JP6005090B2 - 導電シートおよびその製造方法、タッチパネル - Google Patents

導電シートおよびその製造方法、タッチパネル Download PDF

Info

Publication number
JP6005090B2
JP6005090B2 JP2014055268A JP2014055268A JP6005090B2 JP 6005090 B2 JP6005090 B2 JP 6005090B2 JP 2014055268 A JP2014055268 A JP 2014055268A JP 2014055268 A JP2014055268 A JP 2014055268A JP 6005090 B2 JP6005090 B2 JP 6005090B2
Authority
JP
Japan
Prior art keywords
gelatin
conductive
conductive sheet
support
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014055268A
Other languages
English (en)
Other versions
JP2014209332A (ja
Inventor
新 田尻
新 田尻
健介 片桐
健介 片桐
稔也 藤井
稔也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014055268A priority Critical patent/JP6005090B2/ja
Publication of JP2014209332A publication Critical patent/JP2014209332A/ja
Application granted granted Critical
Publication of JP6005090B2 publication Critical patent/JP6005090B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/91Photosensitive materials characterised by the base or auxiliary layers characterised by subbing layers or subbing means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Description

本発明は、導電シートに係り、特に、ゼラチンと金属銀との体積比が所定の範囲である導電部を有する導電シートに関する。
また、本発明は、導電シートの製造方法および導電シートを備えるタッチパネルに関する。
支持体上に導電性細線が形成された導電シートは、太陽電池、無機EL素子、有機EL素子などの各種電子デバイスの透明電極、各種表示装置の電磁波シールド、タッチパネル、透明面状発熱体などに幅広く利用されている。特に、近年、携帯電話や携帯ゲーム機器等へのタッチパネルの搭載率が上昇しており、多点検出が可能な静電容量方式のタッチパネル用の導電シートの需要が急速に拡大している。
このような導電シートの形成方法としては、ハロゲン化銀写真感光材料の現像で得られる銀像から低抵抗の導電性細線を形成する方法が検討されている。例えば、特許文献1では、透明性と導電性が共に高く、かつ生産性の良い透明導電性材料を得る方法として、ゼラチンに作用する酵素を含有する酵素含有処理液で処理して、ゼラチンを分解する方法が提案されている。
特許4895536号明細書
一方、上記ハロゲン化銀写真感光材料より製造された銀を含む導電性細線は、イオンマイグレーションが発生しやすいという問題を有する。このようなイオンマイグレーションが導電性細線間で起こると、導電性細線間が導通してしまい、回路機能を果たさなくなる。
特に、近年、製品の小型化や高性能化の要求の高まりから、配線間隔がより狭小化しており、イオンマイグレーションによる回路の導通がさらに生じやすくなっている。例えば、タッチパネル分野においては、バスバーおよび引き出し配線がパネルの縁からわずかな狭額縁範囲に収まるように形成することが望まれており、周辺配線部の配線間のスペース削減によりイオンマイグレーションによる導通が発生しやすい状況となっている。
それに対して、特許文献1に記載の方法で製造された導電シートは、上述した配線間隔が狭小化した場合においては、必ずしも充分な効果をもたらさず、更なる改良が必要であった。
本発明は、上記実情に鑑みて、導電性細線間のイオンマイグレーションの発生がより抑制された導電シートおよびその製造方法を提供することを目的とする。
また、本発明は、上記導電シートを備えるタッチパネルを提供することも目的とする。
本発明者らは、上記課題について鋭意検討した結果、イオンマイグレーションの発生と関連性が高いゼラチンの量を制御することにより、所望の効果が得られることを見出した。
つまり、以下の構成により上記課題を解決できることを見出した。
(1) 支持体と、
支持体上に配置され、金属銀およびゼラチンを含有する導電性細線からなる導電部とを有する導電シートであって、
支持体上の導電性細線間に、ゼラチンが実質的に含まれず、
導電性細線中の金属銀の体積Aとゼラチンの体積Bとの体積比(A/B)が0.3〜10.0である、導電シート。
(2) 支持体上の導電性細線間に、ゼラチンとは異なる高分子が含まれ、ゼラチンが実質的に含まれないバインダー部を有する、(1)に記載の導電シート。
(3) 体積比(A/B)が0.3〜2.0である、(1)または(2)に記載の導電シート。
(4) (1)〜(3)のいずれかに記載の導電シートの製造方法であって、
支持体上に、ハロゲン化銀と、ゼラチンと、ゼラチンとは異なる高分子とを含み、ゼラチンの質量Xと高分子の質量Yとの質量比(Y/X)が0.1以上であるハロゲン化銀含有感光性層を形成する工程Aと、
ハロゲン化銀含有感光性層を露光した後、現像処理して金属銀およびゼラチンを含有する導電性細線からなる導電部を形成する工程Bと、
工程Bで得られた導電部を有する支持体に対して加熱処理を施す工程Cと、
導電部を有する支持体を、ゼラチンを分解するタンパク質分解酵素で処理する工程Dとを有する、導電シートの製造方法。
(5) 支持体が、その表面上にゼラチンとは異なる高分子を含む下塗り層を有する、(4)に記載の導電シートの製造方法。
(6) 工程Aの後で工程Bの前に、ハロゲン化銀含有感光性層上にゼラチンを含む保護層を形成する工程をさらに有する、(4)または(5)に記載の導電シートの製造方法。
(7) 工程Bの後で工程Dの前、および/または、工程Dの後に、導電部を平滑化処理する工程をさらに有する、(4)〜(6)のいずれかに記載の導電シートの製造方法。
(8) 平滑化処理が、導電部を有する支持体を、少なくとも一対のロール間を2〜120MPaの圧力の条件下で通過させるカレンダー処理である、(7)に記載の導電シートの製造方法。
(9)工程Bの後で工程Dの前、および/または、工程Dの後に、ゼラチンとは異なる高分子を架橋させる工程を有する、(4)〜(8)のいずれかに記載の導電シートの製造方法。
(10) 工程Bの後で工程Dの前、および/または、工程Dの後に、導電部にキセノンフラッシュランプからのパルス光を照射する工程をさらに有する、(4)〜(9)のいずれかに記載の導電シートの製造方法。
(11) キセノンフラッシュランプからのパルス光の照射が、1パルスあたりの照射エネルギーが1500J以下であり、パルス光の照射回数が2000回以下である、(10)に記載の導電シートの製造方法。
(12) (1)〜(3)のいずれかに記載の導電シート、または、(4)〜(11)のいずれかに記載の導電シートの製造方法より製造される導電シートと、
導電シートの導電部側上に配置された透明粘着層とを備えるタッチパネルであって、
透明粘着層に含まれる粘着剤の酸価が100mgKOH/g以下であり、
粘着剤の吸水率が1.0%以下である、タッチパネル。
本発明によれば、導電性細線間のイオンマイグレーションの発生がより抑制された導電シートおよびその製造方法を提供することができる。
また、本発明によれば、上記導電シートを備えるタッチパネルを提供することもできる。
本発明の導電シートの一実施形態の断面図である。 導電性細線により形成される導電部の一実施態様を示す一部平面図である。 本発明の導電シートの他の実施形態の断面図である。 本発明の導電シートの一実施形態の製造方法を示す工程図である。 実施例欄での試験に用いるくし型パターン電極を示す模式図である。
以下に、本発明の導電シートおよびその製造方法の好適実施態様について説明する。
まず、本発明の従来技術と比較した特徴点について詳述する。
本発明においては、支持体上に配置された導電性細線中の金属銀とゼラチンとの体積比を所定範囲とすると共に、導電性細線間のゼラチンを実質的に除去することにより、イオンマイグレーションの発生がより抑制された導電シートが製造できることを見出している。ゼラチンは、一般的に親水性であるため、空気中の水分を吸収しやすく、その結果、金属銀のイオン化が進行しやすくなると予想される。そこで、まず、導電性細線中の金属銀AとゼラチンBとの体積比(A/B)を0.3以上とし、ゼラチンの量を金属銀に対して相対的に減らすことにより、イオンマイグレーションの発生を抑制している。なお、体積比(A/B)10.0以下が好ましい理由の詳細は不明であるが、所定のゼラチンが残っていたほうが金属銀から溶出した銀イオンをトラップして、その移動を抑制していると予想される。また、導電性細線間にゼラチンが実質的に含まれないことにより、導電性細線間の銀イオンの移動がより抑制される。
なお、上記導電シートの好ましい製造方法としては、ゼラチンとゼラチンとは異なる高分子を含むハロゲン化銀含有感光性層を形成し、露光現像後、加熱処理を施す。この加熱処理を施すことによりゼラチンとは異なる高分子同士が融着し、加熱処理後に実施されるタンパク質分解酵素での処理の際に、ゼラチンが分解除去された後も導電部の形状を維持できると共に、ゼラチンが除去されることによりイオンマイグレーションが抑制される。
なお、タッチパネルモジュールはコストダウン要求も高く、モジュール構造簡略化によるコストダウンには導電シートの耐久性を向上させることが望ましい。通常、液晶ディスプレイ(LCD)側に、光学粘着層を介してハードコートフィルムを貼合して使用するが、導電シートの耐久性を向上することができれば、ハードコート層を導電シートに塗布して簡略化したり、FPCを導電シートと一体型としてモジュール部材数、工数を減らすことでコストダウンに寄与できる。
また、モジュール薄膜化、3D成型タイプなどの要求も高いが、耐久性のために使用部材が限定されるケースが多い。導電シートの耐久性を向上させることで、組み合わせる部材の制約が小さくなり、薄膜化、3D成型タイプに展開が可能となる。
本発明の導電シートであれば、耐久性に優れるため、上記コストダウンに寄与できると共に、各種用途への展開が可能となる。なお、本明細書では、導電シートの耐久性の評価の一例として、後述する実施例欄において透明粘着層に対するピール強度の測定を実施している。ピール強度が高いことは、導電シートが透明粘着層から剥離されにくく、タッチパネルモジュールの耐久性に優れることを意図する。
以下に、本発明の導電シートの構造について図面を参照して説明する。図1に、本発明の導電シートの一実施形態の断面図を示す。
導電シート10は、支持体12と、複数の導電性細線14からなる導電部16とを備える。
以下に、導電シート10を構成する各層について詳述する。
<支持体>
支持体は、後述する導電部を支持できればその種類は制限されず、透明支持体であることが好ましく、特にプラスチックフィルムが好ましい。透明支持体を用いることで本発明の導電シートは透明導電シートとして好適に用いることができる。
支持体を構成する材料の具体例としては、PET(258℃)、ポリシクロオレフィン(134℃)、ポリカーボネート(250℃)、アクリル樹脂(128℃)、PEN(269℃)、PE(135℃)、PP(163℃)、ポリスチレン(230℃)、ポリ塩化ビニル(180℃)、ポリ塩化ビニリデン(212℃)やTAC(290℃)などの融点が約290℃以下であるプラスチックフィルムが好ましく、特に、PET、ポリシクロオレフィン、ポリカーボネートが好ましい。( )内の数値は融点である。支持体の全光線透過率は、85%〜100%であることが好ましい。
支持体の厚みは特に制限されないが、タッチパネルや電磁波シールドなどの用途への応用の点からは、通常、25〜500μmの範囲で任意に選択することができる。なお、支持体の機能の他にタッチ面の機能をも兼ねる場合は、500μmを超えた厚みで設計することも可能である。
支持体の好適態様の一つとしては、大気圧プラズマ処理、コロナ放電処理、および紫外線照射処理からなる群から選択される少なくとも一つの処理が施された処理済支持体が挙げられる。上記処理が施されることにより、処理済支持体表面にはOH基などの親水性基が導入され、後述する導電部の密着性がより向上する。
上記処理の中でも、導電部の密着性がより向上する点で、大気圧プラズマ処理が好ましい。
支持体の他の好適態様としては、その表面上に後述するゼラチンとは異なる高分子を含む下塗り層を有することが好ましい。この下塗り層上に感光性層が形成されることにより、後述する導電部の密着性がより向上する。
下塗り層の形成方法は特に制限されないが、例えば、ゼラチンとは異なる高分子を含む下塗り層形成用組成物を支持体上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。下塗り層形成用組成物には、必要に応じて、溶媒が含まれていてもよい。溶媒の種類は特に制限されず、後述する感光性層形成用組成物で使用される溶媒が例示される。また、ゼラチンとは異なる高分子を含む下塗り層形成用組成物として、ゼラチンとは異なる高分子の微粒子を含むラテックスを使用してもよい。
下塗り層の厚みは特に制限されないが、導電部の密着性がより優れる点で、0.02〜0.3μmが好ましく、0.03〜0.2μmがより好ましい。
<導電部>
導電部は、上記支持体上に設けられる導電性細線からなり、導電性細線には金属銀およびバインダーが含有される。なお、図1において、導電性細線14は支持体12の一方の表面上にのみ形成されているが該態様には限定されず、支持体12の両面に導電性細線14が配置されていてもよい。
また、図1においては、導電部16中の導電性細線14の数は4本であるが、その数は特に制限されない。
導電性細線中の金属銀と体積Aとゼラチンの体積Bとの体積比(A/B)は、0.3〜10.0である。なかでも、イオンマイグレーションがより抑制される点で、0.3〜3.0が好ましく、0.3〜2.0がより好ましく、0.4〜1.0がより好ましい。
体積比(A/B)が0.3未満または10.0超の場合、イオンマイグレーション抑制効果が劣る。
なお、金属銀の体積Aおよびゼラチンの体積Bの測定方法は、以下の通りである。
金属銀は蛍光X線より、金属銀含有量を測定し、比重換算で体積とする。ゼラチン量はBCA法(ビシコニン酸法)により含有量を測定し、比重換算で体積とする。
図1に示す、導電性細線14間の支持体12上(領域18)には、ゼラチンが実質的に含まれない。ゼラチンが実質的に含まれないとは、ゼラチンの含有量が0.002mg/cm2未満であることを意図し、イオンマイグレーションがより抑制される点で、0.001mg/cm2以下であることが好ましく、0.0005mg/cm2以下であることがより好ましい。下限は特に制限されないが、0mg/cm2であることが好ましい。
なお、より好適な態様としては、支持体12表面のうち導電性細線14がある領域以外の全表面上には、ゼラチンが実質的に含まれないことが好ましい。
導電性細線の線幅は特に制限されないが、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。上記範囲であれば、低抵抗の電極を比較的容易に形成できる。
導電性細線がタッチパネル用導電シートにおける周辺配線(引き出し配線)として適用される場合には、導電性細線の線幅は500μm以下が好ましく、50μm以下がより好ましく、30μm以下が特に好ましい。上記範囲であれば、低抵抗のタッチパネル電極を比較的容易に形成できる。
また、導電性細線がタッチパネル用導電シートにおける周辺配線として適用される場合、タッチパネル用導電シートにおける周辺配線は、メッシュパターン電極とすることもでき、その場合線幅は特に制限されないが、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。上記範囲であれば、低抵抗の電極を比較的容易に形成できる。タッチパネル用導電シートにおける周辺配線をメッシュパターン電極とすることでキセノンフラッシュランプからのパルス光を照射する工程において、感知電極と周辺配線の照射による低抵抗化の均一性を高めることができるほか、透明粘着層を貼合した場合に、感知電極と周辺配線のピール強度を一定にでき、面内分布が小さくできる点で好ましい。
導電性細線の厚みは特に制限されないが、0.001mm〜0.2mmが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましく、0.01〜9μmであることが特に好ましく、0.05〜5μmであることが最も好ましい。上記範囲であれば、低抵抗の電極で、耐久性に優れた電極を比較的容易に形成できる。
導電性細線からなる導電部のパターンは特に制限されず、正三角形、二等辺三角形、直角三角形などの三角形、正方形、長方形、菱形、平行四辺形、台形などの四角形、(正)六角形、(正)八角形などの(正)n角形、円、楕円、星形などを組み合わせた幾何学図形であることが好ましく、これらの幾何学図形からなるメッシュ状であることが更に好ましい。メッシュ状とは、図2に示すように、交差する導電性細線14により構成される複数の正方形状の格子20を含んでいる形状を意図する。
格子20の一辺の長さPaは特に制限されないが、50〜500μmであることが好ましく、150〜300μmであることが更に好ましい。単位格子の辺の長さが上記範囲である場合には、更に透明性も良好に保つことが可能であり、表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。
可視光透過率の点から、導電性細線より形成される導電部の開口率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが最も好ましい。開口率とは、導電性細線がある領域を除いた支持体上の領域が全体に占める割合に相当する。
導電性細線には、金属銀が含まれる。
なお、金属銀以外の金属(例えば、金、銅)などが含まれていてもよい。
導電性細線には、ゼラチンが含まれる。
ゼラチンの種類は特に制限されず、例えば、石灰処理ゼラチンの他、酸処理ゼラチンを用いてもよく、ゼラチンの加水分解物、ゼラチン酵素分解物、アミノ基またはカルボキシル基を修飾したゼラチン(フタル化ゼラチン、アセチル化ゼラチン)を使用することもできる。
導電性細線には、金属銀およびゼラチン以外の成分が含まれていてもよい。
例えば、導電性細線には、後述するゼラチンとは異なる高分子が含まれていてもよい。ゼラチンとは異なる高分子が含まれる場合、導電性細線中における金属銀とゼラチンとは異なる高分子の質量比(金属銀/ゼラチンとは異なる高分子)は特に制限されないが、導電性細線の強度がより優れ、イオンマイグレーションがより抑制される点で、0.3〜0.9が好ましく、0.4〜0.7がより好ましい。
ゼラチンとは異なる高分子(以後、単に高分子とも称する)としては、タンパク質を含まない高分子であることが好ましい。言い換えると、タンパク質分解酵素により分解しない高分子であることが好ましい。
より具体的には、例えば、アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリジエン系樹脂、エポキシ系樹脂、シリコーン系樹脂、セルロース系重合体およびキトサン系重合体、からなる群から選ばれる少なくともいずれかの樹脂、または、これらの樹脂を構成する単量体からなる共重合体などが挙げられる。なかでも、アクリル系樹脂、スチレン系樹脂、および、ポリエステル樹脂からなる群から選ばれる少なくともいずれかの樹脂、または、これらの樹脂を構成する単量体からなら共重合体などが挙げられる。
上記高分子には、後述する架橋剤中の架橋性基と反応し得る反応性基が含まれていてもよい。反応性基の種類は特に制限されず、架橋性基を反応できればよいが、例えば、水酸基、イソシアネート基、カルボン酸基、カルボン酸無水物基、エポキシ基、アミノ基、ハロゲン化アルキル基などが挙げられる。
なかでも、高分子の好適態様としては、水分の浸入をより防止できる点より、以下の一般式(1)で表されるポリマー(共重合体)が挙げられる。
一般式(1): −(A)x−(B)y−(C)z−(D)w−
なお、一般式(1)中、A、B、C、およびDはそれぞれ、下記繰り返し単位を表す。
1は、メチル基またはハロゲン原子を表し、好ましくはメチル基、塩素原子、臭素原子を表す。pは0〜2の整数を表し、0または1が好ましく、0がより好ましい。
2は、メチル基またはエチル基を表し、メチル基が好ましい。
3は、水素原子またはメチル基を表し、好ましくは水素原子を表す。Lは、2価の連結基を表し、好ましくは下記一般式(2)で表される基である。
一般式(2):−(CO−X1)r−X2
式中X1は、酸素原子または−NR30−を表す。ここでR30は、水素原子、アルキル基、アリール基、またはアシル基を表し、それぞれ置換基(例えば、ハロゲン原子、ニトロ基、ヒドロキシル基など)を有してもよい。R30は、好ましくは水素原子、炭素数1〜10のアルキル基(例えば、メチル基、エチル基、n−ブチル基、n−オクチル基など)、アシル基(例えば、アセチル基、ベンゾイル基など)である。X1として特に好ましいのは、酸素原子または−NH−である。
2は、アルキレン基、アリーレン基、アルキレンアリーレン基、アリーレンアルキレン基、またはアルキレンアリーレンアルキレン基を表し、これらの基には−O−、−S−、−OCO−、−CO−、−COO−、−NH−、−SO2−、−N(R31)−、−N(R31)SO2−などが途中に挿入されてもよい。ここでR31は炭素数1〜6の直鎖または分岐のアルキル基を表し、メチル基、エチル基、イソプロピル基などがある。X2の好ましい例として、ジメチレン基、トリメチレン基、テトラメチレン基、o−フェニレン基、m−フェニレン基、p−フェニレン基、−CH2CH2OCOCH2CH2−、−CH2CH2OCO(C64)−などを挙げることができる。
rは0または1を表す。
qは0または1を表し、0が好ましい。
4は、炭素原子数5〜80のアルキル基、アルケニル基、またはアルキニル基を表し、好ましくは炭素数5〜50のアルキル基であり、より好ましくは炭素数5〜30のアルキル基であり、更に好ましくは炭素数5〜20のアルキル基である。
5は、水素原子、メチル基、エチル基、ハロゲン原子、または−CH2COOR6を表し、水素原子、メチル基、ハロゲン原子、−CH2COOR6が好ましく、水素原子、メチル基、−CH2COOR6がさらに好ましく、水素原子であることが特に好ましい。
6は、水素原子または炭素原子数1〜80のアルキル基を表し、R4と同じでも異なってもよく、R6の炭素原子数は1〜70が好ましく、1〜60がさらに好ましい。
一般式(1)中、x、y、z、およびwは各繰り返し単位のモル比率を表す。
xとしては3〜60モル%、好ましくは3〜50モル%、より好ましくは3〜40モル%である。
yとしては、30〜96モル%、好ましくは35〜95モル%、特に好ましくは40〜90モル%である。
また、zが小さすぎるとゼラチンのような親水性保護コロイドとの親和性が減少するためマット剤の凝集・剥落故障の発生確率が高くなり、zが大きすぎると感光材料のアルカリ性の処理液に本発明のマット剤が溶解してしまう。そのため、zとしては0.5〜25モル%、好ましくは0.5〜20モル%、特に好ましくは1〜20モル%である。
wとしては、0.5〜40モル%、好ましくは0.5〜30モル%である。
一般式(1)において、xは3〜40モル%、yは40〜90モル%、zは0.5〜20モル%、wは0.5〜10モル%の場合が特に好ましい。
一般式(1)で表されるポリマーとしては、下記一般式(2)で表されるポリマーが好ましい。
一般式(2)中、x、y、zおよびwは、上記の定義の通りである。
一般式(1)で表されるポリマーは、一般式(A)、(B)、(C)および(D)以外の他の繰り返し単位を含んでもよい。他の繰り返し単位を形成するためのモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、ビニルエステル類、オレフィン類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、アクリルアミド類、不飽和カルボン酸類、アリル化合物、ビニルエーテル類、ビニルケトン類、ビニル異節環化合物、グリシジルエステル類、不飽和ニトリル類などが挙げられる。これらのモノマーとしては特許第3754745号公報の[0010]〜[0022]にも記載されている。
疎水性の観点からアクリル酸エステル類、メタクリル酸エステル類が好ましく、ヒドロキシエチルメタクリレートなどのヒドロキシアルキルメタクリレートまたはヒドロキシアルキルアクリレートがより好ましい。一般式(1)で表されるポリマーは、上記一般式(A)、(B)、(C)および(D)以外に下記一般式(E)で表される繰り返し単位を含むことが好ましい。
上記式中、LEはアルキレン基を表し、炭素数1〜10のアルキレン基が好ましく、炭素数2〜6のアルキレン基がより好ましく、炭素数2〜4のアルキレン基が更に好ましい。
一般式(1)で表されるポリマーとしては、下記一般式(3)で表されるポリマーが特に好ましい。
上記式中、a1、b1、c1、d1、およびe1は各モノマー単位のモル比率を表し、a1は3〜60(モル%)、b1は30〜95(モル%)、c1は0.5〜25(モル%)、d1は0.5〜40(モル%)、e1は1〜10(モル%)を表す。
a1の好ましい範囲は上記xの好ましい範囲と同じであり、b1の好ましい範囲は上記yの好ましい範囲と同じであり、c1の好ましい範囲は上記zの好ましい範囲と同じであり、d1の好ましい範囲は上記wの好ましい範囲と同じである。
e1は1〜10モル%であり、好ましくは2〜9モル%であり、より好ましくは2〜8モル%である。
一般式(1)で表されるポリマーの具体例を以下に示すが、これらに限定されない。
一般式(1)で表されるポリマーの重量平均分子量は、1000〜100万が好ましく、2000〜75万がより好ましく、3000〜50万が更に好ましい。
一般式(1)で表されるポリマーは、例えば特許第3305459号及び特許第3754745号公報などを参照して合成することができる。
<導電シート>
導電シート10は、上述した支持体12および導電性細線14からなる導電部16を含む。
なお、必要に応じて、導電シート10は、支持体12と導電性細線14との間に他の層(例えば、下塗り層、アンチハレーション層)を備えていてもよい。
アンチハレーション層に用いる材料とその使用方法に関しては特に制限されず、例えば、特開2009−188360号公報の段落[0029]〜[0032]などに例示される。
導電シートは、種々の用途に用いることができる。例えば、各種電極(例えばタッチパネル用電極、無機EL素子用電極、有機EL素子用電極または太陽電池用電極)、発熱シート、またはプリント配線基板として使用することができる。なかでも、導電シートは、タッチパネルに用いられることが好ましく、静電容量方式のタッチパネルに用いられることが特に好ましい。その場合、導電部は、例えば、静電容量式タッチパネルの検出電極や、検出電極に接続された引き出し配線などを構成していてもよい。
また、導電シートは、耐久性に優れているため、センサー部が曲面上に設けられたような、立体的な形状を有するタッチパネルにも応用することができる。
また、他の用途としては、導電シートは、パーソナルコンピュータやワークステーション等から発生する電波またはマイクロ波(極超短波)等の電磁波を遮断し、かつ静電気を防止する電磁波シールドとして用いることもできる。なお、パソコン本体に使用される電磁波シールド以外にも、映像撮影機器や電子医療機器などで使用される電磁波シールドとしても用いることができる。
さらには、導電シートは、透明発熱体としても用いることができる。
これらの中でも、タッチパネルへの応用が特に好ましい。タッチパネルに応用される際には、導電シートの導電部側上に透明粘着層が配置されてもよい。
本発明の導電シートを備えるタッチパネルの好ましい態様としては、導電シートの導電部側上に配置された透明粘着層とを備えるタッチパネルであって、透明粘着層に含まれる粘着剤の酸価が100mgKOH/g以下であり、粘着剤の吸水率が1.0%以下である、タッチパネルが挙げられる。上記態様のタッチパネルであれば、導電性細線間でのイオンマイグレーションがより抑制される。
上記透明粘着層中の粘着剤の酸価は100mgKOH/mg以下が好ましいが、なかでもイオンマイグレーションがより抑制される点で、0〜60mgKOH/mgがより好ましく、0〜40mgKOH/mgがさらに好ましい。
上記酸価は、JIS K0070:1992「化学製品の酸価、けん化価、エステル価、よう素価、水酸基価及び不けん化物の試験方法」に準拠し、中和滴定法を用いて測定したものである。
粘着剤の吸水率は1.0%以下が好ましいが、なかでもイオンマイグレーションがより抑制される点で、0〜0.95%がより好ましく、0〜0.90%がさらに好ましく、0〜0.80%が特に好ましい。
粘着剤の吸水率は以下のとおり算出したものである。
銅板上に粘着剤を5cm×5cm、厚み100μmの大きさで貼り合わせた後、温度85℃、湿度85%の環境下で24時間静置した前後の重量変化[{(静置後の粘着剤の重量)−(静置前の粘着剤の重量)}/(静置前の粘着剤の重量)×100]から算出する。なお、高温恒湿槽から取り出した後、重量が安定するまで、5分間放置した後、測定する。
なお、粘着剤としては、粘着性絶縁材料が好ましい。
上記粘着性絶縁材料の好適態様であるアクリル系粘着性絶縁材料は、アルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーを主成分としたものである。なお、(メタ)アクリレートは、アクリレートおよび/またはメタクリレートをいう。アクリル系粘着性絶縁材料のなかでも、粘着性がより優れる点から、アルキル基の炭素数が1〜12程度であるアルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーであることが好ましく、相互静電容量の変化率がより小さくなる点で、上記炭素数のアルキルメタクリレート由来の繰り返し単位および上記炭素数のアルキルアクリレート由来の繰り返し単位を有するアクリル系ポリマーがより好ましい。
上記アクリル系ポリマー中の繰り返し単位のなかには、(メタ)アクリル酸由来の繰り返し単位が含まれていてもよい。
<導電シートの好適態様>
導電シートの好適態様の一つとしては、支持体上の導電性細線間に、ゼラチンとは異なる高分子が含まれ、ゼラチンが実質的に含まれないバインダー部を有する導電シートが挙げられる。より具体的には、図3に示すように、支持体12と、支持体12上に配置された導電性細線14からなる導電部16と、導電性細線14間に配置されたバインダー部22とを備える導電シート100が挙げられる。導電性細線14間にバインダー部22が設けられることにより、導電性細線14間のイオンマイグレーションがより抑制される。
図2に記載の導電シート100の態様は、バインダー部22以外は図1に記載の導電シート10の態様と同じであるため、同一の構成については説明を省略し、以下ではバインダー部22について詳述する。
(バインダー部)
バインダー部は、少なくとも導電性細線間に設けられる層である。なお、より好適な態様としては、導電性細線がある支持体表面上が、導電性細線およびバインダー部で覆われていることが好ましい。
バインダー部には、ゼラチンとは異なる高分子が含まれる。なお、ゼラチンとは異なる高分子の定義は、上述の通りである。
バインダー部には、ゼラチンが実質的に含まれない。ゼラチンが実質的に含まれないとは、上記と同様に、バインダー部中におけるゼラチンの含有量が0.002mg/cm2未満であることを意図し、イオンマイグレーションがより抑制される点で、0.001mg/cm2以下であることが好ましく、0.0005mg/cm2以下であることがより好ましい。下限は特に制限されないが、0mg/cm2であることが好ましい。
なお、バインダー部中のゼラチン量は、バインダー部表面に対する垂直方向から投影したときの投影平面図の単位面積(cm2)当たりに含まれるゼラチンの量を表す。
バインダー部の厚みは特に制限されないが、導電性細線部の厚みより薄い場合が多い。
なお、バインダー部には、ゼラチンとは異なる高分子以外の成分が含まれていてもよい。
<導電シートの製造方法>
上述した導電シートの製造方法は特に制限されないが、生産性に優れる点で、支持体上に所定のハロゲン化銀含有感光性層を形成する工程Aと、ハロゲン化銀含有感光性層に露光・現像処理を行う工程Bと、加熱処理を行う工程Cと、タンパク質分解酵素で処理する工程Dとを少なくとも備える製造方法が好ましい。
以下では、各工程で使用される材料およびその手順について、図4を参照しながら詳述する。
[工程A(ハロゲン化銀含有感光性層形成工程)]
工程Aは、支持体上に、ハロゲン化銀と、ゼラチンと、ゼラチンとは異なる高分子とを含み、ゼラチンの質量Xと高分子の質量Yとの質量比(Y/X)が0.1以上であるハロゲン化銀含有感光性層(以後、単に「感光性層」とも称する)を形成する工程(ハロゲン化銀含有感光性層形成工程)である。本工程により、後述する露光処理が施される感光性層付き支持体が製造される。
より具体的には、図4(A)に示すように、支持体12上に、ハロゲン化銀24(例えば臭化銀粒子、塩臭化銀粒子や沃臭化銀粒子)とゼラチンとゼラチンとは異なる高分子とを含むハロゲン化銀含有感光性層26を形成する。なお、図4(A)〜(B)では、ハロゲン化銀24を「粒々」として表記してあるが、あくまでも本発明の理解を助けるために誇張して示したものであって、大きさや濃度等を示したものではない。なお、以後、ハロゲン化銀含有感光性層は単に感光性層とも称する。
まず、本工程Aで使用される材料・部材について詳述し、その後工程Aの手順について詳述する。
なお、使用される支持体、ゼラチン、ゼラチンとは異なる高分子の定義は、上述の通りである。
(ハロゲン化銀)
ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素およびフッ素のいずれであってもよく、これらを組み合わせでもよい。例えば、塩化銀、臭化銀、ヨウ化銀を主体としたハロゲン化銀が好ましく用いられ、更に臭化銀や塩化銀を主体としたハロゲン化銀が好ましく用いられる。塩臭化銀、沃塩臭化銀、沃臭化銀もまた好ましく用いられる。より好ましくは、塩臭化銀、臭化銀、沃塩臭化銀、沃臭化銀であり、最も好ましくは、塩化銀50モル%以上を含有する塩臭化銀、沃塩臭化銀が用いられる。
なお、ここで、「臭化銀を主体としたハロゲン化銀」とは、ハロゲン化銀組成中に占める臭化物イオンのモル分率が50%以上のハロゲン化銀をいう。この臭化銀を主体としたハロゲン化銀粒子は、臭化物イオンのほかに沃化物イオン、塩化物イオンを含有していてもよい。
ハロゲン化銀は固体粒子状であり、露光、現像処理後に形成される導電部のパターン性の観点からは、ハロゲン化銀の平均粒子サイズは、球相当径で0.1〜1000nm(1μm)であることが好ましく、0.1〜100nmであることがより好ましく、1〜50nmであることがさらに好ましい。
なお、ハロゲン化銀粒子の球相当径とは、粒子形状が球形の同じ体積を有する粒子の直径である。
ハロゲン化銀粒子の形状は特に限定されず、例えば、球状、立方体状、平板状(6角形平板状、三角形平板状、4角形平板状など)、八面体状、14面体状など様々な形状であることができる。
また、ハロゲン化銀の安定化や高感度化のために用いられるロジウム化合物、イリジウム化合物などのVIII族、VIIB族に属する金属化合物、パラジウム化合物の利用については、特開2009−188360号の段落0039〜段落0042の記載を参照することができる。更に化学増感については、特開2009−188360号の段落0043の技術記載を参照することができる。
(その他)
ハロゲン化銀含有感光性層には、必要に応じて、上述した材料以外の他の材料が含まれていてもよい。例えば、ハロゲン化銀の安定化および高感度化のために用いられるロジウム化合物、イリジウム化合物などのVIII族、VIIB族に属する金属化合物が挙げられる。または、特開2009−004348号公報の段落[0220]〜[0241]に記載されるような、帯電防止剤、造核促進剤、分光増感色素、界面活性剤、カブリ防止剤、硬膜剤、黒ポツ防止剤、レドックス化合物、モノメチン化合物、ジヒドロキシベンゼン類などが挙げられる。さらには、物理現像核が含まれていてもよい。
なかでも、ハロゲン化銀含有感光性層には、上記高分子同士を架橋するために使用される架橋剤が含まれることが好ましい。架橋剤が含まれることにより、高分子同士間での架橋が進行し、後述する工程Dにおいてゼラチンが分解除去された際にも導電部中の金属銀同士の連結が保たれ、結果として導電特性に優れた導電膜が得られる。
使用される架橋剤の種類は特に制限されず、使用される高分子の構造に応じて適宜最適な架橋剤が選択される。通常、架橋剤は、高分子中に含まれる基(反応性基)と反応する架橋性基を少なくとも2つ有する。
例えば、上記高分子中の反応性基と、架橋剤中の架橋性基との好適な組み合わせとしては、反応性がより優れる点で、例えば、以下の(1)〜(8)の組み合わせが挙げられる。
(1)水酸基とイソシアネート基
(2)カルボン酸基とエポキシ基
(3)水酸基とカルボン酸無水物基
(4)カルボン酸基とイソシアネート基
(5)アミノ基とイソシアネート基
(6)水酸基とエポキシ基
(7)アミノ基とエポキシ基
(8)アミノ基とハロゲン化アルキル基
つまり、架橋性基としては、例えば、水酸基、イソシアネート基、カルボン酸基、カルボン酸無水物基、エポキシ基、アミノ基、ハロゲン化アルキル基などが挙げられる。
架橋剤としては、ビニルスルホン類(例えば1,3−ビスビニルスルホニルプロパン)、アルデヒド類(例えばグリオキサール)、塩化ピリミジン類(例えば2,4,6−トリクロロピリミジン)、塩化トリアジン類(例えば塩化シアヌル)、エポキシ化合物、カルボジイミド化合物等が挙げられる。なお、光照射により誘起される光化学反応を利用して架橋反応が進行する架橋剤であってもよい。
エポキシ化合物としては、1,4−ビス(2’,3’−エポキシプロピルオキシ)ブタン、1,3,5−トリグリシジルイソシアヌレート、1,3−ジグリシジル−5−(γ−アセトキシ−β−オキシプロピル)イソシアヌレート、ソルビトールポリグリシジルエーテル類、ポリグリセロールポリグリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、ジグリセロ−ルポリグリシジルエーテル、1,3,5−トリグリシジル(2−ヒドロキシエチル)イソシアヌレート、グリセロールポリグリセロールエーテル類およびトリメチロ−ルプロパンポリグリシジルエーテル類等のエポキシ化合物が好ましく、その具体的な市販品としては、例えばデナコールEX−521やEX−614B(いずれも商品名、ナガセ化成工業(株)製)、EPOXY RESIN DY 022(ナガセケムテックス社製)等を挙げることができるが、これらに限定されるものではない。
カルボジイミド化合物としては、分子内にカルボジイミド構造を複数有する化合物を使用することが好ましい。ポリカルボジイミドは、通常、有機ジイソシアネートの縮合反応により合成される。ここで分子内にカルボジイミド構造を複数有する化合物の合成に用いられる有機ジイソシアネートの有機基は特に限定されず、芳香族系、脂肪族系のいずれか、あるいはそれらの混合系も使用可能であるが、反応性の観点から脂肪族系が特に好ましい。合成原料としては、有機イソシアネート、有機ジイソシアネート、有機トリイソシアネート等が使用される。有機イソシアネートの例としては、芳香族イソシアネート、脂肪族イソシアネート、及び、それらの混合物が使用可能である。具体的には、4,4’−ジフェニルメタンジイソシアネート、4,4−ジフェニルジメチルメタンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、キシリレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、1,3−フェニレンジイソシアネート等が用いられ、また、有機モノイソシアネートとしては、イソホロンイソシアネート、フェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が使用される。また、カルボジイミド系化合物の具体的な市販品としては、例えば、カルボジライトV−02−L2(商品名:日清紡社製)等が入手可能である。
感光性層中における架橋剤の含有量は特に制限されないが、イオンマイグレーション抑制能がより優れる点で、0.02〜3.0g/m2が好ましく、0.05〜2.0g/m2がより好ましい。
ハロゲン化銀含有感光性層には、生産性の観点からゼラチンの同士を架橋する硬膜剤が含まれることが好ましい。
硬膜剤の種類は特に制限されないが、例えば、ビニルスルホン類(例えば1,3−ビスビニルスルホニルプロパン)、アルデヒド類(例えばグリオキサール)、塩化ピリミジン類(例えば2,4,6−トリクロロピリミジン)、塩化トリアジン類(例えば塩化シアヌル)、エポキシ化合物、カルボジイミド化合物等が挙げられる。
なお、硬膜剤は、上述した高分子同士を架橋させる架橋剤と同じ種類であってもよい。つまり、高分子同士を架橋させつつ、ゼラチン同士を架橋する化合物であってもよい。
(工程Aの手順)
工程Aにおいて上記成分を含むハロゲン化銀含有感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀とゼラチンと高分子とを含有する感光性層形成用組成物を支持体上に接触させ、支持体上にハロゲン化銀含有感光性層を形成する方法が好ましい。
以下に、該方法で使用される感光性層形成用組成物の態様について詳述した後、工程の手順について詳述する。
(感光性層形成用組成物に含まれる材料)
感光性層形成用組成物には、上述したハロゲン化銀とゼラチンと高分子とが含有される。なお、高分子は、ラテックスの形態で感光性層形成用組成物中に含まれていてもよい。
感光性層形成用組成物には、必要に応じて、溶媒が含有される。
使用される溶媒としては、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、またはこれらの混合溶媒を挙げることができる。
使用される溶媒の含有量は特に制限されないが、ハロゲン化銀とゼラチンと高分子との合計質量に対して、30〜90質量%の範囲が好ましく、50〜80質量%の範囲がより好ましい。
感光性層形成用組成物と支持体とを接触させる方法は特に制限されず、公知の方法を採用できる。例えば、感光性層形成用組成物を支持体上に塗布する方法や、感光性層形成用組成物中に支持体を浸漬する方法などが挙げられる。
(ハロゲン化銀含有感光性層)
上記手順により形成されたハロゲン化銀含有感光性層中において、ゼラチンの質量Xと上記高分子の質量Yとの質量比(Y/X)が0.1以上である。なかでも、イオンマイグレーション抑制能がより優れる点で、0.2以上が好ましく、0.5以上がより好ましい。上限は特に制限されないが、通常、2.0以下の場合が多い。
質量比(Y/X)が0.1未満の場合、イオンマイグレーション抑制能が劣る。
ハロゲン化銀含有感光性層中におけるハロゲン化銀の含有量は特に制限されないが、導電性細線の導電特性がより優れる点で、銀換算で3.0〜20.0g/m2が好ましく、5.0〜15.0g/m2がより好ましい。
また、ハロゲン化銀含有感光性層中の高分子の含有量は特に制限されないが、イオンマイグレーション抑制能または導電部の密着性がより優れる点で、0.04〜2.0g/m2が好ましく、0.08〜0.4g/m2がより好ましく、0.1〜0.4g/m2がさらに好ましい。
[工程B(露光・現像工程)]
工程Bは、工程Aで得られたハロゲン化銀含有感光性層を露光した後、現像処理して金属銀を含有する導電性細線からなる導電部を形成する工程(露光・現像工程)である。本工程を実施することにより、ハロゲン化銀が還元され、金属銀を含む導電性細線からなる導電部が形成される。なお、通常、露光処理はパターン状に実施され、露光部では金属銀を含む導電性細線からなる導電部が形成される。一方、非露光部では、後述する現像処理によってハロゲン化銀が溶出され、上記ゼラチンおよび上記高分子を含む非導電部が形成される。非導電部には実質的に金属銀が含まれておらず、非導電部とは導電性を示さない領域を意図する。
より具体的には、図4(B)に示すように、ハロゲン化銀含有感光性層26に対して露光を行う。すなわち、所定の露光パターンに対応したマスクパターンを介して光をハロゲン化銀含有感光性層26に照射する。または、ハロゲン化銀含有感光性層26に対するデジタル書込み露光によって、ハロゲン化銀含有感光性層26に所定の露光パターンを露光する。ハロゲン化銀24は、光エネルギーを受けると感光して「潜像」と称される肉眼では観察できない微小な銀核を生成する。その後、潜像を肉眼で観察できる可視化された画像に増幅するために現像処理を行うことにより、図4(C)に示すように、導電性細線14aおよび非導電部28が形成される。なお、ここで導電性細線14aにはゼラチンが多く含まれており、後述する工程D(ゼラチン除去処理工程)を経て、所望の体積比(A/B)を示す導電性細線が製造される。
以下では、本工程で実施される露光処理と現像処理とについて詳述する。
(露光処理)
露光処理は、感光性層に露光を行う処理である。感光性層に対してパターン状の露光を施すことにより、露光領域における感光性層中のハロゲン化銀が潜像を形成する。この潜像が形成された領域は、後述する現像処理によって導電部を形成する。一方、露光がなされなかった未露光領域では、後述する現像処理の際にハロゲン化銀が溶解して感光性層から流出し、透明な膜(非導電部)が得られる。
露光の際に使用される光源は特に制限されず、可視光線、紫外線などの光、または、X線などの放射線などが挙げられる。
パターン露光を行う方法は特に制限されず、例えば、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。なお、パターンの形状は特に制限されず、形成したい導電性細線のパターンに合わせて適宜調整される。
(現像処理)
現像処理の方法は特に制限されないが、例えば、感光性層の種類に応じて以下の3通りの方式から選択することができる。
(1)物理現像核を含まない感光性層を化学現像または熱現像して金属銀を形成させる方式。
(2)物理現像核を含む感光性層を溶解物理現像して金属銀を形成させる方式。
(3)物理現像核を含まない感光性層と、物理現像核を含む非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀を形成させる方式。
ここでいう化学現像、熱現像、溶解物理現像、および拡散転写現像は、当業界で通常用いられている用語どおりの意味であり、写真化学の一般教科書、例えば菊地真一著「写真化学」(共立出版社刊行)、C.E.K.Mees編「The Theory of Photographic Process,4th ed.」(Mcmillan社、1977年刊行)に解説されている。また、例えば、特開2004−184693号公報、同2004−334077号公報、同2005−010752号公報等に記載の技術を参照することもできる。
上記の(1)〜(3)の方式の中で、方式(1)が、現像前の感光性層に物理現像核を有さないこと、2シートの拡散転写方式でないことから、方式(1)が最も簡便、安定な処理ができ、本発明の導電シートの製造には好ましい。以下、方式(1)での説明を記載するが、他の方式を用いる場合には上段記載の文献を参照することができる。なお、”溶解物理現像”は、方式(2)にのみ固有な現像法ではなく、方式(1)でも利用できる現像方法である。
現像処理の方法としては、例えば、銀塩写真フイルム、印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
現像処理の際に使用される現像液の種類は特に制限されないが、例えば、PQ現像液、MQ現像液、MAA現像液等を用いることもできる。市販品では、例えば、富士フイルム社処方のCN−16、CR−56、CP45X、FD−3、パピトール、KODAK社処方のC−41、E−6、RA−4、D−19、D−72等の現像液、又はそのキットに含まれる現像液を用いることができる。また、リス現像液を用いることもできる。
現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
定着工程における定着温度は、約20℃〜約50℃が好ましく、25〜45℃がより好ましい。また、定着時間は5秒〜1分が好ましく、7秒〜50秒がより好ましい。
現像、定着処理を施した感光性層は、水洗処理や安定化処理を施されるのが好ましい。上記水洗処理または安定化処理においては、通常、水洗水量は感光材料1m2当り、20リットル以下で行われ、3リットル以下の補充量(0も含む、すなわちため水水洗)で行うこともできる。
現像処理後の露光部(導電部)に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることが更に好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。
[工程C(加熱工程)]
工程Cは、上記工程Bで得られた導電部および非導電部を有する支持体に対して、加熱処理を施す工程である。本工程を実施することにより、導電部および非導電部中のゼラチンとは異なる高分子同士が融着し、より強固な層を構成する。より具体的には、ゼラチンとは異なる高分子同士粒子が融着しあい、均一なフイルムを形成する。このような均一な膜を形成するとタンパク質分解酵素によるゼラチン除去後も膜強度を維持でき、ヘイズ値の上昇を防ぐことができる。
以下では、本工程で実施される加熱処理について詳述する。
加熱処理の条件は、使用されるゼラチンとは異なる高分子の種類に応じて適宜最適な条件が選択されるが、ゼラチンとは異なる高分子のガラス転移点以上の加熱条件が好ましい。
加熱処理の方法の一つとしては、導電部および非導電部を有する支持体を過熱蒸気に接触させる処理が挙げられる。過熱蒸気としては、過熱水蒸気でよいし、過熱水蒸気に他のガスを混合させたものでもよい。
過熱蒸気は、供給時間10秒以上70秒以下の範囲で導電部に接触させることが好ましい。供給時間が10秒以上であると、導電率の向上の効果が大きい。また、70秒あたりから導電性の向上が飽和状態となるため、70秒よりの長い時間の設定は経済性の点から好ましくない。
また、過熱蒸気は、供給量が500g/m3〜600g/m3の範囲で導電部に接触させることがよく、過熱蒸気の温度は、1気圧で100〜160℃(好ましくは100〜120℃)に制御されることが好ましい。
加熱処理の他の方法としては、100〜200℃(好ましくは100〜150℃、より好ましくは110〜130℃)で1〜240分間(好ましくは60〜150分間、より好ましくは90〜120分間)加熱処理を施す方法が挙げられる。
[工程D(ゼラチン除去処理工程)]
工程Dは、上記工程Cで得られた導電部を有する支持体を、さらにゼラチンを分解するタンパク質分解酵素で処理する工程(ゼラチン除去処理工程)である。本工程を実施することにより、露光・現像処理が施された感光性層(上記導電部および非導電部)からゼラチンが分解・除去され、上述した金属銀とゼラチンとが所定比含まれる導電性細線を備えると共に、導電性細線間にバインダー部を備える導電シートが製造され、導電性細線間のイオンマイグレーションがより抑制される。
以下では、まず、本工程で使用される材料について詳述し、その後本工程の手順について詳述する。
(タンパク質分解酵素)
タンパク質分解酵素(以降、酵素とも称す)は、ゼラチンなどのタンパク質を加水分解できる植物性または動物性酵素で公知のものが用いられる。例えば、ペプシン、レンニン、トリプシン、キモトリプシン、カテプシン、パパイン、フィシン、トロンビン、レニン、コラゲナーゼ、ブロメライン、細菌プロテアーゼ等が挙げられる。この中でも特に、トリプシン、パパイン、フィシン、細菌プロテアーゼが好ましい。その中でも特に細菌プロテアーゼ(例えば、長瀬産業(株)製のビオプラーゼ)は安価に市販されており容易に入手が可能である。
(工程の手順)
工程Dの手順は、導電部を有する支持体と上記酵素とを接触させることができれば、特に制限されない。特に、支持体上の導電部および非導電部と酵素とが接触できる方法であれば、特に制限されない。通常、上記酵素を含む処理液(酵素液)(以後、単に「処理液」とも称する)と、導電部を有する支持体とを接触させる方法が挙げられる。接触方法としては、例えば、導電部を有する支持体上に処理液を塗布する方法や、処理液中に導電部を有する支持体を浸漬する方法などが挙げられる。
処理液中における酵素含有量は特に指定はなく、用いる酵素の能力と要求される性能によって任意に決めることができる。なかでも、ゼラチンの分解除去の程度が制御しやすい点で、処理液全量に対して酵素の含有量が0.05〜20質量%程度が適当であり、より好ましくは5〜10質量%である。
この処理液には、上記酵素に加え、pH緩衝剤、抗菌性化合物、湿潤剤、保恒剤など必要に応じて含有させることができる。
処理液のpHは、酵素の働きが最大限得られるように実験により選ばれるが、一般的には、5〜7であることが好ましい。また処理液の温度も酵素の働きが高まる温度、具体的には25〜45℃であることが好ましい。
接触時間は特に制限されず、導電シートのイオンマイグレーション抑制能がより優れる点で、10〜500秒間が好ましく、90〜360秒間がより好ましい。
なお、必要に応じて、処理液での処理後に、温水にて導電シートを洗浄する工程をさらに設けてもよい。本工程を設けることにより、ゼラチン分解残渣、および、タンパク質分解酵素の残部などを除去でき、イオンマイグレーションがより抑制される。
洗浄方法は特に制限されず、導電シートと温水とを接触させることができればよく、例えば、温水中に導電シートを浸漬する方法や、導電シート上に温水を塗布する方法などが挙げられる。
温水の温度は使用されるタンパク質分解酵素の種類などに応じて適宜最適な温度が選択されるが、生産性の点から、20〜80℃が好ましく、40〜60℃がより好ましい。
温水と導電シートとの接触時間(洗浄時間)は特に制限されないが、生産性の点から、1〜600秒間が好ましく、30〜360秒間がより好ましい。
上記工程を経ることにより、上述した導電シートを製造することができる。特に、上記好適態様の方法によって、図3に示した導電部およびバインダー部を備える導電シートが製造される。
[導電シートの製造方法の他の好適態様]
本発明の導電シートの製造方法は、上記工程A〜工程D以外にも他の工程を有していてもよい。
以下に、任意の工程について詳述する。
(工程E(ハロゲン化銀不含有層形成工程))
上記工程Aの前に、支持体上にゼラチンとゼラチンとは異なる高分子とを含むハロゲン化銀不含有層を形成する工程Eをさらに有することが好ましい。本工程を実施することにより、支持体と上記工程Aで形成されるハロゲン化銀含有感光性層との間にハロゲン化銀不含有層が形成される。このハロゲン化銀不含有層は、いわゆるアンチハレーション層の役割を果たすと共に、導電部と支持体との密着性向上に寄与する。
ハロゲン化銀不含有層には、上述したゼラチンと高分子とが含まれる。一方、ハロゲン化銀不含有層には、ハロゲン化銀が含まれない。
ハロゲン化銀不含有層中におけるゼラチンと高分子との質量比(高分子の質量/ゼラチンの質量)は特に制限されないが、イオンマイグレーション抑制能がより優れる点で、0.1〜5.0が好ましく、1.0〜3.0がより好ましい。
また、ハロゲン化銀不含有層中の高分子の含有量は特に制限されないが、イオンマイグレーション抑制能がより優れる点で、0.03〜1.63g/m2が好ましく、0.325〜0.975g/m2がより好ましく、特に、酸化処理時の面質が優れる点で、0.50〜0.975g/m2がさらに好ましく、0.50〜0.900g/m2が特に好ましい。
ハロゲン化銀不含有層には、必要に応じて、上述した材料以外の他の材料が含まれていてもよい。例えば、上述したハロゲン化銀含有感光性層に含まれていてもよい他の材料(例えば、帯電防止剤、界面活性剤、カブリ防止剤、硬膜剤、黒ポツ防止剤など)が挙げられる。
また、ハロゲン化銀不含有層には、ハロゲン化銀含有感光性層と同様に、高分子同士を架橋するために使用される架橋剤が含まれることが好ましい。架橋剤が含まれることにより、高分子同士間での架橋が進行し、工程Cにおいてゼラチンが分解除去された際にも導電部中の金属銀同士の連結が保たれ、結果として導電特性に優れた導電膜が得られる。架橋剤の種類は、上述の通りである。
さらに、ハロゲン化銀不含有層には、ハロゲン化銀含有感光性層と同様に、生産性の観点からゼラチンの同士を架橋する硬膜剤が含まれることが好ましい。硬膜剤の種類は、上述の通りである。
ハロゲン化銀不含有層の形成方法は特に制限されず、例えば、ゼラチンと高分子とを含有する層形成用組成物を支持体上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
層形成用組成物には、必要に応じて溶媒が含まれていてもよい。溶媒の種類は、上述した感光性層形成用組成物で使用される溶媒が例示される。
ハロゲン化銀不含有層の厚みは特に制限されないが、通常、0.05〜2.0μmが好ましく、0.65〜1.5μmがより好ましい。
(工程F(保護層形成工程))
上記工程Aの後で上記工程Bの前に、ハロゲン化銀含有感光性層上にゼラチンとゼラチンとは異なる高分子とを含む保護層を形成する工程Fをさらに有することが好ましい。保護層を設けることにより、感光性層の擦り傷防止や力学特性を改良することができる。
保護層中におけるゼラチンと高分子との質量比(高分子の質量/ゼラチンの質量)は特に制限されないが、イオンマイグレーション抑制能がより優れる点で、0超2.0以下が好ましく、0超1.0以下がより好ましく、0.05〜0.075がさらに好ましい。
また、保護層中の高分子の含有量は特に制限されないが、イオンマイグレーション抑制能がより優れる点で、0g/m2超0.3g/m2以下が好ましく、0.075〜0.01g/m2がより好ましい。
保護層の形成方法は特に制限されず、例えば、ゼラチンと高分子とを含有する保護層形成用組成物を支持体上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
保護層形成用組成物には、必要に応じて溶媒が含まれていてもよい。溶媒の種類は、上述した感光性層形成用組成物で使用される溶媒が例示される。
保護層の厚みは特に制限されないが、通常、0.03〜0.3μmが好ましく、0.075〜0.20μmがより好ましい。
保護層には、必要に応じて、上述した材料以外の他の材料が含まれていてもよい。例えば、上述したハロゲン化銀含有感光性層に含まれていてもよい他の材料(例えば、帯電防止剤、界面活性剤、カブリ防止剤、硬膜剤、黒ポツ防止剤など)が挙げられる。
また、保護層には、ハロゲン化銀含有感光性層と同様に、高分子同士を架橋するために使用される架橋剤が含まれることが好ましい。架橋剤が含まれることにより、高分子同士間での架橋が進行し、工程Cにおいてゼラチンが分解除去された際にも導電部中の金属銀同士の連結が保たれ、結果として導電特性に優れた導電膜が得られる。架橋剤の種類は、上述の通りである。
さらに、保護層には、ハロゲン化銀含有感光性層と同様に、生産性の観点からゼラチンの同士を架橋する硬膜剤が含まれることが好ましい。硬膜剤の種類は、上述の通りである。
(工程G(還元工程))
工程Bの後で工程Dの前、および/または、工程Dの後に、導電部を有する支持体を還元水溶液で処理して還元処理を行う工程Gをさらに有することが好ましい。笹井明著「写真の化学」(写真工業出版社)の22項「補力、減力、調色、その他処理」に記載されている補力の技術を参考にすることができ、現像処理により生成した銀を一旦酸化した後で再度還元処理することで、より導電性の高いシートを得ることができる。
還元水溶液の種類は銀の還元を進行させることができれば特に制限されないが、例えば、亜硫酸ナトリウム水溶液、ハイドロキノン水溶液、パラフェニレンジアミン水溶液、シュウ酸水溶液、アスコルビン酸水溶液、水素化ホウ素ナトリウム水溶液などを用いることができ、水溶液のpHは10以上とすることがさらに好ましい。
処理の方法は特に制限されず、導電部を有する支持体と還元水溶液を接触させればよい。接触方法としては、例えば、この支持体を還元水溶液に浸漬する方法が挙げられる。
(工程H(光照射工程))
上記工程Bの後で上記工程Dの前、および/または、上記工程Dの後に、導電部にキセノンフラッシュランプからのパルス光を照射する工程Hをさらに有することが好ましい。本工程を実施することにより、導電部の低抵抗化を図ることができる。導電シートの導電性が向上する理由については定かではないが、キセノンフラッシュランプからのパルス光を照射することで、熱によって少なくとも一部の高分子および/またはゼラチンが蒸発し、金属(導電性物質)同士が結合しやすくなるものと考えられる。
パルス光の照射量は特に制限されないが、1パルスあたり1J以上1500J以下とすることが好ましく、100〜1000Jとすることがより好ましく、500〜800Jとすることがさらに好ましい。照射量は、一般的な紫外線照度計を用いて測定することができる。一般的な紫外線照度計は、例えば300〜400nmに検出ピークを有する照度計を用いることができる。
導電シートを例えばタッチパネル用電極として使用する場合、導電部が肉眼にて認識されないように、導電性細線の線幅は1〜15μm、厚みは1〜3μmが好ましい。このような線幅、厚みの場合、パルス光の照射回数は1回以上2000回以下が好ましく、1回以上50回以下がより好ましく、1回以上30回以下がさらに好ましい。
(工程I(平滑化工程))
上記工程Bの後で上記工程Dの前、および/または、上記工程Dの後に、導電部を平滑化処理する工程Iをさらに有することが好ましい。本工程Iを実施することにより、導電部の導電性の向上、導電部の密着性の向上、または表面抵抗の低減が達成される。
平滑化処理の方法は特に制限されないが、例えば、カレンダーロールにより行うことができる。カレンダーロールは、通常、一対のロールからなる。以下、カレンダーロールを用いた平滑化処理をカレンダー処理と記す。
カレンダー処理に用いられるロールとしては、エポキシ、ポリイミド、ポリアミド、ポリイミドアミドなどのプラスチックロールまたは金属ロールが用いられる。シワ防止の点からプラスチックロールを使用することが好ましい。ロールの下限値は、好ましくは2MPa以上、さらに好ましくは4MPa以上である。圧力の上限値は、好ましくは120MPa以下である。なお圧力については、(株)富士フイルム製プレスケール(高圧用)を用いて測定する。
カレンダー処理に用いられるロールの表面粗さRaは、導電部の視認性がより優れる点から、0〜2.0μmであることが好ましく、0.3〜1.0μmであることがより好ましい。
カレンダーロールで代表される平滑化処理の適用温度は、10℃(温調なし)〜100℃が好ましく、より好ましい温度は、導電部のパターンの画線密度や形状、バインダー種によって異なるが、おおよそ10℃(温調なし)〜50℃の範囲である。
(工程J(加熱工程))
上記工程Dの後に、導電部を有する支持体に加熱処理を施す工程Jをさらに有することが好ましい。本工程を実施することにより、導電部の導電性が向上すると共に、イオンマイグレーション抑制能により優れた導電シートが得られる。また、本工程を実施することにより、導電シートのヘイズの低減、導電部の密着性の向上、酸化処理時の面質の向上、または、表面抵抗の低減が達成される。
加熱処理の方法の一つとしては、導電部を有する支持体を過熱蒸気に接触させる処理が挙げられる。
過熱蒸気としては、過熱水蒸気でよいし、過熱水蒸気に他のガスを混合させたものでもよい。
過熱蒸気は、供給時間10秒以上70秒以下の範囲で導電部に接触させることが好ましい。供給時間が10秒以上であると、導電率の向上が大きい。また、70秒あたりから導電性の向上が飽和状態となるため、70秒よりの長い時間の設定は経済性の点から好ましくない。
また、過熱蒸気は、供給量が500g/m3〜600g/m3の範囲で導電部に接触させることがよく、過熱蒸気の温度は、1気圧で100℃以上160℃以下に制御されることが好ましい。
加熱処理の他の方法としては、80〜150℃での加熱処理が挙げられる。
加熱時間は特に制限されないが、上記効果がより優れる点で、0.1〜5.0時間が好ましく、0.5〜1.0時間がより好ましい。
(工程K(安定化工程))
上記工程Dの後、導電部を有する支持体とマイグレーション防止剤とを接触させる工程Kをさらに有することが好ましい。本工程Kを実施することにより、導電部中の金属銀の安定化が図られ、上述した酸化剤によるゼラチン分解処理の時間を短くしてもイオンマイグレーションが十分抑制される。
使用されるマイグレーション防止剤としては公知の材料を使用することができ、例えば、含窒素ヘテロ環化合物や有機メルカプト化合物が好ましく、中でも含窒素ヘテロ環化合物が好ましく用いられる。
含窒素ヘテロ環化合物の好ましい例は、5または6員環アゾール類が好ましく、中でも5員環アゾール類が好ましい。
ヘテロ環としては、例えば、テトラゾール環、トリアゾール環、イミダゾール環、チアジアゾール環、オキサジアゾール環、セレナジアゾール環、オキサゾール環、チアゾール環、ベンズオキサゾール環、ベンズチアゾール環、ベンズイミダゾール環、ピリミジン環、トリアザインデン環、テトラアザインデン環、ペンタアザインデン環等が挙げられる。
これらの環は、置換基を有してもよく、置換基は、ニトロ基、ハロゲン原子(例えば塩素原子、臭素原子)、メルカプト基、シアノ基、それぞれ置換もしくは無置換のアルキル基(例えば、メチル、エチル、プロピル、t−ブチル、シアノエチルの各基)、アリール基(例えばフェニル、4−メタンスルホンアミドフェニル、4−メチルフェニル、3,4−ジクロルフェニル、ナフチルの各基)、アルケニル基(例えばアリル基)、アラルキル基(例えばベンジル、4−メチルベンジル、フェネチルの各基)、スルホニル基(例えばメタンスルホニル、エタンスルホニル、p−トルエンスルホニルの各基)、カルバモイル基(例えば無置換カルバモイル、メチルカルバモイル、フェニルカルバモイルの各基)、スルファモイル基(例えば無置換スルファモイル、メチルスルファモイル、フェニルスルファモイルの各基)、カルボンアミド基(例えばアセトアミド、ベンズアミドの各基)、スルホンアミド基(例えばメタンスルホンアミド、ベンゼンスルホンアミド、p−トルエンスルホンアミドの各基)、アシルオキシ基(例えばアセチルオキシ、ベンゾイルオキシの各基)、スルホニルオキシ基(例えばメタンスルホニルオキシ)、ウレイド基(例えば無置換ウレイド、メチルウレイド、エチルウレイド、フェニルウレイドの各基)、アシル基(例えばアセチル、ベンゾイルの各基)、オキシカルボニル基(例えばメトキシカルボニル、フェノキシカルボニルの各基)、オキシカルボニルアミノ基(例えばメトキシカルボニルアミノ、フェノキシカルボニルアミノ、2−エチルヘキシルオキシカルボニルアミノの各基)、ヒドロキシル基などで置換されていてもよい。置換基は、一つの環に複数置換してもよい。
好ましい含窒素ヘテロ環化合物の具体例としては、以下のものが挙げられる。即ち、イミダゾール、ベンゾイミダゾール、ベンゾインダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、ピリジン、キノリン、ピリミジン、ピペリジン、ピペラジン、キノキサリン、モルホリンなどが挙げられ、これらは、アルキル基、カルボキシル基、スルホ基、などの置換基を有してよい。
好ましい含窒素6員環化合物としては、トリアジン環、ピリミジン環、ピリジン環、ピロリン環、ピペリジン環、ピリダジン環、ピラジン環を有する化合物であり、中でもトリアジン環、ピリミジン環を有する化合物が好ましい。これらの含窒素6員環化合物は置換基を有していてもよく、その場合の置換基としては炭素数1〜6、より好ましくは1〜3の低級アスキル基、炭素数1〜6、より好ましくは1〜3の低級アルコキシ基、水酸基、カルボキシル基、メルカプト基、炭素数1〜6、より好ましくは1〜3のアルコキシアルキル基、炭素数1〜6、より好ましくは1〜3のヒドロキシアルキル基が挙げられる。
好ましい含窒素6員環化合物の具体例としては、トリアジン、メチルトリアジン、ジメチルトリアジン、ヒドロキシエチルトリアジン環、ピリミジン、4−メチルピリミジン、ピリジン、ピロリンがあげられる。
また、有機メルカプト化合物としては、アルキルメルカプト化合物や、アリールメルカプト化合物、ヘテロ環メルカプト化合物などが挙げられる。
アルキルメルカプト化合物としては、システインやチオリンゴ酸などが挙げられ、アリールメルカプト化合物としては、チオサリチル酸などが挙げられ、ヘテロ環メルカプト化合物としては、2−フェニル−1−メルカプトテトラゾール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトベンゾオキサゾール、2−メルカプトピリミジン、2,4−ジメルカプトピリミジン、2−メルカプトピリジンなどが挙げられ、これらは、アルキル基、カルボキシル基、スルホ基、などの置換基を有してよい。
導電部を有する支持体とマイグレーション防止剤とを接触させる方法は特に制限されず、例えば、マイグレーション防止剤を支持体上に塗布する方法や、マイグレーション防止剤中に導電部を有する支持体を浸漬する方法などが挙げられる。
なお、必要に応じて、マイグレーション防止剤を溶媒に溶解させた溶液を用いてもよい。使用される溶媒の種類は特に制限されず、上述した感光性層形成用組成物で使用される溶媒が例示される。
接触時間は特に制限されないが、0.5〜10分が好ましく、1.0〜3.0分がより好ましい。
(工程L(有機溶媒接触工程))
上記工程Dの後に、導電部を有する支持体を有機溶媒に接触させる工程Lをさらに有することが好ましい。本工程Lを実施することにより、導電部または非導電部中に残存する高分子の膜がより緻密となり、イオンマイグレーション抑制能により優れる導電シートが得られ、かつ導電シートのヘイズ値を低減することができる。
使用される有機溶媒の種類は特に制限されず、高分子の種類に応じて適宜最適な溶媒が選択される。なかでも、上記効果がより優れる点で、高分子が溶解する有機溶媒が好ましい。ここで溶解するとは、有機溶媒1L中に少なくとも高分子が5g以上溶解することを意図する。
なかでも、SP値が8〜12の範囲の有機溶媒が好ましい。
有機溶媒の具体例としては、例えば、ベンジルアルコール、エタノール、トルエン、メチルエチルケトン、アセトン、酢酸エチルなどが挙げられる。
導電部を有する支持体と、有機溶媒との接触方法は特に制限されず、公知方法を採用できる。例えば、有機溶媒を支持体上に塗布する方法や、有機溶媒中に導電部を有する支持体を浸漬する方法などが挙げられる。
有機溶媒との接触時間は特に制限されないが、10〜60分が好ましく、15〜30分がより好ましい。
(工程M(高分子架橋工程))
上記工程Bの後で工程Dの前、および/または、工程Dの後に、ゼラチンとは異なる高分子を架橋させる工程Mを有することが好ましい。本工程を実施することにより、導電シートと光学粘着層との密着力を上げ、剥がれにくくすることができる。
導電部中に含まれる高分子を架橋させる方法は特に制限されないが、架橋剤を使用する方法が好ましい。
使用される架橋剤の種類は特に制限されず、使用される高分子の構造に応じて適宜最適な架橋剤が選択される。架橋剤の種類は、上述の通りである。
架橋方法は特に制限されず、高分子と架橋剤とを接触させる方法が挙げられる。より具体的には、例えば、高分子が含まれる導電部を有する支持体上に、架橋剤が含まれる処理液を塗布する方法や、架橋剤が含まれる処理液中に、高分子が含まれる導電部を有する支持体を浸漬する方法などが挙げられる。
なお、高分子と架橋剤との接触時間は特に制限されず、使用される架橋剤の種類などにより適宜最適な条件が選択されるが、通常、1〜300秒が好ましい。
また、必要に応じて、高分子と架橋剤を接触させた後、高分子を含む導電部を水で洗浄してもよい。
(その他の任意工程)
上記工程Dの後、導電部の導電性を向上させる目的で、導電部に導電性金属粒子を担持させるための物理現像および/またはめっき処理を行ってもよい。本発明では物理現像またはめっき処理のいずれか一方のみで導電性金属粒子を導電部に担持させてもよく、物理現像とめっき処理とを組み合わせて導電性金属粒子を導電部に担持させてもよい。
本実施の形態における「物理現像」とは、金属や金属化合物の核上に、銀イオン等の金属イオンを還元剤で還元して金属粒子を析出させることをいう。この物理現像は、インスタントB&Wフイルム、インスタントスライドフイルムや、印刷版製造等に利用されており、本発明ではその技術を用いることができる。
本実施の形態において、めっき処理は、無電解めっき(化学還元めっきや置換めっき)を用いることができる。本実施の形態における無電解めっきは、公知の無電解めっき技術を用いることができ、例えば、プリント配線板等で用いられている無電解めっき技術を用いることができ、無電解めっきは無電解銅めっきであることが好ましい。
以下に本発明の実施例を挙げて本発明を更に具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1>
(ハロゲン化銀乳剤の調製)
38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記4液および5液を8分間にわたって加え、更に、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。更に、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。
1液:
水 750ml
ゼラチン 8.6g
塩化ナトリウム 3g
1,3−ジメチルイミダゾリジン−2−チオン 20mg
ベンゼンチオスルホン酸ナトリウム 10mg
クエン酸 0.7g
2液:
水 300ml
硝酸銀 150g
3液:
水 300ml
塩化ナトリウム 38g
臭化カリウム 32g
ヘキサクロロイリジウム(III)酸カリウム
(0.005%KCl 20%水溶液) 5ml
ヘキサクロロロジウム酸アンモニウム
(0.001%NaCl 20%水溶液) 7ml
4液:
水 100ml
硝酸銀 50g
5液:
水 100ml
塩化ナトリウム 13g
臭化カリウム 11g
黄血塩 5mg
その後、常法にしたがってフロキュレーション法によって水洗した。具体的には、温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、上澄み液を約3リットル除去した(第一水洗)。更に3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を3リットル除去した(第二水洗)。第二水洗と同じ操作を更に1回繰り返して(第三水洗)、水洗・脱塩工程を終了した。水洗・脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン2.5g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgと塩化金酸10mgを加え55℃にて最適感度を得るように化学増感を施し、安定剤として1,3,3a,7−テトラアザインデン100mg、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径0.22μm、変動係数9%のヨウ塩臭化銀立方体粒子乳剤であった。
(感光性層形成用組成物の調製)
上記乳剤に1,3,3a,7−テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4−ジクロロ−6−ヒドロキシ−1,3,5−トリアジンナトリウム塩0.90g/モルAg、微量の硬膜剤を添加し、クエン酸を用いて塗布液pHを5.6に調整した。
上記塗布液に、含有するゼラチンに対して、上記で例示した(P−1)で表されるポリマーとジアルキルフェニルPEO硫酸エステルからなる分散剤を含有するポリマーラテックス(分散剤/ポリマーの質量比が2.0/100=0.02)とをポリマー/ゼラチン(質量比)=0.5/1になるように添加した。
さらに、架橋剤としてEPOXY RESIN DY 022(商品名:ナガセケムテックス社製)を添加した。なお、架橋剤の添加量は、後述するハロゲン化銀含有感光性層中における架橋剤の量が0.09g/m2となるように調整した。
以上のようにして感光性層形成用組成物を調製した。
なお、上記で例示した(P−1)で表されるポリマーは、特許第3305459号および特許第3754745号を参照して合成した。
(感光性層形成工程)
100μmのポリエチレンテレフタレート(PET)フィルムに上記ポリマーラテックスを塗布して、厚み0.05μmの下塗り層を設けた。
次に、下塗り層上に、上記ポリマーラテックスとゼラチンとを混合したハロゲン化銀不含有層形成用組成物を塗布して、厚み1.0μmのハロゲン化銀不含有層を設けた。なお、ポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)は2/1であり、ポリマーの含有量は0.65g/m2であった。
次に、ハロゲン化銀不含有層上に、上記感光性層形成用組成物を塗布し、厚み2.5μmのハロゲン化銀含有感光性層を設けた。なお、ハロゲン化銀含有感光性層中のポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)は0.5/1であり、ポリマーの含有量は0.22g/m2であった。
次に、ハロゲン化銀含有感光性層上に、上記ポリマーラテックスとゼラチンとを混合した保護層形成用組成物を塗布して、厚み0.15μmの保護層を設けた。なお、ポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)は0.1/1であり、ポリマーの含有量は0.015g/m2であった。
(露光・現像処理)
上記で作製した感光性層に、図5に示す試験パターンの現像銀像を与えうるフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。マイグレーション試験パターンは、IPC−TM650orSM840に準拠したパターンで、ライン幅が50μm、スペース幅が50μmで、ライン数は17本/18本である(以下くし型パターン電極と呼ぶ)。また、上記で作製した感光性層を別途複数用意し、その他評価用サンプル作製のために、導電性細線/非導電部が5.0μm/295μm、4.0μm/296μm、3.0μm/297μm、2.5μm/297.5μm、または2.0μm/298μmの導電パターンを与える格子状のフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した(以下、適宜メッシュパターン電極と呼ぶ)。露光後、下記の現像液で現像し、さらに定着液(商品名:CN16X用N3X−R:富士フイルム社製)を用いて現像処理を行った後、純水でリンスし、その後乾燥して、くし型パターン電極を有するサンプルA、5.0μm/295μmメッシュパターン電極を有するサンプルB、4.0μm/296μmメッシュパターン電極を有するサンプルC、3.0μm/297μmメッシュパターン電極を有するサンプルD、2.5μm/297.5μmメッシュパターン電極を有するサンプルE、および2.0μm/298μmメッシュパターン電極を有するサンプルFを得た。また、導電性細線間のゼラチン定量を簡便におこなうために、露光しないサンプルを上記と同様に現像処理をおこなって導電性細線を有さない非導電部のみのサンプルGを得た。また、導電性細線中のゼラチン定量を簡便におこなうため、全面が導電部となるようなフォトマスクを解して高圧水銀ランプを光源とした平行光を用いて露光したサンプルを上記と同様に現像処理をおこない導電性細線のみで非導電部を有さないサンプルHを得た。
なお、上記サンプルA〜Fの導電性細線間には上記ポリマーを含むバインダー部があった。
(現像液の組成)
現像液1リットル(L)中に、以下の化合物が含まれる。
ハイドロキノン 0.037mol/L
N−メチルアミノフェノール 0.016mol/L
メタホウ酸ナトリウム 0.140mol/L
水酸化ナトリウム 0.360mol/L
臭化ナトリウム 0.031mol/L
メタ重亜硫酸カリウム 0.187mol/L
(加熱処理(その1))
上記で得られたサンプルA〜Hそれぞれを120℃の過熱蒸気槽に130秒間静置して、加熱処理を行った。
(ゼラチン分解液の調製)
タンパク質分解酵素(ナガセケムテックス社製ビオプラーゼ30L)の水溶液(タンパク質分解酵素の濃度:0.5質量%)に、トリエタノールアミン、硫酸を加えてpHを8.5に調製した。
(ゼラチン分解処理)
上記で得られたサンプルA〜Hそれぞれを、タンパク質分解酵素水溶液(40℃)に120秒浸漬した。サンプルA〜Hをそれぞれ水溶液から取り出し、温水(液温:50℃)に120秒間浸漬し、洗浄した。
(高分子架橋処理)
カルボジライトV−02−L2(商品名:日清紡社製)1%水溶液に上記で得られたサンプルA〜Hそれぞれを、30秒浸漬し、それぞれ水溶液から取り出し、純水(室温)に60秒間浸漬し、洗浄した。
[各種評価]
(マイグレーション評価(その1))
上記で作製したくし型パターン電極を有するサンプルAを85℃85%RHの湿熱雰囲気下に静置し、サンプルAの両端に配線を接続し、片側から直流5Vの電流を連続的に印加した。一定時間後、85℃85%RHの雰囲気下から取り出し、アドバンテスト社製のR8340Aを用い、直流5Vの印加電圧をかけ、絶縁性抵抗を測定した。以下の基準に従って、評価した。
「A」:500時間以上、絶縁抵抗値が1010Ω以上であった場合
「B」:200時間以上500時間未満で絶縁抵抗値が1010Ω未満まで低下した場合
「C」:50時間以上200時間未満で絶縁抵抗値が1010Ω未満まで低下した場合
「D」:50時間未満で絶縁抵抗値が1010Ω未満まで低下した場合
(マイグレーション評価(その2))
サンプルAの導電性細線がある表面上に、透明粘着層1(商品名NSS50、新タック化成製、酸価34mgKOH/g、吸水率0.91%)または透明粘着層2(商品名8146−2、3M社製、酸価56mgKOH/g、吸水率0.47%)を貼り合せたサンプルを作製し、上記(マイグレーション評価(その1))と同様の手順に従って、絶縁性抵抗を測定した。評価基準は、上記(マイグレーション評価(その1))と同じである。
(ヘイズ値評価)
日本電色製TC−HIIIを用いて、JIS−K−7105に準拠した方法で、メッシュパターン電極を有するサンプルCのヘイズ値を測定した。以下の基準に従って、評価した。
「A」:ヘイズ値が7%未満の場合
「B」:ヘイズ値が7%以上10%未満の場合
「C」:ヘイズ値が10%以上の場合
(密着性評価)
メッシュパターン電極を有するサンプルBおよびサンプルEを用いて、JIS−K−5600に準拠したクロスカット法にて密着性を評価した。以下の基準に従って、評価した。なお、いずれか一方のサンプルで剥がれが生じた場合は、「B」と評価する。
「A」:剥がれが生じなかった場合
「B」:剥がれが生じた場合
(酵素処理時面質評価)
メッシュパターン電極を有するサンプルFを酵素処理した際に、膜剥がれないものを「A」、膜剥がれを生じるものを「B」とした。
(抵抗値評価)
メッシュパターン電極を有するサンプルDを用いて、低効率計(三菱アナリテック社製のロレスター:直列4探針プローブ(ASP)使用)にて任意の10箇所において抵抗値を測定し、その値の平均値を表面抵抗値とした。以下の基準に従って、評価した。
「A」:表面抵抗値が50Ω/sq未満の場合
「B」:表面抵抗値が50Ω/sq以上100Ω/sq未満の場合
「C」:表面抵抗値が100Ω/sq以上の場合
(導電性細線間のゼラチン含有量の測定)
導電性細線間のゼラチン含有量は、モデルサンプルとしてサンプルGを用いて、評価した。
具体的には、ゼラチン含有量は、BCA法(ビシコニン酸法)を用いて測定した。まず、検量線のための母液をゼラチン10gに対してイオン交換水115g、ゼラチン5gに対してイオン交換水120g、ゼラチン5gに対してイオン交換水245g、ゼラチン5gに対してイオン交換水495gの割合で混合し、それぞれ30分膨潤させた後、40℃で攪拌しながら30分溶解させて、「検量線用ゼラチン液」とした。「検量線用ゼラチン液」を試験管に2.5cc入れた。ゼラチン定量用の試料は、導電性細線を有さない非導電部のみのサンプルGをゼラチン分解処理した後に1cm×1cmに裁断して試験管に入れ、イオン交換水を2.5ccずつ入れた。
Thermo SCIENTIFIC社製Micro BCA Protein Assay Kit液の試薬A、試薬B、試薬Cをそれぞれ25:24:1の体積比で混合した定量試薬を用意し、上記の「検量線用ゼラチン液」、ゼラチン定量用の試料が入った試験管に2.5ccずついれ、栓をして、よく攪拌した。全サンプルを恒温振とう槽を使用して、60℃にて1時間、振とう速度160往復/minの条件で発色させ、室温に冷却して10分後、(株)日立製作所製U−3300にてすみやかに562nmの吸光度を測定した。検量線用ゼラチン液の吸光度から、分析用試料(サンプルG)のゼラチン量を計算した。このゼラチン量は、導電性細線間のゼラチン量に相当する。
(導電性細線中のゼラチン含有量の測定)
導電性細線中のゼラチン含有量は、モデルサンプルとしてサンプルHを用いて、評価した。
ゼラチン含有量は上記同様、BCA法を用いて測定した。BCA法は、タンパク質がアルカリ性Cu(II)をCu(I)に還元する性質を利用した測定法であるため、銀が存在すると銀が還元性を示すため、正確な値が得られない。そのため、下記方法を用いて脱銀処理した後に、上記同様BCA法を用いて測定した。非導電部を有さない銀線部のみのサンプルHをゼラチン分解処理した後、(株)富士フイルム社製FR−1とイオン交換水を体積比1:2の割合で混合し、脱銀液を調製した。この脱銀液を25℃に保温しておき、サンプルHを10分間、窒素攪拌しながら浸漬させた後、イオン交換水に2秒浸したあと、水で15分間よく洗浄し、室温で乾燥させて、脱銀サンプルを得た。
(導電性細線中の金属銀含有量の測定)
導電性細線中の金属銀の含有量は、サンプルH中の導電性細線に対して蛍光X線測定を行い、求めた。
(ピール強度の測定)
ガラスに透明粘着層(商品名8146−2、3M社製)を用いて、横25mm、縦100mm長に裁断したサンプルDを貼り合わせ、65℃30分放置した後、室温に戻して、IMADA製縦型電動スタンドMX2−500NにてサンプルDに縦方向に荷重をかけ、IMADA製デジタルフォースゲージZTA−50Nにて荷重値を測定した。
<実施例2>
上記(ゼラチン分解処理)の後に、さらに(加熱処理(その1))を実施した以外は、実施例1と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例3>
ハロゲン化銀含有感光性層中におけるポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)を0.5/1から2/1に変更した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例4>
ハロゲン化銀不含有層中におけるポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)を2/1から3/1に変更した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例5>
上記(加熱処理(その1))の前に、以下の(キセノン処理)を実施した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
(キセノン処理)
キセノンフラッシュランプとして、Xenon社のキセノンフラッシュランプを用い、照射1回当たりのランプ投入エネルギー(ランプパワー)を926J、パルス光のパルス幅(1回のパルス光の照射時間)を120μ秒とし、照射間隔を0.1秒として125秒間照射した。
<実施例6>
上記(ゼラチン分解処理)の後で2回目の(加熱処理(その1))の前に、以下の(カレンダー処理(その1))を実施した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
(カレンダー処理(その1))
鏡面仕上げが施された金属ロールを用いて、5MPaをかけてローラー間にサンプルを通してカレンダー処理した。
<実施例7>
(加熱処理(その1))の代わり(加熱処理(その2))を実施した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
(加熱処理(その2))
サンプルを120℃の環境下に2時間静置した。
<実施例8>
上記(ゼラチン分解処理)の後で(加熱処理(その1))の前に、以下の(カレンダー処理(その2))を実施した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
(カレンダー処理(その2))
プラスチックロールを用いて、5MPaをかけてローラー間にサンプルを通して、カレンダー処理した。なお、用いたプラスチックロールの表面粗さRaは、0.6μmであった。
<実施例9>
タンパク質分解酵素の水溶液への浸漬時間を120秒から60秒に変更した以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例10>
タンパク質分解酵素の水溶液への浸漬時間を120秒から30秒に変更した以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例11>
タンパク質分解酵素の水溶液への浸漬時間を120秒から360秒に変更した以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例12>
温水(液温:50℃)への浸漬時間を120秒から60秒に変更した以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例13>
温水(液温:50℃)への浸漬時間を120秒から30秒に変更した以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例14>
タンパク質分解酵素の水溶液への浸漬時間を120秒から360秒に変更し、温水(液温:50℃)への浸漬時間を120秒から360秒に変更した以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<実施例15>
(高分子架橋処理)を実施しなかった以外は、実施例8と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<比較例1>
温水の液温を50℃から70℃に変更し、温水(液温:70℃)への浸漬時間を120秒から10秒に変更した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<比較例2>
タンパク質分解酵素の水溶液への浸漬時間を120秒から30秒に変更し、温水の液温を50℃から70℃に変更し、温水(液温:70℃)への浸漬時間を120秒から10秒に変更した以外は、実施例2と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
<比較例3>
(加熱処理(その1))および(ゼラチン分解処理)を実施しなかった以外は、実施例1と同様の手順に従って、サンプルを作製し、各種評価を実施した。結果を表1にまとめて示す。
なお、表1中、「MG評価(透明粘着層なし)」は、上記(マイグレーション評価(その1))による評価結果を表し、「MG(評価(透明粘着層:NSS50))」は、上記(マイグレーション評価(その2))に示すNSS50を用いた評価結果を表し、「MG(評価(透明粘着層:8146−2))」は、上記(マイグレーション評価(その2))に示す8146−2を用いた評価結果を表す。
また、表1中の開口部ゼラチン含有量は、導電性細線間のゼラチン含有量を意図し、「<0.02(g/m2)」とは含有量が0.02(g/m2)未満であることを意図する。
また、上述したように、導電性細線間には(P−1)で表されるポリマーが存在し、表1中の開口部高分子含有量は、導電性細線間のポリマーの含有量(g/m2)を意図する。
上記表1から分かるように、本発明の導電シートは、イオンマイグレーションが発生しづらいことが確認された。
また、実施例1〜15の比較(特に、実施例7、11、および14と、他の実施例との比較)から分かるように、導電性細線中の金属銀の体積Aとゼラチンの体積Bとの体積比(A/B)が2.0以下の場合、イオンマイグレーション抑制能がより優れることが確認された。
また、実施例1〜15においては、イオンマイグレーション以外の、ヘイズ評価、密着性評価、面質評価、抵抗値評価のいずれにおいても優れていた。
また、実施例15と他の実施例との比較から、高分子架橋工程を実施したほうが、ピール強度がより優れることが確認された。
一方、導電性細線間にゼラチンが含まれる比較例1〜3においては、イオンマイグレーションに劣っていた。
なお、上記(露光・現像処理)で使用されたフォトマスクの形状を変更して、導電性細線からなるタッチパネルの検出電極を作製し、その導電性細線上に透明粘着層1(商品名NSS50、新タック化成製、酸価34mgKOH/g、吸水率0.91%)または透明粘着層2(商品名8146−2、3M社製、酸価56mgKOH/g、吸水率0.47%)を貼り合せた積層体を用いて、タッチパネルを製造した。
10 導電シート
12 基板
14,14a 導電性細線
16 導電部
18 領域
20 格子
22 バインダー部
24 ハロゲン化銀
26 ハロゲン化銀含有感光性層
28 非導電部

Claims (12)

  1. 支持体と、
    前記支持体上に配置され、金属銀およびゼラチンを含有する導電性細線からなる導電部とを有する導電シートであって、
    前記支持体上の前記導電性細線間に、ゼラチンが実質的に含まれず、
    前記導電性細線中の前記金属銀の体積Aと前記ゼラチンの体積Bとの体積比(A/B)が0.3〜10.0である、導電シート。
  2. 前記支持体上の前記導電性細線間に、ゼラチンとは異なる高分子が含まれ、ゼラチンが実質的に含まれないバインダー部を有する、請求項1に記載の導電シート。
  3. 前記体積比(A/B)が0.3〜2.0である、請求項1または2に記載の導電シート。
  4. 請求項1〜3のいずれか1項に記載の導電シートの製造方法であって、
    支持体上に、ハロゲン化銀とゼラチンと前記ゼラチンとは異なる高分子とを含み、前記ゼラチンの質量Xと前記高分子の質量Yとの質量比(Y/X)が0.1以上であるハロゲン化銀含有感光性層を形成する工程Aと、
    前記ハロゲン化銀含有感光性層を露光した後、現像処理して金属銀およびゼラチンを含有する導電性細線からなる導電部を形成する工程Bと、
    工程Bで得られた導電部を有する支持体に対して加熱処理を施す工程Cと、
    前記導電部を有する支持体を、前記ゼラチンを分解するタンパク質分解酵素で処理する工程Dとを有する、導電シートの製造方法。
  5. 前記支持体が、その表面上に前記ゼラチンとは異なる高分子を含む下塗り層を有する、請求項4に記載の導電シートの製造方法。
  6. 前記工程Aの後で前記工程Bの前に、前記ハロゲン化銀含有感光性層上にゼラチンを含む保護層を形成する工程をさらに有する、請求項4または5に記載の導電シートの製造方法。
  7. 前記工程Bの後で前記工程Dの前、および/または、前記工程Dの後に、前記導電部を平滑化処理する工程をさらに有する、請求項4〜6のいずれか1項に記載の導電シートの製造方法。
  8. 前記平滑化処理が、前記導電部を有する支持体を、少なくとも一対のロール間を2〜120MPaの圧力の条件下で通過させるカレンダー処理である、請求項7に記載の導電シートの製造方法。
  9. 前記工程Bの後で前記工程Dの前、および/または、前記工程Dの後に、前記ゼラチンとは異なる高分子を架橋させる工程を有する、請求項4〜8のいずれか1項に記載の導電シートの製造方法。
  10. 前記工程Bの後で前記工程Dの前、および/または、前記工程Dの後に、前記導電部にキセノンフラッシュランプからのパルス光を照射する工程をさらに有する、請求項4〜9のいずれか1項に記載の導電シートの製造方法。
  11. 前記キセノンフラッシュランプからのパルス光の照射が、1パルスあたりの照射エネルギーが1500J以下であり、前記パルス光の照射回数が2000回以下である、請求項10に記載の導電シートの製造方法。
  12. 請求項1〜3のいずれか1項に記載の導電シート、または、請求項4〜11のいずれか1項に記載の導電シートの製造方法より製造される導電シートと、
    前記導電シートの導電部側上に配置された透明粘着層とを備えるタッチパネルであって、
    前記透明粘着層に含まれる粘着剤の酸価が100mgKOH/g以下であり、
    前記粘着剤の吸水率が1.0%以下である、タッチパネル。
JP2014055268A 2013-03-27 2014-03-18 導電シートおよびその製造方法、タッチパネル Expired - Fee Related JP6005090B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055268A JP6005090B2 (ja) 2013-03-27 2014-03-18 導電シートおよびその製造方法、タッチパネル

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013067512 2013-03-27
JP2013067512 2013-03-27
JP2014055268A JP6005090B2 (ja) 2013-03-27 2014-03-18 導電シートおよびその製造方法、タッチパネル

Publications (2)

Publication Number Publication Date
JP2014209332A JP2014209332A (ja) 2014-11-06
JP6005090B2 true JP6005090B2 (ja) 2016-10-12

Family

ID=51623807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055268A Expired - Fee Related JP6005090B2 (ja) 2013-03-27 2014-03-18 導電シートおよびその製造方法、タッチパネル

Country Status (4)

Country Link
US (1) US9405422B2 (ja)
JP (1) JP6005090B2 (ja)
TW (1) TW201502914A (ja)
WO (1) WO2014156827A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235993B2 (ja) * 2014-12-18 2017-11-22 富士フイルム株式会社 フィルム材料および導電材料の製造方法
JP6386660B2 (ja) * 2015-03-30 2018-09-05 富士フイルム株式会社 導電性フィルムおよびその製造方法、タッチパネル
JP6285904B2 (ja) * 2015-03-30 2018-02-28 富士フイルム株式会社 導電シートの製造方法、および、タッチパネル
KR101810855B1 (ko) 2015-04-21 2017-12-20 도레이 카부시키가이샤 적층 부재 및 터치 패널
JP6335148B2 (ja) * 2015-08-24 2018-05-30 富士フイルム株式会社 導電性フィルムの製造方法、導電性フィルム、タッチパネル
KR102587304B1 (ko) * 2015-11-20 2023-10-10 린텍 가부시키가이샤 시트, 발열체 및 발열 장치
WO2018029750A1 (ja) * 2016-08-08 2018-02-15 東レ株式会社 積層部材及びタッチパネル
CN110431520B (zh) * 2017-03-24 2023-05-26 大日本印刷株式会社 导电性膜、触控面板和图像显示装置
KR102428978B1 (ko) * 2017-07-24 2022-08-03 주식회사 엘지화학 터치 스크린 패널 및 그 제조방법
WO2019065234A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 電極付き基板の製造方法
WO2020158494A1 (ja) * 2019-01-31 2020-08-06 富士フイルム株式会社 導電性基板の製造方法、導電性基板
EP4213221A1 (en) * 2020-09-09 2023-07-19 Kabushiki Kaisha Toshiba Trasparent electrode, mehod for producing trasparent electrode, and electronic device
WO2023120109A1 (ja) * 2021-12-22 2023-06-29 富士フイルム株式会社 導電性基板、導電性基板の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895536B2 (ja) * 2005-06-30 2012-03-14 三菱製紙株式会社 導電性材料の製造方法
JP2008288305A (ja) * 2007-05-16 2008-11-27 Konica Minolta Holdings Inc 電磁波シールドフィルム及びその製造方法
JP5409094B2 (ja) * 2008-07-17 2014-02-05 富士フイルム株式会社 曲面状成形体及びその製造方法並びに車両灯具用前面カバー及びその製造方法
US20120285726A1 (en) * 2010-01-20 2012-11-15 Fujifilm Corporation Electrically conductive element, photosensitive material for formation of electrically conductive element, and electrode
KR20130102121A (ko) * 2010-01-28 2013-09-16 후지필름 가부시키가이샤 도전 시트, 도전 시트의 사용 방법 및 터치 패널
JP5632617B2 (ja) * 2010-02-01 2014-11-26 三菱製紙株式会社 透明導電性材料
JP5248653B2 (ja) * 2010-05-27 2013-07-31 富士フイルム株式会社 導電シート及び静電容量方式タッチパネル
JP5661533B2 (ja) * 2010-05-28 2015-01-28 富士フイルム株式会社 導電シートの製造方法及びタッチパネルの製造方法
JP2012004042A (ja) * 2010-06-18 2012-01-05 Fujifilm Corp 透明導電性フイルム及び透明導電性フイルムの製造方法
KR101473132B1 (ko) * 2011-01-18 2014-12-15 후지필름 가부시키가이샤 투명 전극 시트들, 투명 전극 시트들의 제조 방법, 및 투명 전극 시트들을 사용한 정전 용량 방식의 터치 패널
JP5827817B2 (ja) * 2011-04-28 2015-12-02 富士フイルム株式会社 導電シート、導電シートの製造方法、及び導電シートを用いた静電容量方式のタッチパネル
JP5839541B2 (ja) * 2011-05-13 2016-01-06 富士フイルム株式会社 導電シート及びタッチパネル
JP5808966B2 (ja) 2011-07-11 2015-11-10 富士フイルム株式会社 導電性積層体、タッチパネル及び表示装置
US8943682B2 (en) * 2012-02-28 2015-02-03 Eastman Kodak Company Making micro-wires with different heights
US8836668B2 (en) * 2012-02-28 2014-09-16 Eastman Kodak Company Transparent touch-responsive capacitor with variable-height micro-wires
US8773393B2 (en) * 2012-02-28 2014-07-08 Eastman Kodak Company Touch screen with dummy micro-wires
US8773392B2 (en) * 2012-02-28 2014-07-08 Eastman Kodak Company Transparent touch-responsive capacitor with variable-pattern micro-wires
US8937604B2 (en) * 2012-02-28 2015-01-20 Eastman Kodak Company Touch-responsive capacitor with polarizing dielectric structure
US8819927B2 (en) * 2012-02-28 2014-09-02 Eastman Kodak Company Method of making a transparent conductor structure
US8884918B2 (en) * 2012-02-28 2014-11-11 Eastman Kodak Company Electronic device having metallic micro-wires
US8773395B2 (en) * 2012-04-24 2014-07-08 Eastman Kodak Company Touch-responsive capacitor with polarizing dielectric method

Also Published As

Publication number Publication date
WO2014156827A1 (ja) 2014-10-02
JP2014209332A (ja) 2014-11-06
US20160011698A1 (en) 2016-01-14
TW201502914A (zh) 2015-01-16
US9405422B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP6005090B2 (ja) 導電シートおよびその製造方法、タッチパネル
JP5990493B2 (ja) 導電シートの製造方法、導電シート
JP6129769B2 (ja) タッチパネル用透明導電膜、透明導電膜の製造方法、タッチパネル及び表示装置
JP5827817B2 (ja) 導電シート、導電シートの製造方法、及び導電シートを用いた静電容量方式のタッチパネル
JP5840163B2 (ja) タッチパネルおよび保護層形成用樹脂組成物
JP7168691B2 (ja) 導電性基板の製造方法、導電性基板
US9405198B2 (en) Method for providing conductive silver film elements
JP6267109B2 (ja) 導電フィルムの製造方法および導電フィルム
JP2016020459A (ja) 粘着層付導電フィルムの製造方法、および導電フィルム
TW201610609A (zh) 鹵化銀溶液之物理顯像溶液及使用方法
JP2023035785A (ja) 導電性基板、タッチパネル
JP2017045529A (ja) 導電性フィルムの製造方法およびタッチパネルの製造方法
JP6335148B2 (ja) 導電性フィルムの製造方法、導電性フィルム、タッチパネル
WO2024043032A1 (ja) 導電性基板、タッチパネル
WO2023120297A1 (ja) 導電性基板、導電性基板の製造方法
US20230077966A1 (en) Conductive substrate and touch panel
WO2023120109A1 (ja) 導電性基板、導電性基板の製造方法
WO2021059812A1 (ja) めっき液、めっきセット、導電性基板の製造方法
WO2022215465A1 (ja) 導電性基板
WO2023228927A1 (ja) 導電性基板、タッチパネル
JP2020017381A (ja) 導電性フィルムの製造方法
JP2021163735A (ja) 導電性部材の製造方法
US9335635B2 (en) Silver halide solution physical developing solution
JP2019109720A (ja) タッチパネル用導電性シートの製造方法
JP2017130360A (ja) 導電シートの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6005090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees