JP6091996B2 - タイヤ成型用金型の製造方法 - Google Patents

タイヤ成型用金型の製造方法 Download PDF

Info

Publication number
JP6091996B2
JP6091996B2 JP2013106045A JP2013106045A JP6091996B2 JP 6091996 B2 JP6091996 B2 JP 6091996B2 JP 2013106045 A JP2013106045 A JP 2013106045A JP 2013106045 A JP2013106045 A JP 2013106045A JP 6091996 B2 JP6091996 B2 JP 6091996B2
Authority
JP
Japan
Prior art keywords
wire
casting
mold
tire
release agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013106045A
Other languages
English (en)
Other versions
JP2014226801A (ja
Inventor
石原 泰之
泰之 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013106045A priority Critical patent/JP6091996B2/ja
Priority to PCT/JP2014/057798 priority patent/WO2014188770A1/ja
Priority to US14/785,552 priority patent/US9573299B2/en
Priority to CN201480029412.6A priority patent/CN105228803B/zh
Priority to EP14800967.3A priority patent/EP3000573B1/en
Publication of JP2014226801A publication Critical patent/JP2014226801A/ja
Application granted granted Critical
Publication of JP6091996B2 publication Critical patent/JP6091996B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0072Casting in, on, or around objects which form part of the product for making objects with integrated channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0617Venting devices, e.g. vent plugs or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • B29K2905/02Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、ベントホールを有するタイヤ成型用金型の製造方法関する。
タイヤ成型用金型は、一般に、石膏鋳型を使用した鋳造により製造され、加硫工程でタイヤの成型に用いられる。このタイヤの成型時には、タイヤのゴムを金型の隅々まで行き渡らせるため、金型とタイヤの間の空気溜まりをなくす必要がある。そのため、ベントホール(空気抜き孔)を金型に形成して、金型とタイヤの間の空気をベントホールから排出する。また、空気の排出を確実に行うため、ベントホールは、例えば、0.6〜1.6mmの直径で、一組の金型の数百〜数千箇所に形成される。
ベントホールは、通常、ドリル加工や放電加工により金型に形成される。そのため、多数のベントホールの形成には多大な手間がかかるとともに、形成可能なベントホールの直径と長さに限界がある。これに対し、従来、金型の鋳物に鋳包んだ線材により、金型にベントホールを容易に形成するベントホールの形成方法が知られている(特許文献1参照)。
この従来の方法では、線材を配置した鋳型内で鋳物を鋳造した後、鋳物から線材を引き抜くことでベントホールを形成する。ところが、線材は、溶湯から受ける圧力により撓み変形した状態で、鋳物内に固定されることがある。この場合には、ベントホールも曲がるため、金型に形成されたベントホールの精度が低下する。また、ベントホールに詰まりが生じると、細長い工具(錐等)によりベントホールの詰まりを解消する。その際、工具がベントホールの途中で止まり、又は、ベントホールへの挿入中に工具が折れることがある。
特開平10−34658号公報
本発明は、前記従来の問題に鑑みなされたもので、その目的は、タイヤ成型用金型の鋳造時に、鋳型内に配置した線材の撓み変形を抑制して、金型のベントホールを精度よく形成することである。
本発明は、線材を配置した鋳型の鋳造空間に溶湯を注入する工程と、鋳造空間内で線材を鋳包んだタイヤ成型用金型の鋳物を鋳造する工程と、線材を鋳物から引き抜いてベントホールを形成する工程と、を有するタイヤ成型用金型の製造方法であって、予め実験により求めた、鋳造空間内の線材の長さ、線材の直径、溶湯に対する線材の接触角度、鋳造による線材の撓み量の関係を示す関係式を使用し、実際の線材の長さと直径の条件から、線材の撓み量が許容範囲内になる線材の接触角度を算出する工程と、算出した線材の接触角度に基づいて、鋳造空間内に線材を配置する工程と、を有するタイヤ成型用金型の製造方法である
本発明によれば、タイヤ成型用金型の鋳造時に、鋳型内に配置した線材の撓み変形を抑制して、金型のベントホールを精度よく形成することができる。
第1実施形態のタイヤ成型用金型の製造手順を示す断面図である。 線材によるベントホールの形成過程を示す断面図である。 金型に用いた合金の組成を示す表である。 第1実施形態における金型の鋳造実験の結果を示す表である。 撓み量の実測値と予測値を対比したグラフである。 第2実施形態における線材の配置の仕方を示す図である。 線材の引き抜きについて説明するための図である。 第3実施形態における線材の引き抜き実験の結果を示す表である。 T/(D×L)と引き抜き成功率を対比したグラフである。 水素ガス欠陥の発生について説明するための図である。 第4実施形態における鋳造実験の結果を示す表である。
本発明のタイヤ成型用金型(以下、単に金型という)の製造方法と、この製造方法により製造した金型の一実施形態について、図面を参照して説明する。
以下説明する各実施形態の金型は、タイヤの加硫時にタイヤの成型に使用され、少なくともタイヤのトレッド部を成型する。また、金型は、成型するタイヤのタイヤ周方向に複数に分割された分割金型であり、タイヤの軸線(回転軸)を中心に所定の分割角度で分割されている。加硫機内で、複数の金型がタイヤ(未加硫タイヤ)を囲んで環状に配置され、複数の金型により、タイヤのトレッド部が所定形状に成型される。
(第1実施形態)
図1は、第1実施形態の金型1の製造手順を示す断面図であり、図1Aは、側方からみた鋳型10を示している。また、図1Bは図1AのX1方向からみた鋳型10の断面図、図1Cと図1Dは図1Aに対応する金型1(鋳物2)の断面図である。図1A、図1B、図1Cでは、金型1の製品になる部分(製品部)を二点鎖線で示す。図1Aに示す矢印Mは、鋳型10内における溶湯3の表面(模式的に点線で示す)の移動方向である。
鋳型10は、図示のように、金型1の鋳物2を成型する主型11と、主型11を収容する鋳枠12と、溶湯3を溜めるストーク13を備えている。主型11は、鋳物2の側方に、直立するように配置される。主型11と鋳枠12により、鋳物2を鋳造するための鋳造空間14が鋳型10内に形成され、直線状の線材20が鋳造空間14内に配置されている。
主型11は、鋳物2の成型面11Aを有し、石膏により形成されている。線材20は、金型1にベントホール4を形成するための線状の部材(例えば、バネ鋼線)であり、ベントホール4の位置に対応して、鋳造空間14内の複数箇所に配置される。鋳型10の組立前に(図1A、図1B参照)、線材20の基端部を主型11に形成された孔に挿入して、複数の線材20を成型面11Aから突出するように主型11に取り付ける。その状態で、鋳型10を組み立てて、金型1の鋳物2を鋳造する。
金型1(鋳物2)の鋳造時には、合金を溶融し、合金の溶湯3を鋳型10(鋳造空間14)内に鋳込む。これにより、溶湯3を、線材20を配置した鋳型10の鋳造空間14に注入する。続いて、鋳造空間14内で、溶湯3を凝固させて、線材20を鋳包んだ金型1の鋳物2(合金鋳物)を鋳造する。鋳型10により鋳物2を鋳造した後(図1C参照)、鋳物2を鋳型10から取り出し、複数の線材20を鋳物2から引き抜いて、複数のベントホール4を鋳物2に形成する。その後、鋳物2を加工して、タイヤの成型に使用する金型1を製造する(図1D参照)。ベントホール4は、金型1のタイヤを成型する面から金型1の背面まで形成され、金型1を貫通する。
図2は、線材20によるベントホール4の形成過程を示す断面図である。
図示のように、線材20の基端部21が鋳型10(主型11)に固定されて、線材20が鋳型10に取り付けられる(図2A参照)。これにより、線材20が、片持ち梁と同様の状態で鋳型10により支持される。また、線材20は、溶湯3の温度よりも融点が高い材料からなり、表面に塗布された離型剤22を有する。離型剤22は、線材20を鋳物2から抜き易くするための薬剤であり、鋳造時に鋳物2と線材20の接合を防止する。線材20の断面形状は円形状をなし、離型剤22は線材20の全体に均一に塗布されている。
ここで、金型1の鋳造時には、溶湯3から受ける圧力P(図2B参照)により、線材20が撓んで、撓み変形が線材20に発生することがある(図2C参照)。この圧力Pは、溶湯3の界面張力、及び、溶湯3に形成される表面膜(酸化膜等)に起因し、溶湯3と線材20の接触に伴い線材20に作用する。また、溶湯3の表面の移動に伴い、線材20が圧力Pにより撓み、線材20が変形した状態で、溶湯3が凝固する。この場合には、線材20を鋳物2から引き抜くことで、曲がったベントホール4が形成される(図2D参照)。
線材20の撓み量W(図2C参照)は、片持ち梁の撓み式と同様に、鋳造空間14内の線材20の長さL(図2A参照)と、鋳造空間14内の線材20の直径Dの関数となる。また、撓み量Wは、溶湯3に対する線材20の接触角度θと、線材20の長さLの関数となり、かつ、溶湯3の性状(界面張力、表面膜の強度等)にも依存する。第1実施形態では、実験により、これら複数の変数の関係を示す式を求めて、線材20の撓み量Wを定量的に予測等する。その結果に基づき、撓み変形を抑制可能な線材20の条件を設定する。
なお、線材20の撓み量Wは、線材20の先端部23における撓みであり、鋳物2の鋳造による先端部23の変位距離に対応する。即ち、撓み量Wは、溶湯3の注入前の先端部23を基準にして、鋳物2の鋳造後に先端部23が変位した距離である。また、線材20の接触角度θ(図2A参照)は、溶湯3が線材20に接触するときの溶湯3の表面と線材20とのなす角度である。即ち、接触角度θは、線材20が溶湯3に入る前(線材20が撓む前)に、溶湯3の表面と線材20とのなす角度である。
実験では、合金(溶湯3)の種類、線材20の長さL、線材20の直径D、線材20の接触角度θのみを変化させて、金型1の鋳物2を鋳造する。線材20は、日本工業規格(JIS規格)に定められたバネ鋼線(SUP−3)からなる。線材20の離型剤22は、アクリル樹脂とボロンナイトライド(BN)(平均粒径10μmの粉末)の混合品(アクリル樹脂:29%、BN:71%)であり、線材20に所定厚みで塗布した。主型11は、非発泡石膏(株式会社ノリタケカンパニーリミテッド製、品名G−6)により作製した。
合金は、JIS規格に定められた3種類の鋳造用アルミニウム合金(AC4C、AC7A、AC2B)である。鋳造時には、上記した線材20に関する3つの条件(L、D、θ)の組み合わせを種々変化させ、その他の鋳造条件は同一にした。各合金により金型1の鋳物2を鋳造した後、金型1(鋳物2)の鋳造による線材20の撓み量Wを測定した。
図3は、金型1に用いた合金の組成を示す表であり、線材20等の材料も示している。
図4は、第1実施形態における金型1(鋳物2)の鋳造実験の結果を示す表であり、合金毎に実験結果を示している。また、図4は、実験の条件(D、L、θ)、線材20の撓み量(実測値)W、線材20の撓み量(予測値)Wを並べた表である。
第1実施形態では、図4に示すように、鋳造実験により、合金毎に、線材20に関する4つの値(D、L、θ、W)の関係を示すデータを取得する。次に、取得したデータに基づき、合金毎に、線材20の長さL、線材20の直径D、線材20の接触角度θ、線材20の撓み量Wの関係式を構築する。関係式は、例えば、線材20の撓み量Wを目的変数とし、長さL、直径D、接触角度θを説明変数として、多変量解析(重回帰分析)により求める。ここでは、直径Dの二乗と長さLの積を説明変数として、関係式を作成した。
3つの合金(AC4C、AC7A、AC2B)の関係式は、次の式A〜式Cである。
Figure 0006091996
これら関係式は、実験により求めた複数の変数(W、D、L、θ)の関係を示す実験式であり、かつ、線材20の撓み量Wを予測する予測式である。金型1の合金に対応する関係式に基づき、長さL、直径D、接触角度θから、撓み量Wを算出することで、鋳造時に発生する撓み量Wが予測される。図4に示す撓み量(予測値)Wは、式A〜式Cにより算出した値である。
図5は、撓み量Wの実測値(横軸)と予測値(縦軸)を対比したグラフであり、合金毎の実測値と予測値の相関を示している。
図示のように、予測値は実測値とよく一致しており、線材20の撓み量Wは関係式により精度よく予測できる。
金型1を鋳造する段階では、例えば、予め実験により求めた関係式に基づき、線材20の撓み量Wが許容範囲内になる線材20の長さL、線材20の直径D、線材20の接触角度θの条件を算出(取得)する。或いは、関係式に基づき、金型1の鋳造に実際に用いる線材20の長さLと直径Dから、線材20の撓み量Wが許容範囲内になる線材20の接触角度θの条件を算出する。その後、算出した線材20の条件に合わせて、その条件を満たすように、線材20(図2参照)を鋳造空間14内に配置する。
ここでは、予め実験により求めた関係式を使用し、実際の線材20の長さLと直径Dの条件から、線材20の撓み量Wが許容範囲内になる線材20の接触角度θを算出する。また、算出した線材20の接触角度θに基づいて、鋳造空間14内に線材20を配置する。具体的には、関係式、線材20の長さL、線材20の直径D、及び、撓み量Wの許容範囲に基づき、線材20の撓み量Wが許容範囲内になる線材20の接触角度θを算出する。撓み量Wの許容範囲は、ベントホール4に要求される条件に対応して予め定められる。許容範囲に対応して、関係式、長さL、及び、直径Dから、接触角度θ(接触角度θの条件)が算出される。次に、直径Dの線材20を、長さLの状態で鋳型10(主型11)に取り付ける。その際、線材20を、算出した線材20の接触角度θに合わせて、接触角度θの条件を満たすように、鋳造空間14内に配置する。これにより、設定された条件で線材20を配置し、鋳型10を組み立てて、関係式の合金により金型1の鋳物2を鋳造する。その後、線材20を鋳物2から引き抜くことでベントホール4を形成し、ベントホール4を有する金型1を製造する。
以上のように線材20を鋳型10内に配置することで、線材20の撓み量Wが許容範囲内になるため、ベントホール4の曲がりが抑制される。従って、金型1(鋳物2)の鋳造時に線材20の撓み変形を抑制して、金型1のベントホール4を精度よく形成することができる。また、ベントホール4を真っ直ぐな形状に近づけられるため、細長い工具により、ベントホール4の詰まりを容易に解消できる。
(第2実施形態)
上記した関係式(式A〜式C)には、sin(90−θ)の項が含まれている。そのため、線材20の接触角度θが90°のときには、線材20の長さLと直径Dの条件に関わらず、線材20の撓み量Wが零になる。この特性に着目して、第2実施形態では、線材20の接触角度θを90°にして、鋳造空間14内に線材20を配置する。
図6は、第2実施形態における線材20の配置の仕方を示す図であり、鋳型10の断面を示している。また、図6Bは、図6AのX2方向からみた鋳型10の断面図である。図6では、金型1の製品になる部分(製品部)を二点鎖線で示す。図6に示す矢印Mは、鋳型10内における溶湯3の表面(模式的に点線で示す)の移動方向である。
第2実施形態では、主型11を、鋳物2の下方において、水平方向に配置する。溶湯3の表面は、鋳造空間14内で、主型11から上方に向かって移動する。複数の線材20を主型11から上方に突出するように配置することで、線材20の接触角度θを90°にする。これにより、線材20が溶湯3の圧力Pの方向に沿って配置されるため、圧力Pにより線材20が撓み難くなり、線材20の撓み変形が抑制される。その結果、線材20の撓み量Wがより小さくなるため、ベントホール4の曲がりを確実に抑制できる。また、ベントホール4の精度をより向上でき、ベントホール4を従来よりも細くすることもできる。
このように、接触角度θを90°に設定できる場合には、接触角度θを90°にして線材20を鋳造空間14内に配置するのが望ましい。なお、線材20の接触角度θに関して、90°とは、線材20の撓み変形を抑制可能な、90°を中心にした所定の角度範囲のことをいう。即ち、線材20は、接触角度θを略90°(θ≒90°)にした状態で、鋳造空間14内に配置される。ここでは、接触角度θは、80〜100°の範囲内の角度である。ただし、線材20の撓み変形をより確実に抑制するため、接触角度θは、85〜95°の範囲内の角度にするのが望ましい。
上記したように、金型1は、タイヤ周方向に複数に分割された分割金型であり、ベントホール4は、金型1の複数箇所に形成される。第2実施形態では、線材20を金型1の中心線CL(図6B参照)に沿って配置することで、複数のベントホール4が中心線CLに沿って形成される。金型1の中心線CLは、金型1のタイヤ周方向の中心位置における中心線であり、中心線CLにより、金型1は、分割面の間において半分に分割される。金型1内の全てのベントホール4が中心線CLに沿って形成されており、線材20を中心線CLに平行に配置することで、全てのベントホール4が中心線CLに平行に形成される。
(第3実施形態)
第3実施形態では、以上の各実施形態に加えて、線材20を鋳物2から引き抜くために必要な離型剤22の厚みを予測して、離型剤22の厚みの条件を設定する。これにより、線材20の撓み変形を抑制しつつ、線材20を鋳物2から確実に引き抜く。
図7は、線材20の引き抜きについて説明するための図である。
図示のように、鋳型10内で、溶湯3が凝固により収縮した後、鋳物2が冷却により収縮する(図7A〜図7C参照)。これら収縮に伴い、線材20に圧力R(図7C参照)が加わり、線材20と鋳物2の間の摩擦力が大きくなる。線材20を鋳物2から引き抜くときには(図7D参照)、圧力Rと摩擦力により、引き抜き抵抗力Jが線材20に加わる。その際、引き抜き抵抗力Jが線材20の強度(破断強度×断面積)よりも小さいときには、線材20が鋳物2から引き抜かれる。これに対し、引き抜き抵抗力Jが線材20の強度以上であるときには、線材20が破断して鋳物2内に残る。
ここで、線材20が受ける圧力Rは、線材20の直径D、離型剤22の厚みT、合金の凝固・冷却収縮率(合金の特性値)に比例する。また、引き抜き抵抗力Jは、圧力R、線材20の外周の面積(直径D×長さLに比例)、線材20と鋳物2の間の摩擦係数(線材20と合金の特性値)に比例する。線材20の強度は、線材20の断面積(直径Dの二乗に比例)、線材20の破断強度(線材20の特性値)に比例する。従って、線材20の長さL、線材20の直径D、離型剤22の厚みT、線材特性、合金特性から、線材20を鋳物2から引き抜けるか否かが推定される。
第3実施形態では、実験により、複数の変数の関係を示す式を求めて、線材20を引き抜き可能な離型剤22の厚みTを定量的に予測する。その結果に基づき、離型剤22の厚みTの条件を設定する。実験では、合金の種類、線材20の直径D、離型剤22の厚みT、線材20の長さLのみを変化させて、その他の鋳造条件は同一にした。また、合金、線材20、離型剤22、及び、主型11は、第1実施形態(図3参照)と同様の材料からなる。3種類の合金(AC4C、AC7A、AC2B)により、様々な条件で鋳造を行った後、鋳物2から線材20を引き抜く実験を行った。また、各条件において、複数の線材20を鋳物2から引き抜いて、引き抜き成功率を求めた。
図8は、第3実施形態における線材20の引き抜き実験の結果を示す表であり、合金毎に実験結果を示している。また、図8は、実験の条件(D、T、L)、T/(D×L)、引き抜き成功率を並べた表である。
図9は、T/(D×L)(横軸)と引き抜き成功率(縦軸)を対比したグラフである。
第3実施形態では、図8に示すように、実験により、合金毎に、3つの値(D、T、L)と引き抜き成功率の関係を示すデータを取得する。次に、取得したデータに基づき、合金毎に、鋳物2から線材20を引き抜き可能な条件を規定する、線材20の長さL、線材20の直径D、線材20に塗布された離型剤22の厚みTの関係式(条件式)を構築する。ここでは、取得したデータから、T/(D×L)の値を算出し、引き抜き成功率が100%になるT/(D×L)の下限値F(定数)を取得する。
これより、関係式(式D)として、(T≧F×(D×L))を得る。図8、図9に示す例では、下限値Fは、0.000245(AC4C)、0.000321(AC7A、AC2B)である。この関係式は、実験により求めた複数の変数(T、D、L)の関係を示す実験式であり、かつ、線材20を鋳物2から引き抜き可能な離型剤22の厚みTを予測する予測式である。金型1の合金に対応する関係式に基づき、線材20の長さLと直径Dから離型剤22の厚みTを算出することで、必要な厚みT(厚みTの下限値)が予測される。
金型1を鋳造する段階では、予め実験により求めた関係式を使用し、実際の線材20の長さLと線材20の直径Dの条件から、線材20を引き抜き可能な離型剤22の厚みTの条件を算出(取得)する。また、算出した離型剤22の厚みTの条件に合わせて、その条件を満たす線材20を鋳造空間14内に配置する。例えば、厚みTが所定値以上であるときには、その条件を満たす離型剤22を有する線材20を配置する。このようにすることで、鋳物2から線材20を確実に引き抜くことができる。なお、離型剤22や線材20の材料を変更したときには、上記と同様に関係式を作成して、離型剤22の厚みTの条件を算出する。
(第4実施形態)
第4実施形態では、以上の各実施形態に加えて、離型剤22の有機物量と溶湯3の初期水素量から、水素ガス欠陥(以下、ガス欠陥という)が金型1(鋳物2)に発生するか否かを予測する。その結果に基づき、ガス欠陥の発生を防止できる条件を設定する。
図10は、ガス欠陥Kの発生について説明するための図である。
離型剤22は、一般に、有機物を含有する。図示のように、離型剤22の有機物が鋳造時の熱で燃焼及び分解するのに伴い、ガスGが溶湯3中に発生する(図10B参照)。ガスG中の酸素は溶湯3の金属や炭素と結び付き易いため、酸素は酸化物やガス(一酸化炭素、二酸化炭素)として溶湯3から分離して浮上する(図10C参照)。これに対し、ガスG中の水素は、溶湯3に吸収され易く、所定の溶解度まで溶湯3に溶け込む。溶湯3の凝固時には、溶解度の急低下に伴い水素ガスが溶湯3中に発生して、ガス欠陥Kが鋳物2に発生することがある(図10D、図10E参照)。ガス欠陥Kが金型1の表面やベントホール4の内面に現れると、ガス欠陥Kが鋳造欠陥になる(図10F参照)。
ここで、鋳造空間14への注入時における溶湯3の水素含有量(初期水素量)をHm、離型剤20により溶湯3中に増加する水素増加量をHpとする。HmとHpの単位は、(cc/合金の単位重量)(ここでは、cc/100g)である。HmとHpの和(水素総量Hs)が合金特有の閾値以上の場合に、ガス欠陥Kが発生する。注入前の溶湯3に脱ガス処理を施した後、溶湯3から採取したサンプルを分析することで、Hmが取得される。また、実際の鋳造実験により、Hpと鋳物2の水素総量Hsが取得される。
第4実施形態では、実験により、様々な条件で金型1(鋳物2)を鋳造して、Hm、Hs、Hpのデータを取得するとともに、鋳物2のガス欠陥Kの有無を調査する。実験では、合金の種類、線材20の直径D、離型剤22の厚みT、線材20の長さLを変化させた。また、合金、線材20、離型剤22、及び、主型11は、第1実施形態(図3参照)と同様の材料からなる。所定数(ここでは1本)の線材20を鋳造空間14内に配置し、3種類の合金(AC4C、AC7A、AC2B)により、鋳物2(長さ120mm、高さ50mm、厚み20mm)を鋳造した。
図11は、第4実施形態における鋳造実験の結果を示す表であり、合金毎に実験結果を示している。また、図11は、実験の条件(D、T、L)、離型剤22の容積V、水素の量(Hm、Hs、Hp、Hn)、ガス欠陥Kの有無を並べた表である。
離型剤22の容積Vは、1本の線材20に塗布された離型剤22の容積であり、線材20の直径D、離型剤22の厚みT、線材20の長さLから算出される。水素吸収量Hnは、離型剤22の単位容積(ここでは、1mm)当たりの鋳物2の水素吸収量であり、水素増加量Hp、鋳物2の重量Q、離型剤22の容積V、鋳造空間14内に配置する線材20の数N(総数)から算出される。
図11に示すように、水素吸収量Hnは、合金により変化して、水素吸収量Hnの平均は、0.1429(AC4C)、0.2795(AC7A)、0.1729(AC2B)である。また、ガス欠陥Kが発生する水素総量Hsの閾値は、ほぼ一定値になり、0.4(AC4C、AC7A、AC2B)である。従って、水素総量Hsが0.4よりも小さいときには、ガス欠陥Kが鋳物2に発生しないと予測される。一方、水素総量Hsが0.4以上のときには、ガス欠陥Kが鋳物2に発生すると予測される。第4実施形態では、鋳物2の水素総量Hsと閾値(0.4)に基づき、ガス欠陥Kの発生に関する関係式(式E)を求めて、ガス欠陥Kが発生するか否かを予測する。
Figure 0006091996
水素総量Hsは、溶湯3の水素含有量Hmと水素増加量Hpの和である。また、関係式に示すように、水素増加量Hpは、線材20の長さL、離型剤22の厚みT、線材20の直径D、線材20の数N、合金毎の定数(Hnの平均に相当)、鋳物2の重量Q(kg)から算出される。この関係式は、実験により求めた複数の変数(Hm、L、T、D、N、Q)の関係を示す実験式であり、かつ、ガス欠陥Kの発生の有無を予測する予測式である。金型1の合金に対応する関係式に基づき、複数の変数により算出した水素総量Hsと閾値(0.4)を比較することで、ガス欠陥Kの発生の有無が予測される。
このように、第4実施形態では、実験により、合金毎に、4つの値(Hm、L、T、D、N、Q)とガス欠陥Kの有無の関係を示すデータを取得する。次に、取得したデータに基づき、関係式に関連するデータを取得する。また、取得したデータに基づき、合金毎に、ガス欠陥Kの発生を防止可能な条件を規定する、水素含有量Hm、鋳物の重量Q、離型剤22の厚みT、線材20の長さL、線材20の直径D、線材20の数Nの関係式(条件式)を構築する。
金型1を鋳造する段階では、予め実験により求めた関係式を使用し、実際の水素含有量Hm、重量Q、直径D、厚みTの条件から、ガス欠陥Kの発生を防止可能な線材20の長さLと線材20の数Nの条件を算出(取得)する。また、算出した線材20の長さLと数Nの条件に基づいて、その条件を満たすように、線材20を鋳造空間14内に配置する。例えば、(L×N)が所定値よりも小さいときには、その条件を満たすように、長さLと数Nを決定する。このようにすることで、ガス欠陥Kの発生を抑制できる。なお、合金や離型剤22の材料を変更したときには、上記と同様に関係式を作成して、ガス欠陥Kの発生を予測する。
(金型1の製造試験)
本発明の効果を確認するため、以上説明した製造方法により金型1を製造する試験を行った。試験条件を以下に示す。
鋳物2:リング形状(内径(φ600mm)、外径(φ750mm)、高さ(300mm)、重量(350kg))
合金:AC4C、水素含有量Hm(0.2cc/100g)
線材20:直径D(1.2mm)、長さL(65mm)、数N(1200)
離型剤22:アクリル樹脂とBNの混合品(図3参照)
線材20の接触角度θ:0〜30°
関係式(式A)に基づき、線材20の撓み量Wは、許容範囲内の0.39〜0.45mmと算出される。上記した条件で線材20を配置した鋳物2では、線材20の撓み量W(実測値)が許容範囲内になり、線材20の撓み変形を抑制できた。
また、関係式(式D)に基づき、線材20を引き抜き可能な離型剤22の厚みTは、0.019mm以上である。この条件を満たすため、離型剤22の厚みTを0.02mmにした。その結果、線材20の引き抜き成功率が100%になった。
厚みTが0.02mmのときには、関係式(式E)に基づき、ガス欠陥Kの発生を防止可能な線材20の数Nは、1982未満である。実際に、1200箇所の全てで、ガス欠陥Kの発生を抑制できた。
次に、以下に示す試験条件で金型1を製造した。
鋳物2:上記したリング形状を分割角度45°で分割した扇形状(重量(80kg))
合金:AC7A、水素含有量Hm(0.15cc/100g)
線材20:直径D(0.6mm)、長さL(65mm)、数N(130)
離型剤22:アクリル樹脂とBNの混合品(図3参照)、厚みT(0.015mm)
比較例では、線材20の接触角度θが30°であり、線材20の撓み量Wが10〜12mmになった。これに対し、実施例では、線材20の接触角度θを85°にした。その結果、線材20の撓み量Wが0〜1mmとなり、撓み量Wが大幅に小さくなった。なお、比較例と実施例では、線材20の引き抜き成功率が100%であり、ガス欠陥Kの発生が抑制できた。
1・・・金型、2・・・鋳物、3・・・溶湯、4・・・ベントホール、10・・・鋳型、11・・・主型、12・・・鋳枠、13・・・ストーク、14・・・鋳造空間、20・・・線材、21・・・基端部、22・・・離型剤、23・・・先端部。

Claims (4)

  1. 線材を配置した鋳型の鋳造空間に溶湯を注入する工程と、鋳造空間内で線材を鋳包んだタイヤ成型用金型の鋳物を鋳造する工程と、線材を鋳物から引き抜いてベントホールを形成する工程と、を有するタイヤ成型用金型の製造方法であって、
    予め実験により求めた、鋳造空間内の線材の長さ、線材の直径、溶湯に対する線材の接触角度、鋳造による線材の撓み量の関係を示す関係式を使用し、実際の線材の長さと直径の条件から、線材の撓み量が許容範囲内になる線材の接触角度を算出する工程と、
    算出した線材の接触角度に基づいて、鋳造空間内に線材を配置する工程と、
    を有するタイヤ成型用金型の製造方法。
  2. 請求項1に記載されたタイヤ成型用金型の製造方法において、
    前記線材を配置する工程が、線材の接触角度を90°にして鋳造空間内に線材を配置する工程を有するタイヤ成型用金型の製造方法。
  3. 請求項1又は2に記載されたタイヤ成型用金型の製造方法において、
    予め実験により求めた、鋳物から線材を引き抜き可能な条件を規定する、鋳造空間内の線材の長さ、線材の直径、線材に塗布された離型剤の厚みの関係を示す関係式を使用し、実際の線材の長さと直径の条件から、線材を引き抜き可能な離型剤の厚みの条件を算出する工程を有し、
    前記線材を配置する工程が、算出した離型剤の厚みの条件を満たす線材を鋳造空間内に配置する工程を有するタイヤ成型用金型の製造方法。
  4. 請求項1ないし3のいずれかに記載されたタイヤ成型用金型の製造方法において、
    予め実験により求めた、水素ガス欠陥の発生を防止可能な条件を規定する、溶湯の水素含有量、鋳物の重量、線材に塗布された離型剤の厚み、鋳造空間内の線材の長さ、線材の直径、鋳造空間内に配置する線材の数の関係を示す関係式を使用し、実際の溶湯の水素含有量、鋳物の重量、線材の直径、離型剤の厚みの条件から、水素ガス欠陥の発生を防止可能な線材の長さと数の条件を算出する工程を有し、
    前記線材を配置する工程が、算出した線材の長さと数の条件に基づいて、鋳造空間内に線材を配置する工程を有するタイヤ成型用金型の製造方法。
JP2013106045A 2013-05-20 2013-05-20 タイヤ成型用金型の製造方法 Expired - Fee Related JP6091996B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013106045A JP6091996B2 (ja) 2013-05-20 2013-05-20 タイヤ成型用金型の製造方法
PCT/JP2014/057798 WO2014188770A1 (ja) 2013-05-20 2014-03-20 タイヤ成型用金型の製造方法及びタイヤ成型用金型
US14/785,552 US9573299B2 (en) 2013-05-20 2014-03-20 Method for manufacturing mold for molding tire and mold for molding tire
CN201480029412.6A CN105228803B (zh) 2013-05-20 2014-03-20 轮胎成型用模具的制造方法及轮胎成型用模具
EP14800967.3A EP3000573B1 (en) 2013-05-20 2014-03-20 Method for manufacturing tire molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106045A JP6091996B2 (ja) 2013-05-20 2013-05-20 タイヤ成型用金型の製造方法

Publications (2)

Publication Number Publication Date
JP2014226801A JP2014226801A (ja) 2014-12-08
JP6091996B2 true JP6091996B2 (ja) 2017-03-08

Family

ID=51933336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106045A Expired - Fee Related JP6091996B2 (ja) 2013-05-20 2013-05-20 タイヤ成型用金型の製造方法

Country Status (5)

Country Link
US (1) US9573299B2 (ja)
EP (1) EP3000573B1 (ja)
JP (1) JP6091996B2 (ja)
CN (1) CN105228803B (ja)
WO (1) WO2014188770A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311369B2 (ja) * 2019-09-13 2023-07-19 Toyo Tire株式会社 タイヤ加硫金型の製造方法
CN112080727B (zh) * 2020-09-11 2021-04-23 芜湖映日科技股份有限公司 一种旋转靶材的绑定方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2263001A (en) * 1940-08-24 1941-11-18 Wingfoot Corp Method of producing tire molds
LU33323A1 (ja) * 1954-06-29
JPS60141351A (ja) * 1983-12-28 1985-07-26 Bridgestone Corp タイヤ用加硫モ−ルドの製造方法
DE3914649A1 (de) * 1989-05-02 1990-11-08 Az Formen & Maschbau Gmbh Entlueftete reifenform
JPH07223224A (ja) * 1994-02-14 1995-08-22 Kazuo Aida タイヤ加硫成型用金型のベントホール形成方法
JPH1034658A (ja) * 1996-07-26 1998-02-10 Bridgestone Corp ゴム成形品加硫金型のベントホール形成方法
JPH11300746A (ja) * 1998-04-24 1999-11-02 Yokohama Rubber Co Ltd:The タイヤ成形用金型及びその製造方法
JP2000102926A (ja) * 1998-09-28 2000-04-11 Ngk Fine Mold Kk タイヤ金型のベントホールの形成方法
US6491854B1 (en) * 1998-12-10 2002-12-10 The Yokohama Rubber Co., Ltd. Metallic mold for tire curing and process for producing the same
JP3733271B2 (ja) * 1998-12-10 2006-01-11 横浜ゴム株式会社 タイヤ加硫成形用金型及びその製造方法並びに該金型を用いて成形された空気入りタイヤ及びその製造方法
CN100546795C (zh) * 2002-05-23 2009-10-07 株式会社普利司通 用于轮胎模具的块件、制造该块件的方法、拼块型轮胎模具以及制造该拼块型轮胎模具的方法
JP4983369B2 (ja) * 2007-04-18 2012-07-25 横浜ゴム株式会社 タイヤ成形用金型及びタイヤ成形用金型の製造方法
JP2010012666A (ja) * 2008-07-02 2010-01-21 Yokohama Rubber Co Ltd:The タイヤ成形用金型及びこれにより成形された空気入りタイヤ
JP2010017986A (ja) * 2008-07-14 2010-01-28 Yokohama Rubber Co Ltd:The タイヤ成型用金型及び空気入りタイヤ
JP5243157B2 (ja) * 2008-09-11 2013-07-24 株式会社ブリヂストン タイヤ成型金型用鋳物の製造方法
JP4683146B2 (ja) * 2009-08-26 2011-05-11 横浜ゴム株式会社 タイヤ加硫用モールドの製造方法およびタイヤ加硫用モールド
JP5454250B2 (ja) * 2010-03-15 2014-03-26 横浜ゴム株式会社 タイヤ加硫用モールドの製造方法
JP5356447B2 (ja) * 2011-04-05 2013-12-04 東洋ゴム工業株式会社 タイヤモールド、空気入りタイヤの製造方法、及び、空気入りタイヤ
WO2012141175A1 (ja) * 2011-04-14 2012-10-18 横浜ゴム株式会社 タイヤ加硫用モールドの製造方法およびタイヤ加硫用モールド
CN103492148B (zh) * 2011-04-14 2015-04-08 横滨橡胶株式会社 轮胎硫化用模具的制造方法和轮胎硫化用模具
JP5613198B2 (ja) * 2012-05-29 2014-10-22 住友ゴム工業株式会社 タイヤ加硫金型
US9085114B2 (en) * 2013-12-13 2015-07-21 Jens Guenter Gaebelein Methods for manufacturing a tire mold and displacing the air from the mold into a compression cavity during the tire making process

Also Published As

Publication number Publication date
JP2014226801A (ja) 2014-12-08
EP3000573A4 (en) 2016-05-11
US20160075055A1 (en) 2016-03-17
US9573299B2 (en) 2017-02-21
EP3000573A1 (en) 2016-03-30
EP3000573B1 (en) 2017-06-28
CN105228803B (zh) 2017-02-22
WO2014188770A1 (ja) 2014-11-27
CN105228803A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5472518B1 (ja) 伸びフランジの限界ひずみ特定方法およびプレス成形可否判定方法
JP4650067B2 (ja) 金型冷却構造の製造方法
JP6091996B2 (ja) タイヤ成型用金型の製造方法
KR101639142B1 (ko) 주조형 설계 방법 및 주조형
JP4952442B2 (ja) 金型温度解析方法
JP5741061B2 (ja) 転がり軸受用保持器及びその製造方法、並びに転がり軸受
JP2014161876A (ja) パイプ状欠陥の無いNi鋼扁平鋳塊の造塊鋳造方法
EP2762250A1 (en) Member for casting, casting method, and method for producing lubricant used therefor
JP7056422B2 (ja) 歯車の鍛造成形方法及びその装置
JP5888457B2 (ja) 転がり軸受用保持器の製造方法
JP2012107703A (ja) 転がり軸受用保持器及びその製造方法、並びに転がり軸受
JP2012232347A5 (ja)
JP2009298035A (ja) 金型設計方法
JP6629588B2 (ja) ダイカスト金型、ダイカスト金型を用いて作製された鋳造品、およびダイカスト金型を用いた鋳造品の作製方法
KR101079975B1 (ko) 외경이 동일하고 내벽의 두께가 상이한 파이프의 업셋 단조장치
CN102355965B (zh) 与连接管共同模制的壳体
KR101646358B1 (ko) 다이캐스팅 방법
KR101864323B1 (ko) 쿨러 조립체 및 쿨러 조립체의 제조 방법
JP6075533B2 (ja) 成型装置
KR100876855B1 (ko) 다이캐스팅의 주물 압출 장치 및 그 방법
JP5764944B2 (ja) 転がり軸受用保持器及びその製造方法、並びに転がり軸受
JP5332472B2 (ja) 鋳造方法
KR101328706B1 (ko) 다이캐스팅용 간이 금형
JP2011149467A (ja) 転がり軸受用保持器及びその製造方法、並びに転がり軸受
US9101975B2 (en) Aerospace sand casting support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6091996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees