JP6004991B2 - 電動機駆動装置 - Google Patents

電動機駆動装置 Download PDF

Info

Publication number
JP6004991B2
JP6004991B2 JP2013116907A JP2013116907A JP6004991B2 JP 6004991 B2 JP6004991 B2 JP 6004991B2 JP 2013116907 A JP2013116907 A JP 2013116907A JP 2013116907 A JP2013116907 A JP 2013116907A JP 6004991 B2 JP6004991 B2 JP 6004991B2
Authority
JP
Japan
Prior art keywords
voltage vector
angle
energization
electric motor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013116907A
Other languages
English (en)
Other versions
JP2014236595A (ja
Inventor
敏 川村
敏 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013116907A priority Critical patent/JP6004991B2/ja
Publication of JP2014236595A publication Critical patent/JP2014236595A/ja
Application granted granted Critical
Publication of JP6004991B2 publication Critical patent/JP6004991B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、永久磁石同期型の電動機を駆動制御する電動機駆動装置に関するものである。
2値のパルス信号を出力する回転センサ(ホール素子など)を1つしか持たない永久磁石同期電動機では、パルスの周期とパルスが変化した時刻からの時間差を用いて回転子の角度を検知していた。回転子の角度が検知できると、通電により固定子が作る磁束を、回転子の現在角度より先の角度に制御でき、回転方向のトルクを生じさせ回転子を安定回転させることができる。
しかしながら、この検知方法は、回転子の回転が安定している場合に限られ、電動機の起動時には初期の回転子位置が不明であるのでこの検知方法で回転子角度を知ることができなかった。このため、起動運転時は、回転子角度によらず、回転子を1方向に回転させるように通電を切り替えながら固定子の磁束を発生させ、その回転速度を上昇させて安定回転を得た後に、上述の検知方法で回転子角度を検知していた(例えば、特許文献1,2参照)。
特開2000−83390号公報 特開2000−166287号公報
従来の電動機は以上のように構成されているので、回転子の位置を検知せずに通電周波数を上げていき回転子を回転させる方法では、しばしば脱調と呼ばれる現象が発生する。脱調は、通電による磁束の角度と回転子の角度が大きく乖離して、所望の方向にトルクを発生させることができず、電動機の回転が不安定になった状態である。
脱調の発生は、通電の周波数を上げた場合に限らない。例えば脱調を検出して通電周波数を下げたとしても、適切に周波数を下げなければ脱調から回復することは困難である。特に、回転センサを1つしか持たない場合、その出力から回転の方向を知ることができないので、回転子の角度に対して適切な磁束を発生させる通電角を決められない。このため、一度脱調が発生すると、回転を止めることなく回復するのは容易ではない。
回転センサを1つしか持たない電動機において、起動運転と同期運転を安定的に行うためには、以下に示す4つの課題があった。
(1)脱調を予知する
(2)脱調したことを検出する
(3)脱調しないように通電を切り替える
(4)脱調を防ぎつつ回転速度を高める
脱調が発生した後に、その脱調を検出して対応したのでは、回転が不安定になるので、回転子角度が通電角に再び追従する状態に回復することが難しい。従って、上記(1)脱調を予知することが望まれる。脱調は予知できたが、それでも脱調が発生してしまった場合は、起動運転または同期運転から脱調回復制御への切り替えが必要になるため、上記(2)脱調したことを検出することが望まれる。また、脱調を予知した場合に、上記(3)脱調しないように通電を切り替え、脱調の発生を未然に防止する必要がある。さらに、(4)脱調を防ぎつつ回転速度を高めることで、短時間で、安定回転領域まで回転速度を上昇させ、不安定な状態を短くすることが望まれる。
この発明は、上記のような課題を解決するためになされたもので、(1)脱調を予知する、(2)脱調したことを検出する、(3)脱調しないように通電を切り替える、(4)脱調を防ぎつつ回転速度を高めることのできる電動機駆動装置を提供することを目的とする。
この発明に係る電動機駆動装置は、永久磁石の回転子と、複数相の巻線を有する電機子と、当該回転子の回転を検出して2値出力する回転検知器とを備えた電動機を駆動制御するものであって、回転子を回転駆動する駆動速度に基づいて連続的な通電角を計算し、当該通電角に応じて電機子に通電する電圧ベクトルを切り替える電圧ベクトル生成・通電周波数制御部と、電圧ベクトル生成・通電周波数制御部で切り替える電圧ベクトルと回転検知器の2値出力とに基づいて、電機子に発生する磁束方向と回転子の界磁磁束方向との差である電圧位相角を検出し、脱調予知および脱調検出のいずれか一方、または両方を行う脱調予知・検出部とを備え、脱調予知・検出部は、電機子に通電する電圧ベクトルを切り替えるときの回転検知器の出力値から脱調予知または脱調検出を行うものである。
この発明によれば、電機子に通電する電圧ベクトルと回転検知器の出力に基づいて、電機子に発生する磁束方向と回転子の界磁磁束方向との差である電圧位相角を検出し、脱調予知および脱調検出のいずれか一方、または両方を行うようにしたので、回転子の角度を連続的に検出する検知器または複数の検知器を用いずとも、1個の回転検知器の2値出力に基づいて脱調予知および脱調検出できる。
この発明の実施の形態1に係る電動機駆動装置の構成を示すブロック図である。 実施の形態1に係る電動機駆動装置の通電パターンを示すグラフと、回転検知器の出力を示すグラフである。 実施の形態1に係る電動機駆動装置が対象とする電動機の構成を示す図である。 図3の電動機においてα−β座標上でUVW各電機子励磁コイルが電機子に作る磁束のベクトルを示す図である。 図2の通電パターンに対する電機子の電流、電圧、磁束のベクトルを示す図である。 実施の形態1に係る電動機駆動装置が行う120°通電方式における電圧ベクトルを説明する図である。 実施の形態1に係る電動機駆動装置の電圧位相角を説明する図である。 実施の形態1に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成を示すブロック図である。 実施の形態1に係る電動機駆動装置のFETブリッジの構成を示すブロック図である。 実施の形態1に係る電動機駆動装置の駆動信号を説明する図である。 実施の形態1に係る電動機駆動装置が行う120°通電方式において回転子角度がどのように通電角に追従するのかを示すグラフである。 180°通電方式における電機子の電流、電圧、磁束のベクトルを示す図である。 180°通電方式の電圧ベクトルを説明する図である。 150°通電方式の電圧ベクトルを説明する図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成を示すブロック図である。 図15の脱調予知・検出部でラッチされた回転パルス信号の波形を示すグラフである。 実施の形態1において電圧ベクトルと回転パルス信号との関係を示す図である。 実施の形態1において電圧ベクトルと回転パルス信号との関係を示す図である。 図3の電動機について、電圧ベクトルV2の開始時に、ちょうど回転パルス信号が0から1に切り替わるような状態を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の脱調予知範囲を説明する図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 実施の形態1に係る電動機駆動装置の脱調予知・検出部の構成例を示すブロック図である。 図29の脱調予知・検出部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態1に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図31の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態1に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図33の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態1に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 電圧位相角判定部を図35に示す構成にしたときの動作の様子を説明する図である。 図35の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態1に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図38の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 この発明の実施の形態2に係る電動機駆動装置が対象とする電動機の構成を示す図である。 図40の回転検知器の出力を示すグラフである。 実施の形態2に係る電動機駆動装置が対象とする電動機の構成を示す図である。 図42の回転検知器の出力を示すグラフである。 実施の形態2に係る脱調予知・検出部の構成例を示す図である。 図44の脱調予知・検出部の動作を説明するグラフである。 実施の形態2に係る脱調予知・検出部の構成例を示す図である。 図46の脱調予知・検出部の動作を説明するグラフである。 この発明の実施の形態3に係る電動機駆動装置の脱調予知・検出部の動作を説明する図である。 実施の形態3に係る電動機駆動装置の脱調予知・検出部の脱調予知範囲を説明する図である。 実施の形態3に係る電動機駆動装置の脱調予知・検出部の構成例を示す図である。 図50の脱調予知・検出部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態3に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図52の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 図52の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態3に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図55の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 この発明の実施の形態4に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図57の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 実施の形態4に係る電動機駆動装置の電圧ベクトル生成・通電周波数制御部の構成例を示す図である。 図59の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。 図59の電圧ベクトル生成・通電周波数制御部を備えた電動機駆動装置の実行結果をシミュレーションしたグラフである。
実施の形態1.
図1は、この発明の実施の形態1に係る電動機駆動装置3の構成例を示すブロック図である。この電動機駆動装置3は、3相(U,V,W相)の永久磁石同期型の電動機1を駆動して、その様子を監視するものであり、脱調予知・検出部4と、電圧ベクトル生成・通電周波数制御部5と、FET(Field Effect Transistor)ゲート駆動部6と、FETブリッジ7とを備えている。電動機駆動装置3の脱調予知・検出部4、電圧ベクトル生成・通電周波数制御部5、およびFETゲート駆動部6は、マイクロコンピュータ等の演算処理回路から構成されている。
以下の説明では、電動機1を2極3スロットに簡略化して説明するが、9極12スロットのような多極の電動機に対して本発明を適用可能であることは言うまでもない。
また、機械角はdegree[°]を使用し、電気角および図中の角度表記はradian[rad]を使用している。ただし、「120°通電」など、一般的な用語はそのままにした。
図2(a)は、矩形波120°通電方式による電機子励磁コイルU,V,Wの通電パターンを示すグラフである。120°通電方式では、電動機1の回転子(ロータ)101が機械角で60°回転する毎に電機子(ステータ)102の通電を切り替える。回転子101の角度を検出するために、この電動機1には2値の回転パルス信号を出力する1つの回転検知器2が設置されている。図2(b)に示すように、回転検知器2の回転パルス信号から回転子101の角度を推定できる。具体的には、電動機駆動装置3の電圧ベクトル生成・通電周波数制御部5が、パルスの周期を計測し、その周期の間の回転子101の角度は直線的に0〜2πまで変化すると仮定して、回転子角度θを検出する。
図3に示すように、電動機1のα軸を、電機子励磁コイルUの方向に設定し、このα軸と直交する図面上方向にβ軸を設定する。α−β軸の原点は回転子101の中心かつ電機子102の中心と一致させる。また、電機子励磁コイルは、電機子励磁コイルUから反時計方向にVとWを120°毎に配置する。
d−q軸は、回転子101に固定された座標であり、d軸は回転子101の磁束の方向、つまり回転子101を構成する永久磁石のS極からN極に向かう方向である。q軸は、d軸から反時計方向に90°回転させた方向である。d軸とα軸の間の角度を回転子角度θとし、反時計方向を正にする。
このようにd−q軸をとり、q軸方向に電機子102の磁束を発生させる電流をq軸電流、d軸方向に電機子102の磁束を発生させる電流をd軸電流と定義する。同様に、q軸電圧、d軸電圧を定義する。
図4は、電機子102に発生する磁束の方向を示す図である。図3で説明したようにα−β座標を設定した場合、外周側から各電機子励磁コイルU,V,Wへ電流を流し込んだときに作られる磁束は、図4の矢印の方向になる。各電機子励磁コイルU,V,Wの電流の流れる向きを逆にすると、磁束の方向も逆になる。従って、図2の各通電パターンに対する電流、電圧、それに対応する磁束は、図5に太い矢印で示す6本のベクトルV1〜V6になる。
ここで、図6および図7を用いて、120°通電方式における電機子102の電圧ベクトルV1〜V6を説明する。規格化UVW座標は、電機子102の電圧ベクトルを、電機子102に印加する電圧で割って表現する。静止座標角ψは、α軸から見た各電圧ベクトルの角度であり、−30°から60°毎の値をとる。電圧位相角δは、d軸と電圧ベクトルのなす角度である。
電圧ベクトル生成・通電周波数制御部5は、上述したように、回転検知器2の回転パルス信号から回転子角度θを検出することができるが、この検出方法は回転子101の回転が安定している場合に限られるため、回転が安定していない起動時はこの検出方法で正確な回転子角度θを検出することができない。このため、電圧ベクトル生成・通電周波数制御部5は、電動機1の起動運転時、回転子角度θによらず電圧ベクトルV1〜V6を1方向に回転させるように通電を切り替えながら電機子102に発生する磁束を回転させ、電圧ベクトルV1〜V6を切り替える速度(通電周波数)を上昇させていき、安定回転可能な所定の回転速度に到達すると同期運転に切り替えた後に、上記の検出方法で回転子角度θを検出する。このように回転子角度θを検出せずに通電を切り替えて回転子101を回転させる起動運転時には、しばしば脱調が発生する。
ここで、図8に、電圧ベクトル生成・通電周波数制御部5のうち、起動運転を行う構成を示す。電圧ベクトル生成・通電周波数制御部5において、駆動速度制御部501は、回転子101を回転駆動する駆動速度を出力する。上述したようにこの駆動速度は、起動時から回転が安定するまでの間、徐々に上昇する値である。通電角計算部502は、駆動速度を積算して通電角を求め、脱調予知・検出部4へ出力する。通電パターン計算部503は、通電角計算部502の求めた通電角π/3ごとに電圧ベクトルV1〜V6を決定し、電圧ベクトルの番号を脱調予知・検出部4へ出力すると共に、電圧パターンV1〜V6に切り替えるタイミングを表す通電パターンをFETゲート駆動部6へ出力する。
入力ポート510,511から入力を行う脱調予知フラグおよび脱調検出フラグについては後述する。
図9は、電動機1への通電を切り替えるためのFETブリッジ7のブロック図である。図10は、FETブリッジ7の駆動信号を説明するブロック図である。
FETゲート駆動部6は、電圧ベクトル生成・通電周波数制御部5から通電パターンが入力されると、通電パターンで規定される電圧ベクトルV1〜V6に応じてマルチポートスイッチ601を切り替えてFETブリッジ7のFET701〜FET706を制御し、図2に示したように電動機1への通電を切り替えてゆく。なお、図示例では6個のMOS−FETを使用してFETブリッジ7を構成しているが、IGBT等の他のスイッチング素子を使用しても構わない。
図10のV1〜V6は、FET701〜706の駆動信号であり、[FET701,FET702,FET703,FET704,FET705,FET706]それぞれについて、1なら短絡、0なら開放となる。電圧ベクトルV1〜V6の順に駆動信号を切り替えることにより、電機子102に励磁される磁束ベクトルが図5に示すV1〜V6の順に発生して反時計方向に回転する。この回転方向を正とする。
回転子101は、回転子101の永久磁石が作る界磁磁束と電機子102の発生する磁束が一致する方向にトルクを受ける。このトルクにより回転子101は回転する。先ほど定義したq軸電流は、回転子101に生じる正方向トルクの大きさに比例する。
図11は、120°通電方式において回転子角度がどのように通電角に追従するのかを示すグラフであり、電機子102に印加される電圧の通電周波数を上昇させながら測定した結果を示す。図11(a)は回転子101の回転速度の測定値と通電周波数から求めた計算値、図11(b)は回転子101の角度の測定値(回転子角度)と通電周波数から求めた計算値(通電角)、図11(c)は脱調予知・検出部4の脱調予知フラグ(1が脱調予知、0が脱調予知なし)、図11(d)はd軸電流とq軸電流、図11(e)はd軸電圧とq軸電圧である。通電周波数を上昇させてゆくと、時刻T1で脱調し、回転子101が通電角に追従できなくなる様子が分かる。脱調が始まると、q軸電流が負になり、回転方向のトルクが得られなくなっている。
次に、脱調予知・検出部4による脱調予知・検出方法について説明する。
なお、以下では、FETブリッジ7を用いて矩形波120°通電方式で電動機1を駆動する場合を例にして説明を進めるが、通電方式は120°通電に限定されるものではない。例えば図12に、180°通電方式における電機子102の磁束ベクトルベクトルの図を示し、図13に同じく180°通電方式の通電パターンを示す。また、電機子102の磁束ベクトルベクトルの図は省略するが、図14に120°通電方式と180°通電方式を組み合わせた150°通電方式の通電パターンを示す。電動機駆動装置3は、これらの電圧ベクトルに基づいて電動機1を駆動する場合でも、静止座標角ψの違いを考慮することで120°通電方式と同じ扱いができる。
脱調は、電機子102が作る磁束方向と、回転子101が作る界磁磁束方向との差が大きくなると発生する。回転検知器2が複数ある場合、連続的に回転子101の角度を検出できる検知器を使用する場合には、複数の回転検知器2の回転パルス信号から回転子角度を高精度に検出し、その角度に合わせて電機子102に通電する電圧ベクトルの方向を操作できるので、脱調が発生しない。一方、本実施の形態1の電動機1ように、回転検知器2が1個の場合には、回転子角度を正確に検出できないので、脱調を回避する手段が必要になる。
ただし、回転検知器2が1個の場合であっても、断続的ではあるが回転子101の角度を検出できる。また、電機子102に与えている電圧ベクトルV1〜V6は電圧ベクトル生成・通電周波数制御部5が把握している。そこで、回転検知器2の2値出力と電機子102の電圧ベクトルV1〜V6の組み合わせから、回転子角と通電角の差を断続的に検出し、脱調を予知する。そして、電圧ベクトル生成・通電周波数制御部5がその結果に基づいて電動機1への通電を制御して脱調を回避する。
図15は、脱調予知・検出部4の構成を示すブロック図である。
回転検知器2は、図3に示すように、電圧ベクトルV5と同じ角度(静止座標角ψ=7π/6)に設置され、回転子101のS極が近づくと1を出力し、N極が近づくと0を出力する。脱調予知・検出部4において、入力ポート401から回転検知器2の回転パルス信号の入力を行う。電圧ベクトル生成・通電周波数制御部5がFETゲート駆動部6へ電圧ベクトルV1〜V6の番号を出力する際、脱調予知・検出部4にもその番号を出力し、入力ポート402から入力する。
電圧ベクトル検知部411は、入力ポート402に電圧ベクトルV1が入力されたことを検知し、トリガ出力部421がラッチタイミングを示すトリガ信号を出力し、トリガ信号を受けたラッチ部431が電圧ベクトルがV1に切り替わったときの回転パルス信号をラッチする。同様に、電圧ベクトル検知部412〜416、トリガ出力部422〜426、およびラッチ部432〜436によって、電圧ベクトルV2〜V6に切り替わったときの回転パルス信号のラッチを行う。
図16に、ラッチ部431〜436にラッチされた回転パルス信号(以下、ラッチパルス信号)の波形を示す。なお、このラッチパルス信号は、図11と同時に測定されたものである。図16(a)〜図16(f)では、電圧ベクトルV1〜V6それぞれの立ち上がりでラッチされた回転パルス信号を表示している。図16(g)は図11(c)と同じ脱調予知フラグである。このモデルでは、図3で示した位置に回転検知器2を配置したが、回転検知器2の配置は自由でよく、回転子角度θに対する回転検知器2の出力位相は任意に設定できる。
このようにすると、通電を切り替えるタイミングで回転検知器2の出力をラッチすればよいので、脱調予知・検出のために新たなタイミングで動作させる処理が不要になる。
次に、電圧ベクトルと回転パルス信号の関係を考える。
まず、図16において脱調していない領域のラッチパルス信号に注目してみる。電圧ベクトルV1,V4では、ラッチパルス信号#1,#4が1または0で不定である。電圧ベクトルV2,V3では、ラッチパルス信号#2,#3が0に確定している。電圧ベクトルV5,V6では、ラッチパルス信号#5,#6が1に確定している。
この図は、各電圧ベクトルV1〜V6の印加開始時における回転検知器2の出力値であるから、従って、電圧ベクトルV1〜V6と回転パルス信号との時間関係は図17のようになる。電圧ベクトルV1〜V4の切り替え速度を速くしてゆくと(通電周波数を上げてゆくと)、回転子101が通電角に追従できなくなることで回転検知器2の出力は遅れてゆくと考えられ、図17の矢印のようにパルスが右側にずれて行くはずである。回転子101が通電角に追従できなくなった状態を示したのが、図18である。この状態では、電圧ベクトルV1,V2,V6で回転パルス信号が1になり、電圧ベクトルV3,V4,V5で0になる。
図19に、電圧ベクトルV2の開始時に、ちょうど回転パルス信号が0から1に切り替わるような状態を示す。この状態では、電機子102が作る磁束ベクトルと回転子101の永久磁石が作る界磁磁束ベクトルの位相差(電圧位相角δ2)は、π/2になる。この状態でも、回転子101には正回転方向のトルクが発生する。しかし、これ以上回転子101の回転が遅れると、発生トルクは急激に低下して、やがて逆回転方向のトルクになり、完全に脱調してしまう。従って、電圧ベクトルV2の通電開始時に回転パルス信号が0なら脱調していない正常な起動状態、1なら未だ脱調はしていないが脱調しそうな状態と判別できる。さらに回転子101の回転が遅れると脱調してしまった状態と判別できる。
このように、脱調予知・検出部4の脱調判定部440が、電動機1に通電する電圧ベクトルと回転検知器2の出力を比較することで、脱調直前の位相差を検出することができ、脱調を予知できる。
以下では、未だ脱調はしていないが脱調しそうな状態を判定することを脱調予知と呼び、脱調が発生してしまった状態を判定することを脱調検出と呼ぶ。
なお、この例では、電圧ベクトル印加開始時における回転検知器2の出力をラッチして脱調予知に使用するが、印加終了時または印加中の回転検知器2の出力を使用しても同様の判定が可能である。印加終了時に脱調を判定すれば、低速時でも回転子101の振動の影響を受けにくい。
次に、脱調判定部440による脱調予知の具体例を説明する。
ここでは、電圧ベクトルV2を電動機1に通電したときの電圧位相角δ2について考察する。図19のように回転検知器2を配置すると、回転検知器2の回転パルス信号が1から0に変化したときに、界磁磁束の方向は−2π/6になる。電圧ベクトルV2の方向は、図6の表よりπ/6である。このことから電圧ベクトルV2の印加時に、回転検知器2の回転パルス信号が1であれば、δ2>π/2である。一方、回転パルス信号が0であればδ2<π/2である。本実施の形態1では、回転検知器2の出力が切り替わる回転子角度θから脱調を判定するので、図19の配置例の場合にはπ/2<δ2<2π/3の範囲で脱調を予知できる。ただし、回転検知器2の回転パルス信号が変化する回転子角度θを、電圧位相角δ2がπ/2となる角度に限定する必要はない。しかし、δ2<0になるような角度では回転子101にトルクが発生しない。また、δ2>πでは完全に脱調してしまっている。従って、回転検知器2の出力変化が、0<δ2<πの範囲で切り替わるように構成するとよい。
図20および図21は、1つの電圧ベクトル通電時の回転検知器2の出力から脱調を予知する構成例を示す図である。図20では、脱調判定部440が論理否定部441を有し、電圧ベクトルV5の通電開始時に回転パルス信号をラッチしたラッチパルス信号#5を論理否定部441で反転させて脱調予知フラグとして出力する。既に図18で説明した通り、ラッチパルス信号#5の反転結果が1なら脱調予知、0なら予知なし(正常)である。
図21では、脱調判定部440が、電圧ベクトルV2の通電開始時に回転パルス信号をラッチしたラッチパルス信号#2をそのまま脱調予知フラグとして出力しており、ラッチパルス信号#2が1なら脱調予知、0なら正常である。この電圧ベクトルV2は、電圧ベクトルV5とは逆方向に通電を行う電圧ベクトルであり、回転パルス信号も異なる値になっている。
図22は、2つの電圧ベクトル通電時の回転検知器2の出力から脱調を予知する構成例を示す図である。
脱調して回転子101が完全に停止し、回転検知器2の回転パルス信号が常に1の場合、図20の構成では脱調を予知できない。また、回転パルス信号が常に0の場合、図21の構成では脱調を予知できない。
そこで、図22では、図20および図21の構成を組み合わせて脱調判定部440にする。即ち、論理否定部442でラッチパルス信号#2を反転させ、否定論理積部443でラッチパルス信号#5と反転したラッチパルス信号#2との否定論理積をとって、その結果を脱調予知フラグとして出力する。このようにすると、回転検知器2の出力が1または0で停止している状態を脱調として検出できる。さらに、図20および図21の構成では回転子101の1回転中に脱調予知の判定は1回のみであったが、図22の構成では1回転中に2回、つまり電圧ベクトルV2,V5通電時に判定を行う。
図23〜図25は、複数の電圧ベクトル通電時の回転検知器2の出力から、脱調予知範囲を拡大する構成例を示す図である。
図23の脱調判定部440では、ラッチパルス信号#2,#3を論理否定部444,445でそれぞれ反転し、否定論理積を否定論理積部446で演算して、1なら脱調予知、0なら正常の脱調予知フラグを出力する。
図24の脱調判定部440では、ラッチパルス信号#5,#6の否定論理積を否定論理積部447で演算する。
図25では、図23および図24の構成を組み合わせて脱調判定部440にする。即ち、ラッチパルス信号#5,#6および論理否定部444,445で反転したラッチパルス信号#2,#3の否定論理積を否定論理部458で演算して、脱調予知フラグを出力する。脱調予知範囲は、図23および図24の構成例と同じであるが、図25では脱調予知の判定頻度が倍になる。
図26は、脱調予知範囲を説明する図である。回転検知器2の回転パルス信号はπごとに変化するので、図20〜図22の構成例では脱調予知を判定する電圧位相角δの幅もπになっていた。例えば電圧ベクトルV2通電開始時の回転パルス信号で脱調予知する場合(図21)、図26に回転パルス信号の波形に重ねて示した○(脱調予知なし)、△(予知不能)、×(脱調予知)の判定結果のように、脱調予知の範囲は5π/6<δ<11π/6である。
これに対し、例えば電圧ベクトルV5,V6について脱調予知の否定論理積をとると(図24)、脱調予知の範囲は5π/6<δ<13π/6に拡大する。そのため、より安定して電動機1を起動できる。
図27は、複数の電圧ベクトル通電時の回転検知器2の出力から、脱調予知の判定頻度を上げる構成例を示す図である。図27の脱調判定部440では、前段の論理積部449a〜449dに回転パルス信号とトリガ出力部422〜426の信号を入力し、後段の論理積部449e〜449hには論理否定部449iで反転した回転パルス信号とトリガ出力部422〜426の信号を入力する。論理積部449a,449b,449g,449hのいずれかの出力が1になると、論理和部449kがフリップフロップ449lをセット(S)する。反対に、論理積部449e,449f,449c,449dのいずれかの出力が1になると、論理和部449jがフリップフロップ449lをリセット(R)する。
例えば電圧ベクトルV2通電開始時、トリガ出力部422がトリガ信号#2を出力したときに回転パルス信号が1ならフリップフロップ449lをセット(S)、回転パルス信号が0ならリセット(R)する。このようにして、電圧ベクトルV2,V3,V5,V6の各通電開始時に脱調予知の判定を行い、いずれか1つでも脱調が予知されるとフリップフロップ449lから脱調予知フラグを出力する。
これにより、回転子101の1回転中に脱調予知の判定を4回行うので、脱調の発生を早い段階で予知することができ、より確実に脱調を防止できる。さらに、脱調防止のために回転子101の回転数が制御される頻度が増えるので、回転数の変動が少なくなる。
図28は、電圧ベクトルごとに異なる角度を閾値に用いて、脱調の程度を多段階に判定する構成例を示す図である。図28の脱調判定部440は、電圧ベクトルV2通電開始時のラッチパルス信号#2を脱調予知フラグ(1なら脱調予知、0なら正常)として出力し、脱調判定部440aは、電圧ベクトルV3通電開始時のラッチパルス信号#3を脱調検出フラグ(1なら脱調検出、0なら正常)として出力する。つまり、電圧ベクトルV2通電開始時の通電角に対する回転子101の遅れ(位相ずれ)がπ/2のとき脱調を予知し、電圧ベクトルV3通電開始時の通電角に対する回転子101の遅れ(位相ずれ)が5π/6のとき脱調している状態を検出するというように、通電角に対する回転子101の遅れ度合に基づいて脱調の程度を2段階に判定している。
以上の説明では主に脱調予知について説明してきたが、以下では脱調がすでに発生してしまったことを検出する。
図29は、脱調予知・検出部4の脱調検出のための構成を示すブロック図である。また、図30に、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。
図29に示す脱調予知・検出部4において、入力ポート450から回転検知器2の回転パルス信号の入力を行い(例えば、図30(d)に示す波形)、入力ポート451から電圧ベクトル生成・通電周波数制御部5の通電角の入力を行う(例えば、図30(e)に示す波形)。パルス検出部452は、回転パルス信号の変化を検出して、脱調判定部454に通知する。通電周期検出部453は、通電角の1周期を検出して、脱調判定部454に通知する。脱調判定部454は、通電角の1周期中に回転パルス信号が変化しない場合、脱調している状態と判定して、脱調検出の脱調検出フラグ(脱調検出なら1、正常なら0)を出力する。
脱調判定部454の出力する脱調検出フラグを、図30(c)に示す。なお、この例では、脱調を検出しても復帰のための制御は行っていない。
起動運転を開始して通電周波数を上げている時刻T2において、電動機1が脱調し、回転子角度θの測定値が計算値に追従しなくなっている。この時刻T2のすぐ後に、脱調判定部454が通電角1周期中に回転パルス信号が変化しないことを検出して、脱調検出フラグ=1を出力している。
なお、図29の構成例では、通電角の1周期を検出する構成にしたが、これに限定されるものではなく、電圧ベクトルV1〜V6の1回転を検出して、その1回転中に回転パルス信号が変化しなければ脱調と判定する構成にしてもよい。
次に、脱調を予知した場合の回避方法を説明する。図31に、図8に示した駆動速度制御部501の内部構造を示す。図32は、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。
脱調予知・検出部4の脱調予知フラグ(例えば、図32(c)に示す波形)は、電圧ベクトル生成・通電周波数制御部5の入力ポート510に入力される。駆動速度制御部501は、脱調予知フラグの値によって加速値501a(例えば、50rad/sec)と減速値(例えば、−50rad/sec)を切り替える切り替え部501cと、切り替え部501cで切り替えた値を積算して駆動速度を求める積分部501dとを有する。これにより、駆動速度制御部501は、脱調予知フラグが0である間は駆動速度を50rad/secで加速し、脱調を予知して1になると50rad/secで減速する。
駆動速度制御部501の出力する駆動速度を、図32(a)に示す。起動運転を開始して駆動速度を50rad/secで加速している(つまり、通電周波数を上げている)時刻T3において、脱調が予知されると駆動速度制御部501が駆動速度を減速し、その後時刻T4で正常に戻ると再び駆動速度を加速している。このように、脱調予知時に一時的に駆動速度を減速することにより、脱調を回避できる。
次に、脱調を検出した場合の復帰方法を説明する。図33に、図8に示した駆動速度制御部501の内部構造を示す。図34は、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。ただし、図34では、図32より負荷の慣性が大きく、より脱調し易い状況をシミュレーションした。
脱調予知・検出部4の脱調検出フラグ(例えば、図34(d)に示す波形)は、電圧ベクトル生成・通電周波数制御部5の入力ポート511に入力される。駆動速度制御部501の積分部501dは、脱調検出フラグが0から1になると、駆動速度を初期化して、起動運転の開始時と同じ初期速度501eにリセットすることで、電動機1を再起動して脱調から回復する。
図34において、時刻T5で脱調が検出されると、駆動速度制御部501が駆動速度をリセットし、起動運転開始時の値に戻している。このように、脱調検出時に駆動速度をリセットすることにより、脱調から回復できる。
なお、図34(b)のグラフでは、脱調から復帰した後も回転子角度θの測定値と計算値が一致していないが、これは駆動速度リセットの際に回転子角度θの計算値をリセットしていないことにより積算の回転数がずれて計算されているためであり、1回転中の回転子101の角度は通電角に追従している。
脱調を予知・検出した場合の通電制御方法は、上記の方法に限定されるものではない。
例えば、脱調を予知した場合に、脱調が予想される電圧ベクトルを発生しないように通電の変更を停止してもよい。この場合の構成例を図35に示す。
図35に示す電圧ベクトル生成・通電周波数制御部5は、新たに、通電角計算部502(図8に示す)で計算した通電角の入力を行う入力ポート520と、回転検知器2の回転パルス信号の入力を行う入力ポート521と、電圧位相角判定部522と、通電角制限部523とを備える。
電圧位相角判定部522において、通電角が5π/36以上であることを角度判定部522aで検出し、通電角が増大していることを立ち上がり検出部522bで検出する。このとき、回転パルス信号が1であれば論理積部522cがフリップフロップ522dをセット(S)して、論理和部522jを介して通電角制限部523の切り替え部523bの出力を駆動速度「0」523aにすることにより、通電角計算部502の計算する通電角を固定する。フリップフロップ522dは回転パルス信号が0でリセット(R)されるので、回転パルス信号が0になると切り替え部523bが駆動速度制御部501の出力に切り替える。
一方、通電角が23π/36以上であることを角度判定部522fで検出し、通電角が増大していることを立ち上がり検出部522gで検出する。このとき回転パルス信号が0であれば論理積部522hがフリップフロップ522iをセット(S)して、論理和部522jを介して通電角制限部523の出力する駆動速度を0にし、通電角を固定する。回転パルス信号が1になると切り替え部523bが駆動速度制御部501の出力に切り替える。
駆動速度制御部501は、脱調予知フラグが0である間は駆動速度を50rad/secで加速し、脱調を予知して1になると50rad/secで減速する構成は図8等と同じであるが、これに加えて、通電角制限部523で駆動速度を0にして通電角を固定している間に、論理和部501fが減速値501bに切り替えて駆動速度を減速させる。
このように電圧位相角判定部522を構成したときの動作の様子を、図36に示す。
電圧位相角判定部522では、フリップフロップ522dまたは522iのいずれかがセットされると、論理和部522jの出力が1になるので、通電角制限部523の切り替え部523bが切り替わり駆動速度が駆動速度制御部501の出力から「0」523aになる。図36の時刻t1,t3では、入力ポート520の通電角が、角度判定部522aに設定された閾値である5π/36を超えるときに、入力ポート521の回転パルス信号が0であるので、フリップフロップ522dはセットされることがない。時刻t2では、入力ポート520の通電角が、角度判定部522fに設定された閾値23π/36を超えるときに、入力ポート521の回転パルス信号が1であるので、フリップフロップ522iはセットされることがない。ところが、時刻t4では、入力ポート520の通電角が、角度判定部522fの閾値23π/36を超えるときに、入力ポート521の回転パルス信号が0である。このときにフリップフロップ522iはセットされ、電圧位相角判定部522の出力は1になる。すると、通電角制限部523の出力は0に切り替わり、駆動速度は0になる。入力ポート520の通電角が1になると、フリップフロップ522iはリセットされ、駆動速度は再び駆動速度制御部501の出力に戻る。
図37に、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。図37(a),(c)に示すように、脱調予知フラグが0の状態では駆動を増加させようとするが、通電角が5π/36を超えるときに回転パルス信号が1である間、または通電角が23π/36を超えるときに回転パルス信号の出力が0である間は、駆動速度が0になるので、電圧ベクトルの切り替えを行わないようにして、脱調を回避する。このようにして、脱調を発生させることなく電動機1を駆動できる。
さらに、図31、図33および図35の構成例では、積分部501dのフィードバックゲインである加速値501aと減速値501bを固定していたが、フィードバックゲインを駆動速度に応じて変更してもよい。この場合の構成例を図38に示す。
図38に示す電圧ベクトル生成・通電周波数制御部5の駆動速度制御部501は、新たに、加減速制御部501gと、減速部501hとを備える。
加減速制御部501gは、駆動速度とフィードバックゲインの関係を規定したテーブルであり、駆動速度が小さいときにはフィードバックゲインを大きくして応答性を改善し、通常使用する駆動速度(同期運転時の速度など)の大きい領域ではフィードバックゲインを小さくして回転を安定させる。正のフィードバックゲインは加速値として切り替え部501cに入力され、減速部501hで負にしたフィードバックゲインは減速値として切り替え部501cに入力される。
この図38の構成例でも、脱調予知フラグが0のときは加速し、1のときは減速する。さらに加減速制御部501gが、加減速する大きさを、積分部501dの駆動速度に応じて変更している。
図39に、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。加減速値を変更したときの図39(a)の回転子速度を、加減速値を固定にしたときの図32(a)の回転子速度と比較すると、低速時の振れが小さく、起動運転時の応答が速くなっている。
なお、この説明では駆動速度のフィードバック制御として積分制御を行う例を示したが、これに限定されるものではなく、後述する図52のようにPID制御などを用いて加減速を連続的に行う場合は比例、積分、微分などのゲインを回転数に対してスケジューリングすればよい。
以上より、実施の形態1によれば、電動機駆動装置3は、永久磁石の回転子101と、複数相の巻線を有する電機子102と、回転子101の回転を検出して2値出力する回転検知器2とを備えた電動機1を駆動制御する装置であって、回転子101を回転駆動する駆動速度に基づいて連続的な通電角を計算し、当該通電角に応じて電機子102に通電する電圧ベクトルを切り替える電圧ベクトル生成・通電周波数制御部5と、電圧ベクトル生成・通電周波数制御部5で切り替える電圧ベクトルと回転検知器2の2値出力とに基づいて、電機子102に発生する磁束方向と回転子101の界磁磁束方向と差である電圧位相角を検出し、脱調予知および脱調検出のいずれか一方、または両方を行う脱調予知・検出部4とを備える構成にした。このため、回転子101の角度を連続的に検出する検知器または複数の検知器を用いずとも、通電角と回転子角の差を検出でき、脱調予知および脱調検出が可能である。
また、実施の形態1によれば、脱調予知・検出部4は、電機子102に通電する電圧ベクトルを切り替えるときの回転検知器2の出力値から脱調予知または脱調検出を行う構成にした。通電を切り替えるタイミングは、電圧ベクトル生成・通電周波数制御部5が制御しているので、脱調予知・検出部4がこのタイミングで回転検知器2の出力をラッチすることは容易である。120°矩形波および矩形波180°などの通電方法では断続的な通電角(つまり、電圧ベクトルV1〜V6など)を使用し、通電を行った角度と回転検知器2の出力のパターンから通電角と回転子角の差を検出することにより、脱調予知および脱調検出が可能である。
また、実施の形態1によれば、回転検知器2は、第1の電圧ベクトル(例えば、電圧ベクトルV5)が電機子102に通電されている状態において2値出力の切り替わりが電圧位相角0〜πの間で発生する構成であって、脱調予知・検出部4は、第1の電圧ベクトル通電時の回転検知器2の出力値に基づいて脱調予知または脱調検出を行う構成にした。このため、特定の電圧ベクトルを印加するタイミング、または特定の電圧ベクトルへの通電切り替え時に回転検知器2の出力をラッチすることで、単純な構成で、脱調予知および脱調検出ができる。
また、実施の形態1によれば、脱調予知・検出部4は、第1の電圧ベクトル(例えば、電圧ベクトルV5)通電時の回転検知器2の出力値に基づいて脱調予知または脱調検出を行うと共に、第1の電圧ベクトルとは逆方向に通電を行う第2の電圧ベクトル(例えば、電圧ベクトルV2)通電時に回転検知器2が出力する、第1の電圧ベクトル通電時の出力値とは異なる出力値に基づいて脱調予知または脱調検出を行う構成にした。このため、脱調予知および脱調検出の頻度を上げることができる。また、回転検知器2の出力値が異なる電圧ベクトルで脱調を判定することにより、電動機1の完全停止を検出できる。
また、実施の形態1によれば、脱調予知・検出部4は、第1の電圧ベクトル(例えば、電圧ベクトルV5)通電時の回転検知器2の出力値に基づいて脱調予知または脱調検出を行うと共に、第1の電圧ベクトルに隣接する角度である第3の電圧ベクトル(例えば、電圧ベクトルV6)通電時の回転検知器2の出力値に基づいて脱調予知または脱調検出を行う構成にした。このため、脱調予知および脱調検出を行う角度の幅を広げることができる。
また、実施の形態1によれば、脱調予知・検出部4は、第1の電圧ベクトル(例えば、電圧ベクトルV2)通電時の回転検知器2の出力値に基づいて脱調予知または脱調検出を行うと共に、第1の電圧ベクトルとは異なる通電状態となる第4の電圧ベクトル(例えば、電圧ベクトルV3)通電時の回転検知器2の出力値に基づいて脱調予知または脱調検出を行う構成にした。このため、複数の閾値で異なる脱調の程度を判定することができる。
また、実施の形態1によれば、脱調予知・検出部4は、電圧ベクトルの1回転中に回転検知器2の出力値が切り替わらなかった場合に脱調が発生したことを検出する構成にした。このため、脱調の発生後、早期にこの脱調を検出できる。
また、実施の形態1によれば、電圧ベクトル生成・通電周波数制御部5は、脱調予知・検出部4で脱調の発生を予知していない間は駆動速度を加速し、脱調の発生を予知している間は駆動速度を減速する構成にした。このため、脱調を回避しながら電動機1を加速できる。
また、実施の形態1によれば、電圧ベクトル生成・通電周波数制御部5は、現在の駆動速度に応じて、駆動速度の加速度または減速度を変更する構成にした。あるいは、現在の駆動速度に応じて、フィードバックゲインを変更する構成にしてもよい。これらにより、低速回転時の振れが小さく、起動時の応答が速くなる。
また、実施の形態1によれば、電圧ベクトル生成・通電周波数制御部5は、脱調予知・検出部4で脱調が発生したことを検出した場合に駆動速度を起動開始時の初期速度にリセットする構成にした。脱調してしまったときに初期速度から加速しなおすことで、脱調から回復できる。
また、実施の形態1によれば、電圧ベクトル生成・通電周波数制御部5は、脱調予知・検出部4で脱調の発生を予知している間、電圧ベクトルの切り替えを行わない構成にした。このため、脱調を防止することができる。
実施の形態2.
本実施の形態2に係る電動機駆動装置3の構成は、図面上は上記実施の形態1の電動機駆動装置3の構成と同じであるため、図1〜図39を援用する。ただし、本実施の形態2では、回転検知器2として、検出体(ターゲット)の位置を検出する近接スイッチ、フォトインタラプタなどを使用する。
図40(a)および図40(b)に、本実施の形態2に係る電動機駆動装置3が駆動する電動機1の回転子101を示す。図示例では、回転検知器2として近接スイッチ201,203を使用し、回転子101のシャフト103に固定した検出体202,204の位置を検出する。図40(a)では、検出体202が永久磁石のS極と一致するように取り付けられており、近接スイッチ201は、検出体202が近づいたとき、つまりS極検知時に1を出力し、検出体202が遠ざかったとき、つまりN極検知時に0を出力する。
他方、図40(b)では、検出体204が検出体202よりΔθだけずれた位置に取り付けられている。
電圧ベクトル生成・通電周波数制御部5は、図41に示すように、近接スイッチ201または近接スイッチ203の回転パルス信号の1周期を電気角2πとし、その周期の間の回転子101の角度は直線的に0〜2πまで変化すると仮定して、回転子角度θを推定できる。
ただし、検出体202と比べて、検出体204の取り付け角度をΔθだけずらしているため、脱調予知・検出部4が脱調を予知する電圧位相角δをΔθだけ微調整できる。例えば脱調の発生をより早い段階で予知する側に検出体204をずらして取り付けることにより、早い段階で脱調を予知して回転子101の回転数制御等に反映でき、より確実に脱調を防止できる。
さらに、図40では、π/2ごとに近接スイッチ201,203の回転パルス信号の1,0を切り替えていたが、この比率を変更することで、脱調予知・検出部4の予知する脱調の程度を多段階にすることができる。例えば、図42に示すように検出体206の周方向の幅を短くして、図43に示すように近接スイッチ205の回転パルス信号の1,0の比率を変更する。
図44は、図42に示す近接スイッチ205の回転パルス信号を用いて、脱調の程度を2段階に判定する脱調判定部440,440aの構成例を示す図である。図44の脱調判定部440は、電圧ベクトルV2通電開始時のラッチパルス信号#2を脱調予知フラグ(1なら脱調予知、0なら正常)として出力する。他方、脱調判定部440aは、電圧ベクトルV5通電開始時のラッチパルス信号#5を論理否定部460で反転して、脱調検出フラグ(1なら脱調検出、0なら正常)として出力する。
図45(a)に示すように、近接スイッチ201の回転パルス信号の0,1をπ/2ごとに切り替えた場合、ラッチパルス信号#2と反転したラッチパルス信号#5は0,1の切り替わる角度が同じになるので、予知する脱調の程度も同じになる。
一方、図45(b)に示すように、近接スイッチ205の回転パルス信号は0,1の比率が異なるので、ラッチパルス信号#2と反転したラッチパルス信号#5は0,1の切り替わる角度も異なる。従って、脱調の程度を、脱調予知、脱調検出の2段階で判定できる。
図46は、電圧ベクトルごとに異なる角度を閾値に用いて、脱調の程度を4段階に判定する脱調判定部440,440a〜440cの構成例を示す図である。また、図47に電圧ベクトルV2,V3,V5,V6の判定閾値を説明する図を示す。図示例のように、図44の脱調判定部440,440aに対して上記実施の形態1の図28の構成例を組み合わせることで、電圧ベクトルV2,V3,V5,V6通電開始時の脱調判定の閾値となるラッチパルス信号#2,#3,#5,#6の切り替わりのタイミングが異なるので、脱調の程度を4段階に判定できる。
以上より、実施の形態2によれば、回転検知器2は、回転子101と一体に回転する検出体(例えば、検出体204)と、検出体の接近を検出して2値出力する検知器(例えば、近接スイッチ203)とから構成され、検出体は、回転子101の永久磁石の磁極からずらして取り付けられた構成にした。このため、脱調予知および脱調検出する通電角と回転子角の角度差を調整できる。
また、実施の形態2によれば、回転検知器2は、検出体(例えば、検出体206)が永久磁石の磁極と異なる大きさであって、検知器(例えば、近接スイッチ205)の出力する2値の長さの比率が異なる構成にした。このため、脱調予知および脱調検出する通電角と回転子角の角度差を2段階にして、さらにそれぞれを調整できる。
実施の形態3.
本実施の形態3に係る電動機駆動装置3および電動機1の構成は、図面上は上記実施の形態1,2の電動機駆動装置3および電動機1と同じであるため、図1〜図47を援用する。
電動機駆動装置3において、回転検知器2の回転パルス信号が0から1に変化するときと、1から0に変化するときには、α軸からの回転子101の角度(回転子角度θ)が分かる。そのときに通電している電圧ベクトルのα軸からの角度(静止座標角ψ)を知ると、図6で定義した電圧位相角δが分かる。120°通電方式の場合、図6のように静止座標角ψはπ/3毎の離散値になる。電圧ベクトルV1〜V6は、電圧ベクトル生成・通電周波数制御部5が時間管理しながらFETゲート駆動部6へ発しているので、これらの電圧ベクトルV1〜V6の間の静止座標角ψを補間することは容易である。
そこで、本実施の形態3の脱調予知・検出部4は、静止座標角ψを検出および補間した後に電圧位相角δを演算し、この電圧位相角δに閾値を設けることで脱調予知および脱調検出を行う。
図48は、本実施の形態3に係る電動機駆動装置3の脱調予知・検出部4の動作を説明する図である。電動機駆動装置3は、上記実施の形態1,2と同様に図6に基づいて電動機1を駆動する。図7で説明したように、回転子101のd軸が電機子102のα軸と一致する角度を回転子角度θ=0とする。図19によると、電動機1が正転している場合には、回転子角度θ=−π/3で回転検知器2の出力が1から0に切り替わり、回転子角度θ=2π/3で0から1に切り替わる。それぞれの時点における静止座標角ψの値をψ10,ψ01とすると、それぞれの時点での電圧位相角δは、δ10=ψ10+π/3、δ01=ψ01−2π/3になる。
なお、本実施の形態3では、矩形波120°通電方式で電動機1を駆動する場合を例にして説明を進めるが、離散的な通電方式に限定されるものではなく、正弦波駆動方式においても同様の方法で電圧位相角δを検出することができる。また、この方法は、安定して回転している同期運転時に行う、回転検知器2のパルス周期から電圧位相角δを求める方法と同等の精度で電圧位相角δを検出できるので、起動運転と同期運転とで回転子角度θの検出方法を切り替える必要がなくなる。
次に、電圧位相角δに対する静止座標角ψの脱調予知範囲を考える。図48に示したように、静止座標角ψの値は、0〜2πの範囲でのこぎり波状に変化する。
図49に示すように、脱調と判定する電圧位相角δに対する静止座標角ψ10の最小値をψ10min、最大値をψ10maxとする。同様に、ψ01min,ψ01maxを設定する。ψ10とψ01はπ離れているので、図49のように、静止座標角ψ10の脱調予知範囲は、ψ10min<ψ10maxで連続していても、静止座標角ψ01の脱調予知範囲は、ψ01min>ψ01maxで2つの範囲に分離されることがある。
ただし、範囲の設定によっては、逆にψ10が分離されたり、ψ10,ψ01ともに分離されたり、ψ10,ψ01ともに分離されなかったりするケースも考えられる。
いずれのケースにおいても、脱調予知・検出部4は、正常と考えられる範囲で、回転検知器2の出力変化がないことを確認できた段階で、脱調予知を判定すればよい。
図50は、本実施の形態3の脱調予知・検出部4の構成を示すブロック図である。また、図51に、本実施の形態3に係る電動機駆動装置3の実行結果を示す。
以下、電圧位相角δを検出して脱調を判定する具体的な方法を説明する。脱調予知・検出部4において、入力ポート470から回転検知器2の回転パルス信号の入力を行い(例えば、図51(b)に示す波形)、入力ポート471から電圧ベクトル生成・通電周波数制御部5の通電角の入力を行う(例えば、図51(a)に示す波形)。パルス検出部472は、回転パルス信号の立ち上がりと立ち下がりを検出して、通電角ラッチ部473に通知する。通電角ラッチ部473は、回転パルス信号の立ち下がりと立ち上がりのタイミングで通電角をラッチすることにより、回転子角度θと通電角の差を検出して、電圧位相角δとして出力する。
電圧位相角δの値は2π毎に等価な角度になるので、2πの幅をもつ任意の角度範囲に制限することができるが、例えば0<δ<2πの範囲に制限した場合は、δが0を横切るたびに0から2π、または2πから0に、δの値が飛んでしまう。
しかしながら、電圧ベクトル生成・通電周波数制御部5が電動機1をフィードバック制御する場合、電圧位相角δの検出値は連続していることが望ましい。そこで、図50の電圧位相角制限部474において、通電角ラッチ部473の出力する電圧位相角δに対し、δ<−π/2の場合は2πを加算し、δ>3π/2の場合は2πを減算することで、最終的なδの範囲を−π/2〜3π/2に制限している。従って、電圧位相角制限部474の出力する電圧位相角δは、図51(c)に示す波形となり、0付近で不連続にならない。
このようにすると、回転子101が通電角に追従して回転している間は、脱調予知・検出部4が連続した電圧位相角δを検出することができ、電圧ベクトル生成・通電周波数制御部5のフィードバック制御に使用できる。δ≒π/2のとき最大トルクになること、低速時にはδ≒0であることを考えると、(1)δが0の近くで不連続にならない、(2)δ>0の領域を広くする、ことが望ましい。従って、制限の範囲の下限値を−5π/6〜−π/6の間に設定し、その下限値から2πの範囲を制限の範囲として電圧位相角制限部474に設定するのがよい。
脱調判定部475は、脱調予知を判定するための所定の閾値(一例を図51(c)に示す)と電圧位相角制限部474の出力する電圧位相角δとを比較して、脱調予知フラグ(脱調予知なら1、正常なら0)を出力する。もちろん、脱調したことを検出するための閾値を脱調判定部475に設定して、脱調検出フラグ(脱調検出なら1、正常なら0)を出力してもよい。
次に、電圧位相角δを用いた電動機1の制御方法を説明する。図52に、図8に示した電圧ベクトル生成・通電周波数制御部5の駆動速度制御部501の内部構造を示す。図53は、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。
脱調予知・検出部4の電圧位相角δは、電圧ベクトル生成・通電周波数制御部5の入力ポート530に入力に入力され、脱調検出フラグは入力ポート511に入力される。駆動速度制御部501は電圧位相角δをPID制御して駆動速度を求めることとし、減算部501jで、目標値501i(例えば、π/2)と入力ポート530に入力される実際の電圧位相角δの差分を計算してエラー信号(例えば、図53(d)に示す波形)として出力し、PID制御部501kがエラー信号に基づいてPID制御を行い、駆動速度を演算する(例えば、図53(c)に示す波形)。
このPID制御部501kは、電圧位相角δが目標のπ/2より大きいと駆動速度を下げ、逆にπ/2より小さいと駆動速度を上げて、電圧位相角δをπ/2に制御している。しかし、電圧位相角δと目標との差分がある範囲よりも大きくなると、脱調の影響で、もはやこのようなフィードバック制御はできなくなる。
そこで、図52の構成例では、電圧位相角δが−π/4〜3π/4の範囲を超えると、PID制御をリセットする。具体的には、下限側の電圧位相角判定部501lでδ≦−π/4を判定し、上限側の電圧位相角判定部501mでδ≧3π/4を判定して、この上下限を超えると、論理和部501nがPID制御501kにリセット信号(1でリセット)を出力してリセットさせる。また、論理和部501nは、脱調検出フラグが1になったときもリセット信号を出力してリセットさせる。
図53のグラフではPID制御部501kのリセットは発生していないが、負荷の慣性を大きくしてより脱調し易い状況をシミュレーションした図54のグラフでは、電圧位相角δが遅角方向にずれるので、フィードバックが可能な領域を超え、リセットが発生する。
さらに、図52の構成例では、PID制御部501kのフィードバックゲインを固定していたが、脱調検出時にフィードバックゲインを変更してもよい。この場合の構成例を図55に示す。図56は、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。
図55に示す電圧ベクトル生成・通電周波数制御部5の駆動速度制御部501は、新たに、切り替え部501oと、積分部501pと、乗算部501qとを備える。
この構成例では、論理和部501nの出力するリセット信号(例えば、図56(g)に示す波形)を脱調検出フラグの代わりとして使用している。リセット信号が1なら脱調検出、0なら正常とする。切り替え部501oは、リセット信号に応じて積分部501pに入力する値を切り替える。脱調検出状態で負値(例えば、−2)、正常状態で正値(例えば、0.2)になるように切り替え部501oを切り替えると、積分部501bの出力は、脱調検出状態では小さな値になる。この値をプレゲインとし、図56(h)に示す。
積分部501bの出力するプレゲインを乗算部501qの入力の片側にして、PID制御部501kへのエラー信号とを乗算すると、乗算部501qの出力値が脱調検出状態で小さい値をとるので、脱調検出状態でPID制御部501kのフィードバックゲインが小さくなる。
電圧ベクトル生成・通電周波数制御部5が電動機1の起動運転を開始すると、PID制御部501kのフィードバック動作により駆動速度が上昇し、電圧ベクトルV1〜V6の回転がしだいに速くなる。その後、回転子101の回転が電圧ベクトルV1〜V6の回転についてゆけずに、図56(g)のリセット信号において時刻T6,T7部分で脱調が発生した状態が検出される。このとき、PID制御部501kは、リセット信号によりリセットされるので、電圧ベクトルV1〜V6の回転速度が遅くなり、脱調からの回復を図る。脱調から回復すると、再び電圧ベクトルV1〜V6の回転は徐々に速くなってゆくが、今度はプレゲインの値が小さいので、駆動速度の上昇は穏やかである。このようにして脱調の再発を防止する。
なお、上記実施の形態1の図31で示したように、駆動速度の加減速で脱調を制御している場合は、フィードバックゲインを変更する代わりに、脱調検出時の加減速度を小さくしてもよい。
以上より、実施の形態3によれば、脱調予知・検出部4は、回転検知器2の出力値が切り替わるときの通電角に基づいて電圧位相角を検出し、脱調予知および脱調検出のいずれか一方または両方を行う構成にした。電圧ベクトル生成・通電周波数制御部5では通電角は知ることができるが、正確な回転子角は不明である。その場合でも、通電角を基準にして回転子角の遅れを測定することにより、安定して電圧位相角を測定可能になる。なお、この構成において通電方法は任意でよく、矩形波駆動だけでなく正弦波駆動も可能である。
また、実施の形態3によれば、電圧ベクトル生成・通電周波数制御部5は、脱調予知・検出部4で検出した電圧位相角をフィードバック制御することにより駆動速度を制御する構成にした。このため、通電角に対する回転子角の遅れを最適に保持し、脱調を防止できる。また、起動運転から同期運転への移行時、回転検知器2のパルス周期から回転子角を検出する方法への切り替えが不必要になる。
また、実施の形態3によれば、脱調予知・検出部4は、検出した電圧位相角のとり得る範囲が通電角の1周期中で不連続な値になる範囲である場合に、電圧位相角のとり得る範囲を通電角の1周期中連続する値になる範囲に変換して電圧ベクトル生成・通電周波数制御部5へ出力する構成にした。このため、電圧位相角が連続する値になり、電圧ベクトル生成・通電周波数制御部5のフィードバック制御に適する。
また、実施の形態3によれば、電圧ベクトル生成・通電周波数制御部5は、脱調予知・検出部4で脱調が発生したことを検出していない間はフィードバック制御のゲインを大きくし、脱調が発生したことを検出している間はフィードバック制御のゲインを小さくする構成にした。このため、脱調から回復できる。
実施の形態4.
本実施の形態4に係る電動機駆動装置3および電動機1の構成は、図面上は上記実施の形態1,2の電動機駆動装置3および電動機1と同じであるため、図1〜図47を援用する。
本実施の形態4では、電圧ベクトル生成・通電周波数制御部5による電動機1の制御方法の変形例をいくつか説明する。
図57に、電圧ベクトル生成・通電周波数制御部5の駆動速度制御部501の内部構造を示す。なお、電圧ベクトル生成・通電周波数制御部5の全体構成は、上記実施の形態1の図8である。また、図57において図33と同一または相当の部分については同一の符号を付し説明を省略する。図58は、電動機駆動装置3の実行結果をシミュレーションしたグラフを示す。
駆動速度制御部501は、脱調予知・検出部4の脱調予知フラグの入力を行う入力ポート510と、脱調検出フラグの入力を行う入力ポート511に加え、回転検知器2の回転パルス信号から演算した回転子101の回転速度の入力を行う入力ポート540を備える。
脱調予知フラグと脱調検出フラグのいずれか一方でも1になると、論理和部501sから積分部501dへリセット信号(1でリセット)が出力される。
初期値切り替えスイッチ501rを入力ポート540側に切り替えると、論理和部501sの出力するリセット信号が1になる間、積分部501dの出力が入力ポート540に入力する回転子101の回転速度にリセットされる。
このようにすると、脱調予知・検出時には、電動機1の駆動速度が検出した回転速度に再設定される。このようにして、回転を制御した結果、図58に示すように、脱調することなく加速していることが分かる。
図59に、電圧ベクトル生成・通電周波数制御部5の通電角計算部502の内部構造を示す。なお、電圧ベクトル生成・通電周波数制御部5の全体構成は、上記実施の形態1の図8である。図60は、電動機駆動装置3の実行結果をシミュレーションしたグラフを示し、このうちの時刻T8の領域の拡大グラフを図61に示す。
通電角計算部502において、立ち下がり検出部502bが、入力ポート502aに入力する回転検知器2の回転パルス信号の1から0への変化を検出し、検出時に1を出力する。立ち下がり検出部502bの出力が1になると、立ち下がり位相調整スイッチ502dが立ち下がり位相502e(例えば、π/3)に切り替わり、通電角としてπ/3が出力される。
一方、立ち上がり検出部502cは、回転パルス信号の0から1への変化を検出し、検出時に1を出力する立ち上がり検出部502cの出力が1になると、立ち上がり位相調整スイッチ502fが立ち上がり位相502g(例えば、4π/3)に切り替わり、通電角として4π/3が出力される。
このため、図60および図61に示すように、回転パルス信号が1から0に変化するたびに通電角がπ/3に設定され、0から1に変化するたびに4π/3に設定される。
このように通電角を切り替えると、回転子101の角度と通電角の関係が、120°通電方式の駆動状態と同じになる。なお、回転パルス信号の立ち下がりおよび立ち上がり時以外は、通電角演算部502iが、前回の通電角と入力ポート502hに入力する駆動速度制御部501の駆動速度とから今回の通電角を求める。駆動速度制御部501では、上記実施の形態1等で説明したように、脱調予知時に駆動速度を減速し、正常時に駆動速度を加速している。
このように制御すると、脱調することなく回転子101の回転を増速できる。
以上より、実施の形態4によれば、電圧ベクトル生成・通電周波数制御部5は、回転検知器2の出力に基づいて回転子101の回転速度を推定し、脱調予知・検出部4で脱調が発生したことを検出した場合に駆動速度を回転速度に対応する値に設定する構成にした。このため、脱調時に、回転子101の回転速度が落ち込むことなく回復できる。
また、実施の形態4によれば、電圧ベクトル生成・通電周波数制御部5は、回転検知器2の出力値が切り替わる都度、通電角を変更する構成にした。このため、脱調が発生しない最適な通電制御を実施できる。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
1 電動機、2 回転検知器、3 電動機駆動装置、4 脱調予知・検出部、5 電圧ベクトル生成・通電周波数制御部、6 FETゲート駆動部、7 FETブリッジ、101 回転子、102 電機子、103 シャフト、201,203 近接スイッチ、202,204,205,206 検出体、401,402 入力ポート、411〜416 電圧ベクトル検知部、421〜426 トリガ出力部、431〜436 ラッチ部、440,440a〜440c 脱調判定部、441,442,444,445,449i 論理否定部443,446,447,448 否定論理積部、449a〜449h 論理積部、449j,449k 論理和部、449l フリップフロップ、450,451 入力ポート、452 パルス検出部、453 通電周期検出部、454 脱調判定部、460,461 論理否定部、470,471 入力ポート、472 パルス検出部、473 通電角ラッチ部、474 電圧位相角制限部、475 脱調判定部、450,451 入力ポート、501 駆動速度制御部、501a 加速値、501b 減速値、501c 切り替え部、501d 積分部、501e 初期速度、501f 論理和部、501g 加減速制御部、501h 減速部、501i 目標値、501j 減算部、501k PID制御部、501l 電圧位相角判定部、501m 電圧位相角判定部、501n 論理和部、501o 切り替え部、501p 積分部、501q 乗算部、501r 初期値切り替えスイッチ、501s 論理和部、502 通電角計算部、502a 入力ポート、502b 立ち下がり検出部、502c 立ち上がり検出部、502d 立ち下がり位相調整スイッチ、502e 立ち下がり位相、502f 立ち上がり位相調整スイッチ、502g 立ち上がり位相、502h 入力ポート、502i 通電角演算部、503 通電パターン計算部、510,511,520,521 入力ポート、522 電圧位相角判定部、522a 角度判定部、522b 立ち上がり判定部、522c 論理積部、522d フリップフロップ、522e 論理否定部、522f 角度判定部、522g 立ち上がり検出部、522h 論理積部、522i フリップフロップ、522j 論理和部、523 通電角制限部、530 入力ポート、540 入力ポート、701〜706 FET、601 マルチポートスイッチ、U,V,W 電機子励磁コイル、V1〜V6 電圧ベクトル、θ 回転子角度、ψ,ψ10min,ψ10max,ψ01min,ψ01max 静止座標角、δ 電圧位相角。

Claims (19)

  1. 永久磁石の回転子と、複数相の巻線を有する電機子と、当該回転子の回転を検出して2値出力する回転検知器とを備えた電動機を駆動制御する電動機駆動装置であって、
    前記回転子を回転駆動する駆動速度に基づいて連続的な通電角を計算し、当該通電角に応じて前記電機子に通電する電圧ベクトルを切り替える電圧ベクトル生成・通電周波数制御部と、
    前記電圧ベクトル生成・通電周波数制御部で切り替える前記電圧ベクトルと前記回転検知器の2値出力とに基づいて、前記電機子に発生する磁束方向と前記回転子の界磁磁束方向との差である電圧位相角を検出し、脱調予知および脱調検出のいずれか一方、または両方を行う脱調予知・検出部とを備え
    前記脱調予知・検出部は、前記電機子に通電する前記電圧ベクトルを切り替えるときの前記回転検知器の出力値から脱調予知または脱調検出を行うことを特徴とする電動機駆動装置。
  2. 前記回転検知器は、第1の電圧ベクトルが前記電機子に通電されている状態において2値出力の切り替わりが前記電圧位相角0〜πの間で発生する構成であって、
    前記脱調予知・検出部は、前記第1の電圧ベクトル通電時の前記回転検知器の出力値に基づいて脱調予知または脱調検出を行うことを特徴とする請求項1記載の電動機駆動装置。
  3. 前記脱調予知・検出部は、前記第1の電圧ベクトル通電時の前記回転検知器の出力値に基づいて脱調予知または脱調検出を行うと共に、前記第1の電圧ベクトルとは逆方向に通電を行う第2の電圧ベクトル通電時に前記回転検知器が出力する、前記第1の電圧ベクトル通電時の出力値とは異なる出力値に基づいて脱調予知または脱調検出を行うことを特徴とする請求項2記載の電動機駆動装置。
  4. 前記脱調予知・検出部は、前記第1の電圧ベクトル通電時の前記回転検知器の出力値に基づいて脱調予知または脱調検出を行うと共に、前記第1の電圧ベクトルに隣接する角度である第3の電圧ベクトル通電時の前記回転検知器の出力値に基づいて脱調予知または脱調検出を行うことを特徴とする請求項2記載の電動機駆動装置。
  5. 前記脱調予知・検出部は、前記第1の電圧ベクトル通電時の前記回転検知器の出力値に基づいて脱調予知または脱調検出を行うと共に、前記第1の電圧ベクトルとは異なる通電状態となる第4の電圧ベクトル通電時の前記回転検知器の出力値に基づいて脱調予知または脱調検出を行うことを特徴とする請求項2記載の電動機駆動装置。
  6. 前記回転検知器は、前記回転子と一体に回転する検出体と、当該検出体の接近を検出して2値出力する検知器とから構成され、
    前記検出体は、前記永久磁石の磁極からずらして取り付けられていることを特徴とする請求項1から請求項5のうちのいずれか1項記載の電動機駆動装置。
  7. 前記回転検知器は、前記検出体が前記永久磁石の磁極と異なる大きさであって、前記検知器の出力する2値の長さの比率が異なることを特徴とする請求項6記載の電動機駆動装置。
  8. 前記脱調予知・検出部は、前記電圧ベクトルの代わりに前記通電角を用い、前記回転検知器の出力値が切り替わるときの前記通電角に基づいて前記電圧位相角を検出し、脱調予知および脱調検出のいずれか一方、または両方を行うことを特徴とする請求項1記載の電動機駆動装置。
  9. 前記脱調予知・検出部は、前記電圧ベクトルまたは前記通電角の1回転中に前記回転検知器の出力値が切り替わらなかった場合に脱調が発生したことを検出することを特徴とする請求項1から請求項8のうちのいずれか1項記載の電動機駆動装置。
  10. 前記電圧ベクトル生成・通電周波数制御部は、前記脱調予知・検出部で脱調の発生を予知していない間は前記駆動速度を加速し、脱調の発生を予知している間は前記駆動速度を減速することを特徴とする請求項1から請求項9のうちのいずれか1項記載の電動機駆動装置。
  11. 前記電圧ベクトル生成・通電周波数制御部は、前記脱調予知・検出部で脱調が発生したことを検出した場合に前記駆動速度を起動開始時の初期速度にリセットすることを特徴とする請求項1から請求項10のうちのいずれか1項記載の電動機駆動装置。
  12. 前記電圧ベクトル生成・通電周波数制御部は、前記脱調予知・検出部で検出した前記電圧位相角をフィードバック制御することにより前記駆動速度を制御することを特徴とする請求項1から請求項9のうちのいずれか1項記載の電動機駆動装置。
  13. 前記脱調予知・検出部は、検出した前記電圧位相角のとり得る範囲が前記電圧ベクトルまたは前記通電角の1回転中で不連続な値になる範囲である場合に、前記電圧位相角のとり得る範囲を当該1回転中で連続する値になる範囲に変換して前記電圧ベクトル生成・通電周波数制御部へ出力することを特徴とする請求項12記載の電動機駆動装置。
  14. 前記電圧ベクトル生成・通電周波数制御部は、前記脱調予知・検出部で脱調の発生を予知している間、前記電圧ベクトルまたは前記通電角の切り替えを行わないことを特徴とする請求項1から請求項9のうちのいずれか1項記載の電動機駆動装置。
  15. 前記電圧ベクトル生成・通電周波数制御部は、現在の前記駆動速度に応じて、前記駆動速度の加速度または減速度を変更することを特徴とする請求項10記載の電動機駆動装置。
  16. 前記電圧ベクトル生成・通電周波数制御部は、現在の前記駆動速度に応じて、前記フィードバック制御のゲインを変更することを特徴とする請求項12記載の電動機駆動装置。
  17. 前記電圧ベクトル生成・通電周波数制御部は、前記脱調予知・検出部で脱調が発生したことを検出していない間は前記フィードバック制御のゲインを大きくし、脱調が発生したことを検出している間は前記フィードバック制御のゲインを小さくすることを特徴とする請求項12記載の電動機駆動装置。
  18. 前記電圧ベクトル生成・通電周波数制御部は、前記回転検知器の出力に基づいて前記回転子の回転速度を推定し、前記脱調予知・検出部で脱調が発生したことを検出した場合に前記駆動速度を当該回転速度に対応する値に設定することを特徴とする請求項1から請求項9のうちのいずれか1項記載の電動機駆動装置。
  19. 前記電圧ベクトル生成・通電周波数制御部は、前記回転検知器の出力値が切り替わる都度、前記通電角を変更することを特徴とする請求項1から請求項9のうちのいずれか1項記載の電動機駆動装置。
JP2013116907A 2013-06-03 2013-06-03 電動機駆動装置 Active JP6004991B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116907A JP6004991B2 (ja) 2013-06-03 2013-06-03 電動機駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116907A JP6004991B2 (ja) 2013-06-03 2013-06-03 電動機駆動装置

Publications (2)

Publication Number Publication Date
JP2014236595A JP2014236595A (ja) 2014-12-15
JP6004991B2 true JP6004991B2 (ja) 2016-10-12

Family

ID=52138933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116907A Active JP6004991B2 (ja) 2013-06-03 2013-06-03 電動機駆動装置

Country Status (1)

Country Link
JP (1) JP6004991B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152688A (ko) * 2020-06-09 2021-12-16 최원겸 무전원 양방향 자동 발란스 도어

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007547T5 (de) * 2017-05-16 2020-01-30 Mitsubishi Electric Corporation Synchronmotorsteuerungseinrichtung und Wärmetauschereinheit
WO2019159629A1 (ja) * 2018-02-13 2019-08-22 日本電産株式会社 モータ制御回路、モータシステムおよび脱調検出方法
CN108646065A (zh) * 2018-07-19 2018-10-12 深圳市将臣科技有限公司 电气设备测试架及其测试方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525913A (en) * 1968-04-29 1970-08-25 Westinghouse Electric Corp Pullout protection for synchronous machines
JPH0548599U (ja) * 1991-11-21 1993-06-25 株式会社東芝 同期機の脱調防止装置
JP3250599B2 (ja) * 1995-07-14 2002-01-28 ティアック株式会社 ブラシレスモ−タ
JP2000166287A (ja) * 1998-07-06 2000-06-16 Fumito Komatsu 同期モ―タ
JP2000295886A (ja) * 1999-04-06 2000-10-20 Sankyo Seiki Mfg Co Ltd モータの速度制御装置
JP2002045591A (ja) * 2000-08-03 2002-02-12 Sharp Corp 洗濯機
JP4085818B2 (ja) * 2003-01-20 2008-05-14 松下電工株式会社 直流電動機の駆動方法および直流電動機の駆動装置
JP2005312227A (ja) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd ポンプあるいはファンのモータ駆動装置
JP2008141828A (ja) * 2006-11-30 2008-06-19 Denso Corp モータ駆動装置及びモータ駆動方法
JP4983393B2 (ja) * 2007-05-18 2012-07-25 パナソニック株式会社 モータ駆動装置
JP2010259131A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 電動機駆動装置およびこれを具備した空気調和装置
JP2011072168A (ja) * 2009-09-28 2011-04-07 Fujitsu General Ltd モータ制御装置、およびモータ制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152688A (ko) * 2020-06-09 2021-12-16 최원겸 무전원 양방향 자동 발란스 도어
KR102364719B1 (ko) * 2020-06-09 2022-02-18 최원겸 무전원 양방향 자동 발란스 도어

Also Published As

Publication number Publication date
JP2014236595A (ja) 2014-12-15

Similar Documents

Publication Publication Date Title
JP6004991B2 (ja) 電動機駆動装置
JP6548619B2 (ja) モータ制御装置および脱調状態検出方法
JP2006238692A (ja) 同期モータ始動ロック検出回路及び方法
JP2009033928A (ja) モータ起動装置及びモータ起動方法
JP2008271698A (ja) モータ駆動装置
JP2005245058A (ja) Dcブラシレスモータの並列駆動方法
JP2018143085A (ja) モータを制御するためのシステム及び方法
US11303239B2 (en) Magnetic pole initial position detection device using direct-current excitation method and magnetic pole position detection device
JP2012130100A (ja) モータ制御装置及びモータ制御方法
JP5087411B2 (ja) モータ駆動装置
JP7318392B2 (ja) モータ制御装置
US10133255B2 (en) Motor controller, motor driver, and motor driving system
US20210288597A1 (en) Motor controlling device
JP2006271197A (ja) ブラシレスdcモータの駆動装置および駆動方法
JP2013251978A (ja) 永久磁石同期電動機制御装置
US11764709B2 (en) Motor controller
JP7325660B1 (ja) ドライブシステム及び制御方法
JP2020022245A (ja) 電気モータの駆動装置および電動ポンプ装置
JP7456138B2 (ja) 真空ポンプ
JP7077879B2 (ja) モータ制御装置
JP5218818B2 (ja) Dcブラシレスモータの並列駆動回路
JP3811955B2 (ja) ブラシレスdcモータの駆動装置および駆動方法並びにブラシレスdcモータの回転子速度または回転子位相の検出方法
Hirave et al. Speed Control of BLDC Motor Using DSPIC30F4011 Processor
JP6477705B2 (ja) Dcモータ駆動装置及びdcモータ駆動方法
WO2020021907A1 (ja) ブラシレスモータ制御装置およびファンモータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250