WO2014126210A1 - ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 - Google Patents

ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 Download PDF

Info

Publication number
WO2014126210A1
WO2014126210A1 PCT/JP2014/053510 JP2014053510W WO2014126210A1 WO 2014126210 A1 WO2014126210 A1 WO 2014126210A1 JP 2014053510 W JP2014053510 W JP 2014053510W WO 2014126210 A1 WO2014126210 A1 WO 2014126210A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
groups
aryl
alkyl
Prior art date
Application number
PCT/JP2014/053510
Other languages
English (en)
French (fr)
Inventor
楳田英雄
川崎律也
片山敏彦
井上雄介
岡田潤
井上みづほ
内藤学
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020157022825A priority Critical patent/KR20150117672A/ko
Priority to CN201480008659.XA priority patent/CN104995022A/zh
Priority to JP2015500315A priority patent/JPWO2014126210A1/ja
Publication of WO2014126210A1 publication Critical patent/WO2014126210A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31623Next to polyamide or polyimide

Definitions

  • the present disclosure relates to a laminated composite material for producing a display element, an optical element or an illumination element; a polyamide solution for producing a display element, an optical element or an illumination element; a display element or an optical element Or the manufacturing method of the element for illumination; It is related with the element for a display, the element for optics, the element for illumination, etc.
  • Patent Document 1 Since the display element needs transparency, a glass substrate using a glass plate was used as the substrate (Patent Document 1).
  • display elements using a glass substrate have been pointed out to have problems such as heavy weight, cracking, and no bending. Therefore, an attempt to use a transparent resin film in place of the glass substrate has been proposed.
  • polycarbonate having high transparency is known, but heat resistance and mechanical strength are problems when used for manufacturing display elements.
  • polyimide is an example of a heat-resistant resin, but general polyimide has a brownish color, so there are problems in optical applications.
  • a polyimide having transparency a polyimide having a cyclic structure is known. However, this has a problem that heat resistance is lowered.
  • Patent Document 2 discloses a transparent polyamide film exhibiting thermal stability and dimensional stability. This transparent film is manufactured by casting an aromatic polyamide solution and curing at high temperature. It is disclosed that this cured film exhibits a transmittance of over 80% in the range of 400-750 nm, a linear expansion coefficient (CTE) of less than 20 ppm / ° C., and exhibits good solvent resistance. And it is disclosed that the film disclosed in the document can be used as a flexible substrate of a microelectronic device.
  • CTE linear expansion coefficient
  • the present disclosure includes a glass plate and an organic resin layer, the organic resin layer is laminated on one surface of the glass plate, the organic resin is a polyamide resin, and thermogravimetry of the polyamide resin ( It is related with the laminated composite material whose mass change from 300 degreeC measured by TG) to 400 degreeC is 3.0% or less, and whose glass transition temperature of a polyamide resin is 300 degreeC or more.
  • the present disclosure also relates to, in one aspect, a polyamide solution for producing the laminated composite material, the polyamide solution including an aromatic polyamide and a solvent.
  • the present disclosure further includes a display element, an optical element, or a lighting element on a surface opposite to the glass plate of the laminated composite material, and the display element, the optical element, or
  • the present invention relates to a method for manufacturing an illumination element, and in one embodiment, relates to a display element, an optical element, or an illumination element manufactured by the method.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of an organic EL element 1 according to an embodiment.
  • FIG. 2 is a flow diagram illustrating a method for manufacturing an OLED element according to one embodiment.
  • FIG. 3 is a flowchart for explaining a method of manufacturing an OLED element according to one embodiment.
  • FIG. 4 is a flowchart for explaining a method of manufacturing an OLED element according to one embodiment.
  • Display elements such as organic electroluminescence (OEL) or organic light emitting diodes (OLED), optical elements, or illumination elements are often manufactured by the manufacturing method shown in FIG.
  • OEL organic electroluminescence
  • OLED organic light emitting diodes
  • a polymer solution varnish
  • the applied polymer solution is cured to form a film
  • an element such as an OLED
  • an element such as an OLED is formed (process C)
  • an element (product) such as an OLED is peeled from the support material (process D).
  • a polyimide film has been used as the film of the manufacturing method in FIG.
  • the present disclosure relates to a laminated composite material in which warpage deformation is suppressed in one or a plurality of embodiments.
  • the present disclosure also relates to a laminated composite material in which warpage deformation is suppressed and / or dimensional stability is improved in one or more embodiments.
  • the “laminate composite material” refers to a laminate in which a glass plate and an organic resin layer are laminated.
  • the laminated glass plate and organic resin layer means that in one or more non-limiting embodiments, the glass plate and organic resin layer are directly laminated, and one or more non-limiting examples.
  • the glass plate and the organic resin layer are laminated through one or more layers.
  • the organic resin of the organic resin layer is a polyamide resin. Accordingly, in one or more embodiments of the present invention, a laminated composite material includes a glass plate and a polyamide resin layer, and a polyamide resin is laminated on one surface of the glass plate.
  • the laminated composite material according to the present disclosure can be used in a method for manufacturing a display element, an optical element, or an illumination element represented by FIG. In the embodiment, it can be used as a laminated composite material obtained in step B of the manufacturing method of FIG. Therefore, in one or a plurality of embodiments that are not limited, the laminated composite material according to the present disclosure includes a display element, an optical element, or an illumination element on a surface opposite to the surface facing the glass plate of the organic resin layer. Is a laminated composite material for use in a method for manufacturing a display element, an optical element, or an illumination element.
  • the laminated composite material according to the present disclosure may include an additional organic resin layer and / or an inorganic layer in addition to the polyamide resin layer.
  • the additional organic resin layer include a flattening coat layer and the like in one or a plurality of non-limiting embodiments.
  • the inorganic layer include, but are not limited to, a gas barrier layer that suppresses permeation of water and oxygen, a buffer coat layer that suppresses ion migration to the TFT element, and the like.
  • FIG. 3 shows one or more non-limiting embodiments in which an inorganic layer is formed between the glass plate and the polyamide resin layer.
  • the amorphous Si layer formed on a glass plate is mentioned.
  • step A a polyamide varnish is applied on the amorphous Si layer on the glass plate, and in step B, it is dried and / or cured to form a laminated composite material.
  • step C a display element, an optical element or an illumination element is formed on the polyamide resin layer (polyamide film) of the laminated composite material.
  • step D the amorphous Si layer is irradiated with a laser, and the display element is a product.
  • the optical element or the lighting element (including the polyamide resin layer) is peeled off from the glass plate.
  • FIG. 4 shows one or more non-limiting embodiments in which an inorganic layer is formed on the surface of the polyamide resin layer opposite to the surface facing the glass plate.
  • An inorganic barrier layer etc. are mentioned as an inorganic layer in this embodiment.
  • step A a polyamide varnish is applied onto the glass plate, and in step B, it is dried and / or cured to form a laminated composite material. At this time, an inorganic layer is further formed on the polyamide resin layer (polyamide film). In one or a plurality of embodiments which are not limited, it is good also as a lamination composite material in this indication including an inorganic layer (Drawing 4, process C).
  • a display element, an optical element, or an illumination element is formed on the inorganic layer.
  • step D the polyamide resin layer is peeled off to obtain a display element, optical element or lighting element (including a polyamide resin layer) as a product.
  • the polyamide resin of the polyamide resin layer in the laminated composite material according to the present disclosure is a thermogravimetric measurement (TG) of the polyamide resin in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • TG thermogravimetric measurement
  • 300 ° C. to 400 ° C. is 3.0% or less, 2.0% or less, 1.5% or less, or 1.0% or less.
  • the mass change from 300 ° C. to 400 ° C. measured by thermogravimetry (TG) can be measured by the method described in Examples in one or more embodiments.
  • the polyamide resin of the polyamide resin layer in the laminated composite material according to the present disclosure has a glass transition temperature of 300 in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. It is mentioned that it is more than °C, 320 °C or more, 330 °C or more, or 350 °C or more. Moreover, the glass transition temperature of a polyamide resin is 550 degrees C or less, 530 degrees C or less, or 500 degrees C or less in one or some embodiment which is not limited. The glass transition temperature can be measured by the method described in Examples in one or more embodiments.
  • the polyamide resin of the polyamide resin layer in the laminated composite material according to the present disclosure is the thermogravimetric measurement (TG) described above in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Satisfying both the change in mass from 300 ° C. to 400 ° C. and the glass transition temperature as measured in (1).
  • warp deformation of a laminated composite material refers to a difference between the maximum value and the minimum value of the height of the laminated composite material measured by a laser displacement meter, and is described in the examples in one or a plurality of embodiments. It is measured by the method.
  • the warp deformation of the laminated composite material according to the present disclosure may be 500 ⁇ m or less or 250 ⁇ m or less in one or a plurality of embodiments. From the same viewpoint, in one or a plurality of embodiments, it may be ⁇ 500 ⁇ m or more, or ⁇ 250 ⁇ m or more.
  • a positive value of the warp deformation of the laminated composite indicates that the height of the peripheral portion of the laminated composite is higher than the height of the central portion, and the value of the warp deformation of the laminated composite is negative. This indicates that the height of the peripheral part of the laminated composite material is lower than the height of the central part.
  • the thickness of the polyamide resin layer in the laminated composite material according to the present disclosure is one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material, and suppressing crack generation of the resin layer. In, it is mentioned that it is 500 micrometers or less, 200 micrometers or less, or 100 micrometers or less. Moreover, in one or some embodiment which is not limited, the thickness of a polyamide resin layer is 1 micrometer or more, 2 micrometers, or 3 micrometers or more is mentioned, for example.
  • the total light transmittance of the polyamide resin layer in the laminated composite material according to the present disclosure is determined in one or a plurality of embodiments from the viewpoint that the laminated composite material is suitably used for manufacturing a display element, an optical element, or an illumination element. 70% or more, 75% or more, or 80% or more.
  • the material of the glass plate in the laminated composite material according to the present disclosure includes soda lime glass, non-alkali glass, and the like in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • soda lime glass is preferable from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • the thickness of the glass plate in the laminated composite material according to the present disclosure is 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Can be mentioned. Moreover, the thickness of a glass plate is 3 mm or less or 1 mm or less, for example in one or some embodiment.
  • the polyamide resin layer in the laminated composite material according to the present disclosure is from 300 ° C. to 400 ° C. measured by the above-described thermogravimetry (TG) from a polyamide solution or varnish disclosed below.
  • TG thermogravimetry
  • a material that can produce a polyamide resin that satisfies conditions such as mass change and / or glass transition temperature can be appropriately selected and produced.
  • the present disclosure also relates, in one aspect, to a polyamide solution for producing the laminated composite, the polyamide solution including an aromatic polyamide and a solvent.
  • Examples of the polyamide solution according to the present disclosure include one in which a low molecular component is reduced in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • a low molecular component having a molecular weight of 1000 or less in the polyamide solution is not detected by gel permeation chromatography (GPC) or is detected in a trace amount.
  • GPC gel permeation chromatography
  • “detected in a trace amount” means that a low molecular component having a molecular weight of 1000 or less as measured by GPC is 0.2% in area ratio.
  • the polyamide solution according to the present disclosure includes, in one or a plurality of embodiments, subjected to a precipitation step after synthesis of the polyamide from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • Precipitation can be performed by a usual method.
  • precipitation is performed by addition to methanol, ethanol, isopropyl alcohol, and the like, washing, and dissolution in a solvent can be mentioned.
  • the polyamide of the polyamide solution according to the present disclosure may be one in which at least one end is end-capped from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • the polyamide solution according to the present disclosure includes a carboxyl group-containing diamine monomer from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. You may go out.
  • the carboxyl group-containing diamine monomer component relative to the total amount of the monomer may be 30 mol% or less, 20 mol% or less, or 1 to 10 mol% in one or more embodiments.
  • the polyamide solution according to the present disclosure is a repeating unit represented by the following general formulas (I) and (II) in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of a laminated composite material. And a polyamide solution containing an aromatic polyamide having a solvent and a solvent.
  • x represents the mol% of the repeating unit (I)
  • y represents the mol% of the repeating unit (II)
  • x is 90 to 100
  • y is 10 to 0.
  • n is 1 to 4.
  • Ar 1 is Selected from the group consisting of
  • G 1 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, An aryl group or a substituted aryl group such as a 9-bisphenylfluorene group and a substituted 9,9-bisphenylfluorene.
  • Ar 2 is Selected from the group consisting of
  • p 4
  • R 6 , R 7 and R 8 are hydrogen, halogen (fluoride, chloride, bromide, and iodide), alkyl, substituted alkyl such as alkyl halide, nitro, cyano, thioalkyl Selected from the group consisting of substituted alkoxy such as alkoxy and halogenated alkoxy, substituted aryl such as aryl and aryl halide, alkyl ester, and substituted alkyl ester, and combinations thereof, R 6 may be different from each other, 7 may be different from each other, and R 8 may be different from each other.
  • G 2 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, An aryl group or a substituted aryl group such as a 9-bisphenylfluorene group and a substituted 9,9-bisphenylfluorene.
  • G 3 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO Selected from the group consisting of 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, and Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, 9 , 9-bisphenylfluorene group, and substituted 9,9-bisphenylfluorene and other aryl groups or substituted aryl groups.
  • Formulas (I) and (II) are selected such that the polyamide is dissolved in a polar solvent or a mixed solvent comprising one or more polar solvents.
  • x of the repeating unit (I) is 90 to 100 mol%
  • y of the repeating unit (II) is 10 to 0 mol%.
  • a plurality of repeating units of the structures (I) and (II) may be included, in which case Ar 1 , Ar 2 , and Ar 3 may be the same or different. .
  • the polyamide solution according to the present disclosure is or can be obtained by a manufacturing method including the following steps in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Is mentioned.
  • C a step of removing hydrochloric acid liberated in the reaction using a trapping reagent, and (d) a step of precipitating the obtained polyamide as necessary.
  • aromatic diacid dichloride contains what is shown by the following general formula.
  • R 1 may be different, R 2 may be different, R 3 may be different, R 4 may be different, and R 5 may be different.
  • G 1 is a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S atom, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups
  • Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group, An aryl group or a substituted aryl group such as a 9-bisphenylfluorene group and a substituted 9,9-bisphenylfluorene.
  • the aromatic dicarboxylic acid dichloride used in the method for producing a polyamide solution according to the present disclosure includes the following in one or a plurality of embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. Can be mentioned.
  • aromatic diamine contains what is shown by the following general formula.
  • G 2 and G 3 are a covalent bond, CH 2 group, C (CH 3 ) 2 group, C (CF 3 ) 2 group, C (CX 3 ) 2 group (where X is halogen), CO group, O atom, S Selected from the group consisting of atoms, SO 2 groups, Si (CH 3 ) 2 groups, 9,9-fluorene groups, substituted 9,9-fluorene groups, and OZO groups, and Z is a phenyl group, a biphenyl group, a perfluorobiphenyl group , 9,9-bisphenylfluorene groups, and substituted 9,9-bisphenylfluorene groups or substituted aryl groups.
  • Examples of the aromatic diamine used in the method for producing a polyamide solution according to the present disclosure include the following in one or more embodiments from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material. .
  • the polyamide is prepared by condensation polymerization in a solvent, and hydrochloric acid generated during the reaction is captured by a reagent such as propylene oxide (PrO). Is done.
  • a reagent such as propylene oxide (PrO).
  • the solvent is a polar solvent or a mixed solvent containing one or more polar solvents from the viewpoint of increasing the solubility of the polyamide in the solvent.
  • the solvent is cresol, N, N-dimethylacetamide (DMAc), N -Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), butyl cellosolve, or cresol, N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), 1 , 3-dimethyl-imidazolidinone (DMI) or a mixed solvent containing at least one of butyl cellosolve, a combination thereof, or a mixed solvent containing at least one of these polar
  • one of the diamines is 4,4′-diaminodiphenic acid (DADP) or 3, 5-diaminobenzoic acid (DAB).
  • DADP 4,4′-diaminodiphenic acid
  • DAB 3, 5-diaminobenzoic acid
  • a volatile product is generated by a reaction between the hydrochloric acid and the trapping reagent from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • the trapping reagent is propylene oxide from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite material.
  • the trapping reagent is added to the mixture before or during the reaction step (b). By adding before or during the reaction step (b), it is possible to suppress the generation of viscosity and lumps in the mixed solution, thereby improving the productivity of the polyamide solution. These effects are particularly pronounced when the trapping reagent is an organic agent such as propylene oxide.
  • the production method may include one or both of —COOH group and —NH 2 group at the terminal of the polyamide. It is preferable to include a step of end-capping.
  • the polyamide is first isolated from the polyamide solution by precipitation and redissolved in a solvent.
  • the polyamide solution is produced in the absence of an inorganic salt from the viewpoint of suppressing warpage deformation and / or improving dimensional stability of the laminated composite.
  • the laminated composite material according to the present disclosure can be manufactured by applying the above-described polyamide solution to a glass plate, drying, and curing as necessary.
  • the manufacturing method of the lamination composite material of this indication includes the following process (a) and (b).
  • the heating is performed in a range from + 40 ° C. of the boiling point of the solvent to + 100 ° C. of the boiling point of the solvent.
  • a temperature in the range of + 60 ° C. of the boiling point of the solvent to + 80 ° C. of the boiling point of the solvent more preferably at a temperature of about + 70 ° C. of the boiling point of the solvent.
  • the heating temperature of the step (b) is between about 200 ° C. and about 250 ° C.
  • the heating time is more than about 1 minute and less than about 30 minutes.
  • the method for producing a laminated composite material may include a curing treatment step (c) for curing the polyamide film after the step (b).
  • the temperature of the curing process depends on the capability of the heating device, but in one or more embodiments is 220 ° C.-420 ° C., 280-400 ° C., or 330 ° C.-370 ° C.
  • the present disclosure includes a step of forming a display element, an optical element, or an illumination element on a surface opposite to a surface facing the glass plate of the organic resin layer of the laminated composite material according to the present disclosure.
  • the present invention relates to a method for manufacturing a display element, an optical element, or an illumination element.
  • the manufacturing method further includes a step of peeling the formed display element, optical element, or illumination element from the glass plate.
  • the “display element, optical element, or illumination element” refers to an element that constitutes a display body (display device), an optical device, or an illumination device.
  • a display body display device
  • an optical device or an illumination device.
  • an organic EL element for example, an organic EL element, a liquid crystal element, an organic element Refers to EL lighting.
  • a thin film transistor (TFT) element, a color filter element, and the like constituting part of them are also included.
  • the display element, the optical element, or the lighting element according to the present disclosure is manufactured using the polymer solution according to the present disclosure, the display element, the optical element, or
  • a substrate using a polymer film according to the present disclosure as a substrate of an illumination element may be included.
  • FIG. 1 is a schematic cross-sectional view showing an organic EL element 1 according to an embodiment.
  • the organic EL element 1 includes a thin film transistor B and an organic EL layer C formed on the substrate A.
  • the entire organic EL element 1 is covered with a sealing member 400.
  • the organic EL element 1 may be peeled off from the support material 500 or may include the support material 500.
  • each configuration will be described in detail.
  • the substrate A includes a transparent resin substrate 100 and a gas barrier layer 101 formed on the upper surface of the transparent resin substrate 100.
  • the transparent resin substrate 100 is a polymer film according to the present disclosure.
  • the transparent resin substrate 100 may be annealed by heat. As a result, there are effects that distortion can be removed and dimensional stabilization against environmental changes can be enhanced.
  • the gas barrier layer 101 is a thin film made of SiOx, SiNx or the like, and is formed by a vacuum film forming method such as a sputtering method, a CVD method, or a vacuum evaporation method.
  • the thickness of the gas barrier layer 101 is usually about 10 nm to 100 nm, but is not limited to this thickness.
  • the gas barrier layer 101 may be formed on the surface facing the gas barrier layer 101 of FIG. 1 or may be formed on both surfaces.
  • the thin film transistor B includes a gate electrode 200, a gate insulating layer 201, a source electrode 202, an active layer 203, and a drain electrode 204.
  • the thin film transistor B is formed on the gas barrier layer 101.
  • the gate electrode 200, the source electrode 202, and the drain electrode 204 are transparent thin films made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • Examples of the method for forming the transparent thin film include sputtering, vacuum deposition, and ion plating.
  • the thickness of these electrodes is usually about 50 nm to 200 nm, but is not limited to this thickness.
  • the gate insulating film 201 is a transparent insulating thin film made of SiO 2 , Al 2 O 3 or the like, and is formed by a sputtering method, a CVD method, a vacuum deposition method, an ion plating method, or the like.
  • the thickness of the gate insulating film 201 is normally about 10 nm to 1 ⁇ m, but is not limited to this thickness.
  • the active layer 203 is, for example, single crystal silicon, low-temperature polysilicon, amorphous silicon, oxide semiconductor, or the like, and the optimum one is used in a timely manner.
  • the active layer is formed by sputtering or the like.
  • Organic EL Layer C includes a conductive connection portion 300, an insulating planarization layer 301, a lower electrode 302 that is an anode of the organic EL element 1, a hole transport layer 303, a light emitting layer 304, and an electron transport layer 305. And an upper electrode 306 which is a cathode of the organic EL element 1.
  • the organic EL layer C is formed on at least the gas barrier layer 101 or the thin film transistor B, and the lower electrode 302 and the drain electrode 204 of the thin film transistor B are electrically connected by the connection portion 300. Alternatively, the lower electrode 302 and the source electrode 202 of the thin film transistor B may be connected by the connecting portion 300.
  • the lower electrode 302 is an anode of the organic EL element 1 and is a transparent thin film such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO). In addition, since high transparency, high electroconductivity, etc. are obtained, ITO is preferable.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the hole transport layer 303 As the hole transport layer 303, the light emitting layer 304, and the electron transport layer 305, conventionally known materials for organic EL elements can be used as they are.
  • the upper electrode 305 is made of, for example, a film in which lithium fluoride (LiF) and aluminum (Al) are formed to a thickness of 5 nm to 20 nm and 50 nm to 200 nm, respectively.
  • a vacuum deposition method can be cited as a method for forming the film.
  • the upper electrode 306 of the organic EL element 1 may be a light reflective electrode. Thereby, the light generated in the organic EL element 1 and traveling to the upper side in the direction opposite to the display side is reflected by the upper electrode 306 in the display side direction. Therefore, since the reflected light is also used for display, the use efficiency of light emission of the organic EL element can be increased.
  • the present disclosure relates to a method for manufacturing a display element, an optical element, or an illumination element.
  • the manufacturing method according to the present disclosure is a method for manufacturing a display element, an optical element, or an illumination element according to the present disclosure.
  • the manufacturing method according to the present disclosure includes a step of applying a polyamide resin solution according to the present disclosure to a support material, a step of forming a polyamide film after the applying step, and the polyamide film. Forming a display element, an optical element, or an illumination element on a surface that is not in contact with the support material.
  • the manufacturing method according to the present disclosure may further include a step of peeling the display element, the optical element, or the illumination element formed on the support material from the support material.
  • 1 includes a fixing process, a gas barrier layer manufacturing process, a thin film transistor manufacturing process, an organic EL layer manufacturing process, a sealing process, and a peeling process.
  • a fixing process a gas barrier layer manufacturing process
  • a thin film transistor manufacturing process a thin film transistor manufacturing process
  • an organic EL layer manufacturing process a sealing process
  • a peeling process a peeling process
  • the transparent resin substrate 100 is fixed on the support material 500.
  • the fixing method is not particularly limited, and examples thereof include a method of applying an adhesive between the support material 500 and the transparent substrate, a method of fusing a part of the transparent resin substrate 100 to the support material 500, and the like. .
  • a material of the support material for example, glass, metal, silicon, resin, or the like is used. These may be used alone, or two or more materials may be combined in a timely manner.
  • a release agent or the like may be applied to the support member 500, and the transparent resin substrate 100 may be attached and fixed thereon.
  • the polyamide resin composition which concerns on this indication is apply
  • the gas barrier layer 101 is produced on the transparent resin substrate 100.
  • a manufacturing method is not particularly limited, and a known method can be used.
  • the thin film transistor B is manufactured on the gas barrier layer.
  • a manufacturing method is not particularly limited, and a known method can be used.
  • Organic EL layer manufacturing process includes a first process and a second process.
  • the planarization layer 301 is formed.
  • a photosensitive transparent resin may be spin-coated, slit-coated, ink-jet or the like.
  • the thickness of the planarizing layer is usually about 100 nm to 2 ⁇ m, but is not limited thereto.
  • connection part 300 and the lower electrode 302 are formed simultaneously.
  • methods for forming these include sputtering, vacuum deposition, and ion plating.
  • the film thickness of these electrodes is usually about 50 nm to 200 nm, but is not limited thereto.
  • the hole transport layer 303, the light emitting layer 304, the electron transport layer 305, and the upper electrode 306 which is the cathode of the organic EL element 1 are formed.
  • a method for forming them a method suitable for a material to be used and a laminated structure such as a vacuum deposition method and a coating method can be used.
  • the structure of the organic layer of the organic EL element 1 is not limited to the description of the present embodiment, but other known organic layers such as a hole injection layer, an electron transport layer, a hole block layer, and an electron block layer are selected. May be configured.
  • the sealing member 307 can be formed of glass, resin, ceramic, metal, metal compound, a composite thereof, or the like, and an optimal material can be selected in a timely manner.
  • peeling process In the peeling process, the produced organic EL element 1 is peeled from the support material 500.
  • a method of realizing the peeling step for example, a method of physically peeling from the support material 500 can be cited.
  • a release layer may be provided on the support material 500, or a wire may be inserted between the support material 500 and the display element to be peeled off.
  • a peeling layer is not provided only at the end portion of the support material 500, and a device is taken out by cutting the inside from the rear end portion of the device, and a layer made of a silicon layer or the like between the support material 500 and the device
  • a method of peeling by laser irradiation a method of applying heat to the support material 500 to separate the support material 500 and the transparent substrate, a method of removing the support material 500 with a solvent, and the like.
  • the organic EL device obtained by the method for manufacturing a display device, an optical device, or an illumination device according to this embodiment has transparency, heat resistance, low linear expansion property, and low optical property. Excellent in directivity.
  • the present disclosure relates to a display device, an optical device, or an illumination device using the display element, the optical element, or the illumination element according to the present disclosure, and a manufacturing method thereof.
  • examples of the display device include an imaging element
  • examples of the optical device include an optical / electrical composite circuit
  • examples of the illumination device include a TFT-LCD and OEL illumination.
  • This example is a general procedure for preparing solution 1 containing 5 wt% copolymer of TPC, IPC, DAB, and PFMB (70% / 30% / 5% / 95%, molar ratio) in DMAc. Indicates.
  • This production method includes a step of precipitating the synthesized polymer after the synthesis step. To a 250 ml three-necked round bottom flask equipped with a mechanical stirrer, nitrogen inlet and nitrogen outlet was added PFMB (3.042 g, 0.0095 mol), DAB (0.0761 g, 0.0005 mol) and DMAc ( 45 ml) was added at room temperature under nitrogen.
  • PrO 1.28 g, 0.024 mol
  • IPC 0.5989 g, 0.00295 mol
  • TPC 1.5110 g, 0.00695 mol
  • benzoyl chloride 0.032 g, 0.23 mmol
  • the polymer precipitated in methanol was further added to 150 ml of methanol and washed for 10 minutes twice. Thereafter, the polymer was added to 150 ml of water and washed twice for 10 minutes. Thereafter, the polymer was dehydrated and dried. The dried polymer was dissolved in DMAc (60 ml) to obtain solution 1.
  • This example shows a general procedure for preparing Solution 2 containing 5% by weight of a copolymer of IPC, DAB, and PFMB (100% / 5% / 95%, molar ratio) in DMAc.
  • This production method includes a step of precipitating the synthesized polymer after the synthesis step.
  • PFMB 3.042 g, 0.0095 mol
  • DAB (0.0761 g, 0.0005 mol
  • DMAc 45 ml
  • This example is a general procedure for preparing solution 3 containing 5% by weight of IPC, DAB, PFMB, and FDA copolymer (100% / 5% / 50% / 45%, molar ratio) in DMAc. Indicates.
  • This production method includes a step of precipitating the synthesized polymer after the synthesis step. In a 250 ml three-necked round bottom flask equipped with a mechanical stirrer, nitrogen inlet and nitrogen outlet, PFMB (1.601 g, 0.005 mol), DAB (0.0761 g, 0.0005 mol), FDA ( 1.743 g, 0.005 mol) and DMAc (45 ml) were added at room temperature under nitrogen.
  • This example is a general procedure for preparing solution 4 containing 5 wt% copolymer of TPC, IPC, DAB, and PFMB (70% / 30% / 60% / 40%, molar ratio) in DMAc. Indicates.
  • This production method includes a step of precipitating the synthesized polymer after the synthesis step. To a 250 ml three-necked round bottom flask equipped with a mechanical stirrer, nitrogen inlet and nitrogen outlet was added PFMB (1.281 g, 0.0040 mol), DAB (0.9132 g, 0.0060 mol) and DMAc ( 45 ml) was added at room temperature under nitrogen.
  • PrO 1.28 g, 0.024 mol
  • IPC 0.5989 g, 0.00295 mol
  • TPC 1.5110 g, 0.00695 mol
  • benzoyl chloride 0.032 g, 0.23 mmol
  • the polymer precipitated in methanol was further added to 150 ml of methanol and washed for 10 minutes twice. Thereafter, the polymer was added to 150 ml of water and washed twice for 10 minutes. Thereafter, the polymer was dehydrated and dried. The dried polymer was dissolved in DMAc (60 ml) to obtain solution 4.
  • This example is a general procedure for preparing solution 5 containing 5 wt% copolymer of TPC, IPC, DAB, and PFMB (70% / 30% / 60% / 40%, molar ratio) in DMAc. Indicates.
  • This production method does not include a step of precipitating the synthesized polymer after the synthesis step.
  • PFMB 1.281 g, 0.0040 mol
  • DAB 0.132 g, 0.0060 mol
  • DMAc 45 ml
  • thermogravimetry (TG) and glass transition temperature (Tg) of this polyamide film, and the warp deformation and dimensional change of this laminated composite were measured as follows. The results are shown in Table 1.
  • the polymer solution was used for film casting directly after polymerization.
  • the polyamide solution was spin coated onto a glass plate (EAGLE XG, Corning Inc., USA, 370 mm x 470 mm, thickness 0.5 mm). After drying at 60 ° C. for 30 minutes on the support, it was cured by heating from 60 ° C. to 330 ° C. under vacuum or in an inert atmosphere and maintaining 330 ° C. for 30 minutes.
  • the film thickness was greater than about 10 ⁇ m.
  • TG Thermogravimetry
  • Tg Glass transition temperature
  • sample length change About the variation
  • TMA4030SA dynamic mechanical analyzer
  • the temperature was raised from 25 ° C to 320 ° C at 10 ° C / min, maintained at 320 ° C for 30 minutes, and then cooled to 25 ° C again three times. Under these conditions, the difference between the sample length when the first measurement was finished and the sample length when the third temperature drop was finished was calculated, and this was taken as the sample length change.
  • the laminated composite material produced using the solution 1-3 had a TG mass change rate of 1% or less and a Tg of 350 to 370 ° C., and the solutions 4 and 5 were used. It was suggested that the amount of warpage of the laminated composite material was reduced and the dimensional stability was improved as compared with the laminated composite material produced in this manner. Among these, the change in the sample length of the laminated composite material produced using Solution 1-3 was lower than that of the laminated composite material produced using Solution 2. On the other hand, in the laminated composite material produced using the solutions 4 and 5, the mass loss measured by TG of the produced film is larger than that of the solutions 1 to 3, and the Tg is also lower than that of the solutions 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本開示は一態様において、ガラスプレート及び有機樹脂層を含む積層複合材に関する。該積層複合材は、ガラスプレートの一方の面上に有機樹脂層が積層されており、前記有機樹脂がポリアミド樹脂であり、ポリアミド樹脂の熱重量測定(TG)で測定される300℃から400℃までの質量変化が3.0%以下であり、かつ、ポリアミド樹脂のガラス転移温度が300℃以上である。

Description

ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材
 本開示は、ディスプレイ用素子、光学用素子又は照明用素子を製造するための積層複合材;ディスプレイ用素子、光学用素子又は照明用素子を製造するためのポリアミド溶液;ディスプレイ用素子、光学用素子又は照明用素子の製造方法;ディスプレイ用素子、光学用素子又は照明用素子等に関する。
 ディスプレイ用素子には透明性が必要とされるため、その基板としてガラス板を用いたガラス基板が使用されていた(特許文献1)。しかし、ガラス基板を用いたディスプレイ用素子は、重量が重い、割れる、曲がらない等の問題点が指摘されることがあった。そこで、ガラス基板に換えて透明樹脂フィルムを使用する試みが提案された。
 光学用途の透明樹脂としては、透明度が高いポリカーボネート等が知られるが、ディスプレイ用素子の製造に用いる場合には耐熱性や機械強度が問題となる。一方、耐熱性の樹脂としてポリイミドが挙げられるが、一般的なポリイミドは茶褐色に着色しているため光学用途には問題があり、また、透明性を有するポリイミドとしては、環状構造を有するポリイミドが知られているが、これは耐熱性が低下するという問題がある。
 特許文献2は、熱安定性及び寸法安定性を示す透明ポリアミドフィルムを開示する。この透明フィルムは、芳香族ポリアミド溶液をキャストし、高温で硬化させることで製造される。この硬化処理したフィルムは、400~750nmの範囲で80%を超える透過率を示し、線膨張係数(CTE)が20ppm/℃未満であり、良好な溶剤耐性を示すことが開示される。そして、同文献に開示されるフィルムは、マイクロエレクトロニクスデバイスのフレキシブル基板として使用できることが開示される。
特開平10-311987号公報 WO2012/129422
 本開示は、一態様において、ガラスプレート、有機樹脂層を含み、ガラスプレートの一方の面上に有機樹脂層が積層されており、前記有機樹脂がポリアミド樹脂であり、ポリアミド樹脂の熱重量測定(TG)で測定される300℃から400℃までの質量変化が3.0%以下であり、かつ、ポリアミド樹脂のガラス転移温度が300℃以上である、積層複合材に関する。
 本開示は、また、一態様において、前記積層複合材を製造するためのポリアミド溶液であって、芳香族ポリアミドと溶媒を含む、ポリアミド溶液に関する。
 本開示は、さらに、一態様において、前記積層複合材のガラスプレートと反対の面にディスプレイ用素子、光学用素子、又は、照明用素子の形成工程を含む、ディスプレイ用素子、光学用素子、又は、照明用素子の製造方法に関し、また、一態様において、該方法で製造されたディスプレイ用素子、光学用素子、又は、照明用素子に関する。
図1は、一実施形態にかかる有機EL素子1の構成を示す概略断面図である。 図2は、一実施形態にかかるOLED素子の製造方法を説明するフロー図である。 図3は、一実施形態にかかるOLED素子の製造方法を説明するフロー図である。 図4は、一実施形態にかかるOLED素子の製造方法を説明するフロー図である。
 有機エレクトロルミネッセンス(OEL)又は有機発光ダイオード(OLED)などのディスプレイ用素子、光学用素子、又は照明用素子は、しばしば図2に示される製造方法で製造される。概略すると、ポリマー溶液(ワニス)がガラス支持材又はシリコンウエハー支持材上に塗布又はキャストされる(工程A)、塗布されたポリマー溶液が硬化されフィルムが形成される(工程B)、該フィルム上にOLEDなどの素子が形成される(工程C)、そして、OLEDなどの素子(製品)が前記支持材から剥離される(工程D)。最近では、ポリイミドフィルムが図2における製造方法のフィルムとして使用されている。
 図2に代表されるディスプレイ用素子、光学用素子又は照明用素子の製造方法において、工程Bで得られるガラスプレートとフィルムを含む積層複合材の反り変形が品質や歩留まりを低下させるという問題が見出された。すなわち、該積層複合材に反り変形が発生すると、製造プロセス時の搬送が困難になる、パターニング製作時に露光強度が変化するため均一なパターンの製作が困難になる、及び/又は、無機バリア層を積層した場合にクラックが発生しやすい等の問題が見出された。そして、この問題について、所定の条件を満たすポリアミドフィルムを使用することで、該積層複合材の反り変形が大きく抑制されうることが見出された。
 本開示は、一又は複数の実施形態において、反り変形が抑制された積層複合材に関する。本開示は、また、一又は複数の実施形態において、反り変形が抑制され及び/又は寸法安定性が向上した積層複合材に関する。
 [積層複合材]
 本開示において、「積層複合材」は、ガラスプレートと有機樹脂層とが積層されたものをいう。ガラスプレートと有機樹脂層とが積層されているとは、限定されない一又は複数の実施形態において、ガラスプレートと有機樹脂層とが直接積層されていることをいい、また、限定されない一又は複数の実施形態において、ガラスプレートと有機樹脂層とが一若しくは複数の層を介して積層されたものをいう。本開示において、前記有機樹脂層の有機樹脂は、ポリアミド樹脂である。したがって、本開示において積層複合材は、一又は複数の実施形態において、ガラスプレートとポリアミド樹脂層とを含み、ガラスプレートの一方の面上にポリアミド樹脂が積層されたものをいう。
 本開示にかかる積層複合材は、限定されない一又は複数の実施形態において、図2に代表されるディスプレイ用素子、光学用素子又は照明用素子の製造方法に使用でき、また、限定されない一又は複数の実施形態において、図2の製造方法の工程Bで得られる積層複合材として使用できる。したがって、本開示にかかる積層複合材は、限定されない一又は複数の実施形態において、有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成することを含むディスプレイ用素子、光学用素子、又は、照明用素子の製造方法に使用するための積層複合材である。
 本開示にかかる積層複合材は、ポリアミド樹脂層以外にさらなる有機樹脂層及び/又は無機層を含んでもよい。さらなる有機樹脂層としては、限定されない一又は複数の実施形態において、平坦化コート層等が挙げられる。また、無機層としては、限定されない一又は複数の実施形態において、水、酸素の透過を抑制するガスバリア層、TFT素子へのイオンマイグレーションを抑制するバッファーコート層等が挙げられる。
 ガラスプレートとポリアミド樹脂層との間に無機層が形成される、限定されない一又は複数の実施形態を図3に示す。本実施形態における無機層としては、ガラスプレート上に形成されるアモルファスSi層が挙げられる。工程Aにおいてガラスプレート上のアモルファスSi層上にポリアミドワニスが塗布され、工程Bにおいて乾燥及び/又は硬化されて積層複合材が形成される。工程Cにおいて前記積層複合材のポリアミド樹脂層(ポリアミドフィルム)上にディスプレイ用素子、光学用素子又は照明用素子が形成され、工程DにおいてアモルファスSi層にレーザーが照射され、製品であるディスプレイ用素子、光学用素子又は照明用素子(ポリアミド樹脂層含む)がガラスプレートから剥離される。
 ポリアミド樹脂層のガラスプレートと対向する面の反対の面上に無機層が形成される、限定されない一又は複数の実施形態を図4に示す。本実施形態における無機層としては、無機バリア層などが挙げられる。工程Aにおいてガラスプレート上にポリアミドワニスが塗布され、工程Bにおいて乾燥及び/又は硬化されて積層複合材が形成される。このとき、ポリアミド樹脂層(ポリアミドフィルム)にさらに無機層が形成される。限定されない一又は複数の実施形態において、無機層を含めて本開示における積層複合材としてもよい(図4、工程C)。この無機層上にディスプレイ用素子、光学用素子又は照明用素子が形成される。工程Dにおいてポリアミド樹脂層を剥離して、製品であるディスプレイ用素子、光学用素子又は照明用素子(ポリアミド樹脂層含む)が得られる。
 [ポリアミド樹脂層]
 本開示にかかる積層複合材におけるポリアミド樹脂層のポリアミド樹脂は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ポリアミド樹脂の熱重量測定(TG)で測定される300℃から400℃までの質量変化が3.0%以下、2.0%以下、1.5%以下、又は1.0%以下であることが挙げられる。熱重量測定(TG)で測定される300℃から400℃までの質量変化は、一又は複数の実施形態において、実施例に記載の方法で測定できる。
 本開示にかかる積層複合材におけるポリアミド樹脂層のポリアミド樹脂は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ポリアミド樹脂のガラス転移温度が300℃以上、320℃以上、330℃以上、又は350℃以上であることが挙げられる。また、ポリアミド樹脂のガラス転移温度は、限定されない一又は複数の実施形態において、550℃以下、530℃以下、又は、500℃以下であることが挙げられる。ガラス転移温度は、一又は複数の実施形態において、実施例に記載の方法で測定できる。
 本開示にかかる積層複合材におけるポリアミド樹脂層のポリアミド樹脂は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、上述の熱重量測定(TG)で測定される300℃から400℃までの質量変化とガラス転移温度の条件を共に満たすことが挙げられる。
 [反り変形]
 本開示において「積層複合材の反り変形」とは、レーザー変位計で測定される積層複合材の高さの最大値と最小値の差をいい、一又は複数の実施形態において、実施例に記載の方法で測定される。本開示にかかる積層複合材の反り変形は、一又は複数の実施形態において、500μm以下、又は250μm以下であることが挙げられる。また、同様の観点から、一又は複数の実施形態において、-500μm以上、又は-250μm以上であることが挙げられる。なお、積層複合材の反り変形の値が正であることは、積層複合材の周辺部の高さが中央部の高さよりも高いことを示し、積層複合材の反り変形の値が負であることは、積層複合材の周辺部の高さが中央部の高さよりも低いことを示す。
 [ポリアミド樹脂層の厚み]
 本開示にかかる積層複合材におけるポリアミド樹脂層の厚みは、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点、並びに、樹脂層のクラック発生抑制の観点から、一又は複数の実施形態において、500μm以下、200μm以下、又は、100μm以下であることが挙げられる。また、ポリアミド樹脂層の厚みは、限定されない一又は複数の実施形態において、例えば、1μm以上、2μm、又は、3μm以上であることが挙げられる。
 [ポリアミド樹脂層の透過率]
 本開示にかかる積層複合材におけるポリアミド樹脂層の全光線透過率は、積層複合材がディスプレイ用素子、光学用素子又は照明用素子の製造に好適に用いられる観点から、一又は複数の実施形態において、70%以上、75%以上、又は80%以上であることが挙げられる。
 [ガラスプレート]
 本開示にかかる積層複合材におけるガラスプレートの材質は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ソーダライムガラス、無アルカリガラス等が挙げられ、なかでも、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点からはソーダライムガラスが好ましい。
 本開示にかかる積層複合材におけるガラスプレートの厚みは、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、0.3mm以上、0.4mm以上、又は、0.5mm以上であることが挙げられる。また、ガラスプレートの厚みは、一又は複数の実施形態において、例えば、3mm以下、又は、1mm以下であることが挙げられる。
 [ポリアミドの溶液]
 本開示にかかる積層複合材におけるポリアミド樹脂層は、一又は複数の実施形態において、下記に開示するポリアミドの溶液又はワニスから上述の熱重量測定(TG)で測定される300℃から400℃までの質量変化及び/又はガラス転移温度の条件等を満たすポリアミド樹脂を製造できるものを適宜選択して製造できる。したがって、本開示は、また、一態様において、前記積層複合材を製造するためのポリアミド溶液であって、芳香族ポリアミドと溶媒を含む、ポリアミド溶液に関する。
 本開示にかかるポリアミド溶液は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、低分子成分が低減されているものが挙げられ、一又は複数の実施形態において、同様の観点から、ポリアミド溶液中の分子量1000以下の低分子成分が、ゲルパーミエーションクロマトグラフィー(GPC)で検出されない、または、微量に検出されるものが挙げられる。微量に検出されるとは、一又は複数の実施形態において、GPCによって測定した際の分子量1000以下の低分子成分が面積比で0.2%であることが挙げられる。
 本開示にかかるポリアミド溶液は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ポリアミド合成後に沈殿の工程を経たものが挙げられる。沈殿は通常の方法で行うことができ、一又は複数の実施形態において、例えばメタノール、エタノール、イソプロピルアルコール等への添加により沈殿し、洗浄し、溶媒に溶解することが挙げられる。
 本開示にかかるポリアミド溶液のポリアミドは、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、少なくとも一端がエンドキャップされたものが挙げられる。
 本開示にかかるポリアミド溶液は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、ポリアミドの合成に使用されるモノマーはカルボキシル基含有ジアミンモノマーを含んでいてもよい。その場合、モノマー全量に対するカルボキシル基含有ジアミンモノマー成分は、一又は複数の実施形態において、30mol%以下、20mol%以下、又は、1~10mol%であることが挙げられる。
 本開示にかかるポリアミド溶液は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、下記一般式(I)及び(II)で表される繰り返し単位を有する芳香族ポリアミドと溶媒とを含むポリアミドの溶液が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(I)及び(II)において、xは繰り返し単位(I)のモル%を示し、yは繰り返し単位(II)のモル%を示し、xは90~100であり、yは10~0であり、nは1~4である。
 式(I)及び(II)において、Ar1
Figure JPOXMLDOC01-appb-C000014
からなる群から選択される。ここで、p=4、q=3であり、R1、R2、R3、R4、R5は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、R1はそれぞれ異なっていてもよく、R2はそれぞれ異なっていてもよく、R3はそれぞれ異なっていてもよく、R4はそれぞれ異なっていてもよく、R5はそれぞれ異なっていてもよい。G1は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。
 式(I)及び(II)において、Ar2
Figure JPOXMLDOC01-appb-C000015
からなる群から選択される。ここで、p=4であり、R6、R7、R8は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、R6はそれぞれ異なっていてもよく、R7はそれぞれ異なっていてもよく、R8はそれぞれ異なっていてもよい。G2は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。
 式(I)及び(II)において、Ar3は、
Figure JPOXMLDOC01-appb-C000016
からなる群から選択される。ここで、t=2又は3であり、R9、R10、R11は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、R9はそれぞれ異なっていてもよく、R10はそれぞれ異なっていてもよく、R11はそれぞれ異なっていてもよい。G3は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。
 一又は複数の実施形態において、式(I)及び(II)は、ポリアミドが極性溶媒又は1つ以上の極性溶媒を含む混合溶媒に溶解するように選択される。一又は複数の実施形態において繰り返し単位(I)のxは90~100モル%であり、繰り返し単位(II)のyは10~0モル%である。一又は複数の実施形態において、構造(I)及び(II)の繰り返し単位を複数含んでいてもよく、その場合、Ar1、Ar2、及びAr3は同一であっても異なっていてもよい。
 本開示にかかるポリアミド溶液は、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、下記の工程を含む製造方法で得られた又は得られうるものが挙げられる。
(a)少なくとも1つの芳香族ジアミンを溶媒に溶解させる工程、
(b)前記少なくとも1つの芳香族ジアミンと少なくとも1つの芳香族二酸ジクロリドとを反応させ、塩酸及びポリアミド溶液を生成する工程、
(c)トラッピング試薬を用いて前記反応で遊離した塩酸を除去する工程、及び
(d)必要に応じて、得られたポリアミドを沈殿する工程。
 本開示におけるポリアミド溶液の製造方法の一又は複数の実施形態において、芳香族二酸ジクロリドは、下記の一般式で示されるものを含む。
Figure JPOXMLDOC01-appb-C000017
 ここで、p=4、q=3であり、R1、R2、R3、R4、R5は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択される。なお、R1はそれぞれ異なっていてもよく、R2はそれぞれ異なっていてもよく、R3はそれぞれ異なっていてもよく、R4はそれぞれ異なっていてもよく、R5はそれぞれ異なっていてもよい。G1は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。
 本開示にかかるポリアミド溶液の製造方法に使用する芳香族ジカルボン酸ジクロライドとしては、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 本開示におけるポリアミド溶液の製造方法の一又は複数の実施形態において、芳香族ジアミンは、下記の一般式で示されるものを含む。
Figure JPOXMLDOC01-appb-C000019
 ここで、p=4、m=1又は2、t=1~3であり、R6、R7、R8、R9、R10、R11は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択される。なお、R6はそれぞれ異なっていてもよく、R7はそれぞれ異なっていてもよく、R8はそれぞれ異なり、R9はそれぞれ異なっていてもよく、R10はそれぞれ異なっていてもよく、R11はそれぞれ異なっていてもよい。G2及びG3は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。
 本開示にかかるポリアミド溶液の製造方法に使用する芳香族ジアミンとしては、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、一又は複数の実施形態において、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 本開示におけるポリアミド溶液の製造方法の一又は複数の実施形態において、ポリアミドは、溶媒中での縮合重合によって調製され、反応の際に生成される塩酸は、酸化プロピレン(PrO)等の試薬によって捕捉される。
 本開示の一又は複数の実施形態によれば、ポリアミドの溶媒への溶解性を高める観点から、前記溶媒は極性溶媒又は1つ以上の極性溶媒を含む混合溶媒である。一又は複数の実施形態において、ポリアミドの溶媒への溶解性を高める観点及びポリアミドフィルムと支持材との接着性を高める観点から、前記溶媒は、クレゾール、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ブチルセロソルブ、又は、クレゾール、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、1,3-ジメチル-イミダゾリジノン(DMI)若しくはブチルセロソルブの少なくとも1つを含む混合溶媒、これらの組み合わせ、又は、これらの極性溶媒を少なくとも1つ含む混合溶媒である。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、ジアミンの1つは、4,4'-ジアミノジフェン酸(DADP)又は3,5-ジアミノ安息香酸(DAB)である。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、前記塩酸と前記トラッピング試薬との反応によって揮発性生成物が生成される。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、前記トラッピング試薬は、酸化プロピレンである。本開示の一又は複数の実施形態において、前記トラッピング試薬は、反応工程(b)の前又はその間に前記混合液に添加される。反応工程(b)の前又はその間に添加することで、混合液中の粘度及び塊の発生を抑制でき、それにより、ポリアミド溶液の生産性を向上できる。これらの効果は、トラッピング試薬が酸化プロピレンのような有機薬剤である場合に特に著しい。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、前記製造方法は、ポリアミドの末端の-COOH基及び-NH2基の一方又は双方をエンドキャップする工程を含むことが好ましい。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、最初に沈殿によりポリアミド溶液からポリアミドが単離され、溶媒に再溶解される。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、前記ポリアミド溶液は、無機塩の非存在下で製造される。
 [積層複合材の製造方法]
 本開示にかかる積層複合材は、上述したポリアミド溶液をガラスプレートに塗布し、乾燥し、必要に応じて硬化させることにより製造することができる。本開示の一又は複数の実施形態において、本開示の積層複合材の製造方法は、下記工程(a)及び(b)を含む。
(a)支持材上に芳香族ポリアミド溶液を塗布する工程。
(b)前記工程(a)の後、キャストされた前記ポリアミド溶液を加熱してポリアミドフィルムを形成する工程。
 本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、前記加熱は、前記溶媒の沸点の+40℃から前記溶媒の沸点の+100℃の範囲の温度下で行われ、好ましくは前記溶媒の沸点の+60℃から前記溶媒の沸点の+80℃の範囲の温度下で行われ、より好ましくは前記溶媒の沸点の約+70℃の温度下で行われる。本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、前記工程(b)の加熱温度は、約200℃と約250℃との間である。本開示の一又は複数の実施形態において、積層複合材の反り変形抑制及び/又は寸法安定性向上の観点から、加熱時間は、約1分を超え、約30分未満である。
 積層複合材の製造方法は、工程(b)の後に、ポリアミドフィルムを硬化させる硬化処理工程(c)を含んでもよい。硬化処理の温度は、加熱装置の能力に依存するが、一又は複数の実施形態において220℃~420℃、280~400℃、又は330℃~370℃である。
 [ディスプレイ用素子、光学用素子、又は、照明用素子の製造方法]
 本開示は、一態様において、本開示にかかる積層複合材の有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成する工程を含む、ディスプレイ用素子、光学用素子、又は、照明用素子の製造方法に関する。該製造方法は、一又は複数の実施形態において、さらに、形成されたディスプレイ用素子、光学用素子、又は、照明用素子をガラスプレートから剥離する工程を含む。
 [ディスプレイ用素子、光学用素子、又は照明用素子]
 本開示において、「ディスプレイ用素子、光学用素子、又は照明用素子」とは、表示体(表示装置)、光学装置、又は照明装置を構成する素子をいい、例えば有機EL素子、液晶素子、有機EL照明等をいう。また、それらの一部を構成する薄膜トランジスタ(TFT)素子、カラーフィルタ素子等も含む。本開示にかかるディスプレイ用素子、光学用素子、又は、照明用素子は、一又は複数の実施形態において、本開示に係るポリマー溶液を用いて製造されるもの、ディスプレイ用素子、光学用素子、又は、照明用素子の基板として本開示に係るポリマーフィルムを用いているものを含みうる。
 <有機EL素子の限定されない一実施形態>
 以下に図を用いて本開示にかかるディスプレイ用素子の一実施形態である有機EL素子の一実施形態を説明する。
 図1は、一実施形態に係る有機EL素子1を示す概略断面図である。有機EL素子1は、基板A上に形成される薄膜トランジスタB及び有機EL層Cを備える。なお、有機EL素子1全体は封止部材400で覆われている。有機EL素子1は、支持材500から剥離されたものであってもよく、支持材500を含むものであってもよい。以下、各構成につき詳細に説明する。
1.基板A
 基板Aは、透明樹脂基板100及び透明樹脂基板100の上面に形成されるガスバリア層101を備える。ここで、透明樹脂基板100は、本開示に係るポリマーフィルムである。
 なお、透明樹脂基板100に対して、熱によるアニール処理を行っても良い。これにより、歪みを取り除くことができたり、環境変化に対する寸法の安定化を強化したりできる等の効果がある。
 ガスバリア層101は、SiOx、SiNxなどからなる薄膜であり、スパッタ法、CVD法、真空蒸着法等の真空成膜法により形成される。ガスバリア層101の厚みとしては、通常10nm~100nm程度であるが、この厚みに限定されるものではない。ここで、ガスバリア層101は図1のガスバリア層101と対向する面に形成しても良く、両面に形成しても良い。
 2.薄膜トランジスタ
 薄膜トランジスタBは、ゲート電極200、ゲート絶縁層201、ソース電極202、活性層203、及びドレイン電極204を備える。薄膜トランジスタBは、ガスバリア層101上に形成される。
 ゲート電極200、ソース電極202、及びドレイン電極204は、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)等からなる透明薄膜である。透明薄膜を形成する方法としては、スパッタ法、真空蒸着法、イオンプレーティング法等が挙げられる。これらの電極の膜厚は、通常50nm~200nm程度であるが、この厚さに限定されるものではない。
 ゲート絶縁膜201は、SiO2、Al23等からなる透明な絶縁薄膜であり、スパッタ法、CVD法、真空蒸着法、イオンプレーティング法等により形成される。ゲート絶縁膜201の膜厚は、通常10nm~1μm程度であるが、この厚さに限定されるものではない。
 活性層203は、例えば、単結晶シリコン、低温ポリシリコン、アモルファスシリコン、酸化物半導体等であり、適時最適なものが使用される。活性層はスパッタ法等により形成される。
 3.有機EL層
 有機EL層Cは、導電性の接続部300、絶縁性の平坦化層301、有機EL素子1の陽極である下部電極302、正孔輸送層303、発光層304、電子輸送層305、及び有機EL素子1の陰極である上部電極306を備える。有機EL層Cは、少なくともガスバリア層101上又は薄膜トランジスタB上に形成され、下部電極302と薄膜トランジスタBのドレイン電極204は接続部300により電気的に接続されている。なお、これに替えて、薄膜トランジスタBの下部電極302とソース電極202が接続部300により接続されるようにしてもよい。
 下部電極302は、有機EL素子1の陽極であり、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)等の透明薄膜である。なお、高透明性、高電導性等が得られるので、ITOが好ましい。
 正孔輸送層303、発光層304及び電子輸送層305としては、従来公知の有機EL素子用材料をそのまま用いることができる。
 上部電極305は、例えばフッ化リチウム(LiF)とアルミニウム(Al)をそれぞれ5nm~20nm、50nm~200nmの膜厚に成膜した膜よりなる。膜を形成する方法としては、例えば真空蒸着法が挙げられる。
 また、ボトムエミッション型の有機EL素子を作製する場合、有機EL素子1の上部電極306は光反射性の電極にしても良い。これにより、有機EL素子1で発生して表示側と逆方向の上部側に進んだ光が上部電極306により表示側方向に反射される。したがって、反射光も表示に利用されるので、有機EL素子の発光の利用効率を高めることができる。
 [ディスプレイ用素子、光学用素子、又は照明用素子の製造方法]
 本開示は、その他の態様において、ディスプレイ用素子、光学用素子、又は照明用素子の製造方法に関する。本開示にかかる製造方法は、一又は複数の実施形態において、本開示にかかるディスプレイ用素子、光学用素子、又は照明用素子を製造する方法である。また、本開示にかかる製造方法は、一又は複数の実施形態において、本開示に係るポリアミド樹脂溶液を支持材へ塗布する工程と、前記塗布工程後に、ポリアミドフィルムを形成する工程と、前記ポリアミドフィルムの前記支持材と接していない面にディスプレイ用素子、光学用素子、又は照明用素子を形成する工程とを含む製造方法である。本開示にかかる製造方法は、さらに、前記支持材上に形成されたディスプレイ用素子、光学用素子、又は照明用素子を前記支持材から剥離する工程を含んでもよい。
 <有機EL素子の作製方法の限定されない一実施形態>
 次に、以下に図を用いて本開示にかかるディスプレイ用素子の製造方法の一実施形態である有機EL素子の製造方法の一実施形態を説明する。
 図1の有機EL素子1の作製方法は、固定工程、ガスバリア層作製工程、薄膜トランジスタ作製工程、有機EL層作製工程、封止工程及び剥離工程を備える。以下、各工程につき詳細に説明する。
 1.固定工程
 固定工程では、支持材500上に透明樹脂基板100が固定される。固定する方法は特に限定されるものではないが、支持材500と透明基板の間に粘着剤を塗布する方法や、透明樹脂基板100の一部を支持材500に融着させる方法等が挙げられる。また、支持材の材料としては、例えば、ガラス、金属、シリコン、又は樹脂等が用いられる。これらは単独で用いられてもよいし、2以上の材料を適時組み合わせて使用してもよい。さらに、支持材500に離型剤等を塗布し、その上に透明樹脂基板100を張り付けて固定してもよい。一又は複数の実施形態において、支持材500上に本開示に係るポリアミド樹脂組成物を塗布し、乾燥等によりポリアミドフィルム100を形成する。
 2.ガスバリア層作製工程
 ガスバリア層作製工程では、透明樹脂基板100上にガスバリア層101が作製される。作製する方法は特に限定することなく、公知の方法を用いることができる。
 3.薄膜トランジスタ作製工程
 薄膜トランジスタ作製工程では、ガスバリア層上に薄膜トランジスタBが作製される。作製する方法は特に限定することなく、公知の方法を用いることができる。
 4.有機EL層作製工程
 有機EL層作製工程は、第1工程と第2工程を備える。第1工程では、平坦化層301が形成される。平坦化層301を形成する方法としては、感光性透明樹脂をスピンコート法、スリットコート法、インクジェット法等が挙げられる。この際、第2工程で接続部300を形成できるよう、平坦化層301には開口部を設けておく必要がある。平坦化層の膜厚は、通常100nm~2μm程度であるが、これに限定されるものではない。
 第2工程では、まず接続部300及び下部電極302が同時に形成される。これらを形成する方法としては、スパッタ法、真空蒸着法、イオンプレーティング法等が挙げられる。これらの電極の膜厚は、通常50nm~200nm程度であるが、これに限定されるものではない。その後、正孔輸送層303、発光層304、電子輸送層305、及び有機EL素子1の陰極である上部電極306が形成される。これらを形成する方法としては真空蒸着法や塗布法など、用いる材料及び積層構成に適切な方法を用いることができる。また、有機EL素子1の有機層の構成は、本実施例の記載に関わらず、その他正孔注入層や電子輸送層、正孔ブロック層、電子ブロック層など、公知の有機層を取捨選択して構成してもよい。
 5.封止工程
 封止工程では、有機EL層Cが封止部材307によって上部電極306の上から封止される。封止部材307としては、ガラス、樹脂、セラミック、金属、金属化合物、又はこれらの複合体等で形成することができ、適時最適な材料を選択可能である。
 6.剥離工程
 剥離工程では作製された有機EL素子1が支持材500から剥離される。剥離工程を実現する方法としては、例えば、物理的に支持材500から剥離する方法が挙げられる。この際、支持材500に剥離層を設けても良いし、支持材500と表示素子の間にワイヤを挿入して剥離しても良い。また、その他の方法としては支持材500の端部のみ剥離層を設けず、素子作製後端部より内側を切断して素子を取り出す方法、支持材500と素子の間にシリコン層等からなる層を設け、レーザー照射により剥離する方法、支持材500に対して熱を加え、支持材500と透明基板を分離する方法、支持材500を溶媒により除去する方法等が挙げられる。これらの方法は単独で用いてもよく、任意の複数の方法を組み合わせて用いてもよい。
 本実施形態にかかるディスプレイ用、光学用、又は照明用の素子の製造方法によって得られた有機EL素子は、一又は複数の実施形態において、透明性、耐熱性、低線膨張性、低光学異方性等に優れている。
 [表示装置、光学装置、照明装置]
 本開示は、その態様において、本開示にかかるディスプレイ用素子、光学用素子、又は照明用素子を用いた表示装置、光学装置、又は照明装置に関し、また、それらの製造方法に関する。これらに限定されないが、前記表示装置としては、撮像素子などが挙げられ、光学装置としては、光/電気複合回路などが挙げられ、照明装置としては、TFT-LCD、OEL照明などが挙げられる。
 ポリアミド溶液(溶液1~5)を表1及び下記に記載の成分を使用して調製した。
[芳香族ジアミン]
Figure JPOXMLDOC01-appb-C000022

[溶媒]
DMAc: N,N-dimethylacetamide

[芳香族二酸ジクロリド]
Figure JPOXMLDOC01-appb-C000023

[トラッピング試薬]
PrO:酸化プロピレン
 本実施例は、DMAc中に5質量%のTPC,IPC,DAB,及びPFMBのコポリマー(70%/30%/5%/95%、モル比)を含有する溶液1を調製するための一般手順を示す。この製造方法は、合成したポリマーを合成工程後に沈殿させる工程を含む。
 機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(3.042g、0.0095mol)、DAB(0.0761g、0.0005mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(0.5989g、0.00295mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液1を得た。
 本実施例は、DMAc中に5質量%のIPC,DAB,及びPFMBのコポリマー(100%/5%/95%、モル比)を含有する溶液2を調製するための一般手順を示す。この製造方法は、合成したポリマーを合成工程後に沈殿させる工程を含む。
 機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(3.042g、0.0095mol)、DAB(0.0761g、0.0005mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(2.01g、0.0099mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液2を得た。
 本実施例は、DMAc中に5質量%のIPC,DAB,PFMB,及びFDAのコポリマー(100%/5%/50%/45%、モル比)を含有する溶液3を調製するための一般手順を示す。この製造方法は、合成したポリマーを合成工程後に沈殿させる工程を含む。
 機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(1.601g、0.005mol)、DAB(0.0761g、0.0005mol)、FDA(1.743g、0.005mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB、DAB及びFDAが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(2.01g、0.0099mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液3を得た。
 本実施例は、DMAc中に5質量%のTPC,IPC,DAB,及びPFMBのコポリマー(70%/30%/60%/40%、モル比)を含有する溶液4を調製するための一般手順を示す。この製造方法は、合成したポリマーを合成工程後に沈殿させる工程を含む。
 機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(1.281g、0.0040mol)、DAB(0.9132g、0.0060mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(0.5989g、0.00295mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌した。この溶液を500mlのメタノールに加え撹拌した。メタノール中に沈殿したポリマーをさらに150mlのメタノール中に加え10分の洗浄を2回行った。その後、前記ポリマーを150mlの水中に加え10分の洗浄を2回行った。その後、前記ポリマーを脱水し乾燥した。乾燥ポリマーをDMAc(60ml)に溶解し、溶液4を得た。
 本実施例は、DMAc中に5質量%のTPC,IPC,DAB,及びPFMBのコポリマー(70%/30%/60%/40%、モル比)を含有する溶液5を調製するための一般手順を示す。この製造方法は、合成したポリマーを合成工程後に沈殿させる工程を含まない。
 機械式撹拌機、窒素導入口、及び窒素排出口を備えた250mlの三つ口丸底フラスコに、PFMB(1.281g、0.0040mol)、DAB(0.9132g、0.0060mol)及びDMAc(45ml)を窒素下、室温にて加えた。PFMB及びDABが完全に溶解した後に、PrO(1.4g、0.024mol)を添加した。この溶液を0℃まで冷却した。この溶液に、撹拌しながらIPC(0.5989g、0.00295mol)を加え、フラスコの壁部をDMAc(1.5ml)で洗い流した。15分後、TPC(1.4110g、0.00695mol)を加え、フラスコの壁部を再度DMAc(1.5ml)で洗い流した。2時間後、塩化ベンゾイル(0.032g、0.23mmol)を加え、さらに2時間撹拌し、溶液5を得た。
 溶液1~5を使用してガラス支持材の表面にポリアミドフィルムを形成し、積層複合材を得た。このポリアミドフィルムの熱重量測定(TG)及びガラス転移温度(Tg)、並びに、この積層複合材の反り変形及び寸法変化を下記のように測定した。その結果を表1に示す。
 [積層複合材の作製]
 ポリマー溶液は重合後直接フィルムキャストに使用された。バッチプロセスで小さいフィルムを調製するため、ポリアミド溶液はガラスプレート(EAGLE XG, Corning Inc., U.S.A., 370mm x 470mm,厚み0.5mm)上にスピンコーティングされた。支持材上で60℃30分間の乾燥後、真空下又は不活性雰囲気下で60℃から330℃に加熱し、330℃を30分維持することで硬化させた。該フィルムの厚みは約10μmよりも大きかった。
 [熱重量測定(TG)]
 TGは、前記で作製したポリアミドフィルムについて、(TG/DTA6200,SIIナノテクノロジー社製)で昇温速度10℃/minの条件で25℃から500℃へ加熱し、うち300℃から400℃の間の質量減少率を測定した。
 [ガラス転移温度(Tg)]
 Tgは、dynamic mechanical analyzer(レオバイブロンDDV-01FP,A&D社製)にて、昇温速度5℃/min、張力10mN,大気条件下で25℃から400℃までの動的粘弾性を測定し、測定時のtanDの最大値をTgとした。
 [反り変形]
 ポリアミドフィルムとガラスが積層した状態の反りについて、レーザー変位計(KEYENCE, LT9010)により測定した。高さの最大値と最小値の差を反りとした。
 [サンプル長変化]
 繰り返しに測定よる線膨張係数(CTE)の変化量については、次の通り測定した。dynamic mechanical analyzer(TMA4030SA,ブルカーエイエックスエス社製)にて、10℃/minの条件で25℃から320℃に昇温し、320℃で30分保持後、再び25℃まで冷却を3回繰り返し、この条件で1回目の測定を終了した際のサンプル長と3回目の降温時の測定を終了した際のサンプル長の差を算出し、これをサンプル長変化とした。
Figure JPOXMLDOC01-appb-T000024
 表1に示すとおり、溶液1-3を用いて作製した積層複合材は、ポリアミド樹脂のTGの質量変化率が1%以下、かつ、Tgが350~370℃であり、溶液4及び5を用いて作製した積層複合材よりも積層複合材の反り量が低減し、また、寸法安定性が向上することが示唆された。その中でも、溶液1-3を用いで作製した積層複合材は、Solution2を用いて作製した積層複合材よりもサンプル長の変化が低かった。
 一方で、溶液4及び5を用いて作製した積層複合材は、作製したフィルムのTGで測定した質量減少が溶液1~3に比べて大きくなり、Tgも溶液1~3に比べて低くなり、その影響により反りが大きくなり寸法安定性も低下した。この原因は定かではないが、溶液4,5はDABの割合が多く、またDABのカルボキシル基は昇温時に分解揮発しやすいと推定され、それにより反りが大きくなると推定される。さらに、溶液5については、沈殿処理を行っておらず、残存した低分子成分が揮発することにより溶液4を使用した積層材料よりもさらに反りが大きくなり寸法安定性も低下した。
  1     有機EL素子
  100   透明樹脂基板
  101   ガスバリア膜
  200   ゲート電極
  201   ゲート絶縁層
  202   ソース電極
  203   活性層
  204   ドレイン電極
  300   導電性接続部
  301   平坦化層
  302   下部電極
  303   正孔輸送層
  304   発光層
  305   電子輸送層
  306   上部電極
  400   封止層
  500   支持材
  A     基板
  B     薄膜トランジスタ
  C     有機EL層

Claims (21)

  1.  ガラスプレート、有機樹脂層を含み、
     ガラスプレートの一方の面上に有機樹脂層が積層されており、
     前記有機樹脂がポリアミド樹脂であり、
     ポリアミド樹脂の熱重量測定(TG)で測定される300℃から400℃までの質量変化が3.0%以下であり、かつ、ポリアミド樹脂のガラス転移温度が300℃以上である、積層複合材。
  2.  ガラスプレートの厚みが、0.3mm以上である、請求項1記載の積層複合材。
  3.  有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成することを含むディスプレイ用素子、光学用素子、又は、照明用素子の製造方法に使用するための、請求項1又は2に記載の積層複合材。
  4.  ポリアミド樹脂の厚みが、500μm以下である、請求項1から3のいずれかに記載の積層複合材。
  5.  ポリアミド樹脂の全光線透過率が70%以上である、請求項1から4のいずれかに記載の積層複合材。
  6.  ポリアミド樹脂の合成に使用されるモノマー全量に対するカルボキシル基含有ジアミン成分が、30mol%以下である、請求項1から5のいずれかに記載の積層複合材。
  7.  ポリアミド樹脂が下記一般式(I)及び(II)で表される繰り返し単位を有する芳香族ポリアミドから形成されたものである、請求項1から6のいずれかに記載の積層複合材。
    Figure JPOXMLDOC01-appb-C000001
     [式(I)及び(II)において、xは繰り返し単位(I)のモル%を示し、yは繰り返し単位(II)のモル%を示し、xは90~100であり、yは10~0であり、
     nは1~4であり、
     Ar1
    Figure JPOXMLDOC01-appb-C000002
    からなる群から選択され(ここで、p=4、q=3であり、R1、R2、R3、R4、R5は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、G1は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。)、
     Ar2
    Figure JPOXMLDOC01-appb-C000003
    からなる群から選択され(ここで、p=4であり、R6、R7、R8は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、G2は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。)、
     Ar3は、
    Figure JPOXMLDOC01-appb-C000004
    からなる群から選択される(ここで、t=2又は3であり、R9、R10、R11は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、G3は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。)]
  8.  ポリアミド樹脂が、下記芳香族ジカルボン酸ジクロライドを重合して製造されたものである、請求項1から7のいずれかに記載の積層複合材。
    Figure JPOXMLDOC01-appb-C000005
     [ここで、p=4、q=3であり、R1、R2、R3、R4、R5は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択される。なお、R1はそれぞれ異なっていてもよく、R2はそれぞれ異なっていてもよく、R3はそれぞれ異なっていてもよく、R4はそれぞれ異なっていてもよく、R5はそれぞれ異なっていてもよい。G1は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]
  9.  ポリアミド樹脂が、下記芳香族ジアミンを重合して製造されたものである、請求項1から8のいずれかに記載の積層複合材。
    Figure JPOXMLDOC01-appb-C000006
     [ここで、p=4、m=1又は2、t=1~3であり、R6、R7、R8、R9、R10、R11は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択される。なお、R6はそれぞれ異なっていてもよく、R7はそれぞれ異なっていてもよく、R8はそれぞれ異なり、R9はそれぞれ異なっていてもよく、R10はそれぞれ異なっていてもよく、R11はそれぞれ異なっていてもよい。G2及びG3は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]
  10.  ポリアミド樹脂が、少なくとも一端がエンドキャップされたポリアミドを用いて製造されたものである、請求項1から9のいずれかに記載の積層複合材。
  11.  ポリアミド樹脂が、330℃以上の熱処理工程を経て製造されたものである、請求項1から10のいずれかに記載の積層複合材。
  12.  変位計で測定される前記積層複合材の反り変形が、-500μm以上500μm以下である、請求項1から11のいずれかに記載の積層複合材。
  13.  請求項1から12のいずれかに記載の積層複合材を製造するためのポリアミド溶液であって、芳香族ポリアミドと溶媒を含む、ポリアミド溶液。
  14.  芳香族ポリアミドの合成に使用されるモノマー全量に対するカルボキシル基含有ジアミン成分が、30mol%以下である、請求項13に記載のポリアミド溶液。
  15.  芳香族ポリアミドが下記一般式(I)及び(II)で表される繰り返し単位を有する、請求項13又は14に記載のポリアミド溶液。
    Figure JPOXMLDOC01-appb-C000007
     [式(I)及び(II)において、xは繰り返し単位(I)のモル%を示し、yは繰り返し単位(II)のモル%を示し、xは90~100であり、yは10~0であり、
     nは1~4であり、
     Ar1
    Figure JPOXMLDOC01-appb-C000008
    からなる群から選択され(ここで、p=4、q=3であり、R1、R2、R3、R4、R5は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、G1は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。)、
     Ar2
    Figure JPOXMLDOC01-appb-C000009
    からなる群から選択され(ここで、p=4であり、R6、R7、R8は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、G2は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。)、
     Ar3は、
    Figure JPOXMLDOC01-appb-C000010
    からなる群から選択される(ここで、t=2又は3であり、R9、R10、R11は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択され、G3は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zは、フェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。)]
  16.  芳香族ポリアミドが、下記芳香族ジカルボン酸ジクロライドを重合して製造されたものである、請求項13から15のいずれかに記載のポリアミド溶液。
    Figure JPOXMLDOC01-appb-C000011
     [ここで、p=4、q=3であり、R1、R2、R3、R4、R5は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール又はハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択される。なお、R1はそれぞれ異なっていてもよく、R2はそれぞれ異なっていてもよく、R3はそれぞれ異なっていてもよく、R4はそれぞれ異なっていてもよく、R5はそれぞれ異なっていてもよい。G1は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]
  17.  芳香族ポリアミドが、下記芳香族ジアミンを重合して製造されたものである、請求項13から16のいずれかに記載のポリアミド溶液。
    Figure JPOXMLDOC01-appb-C000012
     [ここで、p=4、m=1又は2、t=1~3であり、R6、R7、R8、R9、R10、R11は水素、ハロゲン(フッ化物、塩化物、臭化物、及びヨウ化物)、アルキル、ハロゲン化アルキル等の置換アルキル、ニトロ、シアノ、チオアルキル、アルコキシ、ハロゲン化アルコキシ等の置換アルコキシ、アリール、ハロゲン化アリール等の置換アリール、アルキルエステル、及び置換アルキルエステル、並びにその組み合せからなる群から選択される。なお、R6はそれぞれ異なっていてもよく、R7はそれぞれ異なっていてもよく、R8はそれぞれ異なり、R9はそれぞれ異なっていてもよく、R10はそれぞれ異なっていてもよく、R11はそれぞれ異なっていてもよい。G2及びG3は共有結合、CH2基、C(CH32基、C(CF32基、C(CX32基(但しXはハロゲン)、CO基、O原子、S原子、SO2基、Si(CH32基、9,9-フルオレン基、置換9,9-フルオレン、及びOZO基からなる群から選択され、Zはフェニル基、ビフェニル基、パーフルオロビフェニル基、9,9-ビスフェニルフルオレン基、及び置換9,9-ビスフェニルフルオレン等のアリール基又は置換アリール基である。]
  18.  芳香族ポリアミドが、少なくとも一端がエンドキャップされたポリアミドである、請求項13から17のいずれかに記載のポリアミド溶液。
  19.  請求項1から12のいずれかに記載の積層複合材の有機樹脂層のガラスプレートと対向する面と反対の面上にディスプレイ用素子、光学用素子、又は、照明用素子を形成する工程を含む、ディスプレイ用素子、光学用素子、又は、照明用素子の製造方法。
  20.  さらに、形成されたディスプレイ用素子、光学用素子、又は、照明用素子をガラスプレートから剥離する工程を含む、請求項19記載のディスプレイ用素子、光学用素子、又は、照明用素子の製造方法。
  21.  請求項1から12のいずれかに記載の積層複合材を使用して製造され、積層複合材のポリアミド樹脂を含む、ディスプレイ用素子、光学用素子、又は、照明用素子。
PCT/JP2014/053510 2013-02-15 2014-02-14 ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材 WO2014126210A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157022825A KR20150117672A (ko) 2013-02-15 2014-02-14 디스플레이용 소자, 광학용 소자, 또는 조명용 소자를 위한 적층 복합재
CN201480008659.XA CN104995022A (zh) 2013-02-15 2014-02-14 用于显示器用元件、光学用元件或照明用元件的叠层复合材料
JP2015500315A JPWO2014126210A1 (ja) 2013-02-15 2014-02-14 ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361765309P 2013-02-15 2013-02-15
US61/765309 2013-02-15
US14/178,618 US20140234532A1 (en) 2013-02-15 2014-02-12 Laminated composite material for producing display element, optical element, or illumination element
US14/178618 2014-02-12

Publications (1)

Publication Number Publication Date
WO2014126210A1 true WO2014126210A1 (ja) 2014-08-21

Family

ID=51351377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053510 WO2014126210A1 (ja) 2013-02-15 2014-02-14 ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材

Country Status (6)

Country Link
US (1) US20140234532A1 (ja)
JP (1) JPWO2014126210A1 (ja)
KR (1) KR20150117672A (ja)
CN (1) CN104995022A (ja)
TW (1) TW201446500A (ja)
WO (1) WO2014126210A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049869A1 (en) * 2013-10-04 2015-04-09 Akron Polymer Systems Inc. Resin composition, substrate and method of manufacturing electronic device
WO2015049870A1 (en) * 2013-10-04 2015-04-09 Akron Polymer Systems Inc. Resin composition, substrate, method of manufacturing electronic device and electronic device
WO2015059921A1 (en) * 2013-10-23 2015-04-30 Akron Polymer Systems Inc. Resin composition, method of manufacturing resin composition, substrate, method of manufacturing electronic device and electronic device
JP2016143457A (ja) * 2015-01-30 2016-08-08 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス素子
JP2017526803A (ja) * 2014-08-29 2017-09-14 アクロン ポリマー,インコーポレイテッド 高屈折率を有する耐溶媒性の透明な芳香族ポリアミドフィルム
WO2018034299A1 (ja) * 2016-08-18 2018-02-22 富士フイルム株式会社 チップの製造方法および積層体
JP6484756B2 (ja) * 2016-04-12 2019-03-13 株式会社半導体エネルギー研究所 半導体装置の作製方法、及びフレキシブルデバイスの作製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313285B2 (ja) * 2013-04-15 2018-04-18 アクロン ポリマー システムズ,インク. ポリアミド溶液、硬化ポリアミド樹脂層、積層複合材、ディスプレイ用素子、光学用素子、又は、照明用素子およびその製造方法
WO2015050089A1 (ja) 2013-10-04 2015-04-09 アクロン ポリマー システムズ, インク. ディスプレイ用素子、光学用素子、照明用素子又はセンサ素子の製造のための芳香族ポリアミド溶液
CN105491839A (zh) * 2014-10-02 2016-04-13 亚克朗聚合物系统公司 盖构件和电子器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310920A (ja) * 1992-05-13 1993-11-22 Mitsui Toatsu Chem Inc 芳香族ポリアミド樹脂およびその樹脂組成物
JP2001520950A (ja) * 1997-10-24 2001-11-06 アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ 構成層として薄い硼珪酸ガラス基質を含んでなる積層物
JP2002542971A (ja) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー ポリマーコーティングされたガラス薄膜基板
JP2004107525A (ja) * 2002-09-19 2004-04-08 Kuraray Co Ltd ポリアミド組成物
JP2006255918A (ja) * 2005-03-15 2006-09-28 Toray Ind Inc 光学用フィルム積層体
JP2008260266A (ja) * 2007-03-20 2008-10-30 Toray Ind Inc 表示材料基板およびその製造方法、表示材料
JP2011080014A (ja) * 2009-10-09 2011-04-21 Hitachi Chem Co Ltd ガラス用接着向上剤、樹脂組成物、及びこれらとガラスとの積層体の製造方法
WO2012129422A2 (en) * 2011-03-23 2012-09-27 Akron Polymer Systems, Inc. Aromatic polyamide films for transparent flexible substrates
JP2013014135A (ja) * 2011-06-10 2013-01-24 Asahi Glass Co Ltd 積層体の製造方法、積層体、および電子デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200512543A (en) * 2003-08-06 2005-04-01 Sumitomo Bakelite Co Polyamide resin, positive-working photosensitive resin composition, method for producing pattern-formed resin film, semiconductor device, display device, and method for producing the semiconductor device and the display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310920A (ja) * 1992-05-13 1993-11-22 Mitsui Toatsu Chem Inc 芳香族ポリアミド樹脂およびその樹脂組成物
JP2001520950A (ja) * 1997-10-24 2001-11-06 アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ 構成層として薄い硼珪酸ガラス基質を含んでなる積層物
JP2002542971A (ja) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー ポリマーコーティングされたガラス薄膜基板
JP2004107525A (ja) * 2002-09-19 2004-04-08 Kuraray Co Ltd ポリアミド組成物
JP2006255918A (ja) * 2005-03-15 2006-09-28 Toray Ind Inc 光学用フィルム積層体
JP2008260266A (ja) * 2007-03-20 2008-10-30 Toray Ind Inc 表示材料基板およびその製造方法、表示材料
JP2011080014A (ja) * 2009-10-09 2011-04-21 Hitachi Chem Co Ltd ガラス用接着向上剤、樹脂組成物、及びこれらとガラスとの積層体の製造方法
WO2012129422A2 (en) * 2011-03-23 2012-09-27 Akron Polymer Systems, Inc. Aromatic polyamide films for transparent flexible substrates
JP2013014135A (ja) * 2011-06-10 2013-01-24 Asahi Glass Co Ltd 積層体の製造方法、積層体、および電子デバイス

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049870A1 (en) * 2013-10-04 2015-04-09 Akron Polymer Systems Inc. Resin composition, substrate, method of manufacturing electronic device and electronic device
WO2015049869A1 (en) * 2013-10-04 2015-04-09 Akron Polymer Systems Inc. Resin composition, substrate and method of manufacturing electronic device
JP2016536373A (ja) * 2013-10-04 2016-11-24 アクロン ポリマー システムズ,インク. 電子素子製造用基板を製造する方法、樹脂組成物、電子素子製造用基板、および電子装置を製造する方法
WO2015059921A1 (en) * 2013-10-23 2015-04-30 Akron Polymer Systems Inc. Resin composition, method of manufacturing resin composition, substrate, method of manufacturing electronic device and electronic device
JP2017501532A (ja) * 2013-10-23 2017-01-12 アクロン ポリマー システムズ,インク. 電子素子製造用基板を製造する方法、樹脂組成物、樹脂組成物を製造する方法、電子素子製造用基板および電子装置を製造する方法
JP2017106027A (ja) * 2013-10-23 2017-06-15 アクロン ポリマー システムズ,インク. 樹脂組成物、樹脂組成物を製造する方法、電子素子製造用基板および電子装置
JP2017526803A (ja) * 2014-08-29 2017-09-14 アクロン ポリマー,インコーポレイテッド 高屈折率を有する耐溶媒性の透明な芳香族ポリアミドフィルム
JP2016143457A (ja) * 2015-01-30 2016-08-08 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子の製造方法、及び有機エレクトロルミネッセンス素子
JP6484756B2 (ja) * 2016-04-12 2019-03-13 株式会社半導体エネルギー研究所 半導体装置の作製方法、及びフレキシブルデバイスの作製方法
JPWO2017178919A1 (ja) * 2016-04-12 2019-04-04 株式会社半導体エネルギー研究所 半導体装置の作製方法、及びフレキシブルデバイスの作製方法
JP2019114795A (ja) * 2016-04-12 2019-07-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US10741590B2 (en) 2016-04-12 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Peeling method and manufacturing method of flexible device
US11574937B2 (en) 2016-04-12 2023-02-07 Semiconductor Energy Laboratory Co., Ltd. Peeling method and manufacturing method of flexible device
WO2018034299A1 (ja) * 2016-08-18 2018-02-22 富士フイルム株式会社 チップの製造方法および積層体
JPWO2018034299A1 (ja) * 2016-08-18 2019-04-11 富士フイルム株式会社 チップの製造方法および積層体

Also Published As

Publication number Publication date
JPWO2014126210A1 (ja) 2017-02-02
TW201446500A (zh) 2014-12-16
CN104995022A (zh) 2015-10-21
KR20150117672A (ko) 2015-10-20
US20140234532A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2014126210A1 (ja) ディスプレイ用素子、光学用素子、又は照明用素子のための積層複合材
JP6204478B2 (ja) ポリアミド溶液、ディスプレイ用素子、光学用素子、又は照明用素子の製造方法、およびポリアミド溶液の製造方法
JP6041046B2 (ja) ディスプレイ用素子、光学用素子、又は照明用素子の製造のための芳香族ポリアミド溶液
WO2014192684A1 (ja) ディスプレイ用素子、光学用素子、又は照明用素子の製造のための芳香族ポリアミド溶液
JP2015529284A (ja) ディスプレイ用素子、光学用素子、又は照明用素子の製造のための芳香族ポリアミド溶液
US20160208096A1 (en) Solution of aromatic polyamide for producing display element, optical element, illumination element or sensor element
JP6212570B2 (ja) 溶剤耐性フレキシブル基板のためのポリアミドフィルムを製造するためのポリアミド溶液、およびディスプレイ用素子、光学用素子、又は照明用素子の製造方法
WO2016046997A1 (ja) 素子積層フィルムの製造方法、素子積層フィルムおよび表示装置
JP2017145417A (ja) ポリマー溶液、ポリマーフィルム、積層複合材、ディスプレイ用、光学用又は照明用の素子、及びこれらの製造
JP6153577B2 (ja) ディスプレイ用素子、光学用素子、照明用素子又はセンサ素子の製造のための芳香族ポリアミド溶液
JP6197042B2 (ja) ポリアミド溶液、ポリアミドフィルム、積層複合材、ならびにディスプレイ用素子、光学用素子、照明用素子又はセンサ素子、およびその製造方法
WO2015182655A1 (ja) センサ素子の製造のためのポリアミド溶液
JP6313285B2 (ja) ポリアミド溶液、硬化ポリアミド樹脂層、積層複合材、ディスプレイ用素子、光学用素子、又は、照明用素子およびその製造方法
JP6067922B2 (ja) ディスプレイ用素子、光学用素子、照明用素子又はセンサ素子の製造のための芳香族ポリアミド溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157022825

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14750991

Country of ref document: EP

Kind code of ref document: A1