JP6091705B2 - 平坦化膜形成塗布液および平坦化膜付き金属箔コイル - Google Patents

平坦化膜形成塗布液および平坦化膜付き金属箔コイル Download PDF

Info

Publication number
JP6091705B2
JP6091705B2 JP2016512717A JP2016512717A JP6091705B2 JP 6091705 B2 JP6091705 B2 JP 6091705B2 JP 2016512717 A JP2016512717 A JP 2016512717A JP 2016512717 A JP2016512717 A JP 2016512717A JP 6091705 B2 JP6091705 B2 JP 6091705B2
Authority
JP
Japan
Prior art keywords
film
metal foil
foil coil
less
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016512717A
Other languages
English (en)
Other versions
JPWO2016076399A1 (ja
Inventor
山田 紀子
紀子 山田
左和子 山口
左和子 山口
能勢 幸一
幸一 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Application granted granted Critical
Publication of JP6091705B2 publication Critical patent/JP6091705B2/ja
Publication of JPWO2016076399A1 publication Critical patent/JPWO2016076399A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、電子デバイス用フレキシブル基板に適用可能な平坦化膜形成塗布液および平坦化膜付き金属箔コイルに関する。
電子ペーパー、有機ELディスプレイ、有機EL照明、太陽電池などの電子デバイスでは、フレキシブル基板が求められている。従来、これらのデバイスはガラス基板上に作製されていたが、フレキシブル基板上に作製すれば、落としても割れることがなく、軽量性・柔軟性を活かした新しい用途が広がる。フレキシブル基板として検討されている樹脂フィルムは耐熱性が乏しく寸法安定性が悪いという課題があり、薄ガラスは割れやすいという問題がある。金属箔の表面は圧延すじやスクラッチ疵などがあり、表面はガラスとは比較できないほど粗い。このため金属箔を被覆する膜は金属箔の表面をガラス基板並みに平坦化することが重要である。この平坦化膜は金属箔に絶縁性を付与することにもつながる。
電子デバイスを作製する際のプロセス温度は、電子デバイスの種類および構成材料によって異なるが、有機ELディスプレイで求められるアモルファスシリコンあるいはLTPS(low−temperature poly silicon)のTFTを作る場合には300〜400℃程度のプロセス温度になる。従って金属箔を被覆する絶縁膜も400℃まで耐えられる耐熱性が求められる。
金属箔を被覆する膜材料としては、無機・有機ハイブリッド材料が挙げられる。有機材料は耐熱性が不足である。また、有機材料で被覆した場合は、デバイス形成前の平坦化膜付き金属箔の洗浄・乾燥工程において、洗浄用有機溶剤で被覆した有機材料が膨潤したり、洗浄時に被覆有機材料が吸収した水分や溶剤をすべて乾燥で取り除くことが難しく残留成分がデバイスに悪影響を及ぼしたりするので不適である。無機材料はクラックが入りやすく金属箔表面の圧延すじや疵を被覆できるだけの厚膜に成膜することが難しい。このため、耐熱性と柔軟性を適度に兼ね備えた無機・有機ハイブリッド材料が適している。無機・有機ハイブリッド材料による絶縁膜としては有機修飾シリカ膜が代表的である。有機基を含むため、無機膜より柔軟性があり厚膜が得られやすい。有機修飾シリカ膜は主骨格がSi−Oの無機骨格で形成されているため耐熱性は主骨格を修飾している有機基の分解温度で決まる。有機基としてメチル基やフェニル基を選べば400℃程度の耐熱性を確保することができる。特にフェニル基で修飾されたシリカ膜は、フェニル基の高い疎水性により、高温高湿化(たとえば85℃85%RHの環境加速試験)においてもSi−O主骨格が加水分解を受けにくく耐湿性に優れる。このため電子デバイス用基板としては、フェニル基修飾シリカ膜で被覆した金属箔が好ましい。
フレキシブル基材上にデバイスを形成する場合には、Roll to Rollプロセスを採用することにより低コストで量産することが可能になる。そのためには平坦化膜を成膜した金属箔のシートではなく、平坦化膜付きの金属箔コイルが求められる。金属箔コイルとしては、幅が0.3〜1.5m程度、長さが50〜2000m程度のものが想定される。このような金属箔コイルを無機・有機ハイブリッド材料で被覆する有望な方法の1つとしてRoll to Roll成膜装置を使う方法がある。図1に代表的なRoll to Roll成膜装置の模式図を示す。通常Roll to Rollの成膜装置は、被成膜物である無垢の金属箔コイルをセットする巻出し部、金属箔コイルに塗布液を塗る塗工部、乾燥部、熱処理部、成膜済み金属箔コイルを巻き取る巻き取り部から成る。デバイスは一般的に基板の片面にのみ作製するので、平坦化膜も片面に塗布すればよい。塗布液を付けた後、乾燥・熱処理工程を通過するまでは溶剤や水分を多量に含んでいたり、膜の硬度が不十分で疵が入りやすかったりするので、乾燥・熱処理炉内では成膜面に搬送ロールが触れないことが強く望まれる。図1では成膜面に触れるロールに着色して示したが、このように膜面に触れるロールと膜面の反対側に触れるロールで基材を挟み込むことで基材に張力を付与できる。
一方、乾燥・熱処理炉は平らに金属箔コイルを搬送する構造になっており、乾燥・熱処理時間が長い材料では非常にゆっくり金属箔を搬送するか、長大な炉を準備する必要がある。しかしながら、炉内で膜面にロールが当たらない状態に保つため、炉長が10mを超えるような長い設備は製造コストが高くなるだけでなく、金属箔に歪みがあっても炉内で金属箔を挟んで張力を掛け直すことができないために、蛇行が発生したり搬送が不安定になってしまったりする。炉長については仮に10mの長さがあっても最高温度や不活性ガス雰囲気などの熱処理環境が確保される領域はその中の一部にとどまるので、現実的な設備で工業生産するには短時間で熱硬化する材料が求められている。その目安は熱処理時間が2分以内で膜が硬化することである。
すなわち、フレキシブルなデバイス基板として使える平坦化膜付き金属箔コイルを得るためには、金属箔の表面をガラス基板なみの高い平滑性になるよう被覆することができ、絶縁性を付与し、2分以内で硬化できるような無機・有機ハイブリッド膜、特にフェニル基で修飾されたシリカ膜が求められている。
特許文献1には太陽電池用絶縁基板およびその製造方法として、オルガノアルコキシシランを含む材料で被覆されたステンレス鋼板が開示されている。いわゆるゾルゲル法による塗布液を成膜して絶縁性・耐熱性・短時間硬化が実現されているが、ゾルゲル法による塗布液は固形分濃度を高くするとゲル化してしまうため、多量の溶媒を含んでいる。金属箔の表面には圧延すじや疵のような凹凸が多数あり、深さ数μmの凹みが散見されるのが通常である。このような金属箔表面に固形分濃度が低い塗布液を塗ると、溶剤蒸発後に凹みが緩和されるものの、完全に平坦化されることはない。
特許文献2には溶媒蒸発後に残る凹凸への対策として無溶剤のフェニル基修飾シリカ膜が提案されている。無溶剤でありながら塗布できる粘度にしているため、前駆体がフェニルトリアルコキシシランの部分加水分解物になっており、乾燥および熱処理プロセスに時間をかけて徐々に反応を進める必要がある。成膜後の乾燥時間が45分、300−400℃での熱処理時間が45分と長時間の処理が必要であるため、このような無溶剤の塗布液を用いて金属箔コイルにRoll to Rollプロセスで成膜を行うことは難しい。なぜならば、45分ずつの処理時間がかかるということは、金属箔コイルの通板速度を3mpmとしても15mの長さの乾燥炉と熱処理炉がそれぞれ必要となり、非現実的な長大な設備になる上、蛇行など搬送上のリスクの高い設備になるからである。
特許文献3に超LSIの配線段差をリフロー性を利用して平坦化する材料が挙げられている。シリコーン系材料組成物を回転塗布した後にホットプレート上で150℃3分加熱してリフローさせ、ホットプレートの温度を上げて200℃3分の加熱を行い、石英管用いて窒素気流中450℃30分加熱して熱硬化を行っている。塗布膜をリフローすることによって平坦化を図っているが、窒素気流中450℃30分の膜硬化をRoll to Rollプロセスで行うことは前述したように長大な設備を必要とする。さらに、特許文献3の[0011]〜[0020]に記載されているやり方に従って、フェニルトリエトキシシランをエタノール中でフェニルトリエトキシシラン1モルに対して0.01モルの硝酸と1モルの水を用いて加水分解を行って反応液を実際に得た。NSSC190SBの板厚50μmのステンレス箔上に膜厚1μmでスピンコートを行ったものを100℃〜200℃のホットプレートで1分〜10分の加熱を行ったが、塗布後室温で乾燥したサンプルと種々の条件でホットプレート加熱処理したものでステンレス箔の凹凸被覆性に差は見られなかった。この原因として、特許文献3の方法で得られる反応液のぬれ性やリフロー性の程度が、鏡面仕上げであるシリコンウエハ上では液がうまく流れて平坦化できても、圧延すじやスクラッチ疵のあるステンレス箔表面では凹凸のレベルや頻度が大きいため液が流れることが難しかったと考えられる。すなわち、鏡面状態であるシリコンウエハを平坦化できる材料であっても表面が粗いステンレス箔表面を平坦化することができる訳ではない。
特許文献4には半導体基板表面の平坦化を行うための有機塗布ガラス膜が示されている。特許文献4によれば、アルコキシシランの1モルに対するメチル基の量と酸触媒の量を制御することでリフロー性が生じる。有機塗布ガラス膜は100℃3分でリフローし、さらに200℃3分、窒素気流中で450℃30分の加熱を行うことで形成される。この有機塗布ガラス膜も加熱処理時間が長いためRoll to Roll成膜には不向きである。メチル基修飾シリカ膜は耐湿性が低いため、フェニルトリエトキシシランとテトラエトキシシランを用いて、フェニル基の量と酸触媒の量を制御することでリフロー性が生じるかどうか特許文献[0008]を参考に実際に試験を行った。塩酸触媒と酢酸触媒を用いて、アルコキシシランに対する水の量を変えながら種々の条件で塗布液を作製したが、ステンレス箔の平滑化を十分に行うことはできなかった。この理由は特許文献3の場合と同様に推測される。
特許文献5には熱可塑性ポリフェニルシルセスキオキサンおよびそれを用いた高分子量ポリフェニルシルセスキオキサンの製造方法が開示されている。ここで開示されている熱可塑性ポリフェニルシルセスキオキサンは重量平均分子量1000〜4000の範囲にある直鎖状ラダー型構造を有し、140〜200℃の温度範囲に融点を持ち、融点以上の温度で完全に液状化する。融点以上の温度に保つと縮合反応が進んで高分子量ポリフェニルシルセスキオキサンになる。特許文献5は塗布液や塗膜に関する記載を含まないので詳細は不明であるが、熱可塑性ポリフェニルシルセスキオキサンは溶媒に可溶とのことなので、それを金属基板に成膜すると140〜200℃で液状化してから高分子量化が進んで膜硬化することが期待できる。140〜200℃での液状化をうまく利用できれば金属箔の凹凸をレべリングした状態で膜として硬化させて平坦化できると考えられる。しかしながら[0016]に記載されているように、完全に液状化するのであれば、金属箔コイルから雨だれ状に流れおちたり、流動した軌跡が表面に残って、平坦性を悪化させてしまう。もう1つの問題点は、特許文献5の熱可塑性ポリフェニルシルセスキオキサンを加熱して得られる高分子量ポリフェニルシルセスキオキサンが溶媒に可溶なことと、高分子量化するために350℃10時間、あるいは250℃24時間というような長い処理時間を必要とすることである。平坦化膜付き金属箔はデバイス基板として使うことを想定しているため、デバイス化の工程での耐溶剤性・耐薬品性も求められるので、膜として硬化した後は化学的に安定でなければならない。また高分子量化に長い時間を要するということは、膜硬化にも長い時間が必要であることを意味している。
特許文献5の熱可塑性ポリフェニルシルセスキオキサンは、フェニルトリアルコキシシランを酸で加水分解した後、塩基性触媒を用いて温和な条件で縮合反応を進めることにより欠陥を含まない直鎖状で重量平均分子量1000〜4000のラダー構造のポリマーが得られている。図2(a)に示すような欠陥がない理想的なラダー構造なので、融点で液体状になったり、高分子量化しても長くなったラダーポリマーが絡み合っているだけなので溶剤に溶けたりするものと推察される。さらに、理想的な構造の場合、反応点はポリマーの端部のみなので、3次元的な網目構造が作りにくく高分子量化や膜硬化に時間がかかると推察される。
特許文献6には半導体素子の配線段差を被覆する手段として、特許文献7に開示された方法で作製するフェニルシリコーンラダーポリマーを用いることが示されている。特許文献7はフェニルトリクロロシランを塩基性触媒下で反応させてフェニルシリコーンラダーポリマーを得ている。塗布後、150℃と250℃でそれぞれ30分間熱処理をした後、400℃で1時間の熱処理を行うとしている。特許文献6および7ではフェニルシリコーンラダーポリマーが融点を示すことは言及されておらず、厚膜が得やすいので配線段差の被覆に好都合であるとされている。この材料で、金属箔の表面の平坦化ができるほどの厚膜が得られるのかは不明であるが、仮に得られたとしても乾燥時間と熱処理時間が長いため、Roll to Rollプロセスで金属箔コイルに成膜するには不適である。特許文献7のフェニルシリコーンラダーポリマーも理想構造としては特許文献5のポリフェニルシルセスキオキサンと同様に図2(a)であらわされるものである。長い乾燥時間と熱処理時間を要する理由は、特許文献5の材料と同様に、理想構造に近いラダーポリマーが得られており、反応点がポリマーの端部のみで、3次元的な網目構造が作りにくいためと推察される。
以上述べてきたように、金属箔の表面は圧延すじや疵などを含む粗いものなので、オルガノアルコキシシランを加水分解したのみの塗布液では溶媒蒸発後に基材の凹凸が残り、平坦性が不十分となる。一方、平坦性を改善する可能性のある無溶剤型は熱処理時間が長すぎてRoll to Rollによる成膜に適さない。半導体分野で使われているリフロー型の平坦化材料は金属箔の上では十分な平坦化能を発揮しない。熱可塑性を示したり厚膜を得やすいというラダー構造のフェニルシルセスキオキサン、あるいはフェニルラダーシリコーンは金属箔表面の平坦化に利用できる可能性は示されているものの熱処理時間が長くこのままではRoll to Rollによる成膜に適さない。
特開平11−40829号公報 特開2012−140528号公報 特開2006−348303号公報 特開平7−166132号公報 特開2003−226753号公報 特開平7−106328号公報 特開平1−92224号公報
従って、これまでの技術では金属箔の切板に平坦化材料を塗布してバッチ炉で熱処理し平坦化膜付き金属箔が得られるのみである。しかしながら電子デバイスの量産や低コスト化を図るためにはデバイスそのものをRoll to Rollで製造できるようにフレキシブル基板となる平坦化膜付き金属箔もロールとして提供できることが必要となっている。これまでの技術では平坦化するためには長い熱処理時間を必要とするため、Roll to Rollで成膜をしようとすると、装置が長大になるだけでなく、金属箔が蛇行しないように安定搬送することも難しくなるという課題があった。
本発明は、上記課題を解決すべくなされたものであって、Roll to Rollプロセスで金属箔コイルの表面をガラス基板並みに平坦化することができる短時間硬化型の平坦化膜形成塗布液、およびそれによって平坦化された金属箔コイルを提供することを目的とする。しかもその平坦化膜は耐熱性と耐湿性も併せ持つ皮膜である。
本発明により以下が提供される。
(1)有機溶媒中フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で有機溶剤を減圧留去して得られたレジンを芳香族炭化水素系溶剤に溶解した平坦化膜形成塗布液。
(2)有機溶媒中フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で有機溶剤を減圧留去して得られたレジンを芳香族炭化水素系溶剤に溶解した平坦化膜形成塗布液の製造方法。
(3)(1)記載の塗布液を金属箔コイルに塗布後、熱処理プロセスでリフローおよび膜硬化させることにより金属箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニル基修飾シリカ膜で被覆した平坦化膜付き金属箔コイル。
(4)(1)記載の塗布液を金属箔コイルに膜厚2.0μm以上5.0μm以下となるように連続塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き金属箔コイルの製造方法。
(5)前記金属箔がステンレス箔であることを特徴とする(3)に記載の金属箔コイル。
(6)前記金属箔がステンレス箔コイルであることを特徴とする(4)に記載の金属箔コイルの製造方法。
(7)
金属箔コイルの表面の少なくとも一方に絶縁膜を被覆した絶縁被覆金属箔コイルの絶縁被覆面に、(1)記載の塗布液を塗布後、熱処理プロセスでリフローおよび膜硬化させることにより、絶縁被覆金属箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニル基修飾シリカ膜で被覆した平坦化膜付き絶縁被覆金属箔コイル。
(8)
金属箔コイルの表面の少なくとも一方に絶縁膜を被覆した絶縁被覆金属箔コイルの絶縁被覆面に、(1)記載の塗布液を膜厚2.0μm以上5.0μm以下となるように連続塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き絶縁被覆金属箔コイルの製造方法。
(9)
金属箔コイルの表面の少なくとも一方に反射膜を形成した反射膜形成ステンレス箔コイルの反射膜形成面に、(1)記載の塗布液を塗布後、熱処理プロセスでリフローおよび膜硬化させることにより、反射膜形成ステンレス箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニル基修飾シリカ膜で被覆した平坦化膜付き反射膜形成ステンレス箔コイル。
(10)
金属箔コイルの表面の少なくとも一方に反射膜を形成した反射膜形成ステンレス箔コイルの反射膜形成面に、(1)記載の塗布液を膜厚2.0μm以上5.0μm以下となるように連続塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き反射膜形成ステンレス箔コイルの製造方法。
本発明によれば、Roll to Rollプロセスに適用可能な短時間硬化が可能な平坦化膜形成塗布液および平坦化膜付き金属箔コイルが提供される。しかもその平坦化膜は水分に弱い有機半導体に悪影響を及ぼさないように耐湿性にすぐれ、かつ、LTPSの作製温度である400℃までの耐熱性を有するものである。本発明の平坦化膜形成塗布液は絶縁被覆金属箔コイルに適用することにより絶縁信頼性の高い平坦化膜付き絶縁被覆金属箔コイルが得られる。反射膜が形成されたステンレス箔に適用することにより効率の高い発光素子が提供できる平坦化膜付き反射膜形成ステンレス箔コイルが得られる。
Roll to Roll 成膜装置の模式図 (a)フェニルシロキサンラダーポリマーの構造模式図 理想型 (b)ラダーポリマーに分枝している欠陥部 (c)反応基で終端している欠陥部 本発明Aの塗布液を成膜した実施例の皮膜の熱重量分析結果 (a)ステンレス箔上に作製したトップエミッション有機EL素子の一例 (b)反射膜形成ステンレス箔上に作製したトップエミッション有機EL素子の一例
平坦化膜付き金属箔コイルを得るには、平坦化という観点で膜が硬化過程でリフローして金属箔の表面の凹凸をならすことと、その膜がRoll to Rollプロセスで成膜できるよう2分以内の熱処理時間で硬化できることの2点を両立させることが重要である。
発明者らは耐熱性・耐湿性に優れるフェニル基修飾シリカ膜でこの2点を両立させる方法を見出した。本発明の高平坦化性かつ短時間硬化性フェニル基修飾シリカ膜形成用塗布液は、有機溶媒中、フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2〜4モルの水で加水分解後、160℃以上220℃以下の温度でフェニルトリアルコキシシランの加水分解時に用いた有機溶剤、反応副生成物としての水およびアルコールを減圧留去して得られたレジンを芳香族炭化水素系溶剤に溶解する。レジンを溶解させた芳香族炭化水素系溶剤は、濾過により清澄にする。
加水分解後の溶液は粘度1〜2mPa・sの透明なものであった。GPC (gel permeation chromatography) により求めたスチレン換算重量平均分子量は300であり、部分加水分解されたフェニルトリアルコキシシランの単分子あるいは2分子程度の縮合物であることを示した。減圧留去は室温から初めて突沸が起きないように徐々に温度を上げていく。オイルバスを用いてロータリーエバポレータで600mlの加水分解溶液の溶媒を減圧留去する場合、オイルバス50℃で溶媒が出なくなるまで約30分保った後、130℃にオイルバスの温度を上げて溶媒が出なくなるまで30分保つ。温度上昇と溶媒除去に伴って、固形分濃度が上がり、固形物の粘度が高くなり、曳糸性を示すようになる。160〜210℃にオイルバスの温度を上げて溶媒が出なくなるまで30分保ち、さらに15分保持して溶媒を完全に取り除くことができる。溶媒がほとんどなくなると固形物すなわち曳糸性を示していたレジンは160〜210℃において流動性がなくなってくる。この時得られるレジンは室温では半透明〜白色の固体である。レジンを芳香族炭化水素系溶剤に溶解後、GPCにより求めたスチレン換算重量平均分子量は5000〜100000であった。
このように曳糸性を示したことと、高分子量でありながら溶剤に溶解したこと、赤外線吸収スペクトルにおいて1100cm−1付近にシロキサン結合に由来するダブルピークを示したことから、本発明によるフェニルトリエトキシシランを原料としたレジンはラダー構造に近い形をとっていると推定される。フェニルシロキサンラダーポリマー(ラダー構造のフェニル基修飾シリカ膜)の理想的な構造は特許文献5および7の説明で述べたように図2(a)のように示される。実際のラダーポリマーは欠陥を含んでおり、図2(b)のように欠陥部のSiがそれぞれ分枝してラダーポリマーを作る場合や、図2(c)のように、シラノール基やアルコキシ基のような反応基で終わる場合がある。1箇所の欠陥部で分枝するSiとシラノール基になっているSiが混在する場合もある。分枝した箇所がラダーポリマーではなくランダム構造のフェニルシロキサンにつながっている場合もある。このような欠陥部の構造や欠陥の頻度、ラダーポリマーの分子量などによってフェニルシロキサンラダーポリマーの性質は異なってくる。図2(a)の完全ラダー構造に近いものは、直鎖のラダーポリマーなので溶剤には溶けやすく、このようなラダーポリマーを溶かした塗布液を塗って溶剤を乾燥させると、ラダーポリマーが絡まり合った乾燥膜が得られる。この乾燥膜は加熱されると絡まり合ったラダーポリマーが熱振動によって動き始め流動性(リフロー性)を示すようになる。さらに加熱の温度が高くなると一部のフェニル基が熱分解されラダーポリマーの末端部と結合して架橋により網目構造の形成が進み熱硬化することになる。先にも記載した特許文献5、7のポリマーが図2(a)のタイプと考えられる。図2(b)のように分枝している場合は、ラダーポリマーの分子量が大きく、かつ分枝の数が多くなるほど三次元的な網目構造が形成されるため、図2(a)に比べると溶媒に溶けにくく、加熱によるリフローも起きにくくなると考えられる。図2(c)のように欠陥部に反応基を多く含んだ直鎖のラダーポリマーは、直鎖状であるため図2(a)と同様に溶剤に溶けやすくリフロー性を示す。ラダーポリマーそのものの中に反応基が多いため図2(a)の理想構造のラダーポリマーの熱硬化のようにフェニル基が熱分解されるのを待つことなく架橋により網目構造が形成できるので短時間で熱硬化できる。後述するように本発明では図2(c)の構造が得られていると推定している。
特許文献6および7では、アルカリ触媒を用いてラダーポリマーを合成している。一般にアルカリ触媒下ではアルコキシシランの1つのアルコキシ基が加水分解されると、そのアルコキシシランはさらに2つ目のアルコキシ基が加水分解されやすくなる。つまりフェニルトリアルコキシシランを例にとると、PhSi(OR)3が2分子あった場合、PhSi(OH)2ORとPhSi(OR)3となる。これに対して、酸触媒下ではより均一に加水分解反応が進みやすいため、PhSiOH(OR)2が2分子となる。また、縮合反応についてもアルカリ触媒下では加水分解の進んだ分子のみが選択的に縮合していくのに対し、酸触媒下ではすべての分子が均一に加水分解を受けるので縮合反応も均一に進んでいく。このような初期の加水分解・縮合反応の進み方の違いを反映して、フェニル基含有のラダーポリマーの構造はアルカリ触媒で合成した特許文献6および7と本発明では異なることが推測される。特許文献6および7ではアルカリ触媒下であるため縮合反応物にはアルコキシ基や水酸基がほとんど残らないのに対し、本発明では酸触媒を用いているため、ラダーポリマーに近い構造ではあるが欠陥部にアルコキシ基や水酸基が比較的多く残っており、反応基を多く含むため、熱処理時にこれらの反応基間で縮合反応が進み、短時間で膜硬化が可能になると考えられる。ここで膜硬化とは、熱処理後の膜の鉛筆高度が3H以上になり疵が入りにくくなることと、膜中の溶剤や水分など絶縁膜のリークの原因となりえる成分が揮発し、絶縁膜のリーク電流が1E−6A/cm以下である絶縁膜が形成されることの2つの条件を満たすことを意味する。絶縁膜のリーク電流は、金属箔と、フェニル基修飾シリカ膜の膜上に形成した1cm角の上部電極の間に100Vの電圧を印加して測定する。
さらに、本発明においては触媒として加えている有機スズ由来のSnにより熱処理中の縮合反応が一層促進され、300〜450℃において2分以内という連続熱処理可能な短時間での膜硬化が可能となる。これに対して、特許文献6および7は、ラダーポリマー中に反応基を殆ど含まないため、熱硬化するためにはフェニル基が熱分解するなどしてシラノール基を一度形成して、シラノール基同士で縮合するために熱処理時間が長いと思われる。また、本発明のフェニル基修飾シリカ膜がリフロー性を示すのに対して、特許文献6および7でリフロー性あるいは熱可塑性について言及がないのは、本発明のフェニルシロキサンラダーポリマーは分枝がなく単にラダーポリマーが絡み合っているのに対し、特許文献6および7のラダーポリマーは分枝が多いため、流動しにくいのではないかと思われる。
特許文献5には、熱可塑性ポリフェニルシルセスキオキサンおよびそれを用いた高分子量ポリフェニルシルセスキオキサンの製造方法が開示されている。特許文献5によると、フェニルトリエトキシシランを酸で加水分解した後に、炭酸ナトリウムを使って縮合を行っているので、ラダーポリマーを作るときの触媒はアルカリである。したがって得られるポリマーの構造は本発明のものとは異なり、特許文献6および7と同様に欠陥部に反応基を含まないものと推測される。ただし、熱可塑性であることから、特許文献6および7より分枝は少ないと考えられる。実際、特許文献5の中では欠陥のない直鎖状ラダーポリマーを得ることを目的として述べている。特許文献5のようにアルカリ触媒を使って合成したポリマーは半導体素子に有害なNaなどの不純物を含むが、本発明ではアルカリを全く用いないのでアルカリによる汚染の心配がない。
本発明のフェニル基含有シリカ膜の特徴をまとめると以下のようになる。本発明ではフェニル基含有のラダーポリマーに近い構造の高分子量のレジンから膜が構成されている。本発明のフェニルシロキサンラダーポリマーは図2(c)のように欠陥部は分枝せず、シラノール基やアルコキシ基で終端している。スチレン換算重量平均分子量は5000〜100000である。梯子状の長いポリマーであるため、塗布乾燥後の膜ではラダーポリマーが絡み合った構造になっている。ラダーポリマーの絡み合いで見かけ上3次元網目構造ができるため、膜としては乾燥しており粘着性もない状態なっている。レジンを合成した温度近くまで加熱されると、徐々に流動性が現れ始め、レジン合成温度を超えると絡まり合いがほどけて軟化してリフローする。前述したように本発明のポリマーは欠陥部に反応基が多く含まれるので、基板との密着性はそれらの反応基で確保しながら、全体として最も表面エネルギーが小さくなるようにラダーポリマー同士が動く。塗布乾燥直後ではステンレス箔表面の凹凸や疵を反映して膜表面にも凹凸がみられていたが、レジン合成温度を超えた温度ではリフローにより、できるだけ膜表面積が小さくなるように、すなわち平坦な状態になる。本発明では分枝が少ないラダーポリマーが得られるので高い流動性を示し平滑化効果が大きい。熱処理温度が300℃を超えると、ラダーポリマー間での反応基による架橋が進み始める。このようにして、本発明のフェニル基修飾シリカ膜はステンレス箔の凹凸を被覆することができる。
以下、本発明の高平滑化膜を得るためのパラメータ条件について記載する。特に断りのない限り、モル数はフェニルトリアルコキシシラン1モルに対する量である。
塗布液合成時の酢酸の量はフェニルトリアルコキシシランの加水分解の進行具合に大きく影響を及ぼす。酢酸の量が0.1モルより少ない場合は、一部のフェニルトリアルコキシシランのみしか加水分解されないため、その後の重縮合反応がなかなか進行せず、低分子量のレジンとなってしまう。ラダーポリマーとしてある程度の長さがなければ、絡まり合ったポリマーが熱振動でほどけてリフロー性を発揮することにならないので不適である。1モルより多い時は、ほとんどすべてのフェニルトリアルコキシシランのすべてのアルコキシ基が加水分解されてしまうため、その後の重縮合反応が急速に進みすぎ、減圧留去前の加水分解の段階でゲル化が発生するため不適である。
有機スズはフェニルトリアルコキシシランおよびその加水分解縮合反応物や、フェニル基含有ラダーポリマーの重縮合反応を促進する触媒である。有機スズが0.005モルより少ない時は熱処理中のラダーポリマーの縮合反応促進効果が不十分で、短時間硬化ができなくなるので不適である。有機スズが0.05モルを超えると、フェニルトリアルコキシシランおよびその加水分解縮合反応物の重縮合が進みすぎ、減圧留去前の加水分解の段階でゲル化が発生するため不適である。
加水分解に用いる水の量は2モルより少ない場合、レジンに大量のアルコキシ基が残存するため、熱処理中に縮合反応(ラダーポリマー化)をしなければならなくなる。このため350〜450℃において2分の熱処理では熱処理時間が不十分で、溶剤や水分が膜に残り絶縁不良となるため不適である。水の量が4モルを超える場合は急速に加水分解が進むため、ラダー状の規則正しい構造を作るよりもランダムに網目構造ができてしまい、レジンが溶解しなくなるため塗布液が作製できず不適である。減圧留去時の温度が160℃より低い場合は、レジンの縮合反応が不十分であるため溶解後のレジンの分子量分布にバラつきができ、低分子量成分が成膜時に揮発してハジキ状の欠陥が発生するため不適である。減圧留去時の温度が210℃を超える場合は、縮合反応が進みすぎてレジンが溶解しにくくなるので不適である。減圧留去時のより好ましい温度は180℃以上200℃以下である。塗布液の粘度はレジンと溶剤の量比、すなわち固形分量で調整することができる。最適な粘度と固形分量は塗布方法に依存するが、一般的には固形分濃度が15mass%以上40mass%以下で、粘度が3mPa・s以上100mPa・s以下に調整しておくと、2〜5μmの膜厚で均一に塗ることができ、塗布液の貯蔵安定性も良好である。
次に本発明のフェニル基修飾シリカ膜による平坦化膜付き金属箔について説明する。
金属箔は圧延によって薄くするので、圧延方向にすじが認められる。また、元の溶融金属に含まれる介在物や、圧延ロールに巻き込まれた異物などによって、圧延方向に引き伸ばされた疵も存在する。疵の大きさは幅数十μm、長さ1〜数mm程度であることが多い。
金属箔の表面粗さは圧延すじに対して平行な方向と垂直な方向で異なり、垂直方向の方が表面粗さとしては大きい数字となる。したがって、被覆によって金属箔の平坦性を向上させる目的では表面粗さとして最も大きい数字になる垂直方向に注目する必要がある。具体的には、触針式粗さ計により1.25mmの測定長さで表面粗さを10箇所以上、金属箔コイルの圧延方向に対して垂直、すなわちコイルの幅方向に測定し、平均値を採用する。
平坦化膜付き金属箔の表面粗さと、その上に形成した有機EL素子の特性の関係を詳細に調べた結果、膜表面の平坦性は素子のリーク電流を減らすうえで重要であることがわかった。平坦化膜付き金属箔表面の圧延と垂直方向の算術平均粗さRaが30nm以下であれば、有機EL発光素子のリーク電流を1E−4A/m以下という実用的なレベルにすることができる。素子のリーク電流はフェニル基修飾シリカ膜の上に、素子の下部電極、発光部、上部電極の順に成膜して素子を作り下部電極と上部電極の間に3Vの電圧を加えたときの電流を素子面積で割って求める。発光部は複数の層から成り全層厚は100〜150nm程度であるので、膜の表面が粗い場合は下部電極と上部電極の間の距離の短いところができてしまい、素子のリーク電流が増えることになる。平坦化膜付き金属箔のRaが30nmを超える場合は、1E−4A/mを超えるリーク電流の大きい素子になるため素子としての効率が悪くなったりショートが発生したりするので不適である。Raのより好ましい範囲は20nm以下、さらに好ましくは15nm以下で、より小さなリーク電流にすることができる。
平坦化膜の表面粗さは、被覆する金属箔の表面粗さを反映する。金属箔表面そのものの表面粗さは圧延方向と垂直な方向に測ったRaが60nm以下であることが平坦化膜のRaを30nm以下にする目安となる。ただし、比較的粗い金属箔であってもフェニル基修飾シリカ膜を厚く成膜すれば平坦化はしやすくなる傾向がある。金属箔としてはステンレス箔、アルミ箔、チタン箔、めっき鋼箔、銅箔などが挙げられる。金属箔の厚みは折れやしわが入らず扱うことが可能で、かつフレキシブル性を損なわない範囲が望ましく、通常30μm以上150μm以下が使いやすく、更に好ましい板厚は35μm以上80μm以下である。
金属箔の少なくとも一方の表面に絶縁被覆が施されていてもよい。絶縁被覆された金属箔を用いることにより、平坦化膜形成後の金属箔の絶縁性がより高く確実になる。絶縁膜の種類はシリカ・アルミナなどの金属酸化物、リン酸アルミニウム・リン酸カルシウムなどの無機塩、ポリイミド・テフロンなどの耐熱性樹脂が挙げられる。金属酸化物の膜は例えばスパッタ・蒸着・CVDなどにより成膜することができる。無機塩の膜は例えばロールコーター・スプレイなどの塗布法により成膜することができる。耐熱性樹脂の膜は例えばコンマコーター・ダイコーター・スプレイなどの塗布法により成膜することができる。
絶縁膜の膜厚は0.1μm以上10μm以下であることが望ましい。0.1μm以上の膜厚があれば、十分ではないものの絶縁性が付与されるので、平坦化膜をその上に重ね塗りしたときの絶縁性が向上する。絶縁膜の膜厚が10μmを超える場合は、膜応力により絶縁膜に大きなクラックが発生したり剥離したりするので好ましくない。高い絶縁性の向上が見込まれ、健全な絶縁膜が得られるより好ましい膜厚の範囲は0.5μm以上5μm以下である。 絶縁被覆金属箔の表面粗さは絶縁膜の膜厚が1μm以下の薄い場合は、金属箔そのものより少し平滑になる傾向がある。その理由は金属箔の凹凸を膜によって多少埋めることができるからである。膜厚が1μmを超えるようになると、絶縁膜材料そのものの粗さの影響が出てくる。無機系皮膜の場合は結晶粒径による凹凸が生じる。耐熱性樹脂の場合にはフィラーによる凹凸や、高粘度樹脂を塗ることに伴う塗りむらなどが生じる。しかしながら、絶縁被覆金属箔においても、Raが60nm以下であれば平坦化膜のRaを30nm以下にできるのは無垢金属箔の場合と同様である。
金属箔としてステンレス箔を用いる場合、ステンレス箔の少なくとも一方の表面には反射膜が形成されていてもよい。ステンレス箔は工業的に安価に製造しやすく、折れが入りにくいので電子デバイス用フレキシブル基板として優れているが、反射率が60%と低い。図4(a)に示すように電子デバイスとして透明な下電極を使ってトップエミッションの有機EL照明や有機ELディスプレイを作製する場合、光はステンレス箔表面で繰り返し反射されるが、その反射率が60%程度であると多くの光が失われデバイスの効率が悪くなる。これに対し図4(b)に示すようにステンレス箔の表面に95%程度の反射率を有する反射膜を形成すれば、ほとんどの光は反射膜で反射されるのでデバイスの効率は著しく向上する。95%程度の高い反射率を有する反射膜の種類としては純Al, Al合金、純Ag、Ag合金などが挙げられる。Al合金としてはAl-Si、Al-Nd合金などが挙げられる。反射膜の成膜はスパッタ法などにより行うことができる。Ag合金としてはAg-Nd、Ag-Inなどの合金が挙げられる。反射膜の膜厚は30nm以上150nm以下であることが望ましい。反射膜の膜厚が30nmより薄い場合は、半透過膜となり一部の光はステンレス箔で反射してしまう。150nmより厚く成膜しても反射率は飽和してしまうので、反射膜材料分のコストパフォーマンスが悪くなる。より好ましい反射膜の膜厚は60nm以上100nm以下である。
反射膜形成ステンレス箔の表面粗さは反射膜の膜厚が薄いので、ステンレス箔そのものの表面粗さとほぼ同等になる。反射膜形成ステンレス箔において、Raが60nm以下であれば平坦化膜のRaを30nm以下にできるのは無垢金属箔の場合と同様である。
平坦化膜の膜厚は2μm以上5μm以下である。2μmより薄い場合は、金属箔・絶縁被覆金属箔・反射膜形成ステンレス箔などが有するそのものの凹凸を被覆しきれない。5μmを超える場合は膜にクラックが入りやすくなる。成膜時のクラックが入りやすいだけでなく、平坦化膜で被覆されたステンレス箔をフレキシブル基板として曲げたときにも膜にクラックが入りやすくなる。膜厚は2.5μm以上4μm以下であることが、凹凸被覆とクラック防止の観点からさらに好ましい。
平坦化膜は1ppm以上5000ppm以下のSnを含むことが望ましい。Snの濃度はSIMS(secondary ion mass spectrometry) 分析あるいはX線蛍光分析によって測定することができる。Snの濃度が1ppmよりも少ない時は、短時間での膜硬化ができにくいためRoll to Rollでコイルに連続成膜することが難しい場合がある。Snの濃度が5000ppmを超えるときは膜が硬くなり曲げたときにクラックが発生しやすくなる場合がある。
金属箔コイル・絶縁被覆金属箔・反射膜形成ステンレス箔への塗布後、乾燥処理は20℃以上150℃以下の温度で行う。乾燥工程では塗布した膜に含まれる溶剤や水分を除去して乾燥膜とするのが目的である。減圧留去によるレジン合成温度より高い乾燥温度にすると、レジンを形成しているラダーポリマーが軟化する可能性があるため、乾燥温度はレジン合成温度より低いことが望ましい。乾燥膜中ではラダーポリマーが絡まり合って見掛け上、網目構造のようになって膜硬化しているように見えるが、熱振動で分子の運動が活発になるとラダーポリマーはほどけて流動性を示すようになる。熱処理工程は乾燥膜を形成しているラダーポリマーを溶融軟化、すなわちリフローさせて膜の表面を平坦化させることと、リフローに引き続きポリマーの架橋を進めて三次元網目構造を形成させ膜を硬化させることの2つが目的である。リフローは減圧留去によるレジン合成温度より高温域、三次元的な架橋が進んで膜が硬化し始める温度より低い温度域で発生する現象である。リフローのために特別な熱処理プロセスをとる必要はなく、熱処理を300℃以上450℃以下で行えば、熱処理温度まで昇温される過程でリフローが起き、引き続き架橋による膜硬化が進む。金属箔の表面を平坦にするには図1に示したように水平な状態で熱処理を行うことが効果的である。膜硬化は架橋反応による網目構造形成であるので、ひとたび膜が硬化すると、再度リフローすることはない。熱処理温度が300℃より低い場合は、架橋が十分進まずシラノール基などの反応基が膜の中に残るため絶縁性が不十分となるうえ、有機デバイス作製中にシラノール基などに吸着した水分が脱離すると素子に悪影響を及ぼすので不適である。熱処理温度が450℃より高い場合は、フェニル基の熱分解による体積収縮が起き、クラックが入りやすくなるので不適である。より好ましい熱処理温度は360℃以上420℃以下である。
本発明で用いるフェニルトリアルコキシシランとしては、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシランなどが挙げられる。
フェニルトリアルコキシシランを加水分解するときに用いる有機溶媒としては、メタノール、エタノール、プロパノールなどが挙げられる。
有機スズとしては、ジブチルスズジアセテート、ビス(アセトキシジブチルスズ)オキサイド、ジブチルスズビスアセチルアセトナート、ジブチルスズビスマレイン酸モノブチルエステル、ジオクチルスズビスマレイン酸モノブチルエステル、ビス(ラウロキシジブチルスズ)オキサイドなどが挙げられる。
減圧留去時に留去する有機溶剤は、フェニルトリアルコキシシランを加水分解するときに用いた有機溶剤に加えてフェニルトリアルコキシシランの加水分解によって生成したアルコールも含まれる。また加水分解されたフェニルトリアルコキシシランの縮合反応に伴って生成する水が含まれることもある。
芳香族炭化水素系溶剤としては、トルエン、キシレンなどが挙げられる。芳香族炭化水素系溶剤に、特性に影響を与えない範囲で、他の有機溶剤を混合してもよい。
酸触媒は塩酸、硝酸、リン酸も検討したが、酢酸の時のような高分子量のラダーポリマーを作ってリフロー性を利用して平滑な膜を得ることは難しかった。この理由は弱酸である酢酸の場合と、塩酸などを用いた場合では酢酸の方がゆっくりと加水分解が進むことにより、得られるラダーポリマーの構造が異なるためと推測される。
金属箔コイル・絶縁被覆金属箔コイル・反射膜形成ステンレス箔コイルに成膜するにはRoll to Rollによる連続成膜を行う。一般的な装置構成はコイルの巻きだし部、塗工部、乾燥炉、熱処理炉、コイル巻き取り部から成る。通板速度は速いほど生産性がよいが、1mpmから20mpm程度が一般的である。塗布する方法としては、マイクログラビアロール、グラビアロールなどによる塗布や、スリットコータ、スクリーン印刷などが挙げられる。ステンレス箔の両面に塗工したい場合は、ディップコートによる成膜もできる。乾燥は20℃以上150℃以下で0.5〜2分程度行う。乾燥時の炉内の雰囲気は大気でも窒素などの不活性ガス雰囲気でもよい。熱処理はフェニル基が熱分解しにくいように不活性ガスを流しながら行う。連続成膜装置の場合、基材が熱処理炉内に入るときに若干量の大気を持ち込むが、本発明のフェニル基修飾シリカ膜は1%程度の大気の混入があっても膜特性に影響はない。乾燥炉および熱処理炉内ではデバイス形成側の膜面にロールが当たらないような装置設計にする。巻き取り時には膜面に保護フィルムを貼りつけたり、疵が入らないように合紙を挿入したりしてもよい。また、乾燥と熱処理を連続して行うのではなく、乾燥膜が付いたコイルを一度巻き取って、再度熱処理のみを行ってもよい。この場合は乾燥膜作製用の設備と熱処理用の設備と2種類必要になるが、それぞれを最適の通板速度で処理できる長所がある。
次に、実施例により本発明を更に説明する。本発明がここに提示した実施例に限定されないことは言うまでもない。
試験1のシリーズでは金属箔として板厚100μmで表1に示す材料を用いた。金属箔の表面粗さは触針式粗さ計を用いて圧延方向と垂直な方向にRaを測定した。測定長さは1.25mmで任意の場所で10回測定した平均値である。
Figure 0006091705
有機基修飾シリカ膜形成用塗布液として、A〜Cの3種類の塗布液を用意した。A〜Cの塗布液はいずれも耐熱性と耐湿性を兼ね備えるフェニル基を含有するシリカ系皮膜を形成できる塗布液で、合成方法および合成時の触媒が異なることの影響を示す実施例と比較例である。
塗布液Aは、本発明による高平坦化性かつ短時間硬化性フェニル基修飾シリカ膜形成用塗布液である。エタノール中で、フェニルトリエトキシシラン1モルに対して、酢酸0.3モルとジブチルスズジアセテート0.012モルを触媒として加え、3モルの水で加水分解した。窒素気流下で3時間還流後、ロータリーエバポレータを用いて突沸しないように徐々に温度を上げ、最終的に190℃で有機溶剤を減圧留去してレジンを得た。得られたレジンをトルエンに溶解後、濾過により清澄な塗布液にした。塗布液の粘度は9mPa・sであった。GPCにより求めたスチレン換算重量平均分子量Mwは60,000であった。赤外線吸収スペクトルでは1035cm−1と1135cm−1に2つのピークを示しラダーポリマーであることが示唆された。
塗布液Bは、比較例としてアルカリ触媒下でフェニルトリエトキシシランを高分子量化させたレジンを用いて塗布液を以下のように作製した。メチルイソブチルケトン溶液中でフェニルトリエトキシシラン1モルに対して、酢酸ナトリウム0.2モルと水酸化カリウム0.01モルと3モルの水を加えて50℃で12時間還流後、静置して水相を除去後、水を加えて有機相を3回洗浄した。80℃で溶媒を減圧除去後、得られたレジンをトルエンに溶解した。スチレン換算重量平均分子量を測定したところ200,000であった。赤外線吸収スペクトルでは1035cm−1と1135cm−1に2つのピークを示しラダーポリマーであることが示唆された。
塗布液Cは、比較例としてフェニルトリエトキシシランを触媒下で加水分解のみ行って以下のように作製した。エタノール溶媒中で、フェニルトリエトキシシラン1モルに対して酢酸0.1モルとテトラエトキシチタン0.01モルを加え、3モルの水で加水分解を行い、室温で12時間撹拌した。スチレン換算重量平均分子量は300であった。赤外線吸収スペクトルでは1050cm−1にピークを示すのみでラダーポリマーであることを示唆するデータではなかった。
塗布液A〜Cはスピンコータで12cm角の金属箔に成膜した。膜厚はスピンコータの回転数で制御した。
フェニル基修飾シリカ膜の膜厚は膜付き金属箔をカットして断面方向から走査型電子顕微鏡(SEM)観察により測定した。圧延に対して垂直な方向に触針式粗さ計で10回測定した平坦化膜の表面粗さRaの平均値が30nm以下である場合は平坦性良好○、15nm以下の場合は平坦性非常に良好◎と判断した。30nmを超える場合は不適×とした。
室温乾燥後、熱処理は赤外線加熱炉で窒素雰囲気中400℃まで0.5分で昇温し、1分、2分、5分、15分、30分の各時間保持した後にヒータースイッチをOFFとした。この場合、200℃までの冷却時間は1分であった。熱処理後の膜の硬さはJIS K5600に従い鉛筆硬度で評価した。フェニル基修飾シリカ膜のリーク電流はフェニル基修飾シリカ膜の上にマスクを用いて1cm角の白金上部電極をイオンコータで成膜して上部電極とし、ステンレス箔を下部電極として上下の電極間に100Vをかけて測定した。鉛筆硬度3H以上とリーク電流1E−6A/cm以下が得られる最も短い熱処理保持時間を硬化時間とした。硬化時間が2分であればRoll to Rollの連続成膜が現実的であり良好○と判断し、1分であればより確実にRoll to Roll の連続成膜ができるので非常に良好◎とした。5分以上の場合は不適×とした。平坦性とRoll to Roll適合性の両方が満たされていれば、電子デバイス基板として機能する絶縁膜付きコイルが得られると考えられるため総合評価合格とした。
実験番号1−1, 1−6, 1−7は本発明の塗布液Aによる実施例である。本発明の塗布液Aは高分子量化が進んでおりラダーポリマーが絡まり合って乾燥膜となっている。熱処理によりポリマーの分子運動が活発となって流動し平滑化が進む。塗布液Aは適度な高分子量化とシラノール基などの反応基が残存しているため、平滑化と短時間硬化のバランスが取れている。金属箔の表面が粗い場合は1−6に示すようにやや膜の表面が粗くなるが十分実用的なレベルである。1−2と1−4は塗布液Bによる比較例である。塗布液Bも高分子量化しておりリフロー性を示しているが、アルカリ触媒で重合しているため反応基の残存が少なく、膜硬化に時間がかかる。欠陥部に反応基がない場合、フェニル基が一度熱分解してシラノール基のような反応基になってからポリマー同士の重合が進むかポリマーの末端部と反応が進むかということになるので、硬化時間が長いと推測される。硬化時間の長さは膜厚に依存しなかった。1−3と1−5は塗布液Cによる比較例である。塗布液Cは低分子量のフェニルトリエトキシシランの加水分解物であるため、成膜中に脱水縮合反応による体積収縮が非常に大きくなり、クラックが発生しやすかった。1−5に示すように膜厚を薄くすればクラックは抑制できたがラダーポリマー化していないためリフロー性がなく、平滑化能が低かった。
試験2では種々の条件でフェニル基修飾シリカ膜形成用塗布液を合成した。エタノール溶媒中でフェニルトリエトキシシラン1モルに対して、表2に記載の条件で酢酸と有機スズと水を添加して加水分解を行った。窒素気流下80℃で5時間還流後、ロータリーエバポレータで溶媒を減圧留去した。減圧留去時に徐々に温度を上げていくが、その時の最高温度が減圧留去温度として表2に記載されている。作製した塗布液はスピンコータで3μmの厚さで塗布した。乾燥は80℃で1分行った。熱処理は赤外線加熱炉で窒素雰囲気中、表2に記載の熱処理温度まで0.5分で昇温し、1分、2分、5分、15分、30分の各時間保持した後にヒータースイッチをOFFとした。この場合、200℃までの冷却時間は1分であった。評価に関する試験条件は試験1と同じである。
Figure 0006091705
実験番号2−1は酢酸の量が少ないためラダーポリマーとして高分子量化がうまく進まず、リフロー性が低かった。2−5は酢酸が多すぎるため還流中にゲル化が発生したため塗布液が合成できなかった。2−6は有機スズが少ないため熱処理時間が長くなった。2−10は有機スズの添加量が多すぎたため、還流中にゲル化が発生し塗布液が合成できなかった。2−11は水が少ないため原料であるフェニルトリエトキシシランのエトキシ基が過剰に残留し、熱処理時間が長くなった。2−14は水が多すぎたため難溶解性のレジンとなり塗布液が得られなかった。恐らくラダーポリマーの他に3次元にランダムに網目構造をもつ重合物も同時に生成したためと思われる。2−15は減圧留去の温度が低かったので、低分子量の重縮合物が残り熱処理中にこれらが揮発してハジキとなった。ハジキが多いため短絡が発生し絶縁膜として機能しなかった。2−20は減圧留去時の温度が高すぎたため、ラダーポリマーが3次元的につながって高分子量化したレジンになり、溶媒に溶解しなかった。2−21は熱処理温度が低かったので、膜中のエトキシ基やシラノール基の縮合反応が完了せず、これらの残留する極性基のために高いリーク電流を示した。。2−26は熱処理温度が高すぎたためフェニル基の分解が進みクラックが発生した。表2に示すその他の実験番号のものは本発明の範囲であり総合評価合格となった。
最後に実験番号2−8の組成の塗布液を用いてRoll to Rollの成膜試験を実施した。成膜試験には厚さ50μm、幅300mm、長さ200mのNSSC190SB仕上げのステンレス箔を用いた(NSSC190は新日鉄住金ステンレスの独自鋼種でSUS444とほぼ同じである。SBはスーパーブライト仕上げで新日鉄住金マテリアルズの独自仕上げを表わす。)。ステンレス箔はベークライト製の6インチのコアに巻いてロール状にしたものを巻きだし部に取り付けた。塗布液の粘度は10mPa・sで固形分濃度は31%であった。塗布はセル容積の異なる複数のグラビアロール使って行い、乾燥膜の厚さが3μm前後になるものを選定した。用いたR2R(Roll to Roll)の成膜装置の概略は図1に示したものと同じである。総張力100Nをかけてステンレス箔を搬送した。巻き取り部にはEPC(edge position control)センサーを取り付けて箔の端部を揃えて、ベークライト製の6インチのコアに巻き取った。乾燥炉および熱処理炉はどちらも赤外線パネルヒータと熱風による加熱方式とした。乾燥炉は総長が8mあり炉内設定温度を100℃として運転した。熱風として100℃に加熱した大気を送風した。熱処理炉は長さが12mあり炉内設定温度を380℃とした。熱風として380℃に加熱した窒素を送風した。冷却帯では室温の大気をステンレス箔の上下から吹き付けた。冷却帯の長さは2mであった。巻きだしから巻き取りまでの総長は35mであった。搬送速度4mpmでステンレス箔を通板し、塗布・乾燥・熱処理を実施し、平坦化膜付きステンレス箔を約150mロールとして巻き取った。
計算上の乾燥処理時間は2分、熱処理時間は3分となるが、ステンレス箔に熱電対を取り付けて4mpmで搬送したところ乾燥炉内でステンレス箔の基板の温度が上がり始め100℃になるまでに約1分、100℃に保持されている時間が約1分であることがわかった。また熱処理炉については、約100℃のステンレス箔が熱処理炉内に入った後、380℃にステンレス箔の温度が上がるまでに1.5分、380℃に保持されている時間が1.5分であることがわかった。したがって、グラビアコータで塗布された膜のトルエンなどの溶媒が乾燥炉内で蒸発して取り除かれ、熱処理炉に入った後、1分前後の間に200〜250℃のリフローが起きやすい温度域を通過して膜がレベリングされ、残りの2分で膜硬化することになる。
得られた平坦化膜付きステンレス箔のロールについてJIS K5600に従って鉛筆硬度を測定したところ5Hの硬さであった。平坦化膜付きステンレス箔の断面をSEMで観察したところ、膜厚は3.0μmであった。1cm角の上部電極を付けてリーク電流を測定したところ1E−9A/cmであった。触針式粗さ計によるコイルの幅方向の表面粗さRaは12nmであった。耐熱性を確認するために皮膜を削り取って熱重量分析を窒素ガス中で実施した。測定結果を図3に示した。5%重量減少を示した温度は500℃を超えており400℃までの耐熱性は十分あることが示唆された。次に耐湿性を評価するために、膜付きの基板を85℃85%RH(相対湿度)の恒温恒湿槽に保管してリーク電流の変化を調べた。リーク電流は200時間保管後まで全く変化がなく1E−9A/cmであり、膜質の劣化がないことが確認された。
試験3では試験1の塗布液Aを用いた。金属箔としては板厚80μmで表3に示す材料を用いた。絶縁被覆材料と絶縁被覆材料の成膜方法は表3に示した通りである。絶縁被覆厚さは部分的にマスクで覆って成膜しない領域を作り、成膜部と成膜していない領域との境界部を使って段差計DEKTAKで厚さを求めた。絶縁被覆金属箔の表面粗さは触針式粗さ計を用いて圧延方向と垂直な方向にRaを測定した。測定長さは1.25mmで任意の場所で10回測定した平均値である。フェニル基修飾シリカ膜の形成方法、フェニル基修飾シリカ膜の膜厚、フェニル基修飾シリカ膜の表面粗さ、平坦性の評価、硬化時間、Roll to Roll適合性は試験1と同様である。リーク電流はフェニル基修飾シリカ膜の上に1cm角の上部電極を設け、ステンレス箔との間に100V印加して測定した。絶縁基板としてのデバイス適合性は上記リーク電流が1E-6A/cm2より小さい場合は同一基板内に作製したデバイスが絶縁されて独立に動作できることが確認できたので○、1E-8A/cm2より小さい場合にはより高い電圧での動作や高温高湿環境でも高い信頼性が得られるので◎とした。デバイス適合性を含めた総合評価の欄はRoll to Roll適合性と絶縁基板としてのデバイス適合性をあわせて判断した。表3の絶縁被覆金属箔の表面粗さの欄の数字が()付きになっているものは絶縁被覆されていない金属箔の表面粗さを参考までに記したものである。
Figure 0006091705
実験番号3−1と3−5の比較或いは3−2と3−6の比較からわかるように、一般的にはフェニル基修飾シリカ膜の膜厚が厚いほどリーク電流は小さくなる。実験番号3−2は蒸着SiO2とフェニル基修飾シリカ膜が重ね塗りされており合計膜厚は2.45μmであるが、実験番号3−5のフェニル基修飾シリカ膜を4.1μm成膜したものよりもリーク電流が小さい。実験番号3−3も同様である。この理由は実験番号3−5ではフェニル基修飾シリカ膜の塗布液に混入する異物、成膜環境などから不可避的に入ってくる異物による皮膜欠陥の影響を受けるからである。膜厚は薄くても重ね塗りをすると、フェニル基修飾シリカ膜の成膜時に皮膜欠陥が入ったとしても、その皮膜欠陥直下の絶縁被覆層が健全であれば絶縁性が保たれることになる。実験番号3−10は絶縁被覆材料の厚さとフェニル基修飾シリカ膜の厚さを増やすことで、比較的粗い金属箔であってもリーク電流が小さくできることを示している。
Roll to Roll成膜試験は厚さ70μm、幅400mm、長さ150mの新日鉄住金マテリアルズ製SUS304MW仕上げのステンレス箔コイルを使って行った。Roll to Rollの真空成膜装置に304MWのコイルをセットし、一晩真空引きを実施してからSiO2のターゲットを使ってSiO2を膜厚100nmでスパッタ成膜した。成膜速度は0.5mpmとした。SiO2スパッタ成膜済みステンレス箔コイル上にRoll to Rollのスリットダイコータを使って実験番号2−3の組成で、粘度15mPa・s、固形分濃度35%の塗布液を成膜した。送液圧力とシム厚によってフェニル基修飾シリカ膜の膜厚が3.2μmになるように調整した。スリットダイで塗布後、100℃にセットした乾燥炉で乾燥して巻き取りを行い、フェニル基修飾シリカ膜の乾燥膜が付いた状態のコイルを作製した。その後乾燥膜付きコイルをRoll to Rollのキュア炉により400℃2分の熱処理を行った。最終的にはSUS304MW上に100nmのSiO2と3.2μmのフェニル修飾シリカ膜が成膜されたコイルが得られた。このコイルから小片を切り出しリーク電流を測定したところ100V印加時で1E-9A/cm2であった。
試験4では試験1の塗布液Aを用いた。金属箔としては板厚30μmで表4に示す材料を用いた。反射膜材料は表4に示した通りである。いずれもスパッタ法で成膜した。反射膜の厚さは部分的にマスクで覆って成膜しない領域を作り、成膜部と成膜していない領域との境界部を使って段差計DEKTAKで厚さを求めた。反射膜形成ステンレス箔の表面粗さは触針式粗さ計を用いて圧延方向と垂直な方向にRaを測定した。測定長さは1.25mmで任意の場所で10回測定した平均値である。反射膜形成ステンレス箔の反射率は600nmの波長における拡散反射である。フェニル基修飾シリカ膜の形成方法、フェニル基修飾シリカ膜の膜厚、フェニル基修飾シリカ膜の表面粗さ、平坦性の評価、硬化時間、Roll to Roll適合性は試験1と同様である。電流効率は以下のように評価した。実験番号4−1は図4(a)、実験番号4−2と4−3は図4(b)の構成で、42〜46は同じ材料・膜厚としてOLED発光素子を作製した。実験番号4−1でえられた平坦化膜付きステンレス箔の上に形成したOLED発光素子に100A/mの電流を注入した時の輝度を測定した。実験番号4−2および4−3で得られた平坦化膜付き反射膜形成ステンレス箔の上に形成したOLED発光素子に100A/mの電流を注入した時の輝度をそれぞれ測定した。実験番号4−1のOLED素子の輝度を1としたとき、実験番号4−2のOLED素子の輝度は1.9、実験番号4−3のOLEDの素子は2.1となり同じ電流を注入した時、約2倍の輝度が得られた。反射膜付き基板としてのデバイス適合性は、反射膜がないもの(実験番号4−1)と比較して1.5倍以上の電流効率が得られているものを◎とした。デバイス適合性を含めた総合評価の欄はRoll to Roll適合性と反射膜付き基板としてのデバイス適合性をあわせて判断した。フェニル基修飾シリカ膜を付ける前のステンレス箔の表面の反射率が高いと電流効率の高い素子が作れることがわかる。表4の反射膜形成ステンレス箔の表面粗さの欄の数字が()付きになっているものは反射膜が形成されていないステンレス箔の表面粗さを参考までに記したものである。
Figure 0006091705
Roll to Roll成膜試験は厚さ50μm、幅300mm、長さ150mの新日鉄住金マテリアルズ製NSSC190SB仕上げのステンレス箔コイルを使って行った。Roll to Rollの真空成膜装置にNSSC190SBのコイルをセットし、一晩真空引きを実施してからAlのターゲットを使ってAlを膜厚70nmでスパッタ成膜した。成膜速度は2mpmとした。Alスパッタ成膜済みステンレス箔コイル上にRoll to Rollのスリットダイコータを使って実験番号2−3の組成で、粘度15mPa・s、固形分濃度35%の塗布液を成膜した。送液圧力とシム厚によってフェニル基修飾シリカ膜の膜厚が3.2μmになるように調整した。スリットダイで塗布後、100℃にセットした乾燥炉で乾燥して巻き取りを行い、フェニル基修飾シリカ膜の乾燥膜が付いた状態のコイルを作製した。その後乾燥膜付きコイルをRoll to Rollのキュア炉により400℃2分の熱処理を行った。最終的にはNSSC190SB上に70nmのAlと3.2μmのフェニル修飾シリカ膜が成膜されたコイルが得られた。このコイルから小片を切り出しOLED素子を測定したところ実験番号4−1の素子の電流効率を1としたとき、2.0の電流効率が得られた。
41 ステンレス箔
42 透明電極(下電極)
43 正孔輸送層
44 発光層
45 電子輸送層
46 半透明電極(上電極)
47 反射膜

Claims (10)

  1. 有機溶媒中フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で有機溶剤を減圧留去して得られたレジンを芳香族炭化水素系溶剤に溶解した平坦化膜形成塗布液。
  2. 有機溶媒中フェニルトリアルコキシシラン1モルに対して、酢酸0.1モル以上1モル以下、有機スズ0.005モル以上0.05モル以下を触媒として加え、2モル以上4モル以下の水で加水分解後、160℃以上210℃以下の温度で有機溶剤を減圧留去して得られたレジンを芳香族炭化水素系溶剤に溶解した平坦化膜形成塗布液の製造方法。
  3. 請求項1記載の塗布液を金属箔コイルに塗布後、熱処理プロセスでリフローおよび膜硬化させることにより金属箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニル基修飾シリカ膜で被覆した平坦化膜付き金属箔コイル。
  4. 請求項1記載の塗布液を金属箔コイルに膜厚2.0μm以上5.0μm以下となるように連続塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き金属箔コイルの製造方法。
  5. 前記金属箔がステンレス箔であることを特徴とする請求項3に記載の金属箔コイル。
  6. 前記金属箔がステンレス箔コイルであることを特徴とする請求項4に記載の金属箔コイルの製造方法。
  7. 金属箔コイルの表面の少なくとも一方に絶縁膜を被覆した絶縁被覆金属箔コイルの絶縁被覆面に、請求項1記載の塗布液を塗布後、熱処理プロセスでリフローおよび膜硬化させることにより、絶縁被覆金属箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニル基修飾シリカ膜で被覆した平坦化膜付き絶縁被覆金属箔コイル。
  8. 金属箔コイルの表面の少なくとも一方に絶縁膜を被覆した絶縁被覆金属箔コイルの絶縁被覆面に、請求項1記載の塗布液を膜厚2.0μm以上5.0μm以下となるように連続塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き絶縁被覆金属箔コイルの製造方法。
  9. 金属箔コイルの表面の少なくとも一方に反射膜を形成した反射膜形成ステンレス箔コイルの反射膜形成面に、請求項1記載の塗布液を塗布後、熱処理プロセスでリフローおよび膜硬化させることにより、反射膜形成ステンレス箔コイルの表面を膜厚2.0μm以上5.0μm以下、圧延に垂直な方向のRaが30nm以下であるフェニル基修飾シリカ膜で被覆した平坦化膜付き反射膜形成ステンレス箔コイル。
  10. 金属箔コイルの表面の少なくとも一方に反射膜を形成した反射膜形成ステンレス箔コイルの反射膜形成面に、請求項1記載の塗布液を膜厚2.0μm以上5.0μm以下となるように連続塗布し、不活性ガス雰囲気中300℃以上450℃以下の熱処理炉を通過させることによりリフローおよび膜硬化させた後、巻き取った平坦化膜付き反射膜形成ステンレス箔コイルの製造方法。
JP2016512717A 2014-11-12 2015-11-12 平坦化膜形成塗布液および平坦化膜付き金属箔コイル Active JP6091705B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014230111 2014-11-12
JP2014230111 2014-11-12
PCT/JP2015/081885 WO2016076399A1 (ja) 2014-11-12 2015-11-12 平坦化膜形成塗布液および平坦化膜付き金属箔コイル

Publications (2)

Publication Number Publication Date
JP6091705B2 true JP6091705B2 (ja) 2017-03-08
JPWO2016076399A1 JPWO2016076399A1 (ja) 2017-04-27

Family

ID=55954476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016512717A Active JP6091705B2 (ja) 2014-11-12 2015-11-12 平坦化膜形成塗布液および平坦化膜付き金属箔コイル

Country Status (8)

Country Link
US (1) US10472543B2 (ja)
EP (1) EP3219772B1 (ja)
JP (1) JP6091705B2 (ja)
KR (1) KR101826462B1 (ja)
CN (1) CN106232749B (ja)
CA (1) CA2967278C (ja)
TW (1) TWI586768B (ja)
WO (1) WO2016076399A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7221581B2 (ja) * 2016-10-13 2023-02-14 日鉄ケミカル&マテリアル株式会社 皮膜形成用塗布液の粘度調整方法
JP7075781B2 (ja) * 2017-02-28 2022-05-26 株式会社放電精密加工研究所 低面粗度の塗膜を実現できる高平滑性塗料組成物、この施工方法や補修方法、これらを用いて表面処理された圧縮機
JP7020889B2 (ja) * 2017-12-08 2022-02-16 日鉄ケミカル&マテリアル株式会社 平坦化膜形成用塗布液およびその製造方法、ならびに平坦化膜付き金属箔コイルおよびその製造方法
JP7020890B2 (ja) * 2017-12-08 2022-02-16 日鉄ケミカル&マテリアル株式会社 平坦化膜形成用塗布液およびその製造方法、ならびに平坦化膜付き金属箔コイルおよびその製造方法
JP7048367B2 (ja) * 2018-03-15 2022-04-05 日鉄ケミカル&マテリアル株式会社 平坦化膜形成用塗布液およびその製造方法、平坦化膜付き金属箔コイルおよびその製造方法、並びにそれらに用いるシリカ微粒子含有ケトン系溶剤
US10593603B2 (en) 2018-03-16 2020-03-17 Sandisk Technologies Llc Chemical mechanical polishing apparatus containing hydraulic multi-chamber bladder and method of using thereof
JP7047927B2 (ja) * 2018-09-27 2022-04-05 日本製鉄株式会社 平坦化膜形成用塗布液、平坦化膜形成用塗布液の製造方法、平坦化膜付き金属箔、及び平坦化膜付き金属箔の製造方法
CN113275204A (zh) * 2020-03-19 2021-08-20 安泰科技股份有限公司 一种用于非晶纳米晶带材连续涂覆绝缘涂层的设备及方法
JP7473813B2 (ja) 2020-10-02 2024-04-24 日本製鉄株式会社 膜付き金属箔、及び膜付き金属箔の製造方法
KR20230172549A (ko) * 2021-05-17 2023-12-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 평탄화막 구비 스테인리스 강박

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166132A (ja) * 1993-09-24 1995-06-27 Hitachi Ltd オルガノシロキサンオリゴマー液及びそれを用いた有機塗布ガラス膜の形成方法
JP2003226753A (ja) * 2002-02-01 2003-08-12 Kansai Research Institute 熱可塑性ポリフェニルシルセスキオキサンおよびそれを用いた高分子量ポリフェニルシルセスキオキサンの製造方法
JP2009073964A (ja) * 2007-09-21 2009-04-09 Sekisui Chem Co Ltd 薄膜形成用組成物の製造方法、薄膜形成方法及び半導体装置
WO2009110405A1 (ja) * 2008-03-07 2009-09-11 セントラル硝子株式会社 熱硬化性有機無機ハイブリッド透明材料
JP2012140528A (ja) * 2010-12-28 2012-07-26 Nippon Steel Materials Co Ltd 皮膜形成用無溶媒塗布液、その塗布液及び皮膜の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192224A (ja) 1987-04-20 1989-04-11 Mitsubishi Electric Corp 高純度フェニルシリコーンラダーポリマーの製造法
JP3214186B2 (ja) 1993-10-07 2001-10-02 三菱電機株式会社 半導体装置の製造方法
JPH1140829A (ja) 1997-07-16 1999-02-12 Nisshin Steel Co Ltd 太陽電池用絶縁基板及びその製造方法
JP4349390B2 (ja) 2006-07-31 2009-10-21 日立化成工業株式会社 シリコーン系材料組成物、シリカ系被膜及び半導体装置
JP2009256662A (ja) * 2008-03-26 2009-11-05 Nagase Chemtex Corp シルセスキオキサン誘導体及びその製造方法
WO2010078233A2 (en) * 2008-12-31 2010-07-08 3M Innovative Properties Company Substrate with planarizing coating and method of making same
JP5251904B2 (ja) 2010-03-08 2013-07-31 新日鐵住金株式会社 シリカ系無機ポリマー膜で被覆したステンレス箔及びそれを用いたシリコン薄膜太陽電池
JP6671193B2 (ja) 2016-03-03 2020-03-25 日鉄ケミカル&マテリアル株式会社 膜付きステンレス箔およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166132A (ja) * 1993-09-24 1995-06-27 Hitachi Ltd オルガノシロキサンオリゴマー液及びそれを用いた有機塗布ガラス膜の形成方法
JP2003226753A (ja) * 2002-02-01 2003-08-12 Kansai Research Institute 熱可塑性ポリフェニルシルセスキオキサンおよびそれを用いた高分子量ポリフェニルシルセスキオキサンの製造方法
JP2009073964A (ja) * 2007-09-21 2009-04-09 Sekisui Chem Co Ltd 薄膜形成用組成物の製造方法、薄膜形成方法及び半導体装置
WO2009110405A1 (ja) * 2008-03-07 2009-09-11 セントラル硝子株式会社 熱硬化性有機無機ハイブリッド透明材料
JP2012140528A (ja) * 2010-12-28 2012-07-26 Nippon Steel Materials Co Ltd 皮膜形成用無溶媒塗布液、その塗布液及び皮膜の製造方法

Also Published As

Publication number Publication date
JPWO2016076399A1 (ja) 2017-04-27
US10472543B2 (en) 2019-11-12
KR20160122204A (ko) 2016-10-21
EP3219772B1 (en) 2019-10-16
EP3219772A1 (en) 2017-09-20
TWI586768B (zh) 2017-06-11
CA2967278C (en) 2019-08-06
CA2967278A1 (en) 2016-05-19
CN106232749B (zh) 2018-11-02
TW201623489A (zh) 2016-07-01
US20170313903A1 (en) 2017-11-02
CN106232749A (zh) 2016-12-14
KR101826462B1 (ko) 2018-02-06
WO2016076399A1 (ja) 2016-05-19
EP3219772A4 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6091705B2 (ja) 平坦化膜形成塗布液および平坦化膜付き金属箔コイル
JP4783117B2 (ja) シリカ系ガラス薄層付き無機質基板、その製造方法、コーテイング剤および半導体装置
WO2014126210A1 (ja) ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材
KR20210000275A (ko) 전자 디바이스의 제조 방법
JP5741489B2 (ja) ガスバリア性フィルムおよび電子デバイス
TW201704346A (zh) 用於光電應用中之聚矽氧烷調配物及塗層
JP6671193B2 (ja) 膜付きステンレス箔およびその製造方法
JP5928634B2 (ja) ガスバリア性フィルムおよび電子デバイス
JP7102118B2 (ja) 透明導電性膜、透明導電性膜を形成するためのコーティング組成物、及び透明導電性膜の製造方法
JP7020890B2 (ja) 平坦化膜形成用塗布液およびその製造方法、ならびに平坦化膜付き金属箔コイルおよびその製造方法
JP7047927B2 (ja) 平坦化膜形成用塗布液、平坦化膜形成用塗布液の製造方法、平坦化膜付き金属箔、及び平坦化膜付き金属箔の製造方法
TWI600713B (zh) 顯示用元件、光學用元件、照明用元件或感測元件之製造用芳香族聚醯胺溶液
JP7020889B2 (ja) 平坦化膜形成用塗布液およびその製造方法、ならびに平坦化膜付き金属箔コイルおよびその製造方法
JP7048367B2 (ja) 平坦化膜形成用塗布液およびその製造方法、平坦化膜付き金属箔コイルおよびその製造方法、並びにそれらに用いるシリカ微粒子含有ケトン系溶剤
JP2017073348A (ja) 有機el素子用金属積層基板及びその製造方法
JP2018123192A (ja) 被膜形成用塗布液の製造方法
JP7473813B2 (ja) 膜付き金属箔、及び膜付き金属箔の製造方法
JP2020041097A (ja) 透明導電性膜、透明導電性膜を形成するためのコーティング組成物、及び透明導電性膜の製造方法
JP5370241B2 (ja) シリカ多孔質体の製造方法
JP6647820B2 (ja) 透明被膜形成用塗布液、透明被膜形成用塗布液の製造方法、透明被膜付基材、および透明被膜付基材の製造方法
JP6744140B2 (ja) 透明導電性フィルム
JP2002264246A (ja) ガスバリア性フィルム
JP2018010799A (ja) 有機el素子用金属基板

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350