equations (2) and (3).
  • the first row of Equations 2 and 3 shows code information of the influence rate of the a-phase
  • the second and third rows show code information of the influence rates of the b-phase and the c-phase.
  • the first column of Expressions 2 and 3 shows code information of the influence rate at an electrical angle of 0 °
  • the fifth column shows code information of the influence rate at an electrical angle of 120 °, for example.
  • the first line of Equation 2 indicates that when the current in the a-phase fails, the d-axis current has a negative effect (an effect of decreasing the current value) in a range from an electrical angle of 0 ° to an electrical angle of less than 90 °.
  • the electrical angle exceeds 90 ° and is less than 270 °, the effect of + (the effect of increasing the current value) occurs, and when the electrical angle exceeds 270 ° and the electrical angle reaches 360 °, the effect of-is generated. (Effect of reducing the current value).
  • the q-axis current has a negative effect (an effect of decreasing the current value) in a range from an electrical angle of 0 ° to an electrical angle of less than 120 °. )
  • the effect of + occurs in the range of more than 120 ° electrical angle and less than 300 ° electrical angle, and the effect of-in the range of more than 300 ° electrical angle to 360 ° electrical angle. This means that an effect (an effect of reducing the current value) is caused.
  • Equation 4 for calculating the sign information (positive or negative of the contribution component) shown in Equations 2 and 3 for an arbitrary electric angle ⁇ is sign information q_effect (a) for each of the a-phase, b-phase, and c-phase with respect to the electric value of the q-axis.
  • q_effect (a) Sgn ( ⁇ sin ⁇ )
  • q_effect (b) sgn ( ⁇ sin ⁇ 2 ⁇ / 3)
  • q_effect (c) sgn ( ⁇ sin ⁇ 4 ⁇ / 3)
  • d_effect (c) sgn (cos ⁇ 4 ⁇ / 3)
  • the code information shown in Expressions 2 and 3 (or the code information expressed by Expression 4) is stored in the code information storage unit 343 shown in FIG.
  • the failure determination unit 342 receives the input of the actual current values of the d-axis and the q-axis from the current control unit 341 and calculates at least one of a difference value between the actual current value and the target current value and a change amount of the difference value. Positive / negative information indicating whether the value is a positive value or a negative value is combined for the d-axis and the q-axis.
  • the difference between the calculated electric value calculated by the electric value calculation unit and the target electric value representing the control target of the electric value on each coordinate axis and the positive / negative information on at least one of the amount of change in the difference are combined for each coordinate axis.
  • a failure determining unit 342 for determining a failed phase in each phase of the three-phase motor compares the combined positive / negative information with the code information at the current electrical angle ⁇ .
  • the failure determination unit 342 determines, by this comparison, a phase in which the sign information coincides with the sign information, as a phase in which the failure has occurred. In other words, the failure determination unit 342 determines the failure phase by checking the consistency between the sign information and the sign information.
  • Such a failure determination is a determination based on the response of the motor 200 to a normal control signal, so that a high-speed determination is possible. Further, since the determination is made based on the sign of the numerical value regardless of the magnitude of the numerical value, the determination is clear. However, since the determination is based on only the sign (positive or negative), the above-described failure determination may be referred to as an estimation of a failure phase rather than a definitive determination.
  • the failure phase is determined (estimated) by using the current value among the electrical values (voltage value and current value). Also in the case where a voltage value is used, it is possible to determine (estimate) a failed phase by comparing the sign information with the sign information as described above. However, when the current value is used as compared with the case where the voltage value is used, the determination (estimation) of the failed phase is easier because the positive / negative information is clear.
  • FIG. 4 is a flowchart showing a procedure for switching from the normal control to the abnormal control.
  • step S101 When a failure (sign) is detected by the above-described failure detection (the function of the detection circuit 351 in FIG. 3) (step S101), the phase in which the failure has occurred is determined by the failure determination by the failure determination unit 342. (Estimated) (step S102). The determined (estimated) phase is notified from the failure determination unit 342 to the detection circuit 351. In the detection circuit 351, the application order of the test patterns is such that the test pattern for confirming the failure in the notified phase has priority. The application order to be executed is determined (step S103). The steps up to this point are executed at high speed because the response of the motor 200 to a normal control signal is used.
  • step S ⁇ b> 104 the above-described fault identification using the test pattern is performed, and the test pattern is first applied to the phase in which the failure is estimated.
  • step S105 When a failure is determined in the test based on the test pattern (step S105), and the failure location is determined (step S105: yes, step S106), information on the failure location is notified from the detection circuit 351 to the current control unit 341. You. Since the test pattern is applied preferentially to the failure phase, the time required to determine the fault location is short. ⁇ After that, the current control unit 341 switches the control of the motor 200 to the control at the time of abnormality corresponding to the notified failure location (step S107).
  • step S105 If it is determined in step S105 that the failure is not a failure (step S105: no), the detection circuit 351 executes a test pattern for a phase other than the phase in which the failure is estimated, and performs no failure. (That is, erroneous detection) is confirmed (step S108). After that, the current control unit 341 continues the above-described normal control (step S109). (Control at the Time of Abnormality) FIG. 5 is a diagram showing the value of the current flowing through each coil of each phase of the motor 200 at the time of abnormality.
  • FIG. 5 shows a current obtained by plotting a current value flowing through each of the a-phase, b-phase, and c-phase coils of motor 200 when first inverter 110 and second inverter 120 are controlled according to the control at the time of abnormality.
  • the waveform is illustrated.
  • the horizontal axis in FIG. 5 indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • Ipk represents the maximum current value (peak current value) of each phase.
  • a current waveform when a failure occurs in the b-phase is shown.
  • two-phase drive control in which current flows only in the a-phase and c-phase coils is performed.
  • Table 4 shows that the currents flowing in the a-phase, b-phase, and c-phase coils of the motor 200 when the first inverter 110 and the second inverter 120 are controlled by the energization control that obtains the current waveform shown in FIG. The current value is illustrated for each electrical angle.
  • Table 4 shows specifically, when a failure occurs in the b-phase, a current flowing at a connection point between the first inverter 110 and one end 210 of each of the a-phase, b-phase, and c-phase coils for each electrical angle of 30 °
  • the current values flowing at the connection points between the second inverter 120 and the other ends 220 of the a-phase, b-phase, and c-phase coils for each electrical angle of 30 ° are also shown.
  • the definition of the current direction is as described above.
  • the current is turned off (the current is “0”) at all electrical angles. It is desirable that the current be turned off by opening the phase with a relay or the like (not shown). At an electrical angle of 0 °, the current of the a-phase coil becomes “0”. A current of magnitude Ipk flows from the first inverter 110 to the second inverter 120 through the c-phase coil.
  • a current of magnitude I 2 flows from the first inverter 110 to the second inverter 120 in the a-phase coil, and a magnitude I 2 flows from the first inverter 110 to the second inverter 120 in the c-phase coil. 1 current flows.
  • a current of magnitude I 1 flows from the first inverter 110 to the second inverter 120 through the a-phase coil, and a magnitude I flows from the first inverter 110 to the second inverter 120 through the c-phase coil. 2 flows.
  • a current of magnitude Ipk flows from the first inverter 110 to the second inverter 120 in the a-phase coil, and the current of the c-phase coil becomes “0”.
  • a current of magnitude I 1 flows from the first inverter 110 to the second inverter 120 through the a-phase coil, and a magnitude I 1 flows from the second inverter 120 to the first inverter 110 through the c-phase coil. 2 flows.
  • a current of magnitude I 2 flows from the first inverter 110 to the second inverter 120 in the coil of the a-phase, and a magnitude I flows from the second inverter 120 to the first inverter 110 in the coil of the c-phase. 1 current flows.
  • the current of the a-phase coil becomes “0”.
  • a current having a magnitude of Ipk flows from the second inverter 120 to the first inverter 110 in the c-phase coil.
  • the coil of a phase current of magnitude I 2 flows from the second inverter 120 to the first inverter 110, the coil of the c-phase magnitude I from the second inverter 120 to the first inverter 110 1 current flows.
  • the coil of a phase current of magnitude I 1 flows from the second inverter 120 to the first inverter 110, the coil of the c-phase magnitude I from the second inverter 120 to the first inverter 110 2 flows.
  • a current of magnitude Ipk flows from the second inverter 120 to the first inverter 110 in the a-phase coil, and the current of the c-phase coil becomes “0”.
  • a current of magnitude I 1 flows from the second inverter 120 to the first inverter 110 in the a-phase coil, and a magnitude I flows from the first inverter 110 to the second inverter 120 in the c-phase coil. 2 flows.
  • a current of magnitude I 2 flows from the second inverter 120 to the first inverter 110 in the a-phase coil, and a magnitude I 2 flows from the first inverter 110 to the second inverter 120 in the c-phase coil. 1 current flows.
  • Vehicles such as automobiles generally include a power steering device.
  • the power steering device 2000 generates an assist torque for assisting the steering torque of the steering system 520 generated by the driver operating the steering handle 521.
  • the auxiliary torque is generated by the auxiliary torque mechanism 540, and it is possible to reduce a driver's operation burden.
  • the auxiliary torque mechanism 540 includes a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
  • FIG. 6 is a diagram schematically illustrating a configuration of the power steering device 2000 according to the present embodiment.
  • the power steering apparatus 2000 includes a steering system 520 and an auxiliary torque mechanism 540.
  • the steering system 520 is, for example, a steering handle 521, a steering shaft 522 (also referred to as a "steering column”), a universal joint 523A, 523B, and a rotating shaft 524 (also referred to as a "pinion shaft” or “input shaft”). ).
  • the steering system 520 includes, for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A. 529B.
  • a rack and pinion mechanism 525 for example, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A. 529B.
  • the steering handle 521 is connected to a rotating shaft 524 via a steering shaft 522 and universal shaft joints 523A and 523B.
  • a rack shaft 526 is connected to the rotation shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 has a pinion 531 provided on the rotation shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 via a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side respectively correspond to the right side and the left side as viewed from the driver sitting on the seat.
  • a steering torque is generated and transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525.
  • the driver can operate the left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power supply device 545.
  • the auxiliary torque mechanism 540 applies an auxiliary torque to a steering system 520 from the steering handle 521 to the left and right steered wheels 529A, 529B.
  • the auxiliary torque may be referred to as “additional torque”.
  • the control circuit 300 shown in FIG. 1 or the like is used.
  • the power supply device 545 for example, the power supply device 100 illustrated in FIG. 1 or the like is used.
  • the motor 543 for example, the motor 200 shown in FIG. 1 or the like is used.
  • the ECU 542, the motor 543, and the power supply device 545 may constitute a unit generally referred to as a "mechanical integrated motor".
  • a mechanism configured by elements excluding the ECU 542, the motor 543, and the power supply device 545 among the elements illustrated in FIG. 6 corresponds to an example of a power steering mechanism driven by the motor 543.
  • the steering torque sensor 541 detects the steering torque of the steering system 520 given by the steering handle 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on a detection signal (hereinafter, referred to as “torque signal”) from the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the assist torque is transmitted to the rotation shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotation shaft 524 to the rack and pinion mechanism 525.
  • the power steering apparatus 2000 is classified into a pinion assist type, a rack assist type, a column assist type, and the like, depending on a location where the assist torque is applied to the steering system 520.
  • FIG. 6 shows a pinion assist type power steering device 2000.
  • the power steering device 2000 is also applied to a rack assist type, a column assist type, and the like.
  • the ECU 542 may receive not only a torque signal but also a vehicle speed signal, for example.
  • the microcontroller 340 of the ECU 542 can control the motor 543 based on a torque signal, a vehicle speed signal, and the like.
  • the ECU 542 sets a target current value based at least on the torque signal. It is preferable that the ECU 542 sets the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and further considering the rotation signal of the rotor detected by the angle sensor 320.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current, so that the actual current value detected by the current sensor (see FIG. 1) matches the target current value.
  • the left and right steering wheels 529A and 529B can be operated by the rack shaft 526 using the combined torque obtained by adding the assisting torque of the motor 543 to the steering torque of the driver.
  • appropriate current control can be performed in both a normal state and an abnormal state.
  • the power assist in the power steering device 2000 is continued in both the normal state and the abnormal state.
  • power supply device 110 first inverter 120: second inverter 130: current sensor 200: motor 300: control circuit 310: power supply circuit 320: angle sensor 330: input circuit 340: microcontroller 341: current control unit 342: lost Defect determining section 343 #: code information storage section 350 #: drive circuit 351 #: detection circuit 360 #: ROM 1000 #: motor drive unit 2000 #: power steering device

Abstract

駆動制御装置の一態様は、3相モータの駆動を制御する駆動制御装置であって、上記3相モータに生じた、電流値および電圧値の少なくとも一方である電気値に基づいて、当該3相モータの回転座標の各座標軸における電気値を算出する電気値算出部と、上記電気値算出部により算出された算出電気値と、上記各座標軸における電気値の制御目標を表した目標電気値との差分および当該差分の変化量の少なくとも一方における正負情報を上記各座標軸について組み合わせることで上記3相モータの各相のうちで失陥を生じた失陥相を判定する失陥判定部と、を備える。

Description

駆動制御装置、駆動装置およびパワーステアリング装置
本発明は、駆動制御装置、駆動装置およびパワーステアリング装置に関する。
従来、3相モータのいずれかの相が失陥した場合、失陥した相を検出し、失陥相に対応したバックアップ制御に切替えてモータ駆動を継続する技術が知られる。 
例えば特許文献1には、スイッチング素子をONする組み合わせであるテストパターンを記憶し、前記テストパターンと、当該テストパターンの応答として前記電流検出器で検出される電流検出値と、前記回転角度検出値が逆起電力の影響を受ける範囲にあるか否かを判別した結果とに基づいて、短絡故障個所を特定する電動機制御装置の提案がある。
特許第4954278号公報
しかし、テストパターンのみで故障個所を特定すると、不具合の兆候発見から故障個所の確定まで長時間を要するため、バックアップ制御への移行が遅くなる。 
本発明は、テストパターンのみを用いる場合に較べて短時間でバックアップ制御へ移行できる駆動制御装置、駆動装置およびパワーステアリング装置を提供することを目的とする。
本発明に係る駆動制御装置の一態様は、3相モータの駆動を制御する駆動制御装置であって、上記3相モータに生じた、電流値および電圧値の少なくとも一方である電気値に基づいて、当該3相モータの回転座標の各座標軸における電気値を算出する電気値算出部と、上記電気値算出部により算出された算出電気値と、上記各座標軸における電気値の制御目標を表した目標電気値との差分および当該差分の変化量の少なくとも一方における正負情報を上記各座標軸について組み合わせることで上記3相モータの各相のうちで失陥を生じた失陥相を判定する失陥判定部と、を備える。 また、本発明に係る駆動装置の一態様は、上記駆動制御装置と、上記駆動制御装置によって駆動が制御される3相モータと、を備える。 
また、本発明に係るパワーステアリング装置の一態様は、上記駆動制御装置と、上記駆動制御装置によって駆動が制御される3相モータと、上記3相モータによって駆動されるパワーステアリング機構と、を備える。
本発明によれば、テストパターンのみを用いる場合に較べて短時間でバックアップ制御へ移行できる。
図1は、本実施形態によるモータ駆動ユニットのブロック構成を模式的に示す図である。 図2は、正常時におけるモータの各相の各コイルに流れる電流値を示す図である。 図3は、正常時の制御と異常時の制御との切替えに着目した機能ブロック図である。 図4は、正常時の制御から異常時の制御に切替えられる手順を示すフローチャートである。 図5は、異常時におけるモータ200の各相の各コイルに流れる電流値を示す図である。 図6は、本実施形態によるパワーステアリング装置の構成を模式的に示す図である。
以下、添付の図面を参照しながら、本開示の駆動制御装置、駆動装置およびパワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。(モータ駆動ユニット1000の構造) 図1は、本実施形態によるモータ駆動ユニット1000のブロック構成を模式的に示す図である。 モータ駆動ユニット1000は、電力供給装置100、モータ200および制御回路300を備える。 
本明細書では、構成要素としてモータ200を備えるモータ駆動ユニット1000を説明する。モータ200を備えるモータ駆動ユニット1000は、本発明の駆動装置の一例に相当する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200が省かれた、モータ200を駆動するための装置であってもよい。モータ200が省かれたモータ駆動ユニット1000は、本発明の駆動制御装置の一例に相当する。 
モータ200は、例えば三相交流モータである。モータ200は、a相、b相、およびc相のコイルを有する。コイルの巻き方は、例えば集中巻きまたは分布巻きである。 
モータ駆動ユニット1000は、外部電源からの電力を、電力供給装置100によってモータ200に供給する電力に変換することが可能である。例えば、第1インバータ110、第2インバータ120は、直流電力を、a相、b相およびc相の擬似正弦波である三相交流電力に変換することが可能である。 
電力供給装置100は、第1インバータ110、第2インバータ120、および電流センサ130を備える。第1インバータ110はモータ200のコイルの一端210に接続され、第2インバータ120はモータ200のコイルの他端220に接続される。本明細書において、部品(構成要素)同士の「接続」とは、主に電気的な接続を意味する。モータ200は、各相のコイルの相互間に結線が存在しないいわゆる無結線モータである。 
第1インバータ110および第2インバータ120は、モータ200のコイルに接続されたスイッチング素子を備え、そのスイッチング素子のスイッチング動作により電力が変換されてモータ200に供給される。 
電流センサ130は例えばシャント抵抗と電流検出回路からなり、第1インバータ110および第2インバータ120に流れる電流を検知することで、モータ200の各相のコイルに流れる電流値を検知する。 
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、マイクロコントローラ340と、駆動回路350と、ROM360とを備える。制御回路300は、電力変換装置100の全体の動作を制御することによりモータ200を駆動する。具体的には、制御回路300は、目的とするモータトルクや回転速度を制御してクローズドループ制御を実現することができる。 
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。角度センサ320は、例えばレゾルバ、ホールICであり、あるいは磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、モータ200のロータの回転角を検出し、検出した回転角を示す回転信号をマイクロコントローラ340に出力する。モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は省かれる場合がある。 
入力回路330は、電流センサ130によって検出された電流値(以下、「実電流値」と表記する。)を受け取り、必要に応じて、実電流値のレベルをマイクロコントローラ340の入力レベルに変換し、実電流値をマイクロコントローラ340に出力する。入力回路330は、アナログデジタル変換回路である。 
マイクロコントローラ340は、角度センサ320によって検出されたロータの回転信号を受信するとともに、入力回路330から出力された実電流値を受信する。マイクロコントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、生成したPWM信号を駆動回路350に出力する。例えば、マイクロコントローラ340は、電力供給装置100の第1インバータ110および第2インバータ120における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御するためのPWM信号を生成する。 
駆動回路350は、典型的にはゲートドライバである。駆動回路350は、第1および第2インバータ110、120における各スイッチ素子のスイッチング動作を制御する制御信号(例えば、ゲート制御信号)をPWM信号に従って生成し、生成した制御信号を各スイッチ素子に与える。なお、マイクロコントローラ340が駆動回路350の機能を備えていてもよい。その場合、制御回路300は駆動回路350を備えていなくてもよい。 
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、マイクロコントローラ340に電力供給装置100(主としてインバータ110,120)を制御させるための命令群を含む制御プログラムを格納する。 
電力供給装置100には正常時および異常時の制御がある。制御回路300のマイクロコントローラ340は、電力供給装置100の制御を正常時の制御と異常時の制御とに切替えることができる。(正常時の制御) 図2は、正常時におけるモータ200の各相の各コイルに流れる電流値を示す図である。 
図2には、正常時の三相通電制御に従って第1インバータ110および第2インバータ120が制御されたときにモータ200のa相、b相およびc相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)が例示される。図2の横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。Ipkは各相の最大電流値(ピーク電流値)を表す。なお、電力供給装置100は、図2に例示した正弦波以外に、例えば矩形波を用いてモータ200を駆動することも可能である。 
表1は、図2の正弦波において電気角毎に各インバータの端子に流れる電流値を示す。表1は、具体的に、第1インバータ110とa相、b相およびc相それぞれのコイルの一端210との接続点に流れる電気角30°毎の電流値を示す。また、表1は、第2インバータ120とa相、b相およびc相それぞれのコイルの他端220との接続点に流れる、電気角30°毎の電流値を示す。ここで、第1インバータ110に対しては、モータ200の一端210から他端220に流れる電流方向を正の方向と定義する。また、第2インバータ120に対しては、モータ200の他端220から一端210に流れる電流方向を正の方向と定義する。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。 
Figure JPOXMLDOC01-appb-T000001
電気角0°において、a相のコイルは電流が「0」となる。電気角0°において、b相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。 
電気角30°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、b相のコイルには第2インバータ120から第1インバータ110に大きさIpkの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。 
電気角60°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、b相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。電気角60°において、c相のコイルは電流が「0」となる。 
電気角90°において、a相のコイルには第1インバータ110から第2インバータ120に大きさI
の電流が流れ、b相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角120°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。電気角120°において、b相のコイルは電流が「0」となる。 
電気角150°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、b相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIpkの電流が流れる。 
電気角180°において、a相のコイルは電流が「0」となる。電気角180°において、b相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角210°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、b相のコイルには第1インバータ110から第2インバータ120に大きさIpkの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角240°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、b相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。電気角240°において、c相のコイルは電流が「0」となる。 
電気角270°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIpkの電流が流れ、b相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。 
電気角300°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。電気角300°において、b相のコイルは電流が「0」となる。 
電気角330°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、b相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIpkの電流が流れる。 
図2に示される電流波形において、電流の向きを考慮した三相のコイルに流れる電流の総和は電気角毎に「0」となる。ただし、制御回路300は電流の総和が「0」以外の値となる制御を行うことも可能である。(故障判定) 図3は、正常時の制御と異常時の制御との切替えに着目した機能ブロック図である。 
マイクロコントローラ340は、内部機能として、電流制御部341と失陥判定部342と符号情報記憶部343と備える。また、駆動回路350は、内部機能として、検出回路351を備える。 
マイクロコントローラ340の電流制御部341は、実電流値ia,ib,icと、回転信号から得られる電気角θの入力を受け、目標電流値を設定してPWM信号を生成する。この目標電流値は、モータ200の回転座標系における目標電流値として設定され、電流制御部341には、モータ200の各相の実電流値ia,ib,icを回転座標系における実電流値iq,idに変換する機能も備えられる。つまり、電流制御部341には、モータ200に生じた、電流値および電圧値の少なくとも一方である電気値に基づいて、当該モータ200の回転座標の各座標軸における電気値を算出する電気値算出部としての機能が備えられる。すなわち、3相モータに生じた、電流値および電圧値の少なくとも一方である電気値に基づいて、当該3相モータの回転座標の各座標軸における電気値を算出する電気値算出部を有する。なお、本実施形態では、上記電気値のうち電流値が算出される。 
また、電流制御部341は、正常時と異常時とで異なる目標電流値を設定する。例えば図2に示す正常時の三相通電制御の場合には、電流制御部341は、回転座標系における目標電流値として一定の電流値を設定する。 
駆動回路350の検出回路351は、インバータ110,120のスイッチ素子に生じた異常を検出する回路であり、通常の制御信号に対するモータ200の応答に基づいた故障検出の機能と、テストパターンが用いられる故障特定の機能とを有する。故障検出は、故障発生時に必ず故障を検出できるように鋭敏な検出を行うので、ノイズなどによって誤検出が生じる場合がある。故障特定では、テストパターンが用いられるので、より確実に故障が検出されると共に、故障を生じたスイッチ素子の特定も可能である。但し、故障検出は短時間で実行できるのに対し故障特定は長時間を要する。 
このため、故障特定におけるテストパターンの使用数を軽減して時間短縮を図る仕組みとして、マイクロコントローラ340には失陥判定部342と符号情報記憶部343が備えられる。 
失陥判定部342は、通常の制御信号に対するモータ200の応答に基づいて、モータ200の各相のうち失陥を生じた相を判定する。失陥判定部342における判定には、符号情報記憶部343に記憶された符号情報が用いられる。以下、この符号情報と判定の原理について説明する。 
モータ200の各相(a相、b相、c相)のコイルに各電流値Ia,Ib,Icが流れる場合、モータ200の回転座標系のqdz軸方向それぞれの電流値Iq,Id,Izは以下の式1で求められる。 
Figure JPOXMLDOC01-appb-M000002
モータ200の駆動に際しては、上述したように例えば回転座標系の軸方向の電流値が一定といった条件での駆動が行われる。しかし、回転座標系の各軸方向の電流値Iq,Id,Izが一定値であっても、その電流値Iq,Id,Izに対してa相、b相、c相それぞれの電流値Ia,Ib,Icが寄与(影響)する寄与成分は、電気角θに応じて変化する。 
表2は、回転座標系のd軸方向の電流(以下、「d軸電流」と称する。)に対するa相、b相、c相それぞれの電流値Ia,Ib,Icの寄与率(影響率)を電気角30°毎に示す。 
Figure JPOXMLDOC01-appb-T000003
表3は、回転座標系のq軸方向の電流(以下、「q軸電流」と称する。)に対するa相、b相、c相それぞれの電流値Ia,Ib,Icの寄与率(影響率)を電気角30°毎に示す。 
Figure JPOXMLDOC01-appb-T000004
表2および表3から分かるように、a相、b相、c相それぞれの電流値Ia,Ib,Icの影響率は、電気角に依存して、+方向に影響する場合と-方向に影響する場合とが交互に切り替わる。また、影響率が+方向の電気角範囲と影響率が-方向の電気角範囲は、相毎に異なる。言い換えると影響率の符号が切り替わる電気角が相毎に異なる。更に、同一の相でも、d軸電流に対する影響率とq軸電流に対する影響率とでは、影響率が+方向の電気角範囲と影響率が-方向の電気角範囲は異なる。 
表2および表3に示す影響率は、a相、b相、c相それぞれに流れた電流がd軸電流およびq軸電流に寄与(影響)する率であるので、a相、b相、c相のいずれかの相の電流が失われたり減ったりした(即ち当該相が失陥した)場合には、表2および表3に示す影響率の符号とは逆符号の影響が生じることになる。このような相の失陥時に生じる影響について電気角30°毎に符号が抜き出された符号情報は以下の式2、式3で表される。 
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
式2、式3の1行目は、a相の影響率の符号情報を示し、2行目、3行目はb相、c相の影響率の符号情報を示す。また、式2、式3の例えば1列目は、電気角0°における影響率の符号情報を示し、例えば5列目は、電気角120°における影響率の符号情報を示す。 
例えば、式2の1行目は、a相の電流が失陥すると、d軸電流に対し、電気角0°から電気角90°未満の範囲では-の影響(電流値を減少させる影響)を生じ、電気角90°を越えて電気角270°未満の範囲では+の影響(電流値を増加させる影響)を生じ、電気角270°を越えて電気角360°までの範囲では-の影響(電流値を減少させる影響)を生じることを表す。 
また、例えば、式3の2行目は、b相の電流が失陥すると、q軸電流に対し、電気角0°から電気角120°未満の範囲では-の影響(電流値を減少させる影響)を生じ、電気角120°を越えて電気角300°未満の範囲では+の影響(電流値を増加させる影響)を生じ、電気角300°を越えて電気角360°までの範囲では-の影響(電流値を減少させる影響)を生じることを表す。 
式2および式3に示す符号情報(寄与成分の正負)を任意の電気角θについて算出する式4は、q軸の電気値に対するa相、b相、c相それぞれの符号情報q_affect(a)、q_affect(b)、q_affect(c)、およびd軸の電気値に対するa相、b相、c相それぞれの符号情報d_affect(a)、d_affect(b)、d_affect(c)について、q_affect(a)=sgn(-sinθ)q_affect(b)=sgn(-sinθ-2π/3)q_affect(c)=sgn(-sinθ-4π/3)        ……(4)d_affect(a)=sgn(cosθ)d_affect(b)=sgn(cosθ-2π/3)d_affect(c)=sgn(cosθ-4π/3)但し、sgn(x)=-1(x<0),0(x=0),1(x>0)と表される。 
式2および式3に示す符号情報(あるいは式4で表される符号情報)が、図3に示す符号情報記憶部343に記憶される。失陥判定部342は電流制御
部341からd軸およびq軸の実電流値の入力を受け、実電流値と目標電流値との差分値、および当該差分値の変化量、の少なくとも一方について、値が正値であるか負値であるかを示した正負情報をd軸およびq軸について組み合わせる。すなわち、電気値算出部により算出された算出電気値と、各座標軸における電気値の制御目標を表した目標電気値との差分および当該差分の変化量の少なくとも一方における正負情報を各座標軸について組み合わせることで3相モータの各相のうちで失陥を生じた失陥相を判定する失陥判定部342を有する。そして、失陥判定部342はその組み合わせた正負情報を、現在の電気角θにおける符号情報と比較する。失陥判定部342は、この比較により、正負情報と符号情報とが一致する相を、失陥が生じた相と判定する。換言すると、失陥判定部342は、正負情報と符号情報と整合性を確認することで失陥相を判定する。 
このような失陥判定は、通常の制御信号に対するモータ200の応答に基づいた判定であるので高速な判定が可能である。また、数値の大きさは問わずに数値の正負を基準として判定するので判定が明瞭である。但し、符号(正負)のみに基づいた判定であるため、上記失陥判定は、確定的な判定というよりも失陥相の推定といってよい。 
本実施形態では、上記電気値(電圧値および電流値)のうち電流値が用いられて失陥相が判定(推定)される。電圧値が用いられる場合も上記同様に正負情報と符号情報とが比較されることで失陥相の判定(推定)が可能である。しかし、電圧値が用いられる場合に較べて電流値が用いられる方が、正負情報が明確であるので失陥相の判定(推定)が容易である。 
なお、上記正負情報については、実電流値と目標電流値との差分値の変化量における正負情報が用いられることが望ましい。実電流値と目標電流値との差分値における正負情報よりも、その差分値の変化量における正負情報が用いられる方が失陥発見の精度が高いからである。また、本実施形態ではモータ200が無結線モータであるので、結線モータである場合に較べて失陥相の判定が容易である。 このような失陥判定が用いられて正常時の制御から異常時の制御に切替えられる手順について説明する。 図4は、正常時の制御から異常時の制御に切替えられる手順を示すフローチャートである。 
上述した故障検出(図3の検出回路351の機能)によって故障(の兆候)が検出されると(ステップS101)、失陥判定部342による上記失陥判定により、失陥を生じた相が判定(推定)される(ステップS102)。判定(推定)された相は、失陥判定部342から検出回路351へと通知され、検出回路351では、テストパターンの適用順が、通知された相について故障を確認するテストパターンを優先的に実行する適用順に決定される(ステップS103)。ここまでのステップは、通常の制御信号に対するモータ200の応答を利用するので高速に実行される。 
その後、検出回路351で、テストパターンが用いられる上述した故障特定が実行され、失陥が推定された相について最初にテストパターンが適用される(ステップS104)。このテストパターンによるテストの故障判定が行われ(ステップS105)、故障箇所が確定されると(ステップS105:yes、ステップS106)、故障箇所の情報が検出回路351から電流制御部341へと通知される。テストパターンが失陥相に優先的に適用されるので、故障箇所の確定に要する時間が短い。 その後、電流制御部341は、モータ200の制御を、通知された故障箇所に対応した異常時の制御に切替える(ステップS107)。 
なお、上記ステップS105の判定で、故障ではないと判定された場合(ステップS105:no)には、検出回路351は、失陥が推定された相以外の相に対するテストパターンを実行して無故障(即ち誤検知であること)を確認する(ステップS108)。その後、電流制御部341は、上述した正常時の制御を継続する(ステップS109)。(異常時の制御) 図5は、異常時におけるモータ200の各相の各コイルに流れる電流値を示す図である。 
図5には、異常時の制御に従って第1インバータ110および第2インバータ120が制御されたときにモータ200のa相、b相およびc相の各コイルに流れる電流値をプロットして得られる電流波形が例示される。図5の横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。Ipkは各相の最大電流値(ピーク電流値)を表す。ここでは一例としてb相で失陥が生じた場合の電流波形が示される。b相で失陥が生じた場合には、a相とc相のコイルのみに電流が流される2相駆動の制御が行われる。 
表4は、図5に示される電流波形が得られるような通電制御で第1インバータ110および第2インバータ120が制御された場合にモータ200のa相、b相およびc相の各コイルに流れる電流値を電気角毎に例示する。表4は具体的に、b相で失陥が生じた場合に、第1インバータ110とa相、b相およびc相それぞれのコイルの一端210との接続点に流れる電気角30°毎の電流値を示すとともに、第2インバータ120とa相、b相およびc相それぞれのコイルの他端220との接続点に流れる、電気角30°毎の電流値も示す。電流方向の定義は上述したとおりである。 
Figure JPOXMLDOC01-appb-T000007
  b相のコイルについては、全ての電気角において電流OFF(電流が「0」)となる。なお、不図示のリレーなどで相を開放して電流OFFとすることが望ましい。 電気角0°において、a相のコイルは電流が「0」となる。c相のコイルには第1インバータ110から第2インバータ120に大きさIpkの電流が流れる。 
電気角30°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。 電気角60°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。 
電気角90°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIpkの電流が流れ、c相のコイルは電流が「0」となる。 
電気角120°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角150°において、a相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角180°において、a相のコイルは電流が「0」となる。電気角180°において、c相のコイルには第2インバータ120から第1インバータ110に大きさIpkの電流が流れる。 
電気角210°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 電気角240°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角270°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIpkの電流が流れ、c相のコイルは電流が「0」となる。 
電気角300°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。 
電気角330°において、a相のコイルには第2インバータ120から第1インバータ110に大きさIの電流が流れ、c相のコイルには第1インバータ110から第2インバータ120に大きさIの電流が流れる。(パワーステアリング装置の実施形態) 
自動車等の車両は一般的に、パワーステアリング装置を備える。パワーステアリング装置2000は、運転者がステアリングハンドル521を操作することによって発生するステアリング系520の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構540によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構540は、操舵トルクセンサ541、ECU542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリング系520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構544を介してステアリング系520に補助トルクを伝達する。 
上記実施形態のモータ駆動ユニット1000は、パワーステアリング装置に好適に利用される。図6は、本実施形態によるパワーステアリング装置2000の構成を模式的に示す図である。 パワーステアリング装置2000は、ステアリング系520および補助トルク機構540を備える。 
ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、および回転軸524(「ピニオン軸」または「入力軸」とも称される。)を備える。 
また、ステアリング系520は、例えば、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。 
ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。 
ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。 
補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速
機構544および電力供給装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。 
ECU542としては、例えば図1などに示された制御回路300が用いられる。また、電力供給装置545としては、例えば図1などに示された電力供給装置100が用いられる。また、モータ543としては、例えば図1などに示されたモータ200が用いられる。ECU542、モータ543および電力供給装置545は、一般的に「機電一体型モータ」と称されるユニットを構成してもよい。図6に示された各要素のうち、ECU542、モータ543および電力供給装置545を除いた要素で構成された機構は、モータ543によって駆動されるパワーステアリング機構の一例に相当する。 
操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。 
パワーステアリング装置2000は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類される。図6には、ピニオンアシスト型のパワーステアリング装置2000が示される。ただし、パワーステアリング装置2000は、ラックアシスト型、コラムアシスト型等にも適用される。 
ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。ECU542のマイクロコントローラ340は、トルク信号や車速信号などに基づいてモータ543を制御することができる。 
ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサ320によって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ(図1参照)によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。 
パワーステアリング装置2000によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型モータに、上記実施形態のモータ駆動ユニット1000が利用されることにより、正常時および異常時のいずれにおいても適切な電流制御が可能となる。この結果、正常時および異常時のいずれにおいてもパワーステアリング装置2000におけるパワーアシストが継続される。
100  :電力供給装置110  :第1インバータ120  :第2インバータ130  :電流センサ200  :モータ300  :制御回路310  :電源回路320  :角度センサ330  :入力回路340  :マイクロコントローラ341  :電流制御部342  :失陥判定部343  :符号情報記憶部350  :駆動回路351  :検出回路360  :ROM1000  :モータ駆動ユニット2000  :パワーステアリング装置

Claims (8)

  1. 3相モータの駆動を制御する駆動制御装置であって、

     前記3相モータに生じた、電流値および電圧値の少なくとも一方である電気値に基づいて、当該3相モータの回転座標の各座標軸における電気値を算出する電気値算出部と、

     前記電気値算出部により算出された算出電気値と、前記各座標軸における電気値の制御目標を表した目標電気値との差分および当該差分の変化量の少なくとも一方における正負情報を前記各座標軸について組み合わせることで前記3相モータの各相のうちで失陥を生じた失陥相を判定する失陥判定部と、

    を備える駆動制御装置。
  2. 前記電気値が電流値である請求項1に記載の駆動制御装置。
  3. 前記失陥判定部が、前記差分の変化量における正負情報を用いる請求項1または2に記載の駆動制御装置。
  4. 前記3相モータが無結線モータである請求項1から3のいずれか1項に記載の駆動制御装置。
  5. 前記失陥判定部が、前記各座標軸の電気値に対して前記3相モータの各相の電気値が寄与する寄与成分の正負と前記正負情報との整合性を確認することで前記失陥相を判定する請求項1から4のいずれか1項に記載の駆動制御装置。
  6. 前記失陥判定部が、前記寄与成分の正負として、q軸の電気値に対するa相、b相、c相それぞれの寄与成分の正負q_affect(a)、q_affect(b)、q_affect(c)およびd軸の電気値に対するa相、b相、c相それぞれの寄与成分の正負d_affect(a)、d_affect(b)、d_affect(c)を表した

    関係式

    q_affect(a)=sgn(-sinθ)

    q_affect(b)=sgn(-sinθ-2π/3)

    q_affect(c)=sgn(-sinθ-4π/3)

    d_affect(a)=sgn(cosθ)

    d_affect(b)=sgn(cosθ-2π/3)

    d_affect(c)=sgn(cosθ-4π/3)

    但し、θ:モータの電気角、

    sgn(x)=-1(x<0),0(x=0),1(x>0)

    を用いる請求項5に記載の駆動制御装置。
  7. 請求項1から6のいずれか1項に記載の駆動制御装置と、

     前記駆動制御装置によって駆動が制御される3相モータと、

    を備える駆動装置。
  8. 請求項1から6のいずれか1項に記載の駆動制御装置と、

     前記駆動制御装置によって駆動が制御される3相モータと、

     前記3相モータによって駆動されるパワーステアリング機構と、

    を備えるパワーステアリング装置。
PCT/JP2019/026707 2018-07-12 2019-07-04 駆動制御装置、駆動装置およびパワーステアリング装置 WO2020013079A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/259,906 US11926378B2 (en) 2018-07-12 2019-07-04 Drive controller, drive unit, and power steering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018132012 2018-07-12
JP2018-132012 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020013079A1 true WO2020013079A1 (ja) 2020-01-16

Family

ID=69141473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026707 WO2020013079A1 (ja) 2018-07-12 2019-07-04 駆動制御装置、駆動装置およびパワーステアリング装置

Country Status (2)

Country Link
US (1) US11926378B2 (ja)
WO (1) WO2020013079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348409B2 (ja) 2020-04-16 2023-09-20 広東美的制冷設備有限公司 モータ駆動制御回路、駆動方法、配線板及び空調機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162680A (ja) * 2012-02-07 2013-08-19 Mitsubishi Electric Corp モータ制御装置、モータ制御装置に適用される電流制御方法、およびモータ制御装置を用いた電動パワーステアリング装置
JP2014121144A (ja) * 2012-12-14 2014-06-30 Thk Co Ltd モータ制御装置、及び欠相検出方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541675B2 (ja) * 1998-05-12 2004-07-14 トヨタ自動車株式会社 電気自動車用電動機の制御装置
US20080067960A1 (en) * 2004-11-24 2008-03-20 Nsk, Ltd. Unconnected Motor, Drive Control Device Thereof, And Electric Power Steering Device Using Drive Control Device Of Unconnected Motor
JP2007159368A (ja) * 2005-12-08 2007-06-21 Toyota Motor Corp モータ駆動システムの制御装置
EP2164169B1 (en) 2007-04-16 2017-08-09 Mitsubishi Electric Corporation Electric motor control apparatus
JP5233178B2 (ja) * 2007-06-14 2013-07-10 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP5833360B2 (ja) * 2011-07-04 2015-12-16 株式会社ジェイテクト モータ制御装置及び車両用操舵装置
JP5867494B2 (ja) * 2013-12-17 2016-02-24 株式会社デンソー モータ異常検出装置
JP6302770B2 (ja) * 2014-06-30 2018-03-28 日立オートモティブシステムズ株式会社 モータ制御装置および該モータ駆動回路を用いた電動パワーステアリングシステム。
US10236818B2 (en) * 2014-10-15 2019-03-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Drive and control apparatus for multiple-winding motor
FR3043865B1 (fr) * 2015-11-12 2018-09-21 Universite Blaise Pascal- Clermont Ii Procede et dispositif de conversion de courant, vehicule comportant un tel dispositif
DE112017000686T5 (de) * 2016-03-04 2018-10-18 Nidec Corporation Leistungsumwandlungsvorrichtung, motorantriebseinheit und elektrische servolenkungsvorrichtung
WO2020031526A1 (ja) * 2018-08-07 2020-02-13 日本電産株式会社 駆動制御装置、駆動装置およびパワーステアリング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162680A (ja) * 2012-02-07 2013-08-19 Mitsubishi Electric Corp モータ制御装置、モータ制御装置に適用される電流制御方法、およびモータ制御装置を用いた電動パワーステアリング装置
JP2014121144A (ja) * 2012-12-14 2014-06-30 Thk Co Ltd モータ制御装置、及び欠相検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348409B2 (ja) 2020-04-16 2023-09-20 広東美的制冷設備有限公司 モータ駆動制御回路、駆動方法、配線板及び空調機

Also Published As

Publication number Publication date
US20210291896A1 (en) 2021-09-23
US11926378B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP5387630B2 (ja) 多相回転機の制御装置、及びこれを用いた電動パワーステアリング装置
US10003286B2 (en) Motor control device and steering control device
JP6004025B2 (ja) モータ制御装置、これを使用した電動パワーステアリング装置および車両
US8680808B2 (en) Motor drive apparatus and electric power steering apparatus using the same
JP5942337B2 (ja) 車両用操舵装置
JP5760830B2 (ja) 3相回転機の制御装置
WO2014203300A1 (ja) モータ制御装置、これを使用した電動パワーステアリング装置及び車両
CN107922001B (zh) 电动助力转向装置
JP6642278B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
CN107922000B (zh) 马达控制装置、电动助力转向装置及车辆
JP7088200B2 (ja) モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
CN107820671B (zh) 电动助力转向装置的控制装置以及电动助力转向装置
JP2009001055A (ja) 電動パワーステアリング装置及び異常検出方法
JP2007274849A (ja) 電動式パワーステアリング装置
US20130003232A1 (en) Vehicle steering system
WO2020013079A1 (ja) 駆動制御装置、駆動装置およびパワーステアリング装置
US11496077B2 (en) Drive controller, drive unit, and power steering
JP3915595B2 (ja) レゾルバを用いた回転角度検出装置およびこの装置を用いた制御装置
WO2020080170A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP5724906B2 (ja) 電子制御装置、異常検出方法
JP2005229768A (ja) ブラシレスモータ駆動装置
JP4123827B2 (ja) 電流検出装置を用いた制御装置
JP7331778B2 (ja) モータ制御装置
US9227658B2 (en) Rotary electric machine control apparatus having abnormality detection function
WO2019220780A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP