WO2014126210A1 - ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 - Google Patents
ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 Download PDFInfo
- Publication number
- WO2014126210A1 WO2014126210A1 PCT/JP2014/053510 JP2014053510W WO2014126210A1 WO 2014126210 A1 WO2014126210 A1 WO 2014126210A1 JP 2014053510 W JP2014053510 W JP 2014053510W WO 2014126210 A1 WO2014126210 A1 WO 2014126210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- groups
- aryl
- alkyl
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/32—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/32—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/10—Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2379/00—Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
- B32B2379/08—Polyimides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/266—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/269—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31623—Next to polyamide or polyimide
Definitions
- the present disclosure relates to a laminated composite material for producing a display element, an optical element or an illumination element; a polyamide solution for producing a display element, an optical element or an illumination element; a display element or an optical element Or the manufacturing method of the element for illumination; It is related with the element for a display, the element for optics, the element for illumination, etc.
- Patent Document 1 Since the display element needs transparency, a glass substrate using a glass plate was used as the substrate (Patent Document 1).
- display elements using a glass substrate have been pointed out to have problems such as heavy weight, cracking, and no bending. Therefore, an attempt to use a transparent resin film in place of the glass substrate has been proposed.
- polycarbonate having high transparency is known, but heat resistance and mechanical strength are problems when used for manufacturing display elements.
- polyimide is an example of a heat-resistant resin, but general polyimide has a brownish color, so there are problems in optical applications.
- a polyimide having transparency a polyimide having a cyclic structure is known. However, this has a problem that heat resistance is lowered.
- Patent Document 2 discloses a transparent polyamide film exhibiting thermal stability and dimensional stability. This transparent film is manufactured by casting an aromatic polyamide solution and curing at high temperature. It is disclosed that this cured film exhibits a transmittance of over 80% in the range of 400-750 nm, a linear expansion coefficient (CTE) of less than 20 ppm / ° C., and exhibits good solvent resistance. And it is disclosed that the film disclosed in the document can be used as a flexible substrate of a microelectronic device.
- CTE linear expansion coefficient
- the present disclosure includes a glass plate and an organic resin layer, the organic resin layer is laminated on one surface of the glass plate, the organic resin is a polyamide resin, and thermogravimetry of the polyamide resin ( It is related with the laminated composite material whose mass change from 300 degreeC measured by TG) to 400 degreeC is 3.0% or less, and whose glass transition temperature of a polyamide resin is 300 degreeC or more.
- the present disclosure also relates to, in one aspect, a polyamide solution for producing the laminated composite material, the polyamide solution including an aromatic polyamide and a solvent.
- the present disclosure further includes a display element, an optical element, or a lighting element on a surface opposite to the glass plate of the laminated composite material, and the display element, the optical element, or
- the present invention relates to a method for manufacturing an illumination element, and in one embodiment, relates to a display element, an optical element, or an illumination element manufactured by the method.
- FIG. 1 is a schematic cross-sectional view illustrating a configuration of an organic EL element 1 according to an embodiment.
- FIG. 2 is a flow diagram illustrating a method for manufacturing an OLED element according to one embodiment.
- FIG. 3 is a flowchart for explaining a method of manufacturing an OLED element according to one embodiment.
- FIG. 4 is a flowchart for explaining a method of manufacturing an OLED element according to one embodiment.
- Display elements such as organic electroluminescence (OEL) or organic light emitting diodes (OLED), optical elements, or illumination elements are often manufactured by the manufacturing method shown in FIG.
- OEL organic electroluminescence
- OLED organic light emitting diodes
- a polymer solution varnish
- the applied polymer solution is cured to form a film
- an element such as an OLED
- an element such as an OLED is formed (process C)
- an element (product) such as an OLED is peeled from the support material (process D).
- a polyimide film has been used as the film of the manufacturing method in FIG.
- the present disclosure relates to a laminated composite material in which warpage deformation is suppressed in one or a plurality of embodiments.
- the present disclosure also relates to a laminated composite material in which warpage deformation is suppressed and / or dimensional stability is improved in one or more embodiments.
- the “laminate composite material” refers to a laminate in which a glass plate and an organic resin layer are laminated.
- the laminated glass plate and organic resin layer means that in one or more non-limiting embodiments, the glass plate and organic resin layer are directly laminated, and one or more non-limiting examples.
- the glass plate and the organic resin layer are laminated through one or more layers.
- the organic resin of the organic resin layer is a polyamide resin. Accordingly, in one or more embodiments of the present invention, a laminated composite material includes a glass plate and a polyamide resin layer, and a polyamide resin is laminated on one surface of the glass plate.
- the laminated composite material according to the present disclosure can be used in a method for manufacturing a display element, an optical element, or an illumination element represented by FIG. In the embodiment, it can be used as a laminated composite material obtained in step B of the manufacturing method of FIG. Therefore, in one or a plurality of embodiments that are not limited, the laminated composite material according to the present disclosure includes a display element, an optical element, or an illumination element on a surface opposite to the surface facing the glass plate of the organic resin layer. Is a laminated composite material for use in a method for manufacturing a display element, an optical element, or an illumination element.
- the laminated composite material according to the present disclosure may include an additional organic resin layer and / or an inorganic layer in addition to the polyamide resin layer.
- the additional organic resin layer include a flattening coat layer and the like in one or a plurality of non-limiting embodiments.
- the inorganic layer include, but are not limited to, a gas barrier layer that suppresses permeation of water and oxygen, a buffer coat layer that suppresses ion migration to the TFT element, and the like.
- FIG. 3 shows one or more non-limiting embodiments in which an inorganic layer is formed between the glass plate and the polyamide resin layer.
- the amorphous Si layer formed on a glass plate is mentioned.
- step A a polyamide varnish is applied on the amorphous Si layer on the glass plate, and in step B, it is dried and / or cured to form a laminated composite material.
- step C a display element, an optical element or an illumination element is formed on the polyamide resin layer (polyamide film) of the laminated composite material.
- step D the amorphous Si layer is irradiated with a laser, and the display element is a product.
- the optical element or the lighting element (including the polyamide resin layer) is peeled off from the glass plate.
- FIG. 4 shows one or more non-limiting embodiments in which an inorganic layer is formed on the surface of the polyamide resin layer opposite to the surface facing the glass plate.
- An inorganic barrier layer etc. are mentioned as an inorganic layer in this embodiment.
- step A a polyamide varnish is applied onto the glass plate, and in step B, it is dried and / or cured to form a laminated composite material. At this time, an inorganic layer is further formed on the polyamide resin layer (polyamide film). In one or a plurality of embodiments which are not limited, it is good also as a lamination composite material in this indication including an inorganic layer (Drawing 4, process C).
- a display element, an optical element, or an illumination element is formed on the inorganic layer.
- step D the polyamide resin layer is peeled off to obtain a display element, optical element or lighting element (including a polyamide resin layer) as a product.
- the polyamide resin of the polyamide resin layer in the laminated composite material according to the present disclosure is a thermogravimetric measurement (TG) of the polyamide resin in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- TG thermogravimetric measurement
- 300 ° C. to 400 ° C. is 3.0% or less, 2.0% or less, 1.5% or less, or 1.0% or less.
- the mass change from 300 ° C. to 400 ° C. measured by thermogravimetry (TG) can be measured by the method described in Examples in one or more embodiments.
- the polyamide resin of the polyamide resin layer in the laminated composite material according to the present disclosure has a glass transition temperature of 300 in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. It is mentioned that it is more than °C, 320 °C or more, 330 °C or more, or 350 °C or more. Moreover, the glass transition temperature of a polyamide resin is 550 degrees C or less, 530 degrees C or less, or 500 degrees C or less in one or some embodiment which is not limited. The glass transition temperature can be measured by the method described in Examples in one or more embodiments.
- the polyamide resin of the polyamide resin layer in the laminated composite material according to the present disclosure is the thermogravimetric measurement (TG) described above in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Satisfying both the change in mass from 300 ° C. to 400 ° C. and the glass transition temperature as measured in (1).
- warp deformation of a laminated composite material refers to a difference between the maximum value and the minimum value of the height of the laminated composite material measured by a laser displacement meter, and is described in the examples in one or a plurality of embodiments. It is measured by the method.
- the warp deformation of the laminated composite material according to the present disclosure may be 500 ⁇ m or less or 250 ⁇ m or less in one or a plurality of embodiments. From the same viewpoint, in one or a plurality of embodiments, it may be ⁇ 500 ⁇ m or more, or ⁇ 250 ⁇ m or more.
- a positive value of the warp deformation of the laminated composite indicates that the height of the peripheral portion of the laminated composite is higher than the height of the central portion, and the value of the warp deformation of the laminated composite is negative. This indicates that the height of the peripheral part of the laminated composite material is lower than the height of the central part.
- the thickness of the polyamide resin layer in the laminated composite material according to the present disclosure is one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material, and suppressing crack generation of the resin layer. In, it is mentioned that it is 500 micrometers or less, 200 micrometers or less, or 100 micrometers or less. Moreover, in one or some embodiment which is not limited, the thickness of a polyamide resin layer is 1 micrometer or more, 2 micrometers, or 3 micrometers or more is mentioned, for example.
- the total light transmittance of the polyamide resin layer in the laminated composite material according to the present disclosure is determined in one or a plurality of embodiments from the viewpoint that the laminated composite material is suitably used for manufacturing a display element, an optical element, or an illumination element. 70% or more, 75% or more, or 80% or more.
- the material of the glass plate in the laminated composite material according to the present disclosure includes soda lime glass, non-alkali glass, and the like in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- soda lime glass is preferable from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- the thickness of the glass plate in the laminated composite material according to the present disclosure is 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Can be mentioned. Moreover, the thickness of a glass plate is 3 mm or less or 1 mm or less, for example in one or some embodiment.
- the polyamide resin layer in the laminated composite material according to the present disclosure is from 300 ° C. to 400 ° C. measured by the above-described thermogravimetry (TG) from a polyamide solution or varnish disclosed below.
- TG thermogravimetry
- a material that can produce a polyamide resin that satisfies conditions such as mass change and / or glass transition temperature can be appropriately selected and produced.
- the present disclosure also relates, in one aspect, to a polyamide solution for producing the laminated composite, the polyamide solution including an aromatic polyamide and a solvent.
- Examples of the polyamide solution according to the present disclosure include one in which a low molecular component is reduced in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- a low molecular component having a molecular weight of 1000 or less in the polyamide solution is not detected by gel permeation chromatography (GPC) or is detected in a trace amount.
- GPC gel permeation chromatography
- “detected in a trace amount” means that a low molecular component having a molecular weight of 1000 or less as measured by GPC is 0.2% in area ratio.
- the polyamide solution according to the present disclosure includes, in one or a plurality of embodiments, subjected to a precipitation step after synthesis of the polyamide from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- Precipitation can be performed by a usual method.
- precipitation is performed by addition to methanol, ethanol, isopropyl alcohol, and the like, washing, and dissolution in a solvent can be mentioned.
- the polyamide of the polyamide solution according to the present disclosure may be one in which at least one end is end-capped from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- the polyamide solution according to the present disclosure includes a carboxyl group-containing diamine monomer from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. You may go out.
- the carboxyl group-containing diamine monomer component relative to the total amount of the monomer may be 30 mol% or less, 20 mol% or less, or 1 to 10 mol% in one or more embodiments.
- the polyamide solution according to the present disclosure is a repeating unit represented by the following general formulas (I) and (II) in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of a laminated composite material. And a polyamide solution containing an aromatic polyamide having a solvent and a solvent.
- x represents the mol% of the repeating unit (I)
- y represents the mol% of the repeating unit (II)
- x is 90 to 100
- y is 10 to 0.
- n is 1 to 4.
- Ar 1 is Selected from the group consisting of
- G 1 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, An aryl group or a substituted aryl group such as a 9-bisphenylfluorene group and a substituted 9,9-bisphenylfluorene.
- Ar 2 is Selected from the group consisting of
- p 4
- R 6 , R 7 and R 8 are hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano, thioalkyl Selected from the group consisting of substituted alkoxy such as alkoxy and halogenated alkoxy, substituted aryl such as aryl and aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, R 6 may be different from each other, 7 may be different from each other, and R 8 may be different from each other.
- G 2 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, An aryl group or a substituted aryl group such as a 9-bisphenylfluorene group and a substituted 9,9-bisphenylfluorene.
- G 3 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO Selected from the group consisting of 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, and Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, 9 , 9-bisphenylfluorene group, and substituted 9,9-bisphenylfluorene and other aryl groups or substituted aryl groups.
- Formulas (I) and (II) are selected such that the polyamide is dissolved in a polar solvent or a mixed solvent comprising one or more polar solvents.
- x of the repeating unit (I) is 90 to 100 mol%
- y of the repeating unit (II) is 10 to 0 mol%.
- a plurality of repeating units of the structures (I) and (II) may be included, in which case Ar 1 , Ar 2 , and Ar 3 may be the same or different. .
- the polyamide solution according to the present disclosure is or can be obtained by a manufacturing method including the following steps in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Is mentioned.
- C a step of removing hydrochloric acid liberated in the reaction using a trapping reagent, and (d) a step of precipitating the obtained polyamide as necessary.
- aromatic diacid dichloride contains what is shown by the following general formula.
- R 1 may be different, R 2 may be different, R 3 may be different, R 4 may be different, and R 5 may be different.
- G 1 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups
- Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, An aryl group or a substituted aryl group such as a 9-bisphenylfluorene group and a substituted 9,9-bisphenylfluorene.
- the aromatic dicarboxylic acid dichloride used in the method for producing a polyamide solution according to the present disclosure includes the following in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Can be mentioned.
- aromatic diamine contains what is shown by the following general formula.
- G 2 and G 3 are a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S Selected from the group consisting of atoms, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, and Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group , 9,9-bisphenylfluorene groups, and substituted 9,9-bisphenylfluorene groups or substituted aryl groups.
- Examples of the aromatic diamine used in the method for producing a polyamide solution according to the present disclosure include the following in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. .
- the polyamide is prepared by condensation polymerization in a solvent, and hydrochloric acid generated during the reaction is captured by a reagent such as propylene oxide (PrO). Is done.
- a reagent such as propylene oxide (PrO).
- the solvent is a polar solvent or a mixed solvent containing one or more polar solvents from the viewpoint of increasing the solubility of the polyamide in the solvent.
- the solvent is cresol, N, N-dimethylacetamide (DMAc), N -Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), butyl cellosolve, or cresol, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), 1 , 3-dimethyl-imidazolidinone (DMI) or a mixed solvent containing at least one of butyl cellosolve, a combination thereof, or a mixed solvent containing at least one of these polar
- one of the diamines is 4,4′-diaminodiphenic acid (DADP) or 3, 5-diaminobenzoic acid (DAB).
- DADP 4,4′-diaminodiphenic acid
- DAB 3, 5-diaminobenzoic acid
- a volatile product is generated by a reaction between the hydrochloric acid and the trapping reagent from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- the trapping reagent is propylene oxide from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
- the trapping reagent is added to the mixture before or during the reaction step (b). By adding before or during the reaction step (b), it is possible to suppress the generation of viscosity and lumps in the mixed solution, thereby improving the productivity of the polyamide solution. These effects are particularly pronounced when the trapping reagent is an organic agent such as propylene oxide.
- the production method may include one or both of —COOH group and —NH 2 group at the terminal of the polyamide. It is preferable to include a step of end-capping.
- the polyamide is first isolated from the polyamide solution by precipitation and redissolved in a solvent.
- the polyamide solution is produced in the absence of an inorganic salt from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite.
- the laminated composite material according to the present disclosure can be manufactured by applying the above-described polyamide solution to a glass plate, drying, and curing as necessary.
- the manufacturing method of the lamination composite material of this indication includes the following process (a) and (b).
- the heating is performed in a range from + 40 ° C. of the boiling point of the solvent to + 100 ° C. of the boiling point of the solvent.
- a temperature in the range of + 60 ° C. of the boiling point of the solvent to + 80 ° C. of the boiling point of the solvent more preferably at a temperature of about + 70 ° C. of the boiling point of the solvent.
- the heating temperature of the step (b) is between about 200 ° C. and about 250 ° C.
- the heating time is more than about 1 minute and less than about 30 minutes.
- the method for producing a laminated composite material may include a curing treatment step (c) for curing the polyamide film after the step (b).
- the temperature of the curing process depends on the capability of the heating device, but in one or more embodiments is 220 ° C.-420 ° C., 280-400 ° C., or 330 ° C.-370 ° C.
- the present disclosure includes a step of forming a display element, an optical element, or an illumination element on a surface opposite to a surface facing the glass plate of the organic resin layer of the laminated composite material according to the present disclosure.
- the present invention relates to a method for manufacturing a display element, an optical element, or an illumination element.
- the manufacturing method further includes a step of peeling the formed display element, optical element, or illumination element from the glass plate.
- the “display element, optical element, or illumination element” refers to an element that constitutes a display body (display device), an optical device, or an illumination device.
- a display body display device
- an optical device or an illumination device.
- an organic EL element for example, an organic EL element, a liquid crystal element, an organic element Refers to EL lighting.
- a thin film transistor (TFT) element, a color filter element, and the like constituting part of them are also included.
- the display element, the optical element, or the lighting element according to the present disclosure is manufactured using the polymer solution according to the present disclosure, the display element, the optical element, or
- a substrate using a polymer film according to the present disclosure as a substrate of an illumination element may be included.
- FIG. 1 is a schematic cross-sectional view showing an organic EL element 1 according to an embodiment.
- the organic EL element 1 includes a thin film transistor B and an organic EL layer C formed on the substrate A.
- the entire organic EL element 1 is covered with a sealing member 400.
- the organic EL element 1 may be peeled off from the support material 500 or may include the support material 500.
- each configuration will be described in detail.
- the substrate A includes a transparent resin substrate 100 and a gas barrier layer 101 formed on the upper surface of the transparent resin substrate 100.
- the transparent resin substrate 100 is a polymer film according to the present disclosure.
- the transparent resin substrate 100 may be annealed by heat. As a result, there are effects that distortion can be removed and dimensional stabilization against environmental changes can be enhanced.
- the gas barrier layer 101 is a thin film made of SiOx, SiNx or the like, and is formed by a vacuum film forming method such as a sputtering method, a CVD method, or a vacuum evaporation method.
- the thickness of the gas barrier layer 101 is usually about 10 nm to 100 nm, but is not limited to this thickness.
- the gas barrier layer 101 may be formed on the surface facing the gas barrier layer 101 of FIG. 1 or may be formed on both surfaces.
- the thin film transistor B includes a gate electrode 200, a gate insulating layer 201, a source electrode 202, an active layer 203, and a drain electrode 204.
- the thin film transistor B is formed on the gas barrier layer 101.
- the gate electrode 200, the source electrode 202, and the drain electrode 204 are transparent thin films made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or the like.
- ITO indium tin oxide
- IZO indium zinc oxide
- ZnO zinc oxide
- Examples of the method for forming the transparent thin film include sputtering, vacuum deposition, and ion plating.
- the thickness of these electrodes is usually about 50 nm to 200 nm, but is not limited to this thickness.
- the gate insulating film 201 is a transparent insulating thin film made of SiO 2 , Al 2 O 3 or the like, and is formed by a sputtering method, a CVD method, a vacuum deposition method, an ion plating method, or the like.
- the thickness of the gate insulating film 201 is normally about 10 nm to 1 ⁇ m, but is not limited to this thickness.
- the active layer 203 is, for example, single crystal silicon, low-temperature polysilicon, amorphous silicon, oxide semiconductor, or the like, and the optimum one is used in a timely manner.
- the active layer is formed by sputtering or the like.
- Organic EL Layer C includes a conductive connection portion 300, an insulating planarization layer 301, a lower electrode 302 that is an anode of the organic EL element 1, a hole transport layer 303, a light emitting layer 304, and an electron transport layer 305. And an upper electrode 306 which is a cathode of the organic EL element 1.
- the organic EL layer C is formed on at least the gas barrier layer 101 or the thin film transistor B, and the lower electrode 302 and the drain electrode 204 of the thin film transistor B are electrically connected by the connection portion 300. Alternatively, the lower electrode 302 and the source electrode 202 of the thin film transistor B may be connected by the connecting portion 300.
- the lower electrode 302 is an anode of the organic EL element 1 and is a transparent thin film such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO). In addition, since high transparency, high electroconductivity, etc. are obtained, ITO is preferable.
- ITO indium tin oxide
- IZO indium zinc oxide
- ZnO zinc oxide
- the hole transport layer 303 As the hole transport layer 303, the light emitting layer 304, and the electron transport layer 305, conventionally known materials for organic EL elements can be used as they are.
- the upper electrode 305 is made of, for example, a film in which lithium fluoride (LiF) and aluminum (Al) are formed to a thickness of 5 nm to 20 nm and 50 nm to 200 nm, respectively.
- a vacuum deposition method can be cited as a method for forming the film.
- the upper electrode 306 of the organic EL element 1 may be a light reflective electrode. Thereby, the light generated in the organic EL element 1 and traveling to the upper side in the direction opposite to the display side is reflected by the upper electrode 306 in the display side direction. Therefore, since the reflected light is also used for display, the use efficiency of light emission of the organic EL element can be increased.
- the present disclosure relates to a method for manufacturing a display element, an optical element, or an illumination element.
- the manufacturing method according to the present disclosure is a method for manufacturing a display element, an optical element, or an illumination element according to the present disclosure.
- the manufacturing method according to the present disclosure includes a step of applying a polyamide resin solution according to the present disclosure to a support material, a step of forming a polyamide film after the applying step, and the polyamide film. Forming a display element, an optical element, or an illumination element on a surface that is not in contact with the support material.
- the manufacturing method according to the present disclosure may further include a step of peeling the display element, the optical element, or the illumination element formed on the support material from the support material.
- 1 includes a fixing process, a gas barrier layer manufacturing process, a thin film transistor manufacturing process, an organic EL layer manufacturing process, a sealing process, and a peeling process.
- a fixing process a gas barrier layer manufacturing process
- a thin film transistor manufacturing process a thin film transistor manufacturing process
- an organic EL layer manufacturing process a sealing process
- a peeling process a peeling process
- the transparent resin substrate 100 is fixed on the support material 500.
- the fixing method is not particularly limited, and examples thereof include a method of applying an adhesive between the support material 500 and the transparent substrate, a method of fusing a part of the transparent resin substrate 100 to the support material 500, and the like. .
- a material of the support material for example, glass, metal, silicon, resin, or the like is used. These may be used alone, or two or more materials may be combined in a timely manner.
- a release agent or the like may be applied to the support member 500, and the transparent resin substrate 100 may be attached and fixed thereon.
- the polyamide resin composition which concerns on this indication is apply
- the gas barrier layer 101 is produced on the transparent resin substrate 100.
- a manufacturing method is not particularly limited, and a known method can be used.
- the thin film transistor B is manufactured on the gas barrier layer.
- a manufacturing method is not particularly limited, and a known method can be used.
- Organic EL layer manufacturing process includes a first process and a second process.
- the planarization layer 301 is formed.
- a photosensitive transparent resin may be spin-coated, slit-coated, ink-jet or the like.
- the thickness of the planarizing layer is usually about 100 nm to 2 ⁇ m, but is not limited thereto.
- connection part 300 and the lower electrode 302 are formed simultaneously.
- methods for forming these include sputtering, vacuum deposition, and ion plating.
- the film thickness of these electrodes is usually about 50 nm to 200 nm, but is not limited thereto.
- the hole transport layer 303, the light emitting layer 304, the electron transport layer 305, and the upper electrode 306 which is the cathode of the organic EL element 1 are formed.
- a method for forming them a method suitable for a material to be used and a laminated structure such as a vacuum deposition method and a coating method can be used.
- the structure of the organic layer of the organic EL element 1 is not limited to the description of the present embodiment, but other known organic layers such as a hole injection layer, an electron transport layer, a hole block layer, and an electron block layer are selected. May be configured.
- the sealing member 307 can be formed of glass, resin, ceramic, metal, metal compound, a composite thereof, or the like, and an optimal material can be selected in a timely manner.
- peeling process In the peeling process, the produced organic EL element 1 is peeled from the support material 500.
- a method of realizing the peeling step for example, a method of physically peeling from the support material 500 can be cited.
- a release layer may be provided on the support material 500, or a wire may be inserted between the support material 500 and the display element to be peeled off.
- a peeling layer is not provided only at the end portion of the support material 500, and a device is taken out by cutting the inside from the rear end portion of the device, and a layer made of a silicon layer or the like between the support material 500 and the device
- a method of peeling by laser irradiation a method of applying heat to the support material 500 to separate the support material 500 and the transparent substrate, a method of removing the support material 500 with a solvent, and the like.
- the organic EL device obtained by the method for manufacturing a display device, an optical device, or an illumination device according to this embodiment has transparency, heat resistance, low linear expansion property, and low optical property. Excellent in directivity.
- the present disclosure relates to a display device, an optical device, or an illumination device using the display element, the optical element, or the illumination element according to the present disclosure, and a manufacturing method thereof.
- examples of the display device include an imaging element
- examples of the optical device include an optical / electrical composite circuit
- examples of the illumination device include a TFT-LCD and OEL illumination.
- This example is a general procedure for preparing solution 1 containing 5 wt% copolymer of TPC, IPC, DAB, and PFMB (70% / 30% / 5% / 95%, molar ratio) in DMAc. Indicates.
- This production method includes a step of precipitating the synthesized polymer after the synthesis step. To a 250 ml three-necked round bottom flask equipped with a mechanical stirrer, nitrogen inlet and nitrogen outlet was added PFMB (3.042 g, 0.0095 mol), DAB (0.0761 g, 0.0005 mol) and DMAc ( 45 ml) was added at room temperature under nitrogen.
- PrO 1.28 g, 0.024 mol
- IPC 0.5989 g, 0.00295 mol
- TPC 1.5110 g, 0.00695 mol
- benzoyl chloride 0.032 g, 0.23 mmol
- the polymer precipitated in methanol was further added to 150 ml of methanol and washed for 10 minutes twice. Thereafter, the polymer was added to 150 ml of water and washed twice for 10 minutes. Thereafter, the polymer was dehydrated and dried. The dried polymer was dissolved in DMAc (60 ml) to obtain solution 1.
- This example shows a general procedure for preparing Solution 2 containing 5% by weight of a copolymer of IPC, DAB, and PFMB (100% / 5% / 95%, molar ratio) in DMAc.
- This production method includes a step of precipitating the synthesized polymer after the synthesis step.
- PFMB 3.042 g, 0.0095 mol
- DAB (0.0761 g, 0.0005 mol
- DMAc 45 ml
- This example is a general procedure for preparing solution 3 containing 5% by weight of IPC, DAB, PFMB, and FDA copolymer (100% / 5% / 50% / 45%, molar ratio) in DMAc. Indicates.
- This production method includes a step of precipitating the synthesized polymer after the synthesis step. In a 250 ml three-necked round bottom flask equipped with a mechanical stirrer, nitrogen inlet and nitrogen outlet, PFMB (1.601 g, 0.005 mol), DAB (0.0761 g, 0.0005 mol), FDA ( 1.743 g, 0.005 mol) and DMAc (45 ml) were added at room temperature under nitrogen.
- This example is a general procedure for preparing solution 4 containing 5 wt% copolymer of TPC, IPC, DAB, and PFMB (70% / 30% / 60% / 40%, molar ratio) in DMAc. Indicates.
- This production method includes a step of precipitating the synthesized polymer after the synthesis step. To a 250 ml three-necked round bottom flask equipped with a mechanical stirrer, nitrogen inlet and nitrogen outlet was added PFMB (1.281 g, 0.0040 mol), DAB (0.9132 g, 0.0060 mol) and DMAc ( 45 ml) was added at room temperature under nitrogen.
- PrO 1.28 g, 0.024 mol
- IPC 0.5989 g, 0.00295 mol
- TPC 1.5110 g, 0.00695 mol
- benzoyl chloride 0.032 g, 0.23 mmol
- the polymer precipitated in methanol was further added to 150 ml of methanol and washed for 10 minutes twice. Thereafter, the polymer was added to 150 ml of water and washed twice for 10 minutes. Thereafter, the polymer was dehydrated and dried. The dried polymer was dissolved in DMAc (60 ml) to obtain solution 4.
- This example is a general procedure for preparing solution 5 containing 5 wt% copolymer of TPC, IPC, DAB, and PFMB (70% / 30% / 60% / 40%, molar ratio) in DMAc. Indicates.
- This production method does not include a step of precipitating the synthesized polymer after the synthesis step.
- PFMB 1.281 g, 0.0040 mol
- DAB 0.132 g, 0.0060 mol
- DMAc 45 ml
- thermogravimetry (TG) and glass transition temperature (Tg) of this polyamide film, and the warp deformation and dimensional change of this laminated composite were measured as follows. The results are shown in Table 1.
- the polymer solution was used for film casting directly after polymerization.
- the polyamide solution was spin coated onto a glass plate (EAGLE XG, Corning Inc., USA, 370 mm x 470 mm, thickness 0.5 mm). After drying at 60 ° C. for 30 minutes on the support, it was cured by heating from 60 ° C. to 330 ° C. under vacuum or in an inert atmosphere and maintaining 330 ° C. for 30 minutes.
- the film thickness was greater than about 10 ⁇ m.
- TG Thermogravimetry
- Tg Glass transition temperature
- sample length change About the variation
- TMA4030SA dynamic mechanical analyzer
- the temperature was raised from 25 ° C to 320 ° C at 10 ° C / min, maintained at 320 ° C for 30 minutes, and then cooled to 25 ° C again three times. Under these conditions, the difference between the sample length when the first measurement was finished and the sample length when the third temperature drop was finished was calculated, and this was taken as the sample length change.
- the laminated composite material produced using the solution 1-3 had a TG mass change rate of 1% or less and a Tg of 350 to 370 ° C., and the solutions 4 and 5 were used. It was suggested that the amount of warpage of the laminated composite material was reduced and the dimensional stability was improved as compared with the laminated composite material produced in this manner. Among these, the change in the sample length of the laminated composite material produced using Solution 1-3 was lower than that of the laminated composite material produced using Solution 2. On the other hand, in the laminated composite material produced using the solutions 4 and 5, the mass loss measured by TG of the produced film is larger than that of the solutions 1 to 3, and the Tg is also lower than that of the solutions 1 to 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本開示において、「積層複合材」は、ガラスプレートと有機樹脂層とが積層されたものをいう。ガラスプレートと有機樹脂層とが積層されているとは、限定されない一又は複数の実施形態において、ガラスプレートと有機樹脂層とが直接積層されていることをいい、また、限定されない一又は複数の実施形態において、ガラスプレートと有機樹脂層とが一若しくは複数の層を介して積層されたものをいう。本開示において、前記有機樹脂層の有機樹脂は、ポリアミド樹脂である。したがって、本開示において積層複合材は、一又は複数の実施形態において、ガラスプレートとポリアミド樹脂層とを含み、ガラスプレートの一方の面上にポリアミド樹脂が積層されたものをいう。
本開示にかかる積層複合材におけるポリアミド樹脂層のポリアミド樹脂は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ポリアミド樹脂の熱重量測定(TG)で測定される300℃から400℃までの質量変化が3.0%以下、2.0%以下、1.5%以下、又は1.0%以下であることが挙げられる。熱重量測定(TG)で測定される300℃から400℃までの質量変化は、一又は複数の実施形態において、実施例に記載の方法で測定できる。
本開示において「積層複合材の反り変形」とは、レーザー変位計で測定される積層複合材の高さの最大値と最小値の差をいい、一又は複数の実施形態において、実施例に記載の方法で測定される。本開示にかかる積層複合材の反り変形は、一又は複数の実施形態において、500μm以下、又は250μm以下であることが挙げられる。また、同様の観点から、一又は複数の実施形態において、-500μm以上、又は-250μm以上であることが挙げられる。なお、積層複合材の反り変形の値が正であることは、積層複合材の周辺部の高さが中央部の高さよりも高いことを示し、積層複合材の反り変形の値が負であることは、積層複合材の周辺部の高さが中央部の高さよりも低いことを示す。
本開示にかかる積層複合材におけるポリアミド樹脂層の厚みは、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点、並びに、樹脂層のクラック発生抑制の観点から、一又は複数の実施形態において、500μm以下、200μm以下、又は、100μm以下であることが挙げられる。また、ポリアミド樹脂層の厚みは、限定されない一又は複数の実施形態において、例えば、1μm以上、2μm、又は、3μm以上であることが挙げられる。
本開示にかかる積層複合材におけるポリアミド樹脂層の全光線透過率は、積層複合材がディスプレイ用素子、光学用素子又は照明用素子の製造に好適に用いられる観点から、一又は複数の実施形態において、70%以上、75%以上、又は80%以上であることが挙げられる。
本開示にかかる積層複合材におけるガラスプレートの材質は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ソーダライムガラス、無アルカリガラス等が挙げられ、なかでも、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点からはソーダライムガラスが好ましい。
本開示にかかる積層複合材におけるポリアミド樹脂層は、一又は複数の実施形態において、下記に開示するポリアミドの溶液又はワニスから上述の熱重量測定(TG)で測定される300℃から400℃までの質量変化及び/又はガラス転移温度の条件等を満たすポリアミド樹脂を製造できるものを適宜選択して製造できる。したがって、本開示は、また、一態様において、前記積層複合材を製造するためのポリアミド溶液であって、芳香族ポリアミドと溶媒を含む、ポリアミド溶液に関する。
(a)少なくとも1つの芳香族ジアミンを溶媒に溶解させる工程、
(b)前記少なくとも1つの芳香族ジアミンと少なくとも1つの芳香族二酸ジクロリドとを反応させ、塩酸及びポリアミド溶液を生成する工程、
(c)トラッピング試薬を用いて前記反応で遊離した塩酸を除去する工程、及び
(d)必要に応じて、得られたポリアミドを沈殿する工程。
本開示にかかる積層複合材は、上述したポリアミド溶液をガラスプレートに塗布し、乾燥し、必要に応じて硬化させることにより製造することができる。本開示の一又は複数の実施形態において、本開示の積層複合材の製造方法は、下記工程(a)及び(b)を含む。
(a)支持材上に芳香族ポリアミド溶液を塗布する工程。
(b)前記工程(a)の後、キャストされた前記ポリアミド溶液を加熱してポリアミドフィルムを形成する工程。
本開示は、一態様において、本開示にかかる積層複合材の有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成する工程を含む、ディスプレイ用素子、光学用素子、又は、照明用素子の製造方法に関する。該製造方法は、一又は複数の実施形態において、さらに、形成されたディスプレイ用素子、光学用素子、又は、照明用素子をガラスプレートから剥離する工程を含む。
本開示において、「ディスプレイ用素子、光学用素子、又は照明用素子」とは、表示体(表示装置)、光学装置、又は照明装置を構成する素子をいい、例えば有機EL素子、液晶素子、有機EL照明等をいう。また、それらの一部を構成する薄膜トランジスタ(TFT)素子、カラーフィルタ素子等も含む。本開示にかかるディスプレイ用素子、光学用素子、又は、照明用素子は、一又は複数の実施形態において、本開示に係るポリマー溶液を用いて製造されるもの、ディスプレイ用素子、光学用素子、又は、照明用素子の基板として本開示に係るポリマーフィルムを用いているものを含みうる。
以下に図を用いて本開示にかかるディスプレイ用素子の一実施形態である有機EL素子の一実施形態を説明する。
基板Aは、透明樹脂基板100及び透明樹脂基板100の上面に形成されるガスバリア層101を備える。ここで、透明樹脂基板100は、本開示に係るポリマーフィルムである。
薄膜トランジスタBは、ゲート電極200、ゲート絶縁層201、ソース電極202、活性層203、及びドレイン電極204を備える。薄膜トランジスタBは、ガスバリア層101上に形成される。
有機EL層Cは、導電性の接続部300、絶縁性の平坦化層301、有機EL素子1の陽極である下部電極302、正孔輸送層303、発光層304、電子輸送層305、及び有機EL素子1の陰極である上部電極306を備える。有機EL層Cは、少なくともガスバリア層101上又は薄膜トランジスタB上に形成され、下部電極302と薄膜トランジスタBのドレイン電極204は接続部300により電気的に接続されている。なお、これに替えて、薄膜トランジスタBの下部電極302とソース電極202が接続部300により接続されるようにしてもよい。
本開示は、その他の態様において、ディスプレイ用素子、光学用素子、又は照明用素子の製造方法に関する。本開示にかかる製造方法は、一又は複数の実施形態において、本開示にかかるディスプレイ用素子、光学用素子、又は照明用素子を製造する方法である。また、本開示にかかる製造方法は、一又は複数の実施形態において、本開示に係るポリアミド樹脂溶液を支持材へ塗布する工程と、前記塗布工程後に、ポリアミドフィルムを形成する工程と、前記ポリアミドフィルムの前記支持材と接していない面にディスプレイ用素子、光学用素子、又は照明用素子を形成する工程とを含む製造方法である。本開示にかかる製造方法は、さらに、前記支持材上に形成されたディスプレイ用素子、光学用素子、又は照明用素子を前記支持材から剥離する工程を含んでもよい。
次に、以下に図を用いて本開示にかかるディスプレイ用素子の製造方法の一実施形態である有機EL素子の製造方法の一実施形態を説明する。
固定工程では、支持材500上に透明樹脂基板100が固定される。固定する方法は特に限定されるものではないが、支持材500と透明基板の間に粘着剤を塗布する方法や、透明樹脂基板100の一部を支持材500に融着させる方法等が挙げられる。また、支持材の材料としては、例えば、ガラス、金属、シリコン、又は樹脂等が用いられる。これらは単独で用いられてもよいし、2以上の材料を適時組み合わせて使用してもよい。さらに、支持材500に離型剤等を塗布し、その上に透明樹脂基板100を張り付けて固定してもよい。一又は複数の実施形態において、支持材500上に本開示に係るポリアミド樹脂組成物を塗布し、乾燥等によりポリアミドフィルム100を形成する。
ガスバリア層作製工程では、透明樹脂基板100上にガスバリア層101が作製される。作製する方法は特に限定することなく、公知の方法を用いることができる。
薄膜トランジスタ作製工程では、ガスバリア層上に薄膜トランジスタBが作製される。作製する方法は特に限定することなく、公知の方法を用いることができる。
有機EL層作製工程は、第1工程と第2工程を備える。第1工程では、平坦化層301が形成される。平坦化層301を形成する方法としては、感光性透明樹脂をスピンコート法、スリットコート法、インクジェット法等が挙げられる。この際、第2工程で接続部300を形成できるよう、平坦化層301には開口部を設けておく必要がある。平坦化層の膜厚は、通常100nm~2μm程度であるが、これに限定されるものではない。
封止工程では、有機EL層Cが封止部材307によって上部電極306の上から封止される。封止部材307としては、ガラス、樹脂、セラミック、金属、金属化合物、又はこれらの複合体等で形成することができ、適時最適な材料を選択可能である。
剥離工程では作製された有機EL素子1が支持材500から剥離される。剥離工程を実現する方法としては、例えば、物理的に支持材500から剥離する方法が挙げられる。この際、支持材500に剥離層を設けても良いし、支持材500と表示素子の間にワイヤを挿入して剥離しても良い。また、その他の方法としては支持材500の端部のみ剥離層を設けず、素子作製後端部より内側を切断して素子を取り出す方法、支持材500と素子の間にシリコン層等からなる層を設け、レーザー照射により剥離する方法、支持材500に対して熱を加え、支持材500と透明基板を分離する方法、支持材500を溶媒により除去する方法等が挙げられる。これらの方法は単独で用いてもよく、任意の複数の方法を組み合わせて用いてもよい。
本開示は、その態様において、本開示にかかるディスプレイ用素子、光学用素子、又は照明用素子を用いた表示装置、光学装置、又は照明装置に関し、また、それらの製造方法に関する。これらに限定されないが、前記表示装置としては、撮像素子などが挙げられ、光学装置としては、光/電気複合回路などが挙げられ、照明装置としては、TFT-LCD、OEL照明などが挙げられる。
[芳香族ジアミン]
[溶媒]
DMAc: N,N-dimethylacetamide
[芳香族二酸ジクロリド]
[トラッピング試薬]
PrO:酸化プロピレン
機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(3.042g、0.0095mol)、DAB(0.0761g、0.0005mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(0.5989g、0.00295mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液1を得た。
機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(3.042g、0.0095mol)、DAB(0.0761g、0.0005mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(2.01g、0.0099mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液2を得た。
機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(1.601g、0.005mol)、DAB(0.0761g、0.0005mol)、FDA(1.743g、0.005mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB、DAB及びFDAが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(2.01g、0.0099mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液3を得た。
機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(1.281g、0.0040mol)、DAB(0.9132g、0.0060mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(0.5989g、0.00295mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液4を得た。
機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(1.281g、0.0040mol)、DAB(0.9132g、0.0060mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(0.5989g、0.00295mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌し、溶液5を得た。
ポリマー溶液は重合後直接フィルムキャストに使用された。バッチプロセスで小さいフィルムを調製するため、ポリアミド溶液はガラスプレート(EAGLE XG, Corning Inc., U.S.A., 370mm x 470mm,厚み0.5mm)上にスピンコーティングされた。支持材上で60℃30分間の乾燥後、真空下又は不活性雰囲気下で60℃から330℃に加熱し、330℃を30分維持することで硬化させた。該フィルムの厚みは約10μmよりも大きかった。
TGは、前記で作製したポリアミドフィルムについて、(TG/DTA6200,SIIナノテクノロジー社製)で昇温速度10℃/minの条件で25℃から500℃へ加熱し、うち300℃から400℃の間の質量減少率を測定した。
Tgは、dynamic mechanical analyzer(レオバイブロンDDV-01FP,A&D社製)にて、昇温速度5℃/min、張力10mN,大気条件下で25℃から400℃までの動的粘弾性を測定し、測定時のtanDの最大値をTgとした。
ポリアミドフィルムとガラスが積層した状態の反りについて、レーザー変位計(KEYENCE, LT9010)により測定した。高さの最大値と最小値の差を反りとした。
繰り返しに測定よる線膨張係数(CTE)の変化量については、次の通り測定した。dynamic mechanical analyzer(TMA4030SA,ブルカーエイエックスエス社製)にて、10℃/minの条件で25℃から320℃に昇温し、320℃で30分保持後、再び25℃まで冷却を3回繰り返し、この条件で1回目の測定を終了した際のサンプル長と3回目の降温時の測定を終了した際のサンプル長の差を算出し、これをサンプル長変化とした。
一方で、溶液4及び5を用いて作製した積層複合材は、作製したフィルムのTGで測定した質量減少が溶液1~3に比べて大きくなり、Tgも溶液1~3に比べて低くなり、その影響により反りが大きくなり寸法安定性も低下した。この原因は定かではないが、溶液4,5はDABの割合が多く、またDABのカルボキシル基は昇温時に分解揮発しやすいと推定され、それにより反りが大きくなると推定される。さらに、溶液5については、沈殿処理を行っておらず、残存した低分子成分が揮発することにより溶液4を使用した積層材料よりもさらに反りが大きくなり寸法安定性も低下した。
100 透明樹脂基板
101 ガスバリア膜
200 ゲート電極
201 ゲート絶縁層
202 ソース電極
203 活性層
204 ドレイン電極
300 導電性接続部
301 平坦化層
302 下部電極
303 正孔輸送層
304 発光層
305 電子輸送層
306 上部電極
400 封止層
500 支持材
A 基板
B 薄膜トランジスタ
C 有機EL層
Claims (21)
- ガラスプレート、有機樹脂層を含み、
ガラスプレートの一方の面上に有機樹脂層が積層されており、
前記有機樹脂がポリアミド樹脂であり、
ポリアミド樹脂の熱重量測定(TG)で測定される300℃から400℃までの質量変化が3.0%以下であり、かつ、ポリアミド樹脂のガラス転移温度が300℃以上である、積層複合材。 - ガラスプレートの厚みが、0.3mm以上である、請求項1記載の積層複合材。
- 有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成することを含むディスプレイ用素子、光学用素子、又は、照明用素子の製造方法に使用するための、請求項1又は2に記載の積層複合材。
- ポリアミド樹脂の厚みが、500μm以下である、請求項1から3のいずれかに記載の積層複合材。
- ポリアミド樹脂の全光線透過率が70%以上である、請求項1から4のいずれかに記載の積層複合材。
- ポリアミド樹脂の合成に使用されるモノマー全量に対するカルボキシル基含有ジアミン成分が、30mol%以下である、請求項1から5のいずれかに記載の積層複合材。
- ポリアミド樹脂が下記一般式(I)及び(II)で表される繰り返し単位を有する芳香族ポリアミドから形成されたものである、請求項1から6のいずれかに記載の積層複合材。
nは1~4であり、
Ar1は
Ar2は
Ar3は、
- ポリアミド樹脂が、下記芳香族ジカルボン酸ジクロライドを重合して製造されたものである、請求項1から7のいずれかに記載の積層複合材。
- ポリアミド樹脂が、下記芳香族ジアミンを重合して製造されたものである、請求項1から8のいずれかに記載の積層複合材。
- ポリアミド樹脂が、少なくとも一端がエンドキャップされたポリアミドを用いて製造されたものである、請求項1から9のいずれかに記載の積層複合材。
- ポリアミド樹脂が、330℃以上の熱処理工程を経て製造されたものである、請求項1から10のいずれかに記載の積層複合材。
- 変位計で測定される前記積層複合材の反り変形が、-500μm以上500μm以下である、請求項1から11のいずれかに記載の積層複合材。
- 請求項1から12のいずれかに記載の積層複合材を製造するためのポリアミド溶液であって、芳香族ポリアミドと溶媒を含む、ポリアミド溶液。
- 芳香族ポリアミドの合成に使用されるモノマー全量に対するカルボキシル基含有ジアミン成分が、30mol%以下である、請求項13に記載のポリアミド溶液。
- 芳香族ポリアミドが下記一般式(I)及び(II)で表される繰り返し単位を有する、請求項13又は14に記載のポリアミド溶液。
nは1~4であり、
Ar1は
Ar2は
Ar3は、
- 芳香族ポリアミドが、下記芳香族ジカルボン酸ジクロライドを重合して製造されたものである、請求項13から15のいずれかに記載のポリアミド溶液。
- 芳香族ポリアミドが、下記芳香族ジアミンを重合して製造されたものである、請求項13から16のいずれかに記載のポリアミド溶液。
- 芳香族ポリアミドが、少なくとも一端がエンドキャップされたポリアミドである、請求項13から17のいずれかに記載のポリアミド溶液。
- 請求項1から12のいずれかに記載の積層複合材の有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成する工程を含む、ディスプレイ用素子、光学用素子、又は、照明用素子の製造方法。
- さらに、形成されたディスプレイ用素子、光学用素子、又は、照明用素子をガラスプレートから剥離する工程を含む、請求項19記載のディスプレイ用素子、光学用素子、又は、照明用素子の製造方法。
- 請求項1から12のいずれかに記載の積層複合材を使用して製造され、積層複合材のポリアミド樹脂を含む、ディスプレイ用素子、光学用素子、又は、照明用素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157022825A KR20150117672A (ko) | 2013-02-15 | 2014-02-14 | 디스플레이용 소자, 광학용 소자, 또는 조명용 소자를 위한 적층 복합재 |
CN201480008659.XA CN104995022A (zh) | 2013-02-15 | 2014-02-14 | 用于显示器用元件、光学用元件或照明用元件的叠层复合材料 |
JP2015500315A JPWO2014126210A1 (ja) | 2013-02-15 | 2014-02-14 | ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361765309P | 2013-02-15 | 2013-02-15 | |
US61/765309 | 2013-02-15 | ||
US14/178,618 US20140234532A1 (en) | 2013-02-15 | 2014-02-12 | Laminated composite material for producing display element, optical element, or illumination element |
US14/178618 | 2014-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014126210A1 true WO2014126210A1 (ja) | 2014-08-21 |
Family
ID=51351377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053510 WO2014126210A1 (ja) | 2013-02-15 | 2014-02-14 | ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140234532A1 (ja) |
JP (1) | JPWO2014126210A1 (ja) |
KR (1) | KR20150117672A (ja) |
CN (1) | CN104995022A (ja) |
TW (1) | TW201446500A (ja) |
WO (1) | WO2014126210A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015049869A1 (en) * | 2013-10-04 | 2015-04-09 | Akron Polymer Systems Inc. | Resin composition, substrate and method of manufacturing electronic device |
WO2015049870A1 (en) * | 2013-10-04 | 2015-04-09 | Akron Polymer Systems Inc. | Resin composition, substrate, method of manufacturing electronic device and electronic device |
WO2015059921A1 (en) * | 2013-10-23 | 2015-04-30 | Akron Polymer Systems Inc. | Resin composition, method of manufacturing resin composition, substrate, method of manufacturing electronic device and electronic device |
JP2016143457A (ja) * | 2015-01-30 | 2016-08-08 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス素子 |
JP2017526803A (ja) * | 2014-08-29 | 2017-09-14 | アクロン ポリマー,インコーポレイテッド | 高屈折率を有する耐溶媒性の透明な芳香族ポリアミドフィルム |
WO2018034299A1 (ja) * | 2016-08-18 | 2018-02-22 | 富士フイルム株式会社 | チップの製造方法および積層体 |
JP6484756B2 (ja) * | 2016-04-12 | 2019-03-13 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法、及びフレキシブルデバイスの作製方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6313285B2 (ja) * | 2013-04-15 | 2018-04-18 | アクロン ポリマー システムズ,インク. | ポリアミド溶液、硬化ポリアミド樹脂層、積層複合材、ディスプレイ用素子、光学用素子、又は、照明用素子およびその製造方法 |
WO2015050089A1 (ja) | 2013-10-04 | 2015-04-09 | アクロン ポリマー システムズ, インク. | ディスプレイ用素子、光学用素子、照明用素子又はセンサ素子の製造のための芳香族ポリアミド溶液 |
CN105491839A (zh) * | 2014-10-02 | 2016-04-13 | 亚克朗聚合物系统公司 | 盖构件和电子器件 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05310920A (ja) * | 1992-05-13 | 1993-11-22 | Mitsui Toatsu Chem Inc | 芳香族ポリアミド樹脂およびその樹脂組成物 |
JP2001520950A (ja) * | 1997-10-24 | 2001-11-06 | アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ | 構成層として薄い硼珪酸ガラス基質を含んでなる積層物 |
JP2002542971A (ja) * | 1999-04-30 | 2002-12-17 | ショット・ディスプレイ・グラース・ゲーエムベーハー | ポリマーコーティングされたガラス薄膜基板 |
JP2004107525A (ja) * | 2002-09-19 | 2004-04-08 | Kuraray Co Ltd | ポリアミド組成物 |
JP2006255918A (ja) * | 2005-03-15 | 2006-09-28 | Toray Ind Inc | 光学用フィルム積層体 |
JP2008260266A (ja) * | 2007-03-20 | 2008-10-30 | Toray Ind Inc | 表示材料基板およびその製造方法、表示材料 |
JP2011080014A (ja) * | 2009-10-09 | 2011-04-21 | Hitachi Chem Co Ltd | ガラス用接着向上剤、樹脂組成物、及びこれらとガラスとの積層体の製造方法 |
WO2012129422A2 (en) * | 2011-03-23 | 2012-09-27 | Akron Polymer Systems, Inc. | Aromatic polyamide films for transparent flexible substrates |
JP2013014135A (ja) * | 2011-06-10 | 2013-01-24 | Asahi Glass Co Ltd | 積層体の製造方法、積層体、および電子デバイス |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200512543A (en) * | 2003-08-06 | 2005-04-01 | Sumitomo Bakelite Co | Polyamide resin, positive-working photosensitive resin composition, method for producing pattern-formed resin film, semiconductor device, display device, and method for producing the semiconductor device and the display device |
-
2014
- 2014-02-12 US US14/178,618 patent/US20140234532A1/en not_active Abandoned
- 2014-02-13 TW TW103104799A patent/TW201446500A/zh unknown
- 2014-02-14 KR KR1020157022825A patent/KR20150117672A/ko not_active Application Discontinuation
- 2014-02-14 JP JP2015500315A patent/JPWO2014126210A1/ja active Pending
- 2014-02-14 CN CN201480008659.XA patent/CN104995022A/zh active Pending
- 2014-02-14 WO PCT/JP2014/053510 patent/WO2014126210A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05310920A (ja) * | 1992-05-13 | 1993-11-22 | Mitsui Toatsu Chem Inc | 芳香族ポリアミド樹脂およびその樹脂組成物 |
JP2001520950A (ja) * | 1997-10-24 | 2001-11-06 | アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ | 構成層として薄い硼珪酸ガラス基質を含んでなる積層物 |
JP2002542971A (ja) * | 1999-04-30 | 2002-12-17 | ショット・ディスプレイ・グラース・ゲーエムベーハー | ポリマーコーティングされたガラス薄膜基板 |
JP2004107525A (ja) * | 2002-09-19 | 2004-04-08 | Kuraray Co Ltd | ポリアミド組成物 |
JP2006255918A (ja) * | 2005-03-15 | 2006-09-28 | Toray Ind Inc | 光学用フィルム積層体 |
JP2008260266A (ja) * | 2007-03-20 | 2008-10-30 | Toray Ind Inc | 表示材料基板およびその製造方法、表示材料 |
JP2011080014A (ja) * | 2009-10-09 | 2011-04-21 | Hitachi Chem Co Ltd | ガラス用接着向上剤、樹脂組成物、及びこれらとガラスとの積層体の製造方法 |
WO2012129422A2 (en) * | 2011-03-23 | 2012-09-27 | Akron Polymer Systems, Inc. | Aromatic polyamide films for transparent flexible substrates |
JP2013014135A (ja) * | 2011-06-10 | 2013-01-24 | Asahi Glass Co Ltd | 積層体の製造方法、積層体、および電子デバイス |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015049870A1 (en) * | 2013-10-04 | 2015-04-09 | Akron Polymer Systems Inc. | Resin composition, substrate, method of manufacturing electronic device and electronic device |
WO2015049869A1 (en) * | 2013-10-04 | 2015-04-09 | Akron Polymer Systems Inc. | Resin composition, substrate and method of manufacturing electronic device |
JP2016536373A (ja) * | 2013-10-04 | 2016-11-24 | アクロン ポリマー システムズ,インク. | 電子素子製造用基板を製造する方法、樹脂組成物、電子素子製造用基板、および電子装置を製造する方法 |
WO2015059921A1 (en) * | 2013-10-23 | 2015-04-30 | Akron Polymer Systems Inc. | Resin composition, method of manufacturing resin composition, substrate, method of manufacturing electronic device and electronic device |
JP2017501532A (ja) * | 2013-10-23 | 2017-01-12 | アクロン ポリマー システムズ,インク. | 電子素子製造用基板を製造する方法、樹脂組成物、樹脂組成物を製造する方法、電子素子製造用基板および電子装置を製造する方法 |
JP2017106027A (ja) * | 2013-10-23 | 2017-06-15 | アクロン ポリマー システムズ,インク. | 樹脂組成物、樹脂組成物を製造する方法、電子素子製造用基板および電子装置 |
JP2017526803A (ja) * | 2014-08-29 | 2017-09-14 | アクロン ポリマー,インコーポレイテッド | 高屈折率を有する耐溶媒性の透明な芳香族ポリアミドフィルム |
JP2016143457A (ja) * | 2015-01-30 | 2016-08-08 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス素子 |
JP6484756B2 (ja) * | 2016-04-12 | 2019-03-13 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法、及びフレキシブルデバイスの作製方法 |
JPWO2017178919A1 (ja) * | 2016-04-12 | 2019-04-04 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法、及びフレキシブルデバイスの作製方法 |
JP2019114795A (ja) * | 2016-04-12 | 2019-07-11 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US10741590B2 (en) | 2016-04-12 | 2020-08-11 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and manufacturing method of flexible device |
US11574937B2 (en) | 2016-04-12 | 2023-02-07 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and manufacturing method of flexible device |
WO2018034299A1 (ja) * | 2016-08-18 | 2018-02-22 | 富士フイルム株式会社 | チップの製造方法および積層体 |
JPWO2018034299A1 (ja) * | 2016-08-18 | 2019-04-11 | 富士フイルム株式会社 | チップの製造方法および積層体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014126210A1 (ja) | 2017-02-02 |
TW201446500A (zh) | 2014-12-16 |
CN104995022A (zh) | 2015-10-21 |
KR20150117672A (ko) | 2015-10-20 |
US20140234532A1 (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014126210A1 (ja) | ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 | |
JP6204478B2 (ja) | ポリアミド溶液、ディスプレイ用素子、光学用素子、又は照明用素子の製造方法、およびポリアミド溶液の製造方法 | |
JP6041046B2 (ja) | ディスプレイ用素子、光学用素子、又は照明用素子の製造のための芳香族ポリアミド溶液 | |
WO2014192684A1 (ja) | ディスプレイ用素子、光学用素子、又は照明用素子の製造のための芳香族ポリアミド溶液 | |
JP2015529284A (ja) | ディスプレイ用素子、光学用素子、又は照明用素子の製造のための芳香族ポリアミド溶液 | |
US20160208096A1 (en) | Solution of aromatic polyamide for producing display element, optical element, illumination element or sensor element | |
JP6212570B2 (ja) | 溶剤耐性フレキシブル基板のためのポリアミドフィルムを製造するためのポリアミド溶液、およびディスプレイ用素子、光学用素子、又は照明用素子の製造方法 | |
WO2016046997A1 (ja) | 素子積層フィルムの製造方法、素子積層フィルムおよび表示装置 | |
JP2017145417A (ja) | ポリマー溶液、ポリマーフィルム、積層複合材、ディスプレイ用、光学用又は照明用の素子、及びこれらの製造 | |
JP6153577B2 (ja) | ディスプレイ用素子、光学用素子、照明用素子又はセンサ素子の製造のための芳香族ポリアミド溶液 | |
JP6197042B2 (ja) | ポリアミド溶液、ポリアミドフィルム、積層複合材、ならびにディスプレイ用素子、光学用素子、照明用素子又はセンサ素子、およびその製造方法 | |
WO2015182655A1 (ja) | センサ素子の製造のためのポリアミド溶液 | |
JP6313285B2 (ja) | ポリアミド溶液、硬化ポリアミド樹脂層、積層複合材、ディスプレイ用素子、光学用素子、又は、照明用素子およびその製造方法 | |
JP6067922B2 (ja) | ディスプレイ用素子、光学用素子、照明用素子又はセンサ素子の製造のための芳香族ポリアミド溶液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14750991 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015500315 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157022825 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14750991 Country of ref document: EP Kind code of ref document: A1 |