JP2008141828A - モータ駆動装置及びモータ駆動方法 - Google Patents

モータ駆動装置及びモータ駆動方法 Download PDF

Info

Publication number
JP2008141828A
JP2008141828A JP2006323947A JP2006323947A JP2008141828A JP 2008141828 A JP2008141828 A JP 2008141828A JP 2006323947 A JP2006323947 A JP 2006323947A JP 2006323947 A JP2006323947 A JP 2006323947A JP 2008141828 A JP2008141828 A JP 2008141828A
Authority
JP
Japan
Prior art keywords
motor
detected
induced voltage
sign
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006323947A
Other languages
English (en)
Inventor
Sadahiro Akama
貞洋 赤間
Hideji Azuma
秀治 我妻
Nobutada Ueda
展正 植田
Masahiro Kuroda
昌寛 黒田
Kiyoshi Osada
長田  喜芳
Akiya Otake
晶也 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006323947A priority Critical patent/JP2008141828A/ja
Priority to US11/979,250 priority patent/US7893638B2/en
Priority to CN201410339412.8A priority patent/CN104092415B/zh
Priority to CN2010101433045A priority patent/CN101789736B/zh
Priority to DE200710057746 priority patent/DE102007057746A1/de
Priority to CN201210124225.9A priority patent/CN102710191B/zh
Priority to CN2007101940743A priority patent/CN101192803B/zh
Publication of JP2008141828A publication Critical patent/JP2008141828A/ja
Priority to US12/926,541 priority patent/US8217603B2/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】センサレス方式で駆動されるブラシレスDCモータが完全に脱調に至る前の段階で、モータの回転を停止させることなく駆動制御を復帰させる。
【解決手段】モータ駆動装置1の脱調監視回路7は、ブラシレスDCモータ2の回転状態を監視することで当該モータ2が脱調状態に移行しようとする兆候を検出し、その兆候が検出されると、通電制御回路4はモータ2の駆動を一時的に停止して空走状態とした後、当該モータ2の駆動を再開するように制御する。
【選択図】図1

Description

本発明は、ブラシレスDCモータのロータ位置を推定することで、当該モータの通電タイミングを得て駆動を行うモータ駆動装置及びモータ駆動方法に関する。
従来、ブラシレスDCモータのロータ位置を推定することで、当該モータの転流タイミングを得て駆動を行う位置センサレス(以下、単に「センサレス」と称す)方式を採用する駆動装置では、当該装置の不具合や負荷の変動などが発生すると、モータを所期通りに駆動できなくなる脱調状態に陥る場合がある。そして、特許文献1では、モータが脱調状態に陥って停止したことを検出すると、モータの駆動制御を再開する技術が開示されている。
特開2004−104935号公報
しかしながら、例えば、電気自動車の駆動用モータ等は、自動車の走行中に脱調状態に陥ったからといって回転を停止させるのは不適切であり、モータの回転を極力維持する必要がある。そのため、モータが完全に脱調したことを検出してから対処する特許文献1のような技術は適用することができない。
本発明は上記事情に鑑みてなされたものであり、その目的は、センサレス方式で駆動されるブラシレスDCモータが完全に脱調に至る前の段階で、モータの回転を停止させることなく駆動制御を復帰させることができるモータ駆動装置及びモータ駆動方法を提供することにある。
請求項1記載のモータ駆動装置によれば、脱調予測手段は、ブラシレスDCモータの回転状態を監視して当該モータが脱調状態に移行しようとする兆候を検出し、その兆候が検出されると、駆動制御手段は、モータの駆動を一時的に停止して空走状態とした後、当該モータの駆動を再開するように制御する。従って、モータが完全に脱調してその回転が停止することを未然に回避して、モータの回転駆動を継続させることができる。
請求項2記載のモータ駆動装置によれば、脱調予測手段はモータの速度を検出し、その検出速度と当該モータの定常速度とを比較して、両者の差が所定値以上となった場合に脱調の兆候を検出する。即ち、モータが脱調しようとする場合はモータの速度に急激な変動が発生するので、その状態を捉えることで前記兆候を確実に検出することができる。
請求項3記載のモータ駆動装置によれば、モータが三相モータである場合、脱調予測手段は、モータの誘起電圧のゼロクロスタイミングに基づいて電気角60度に相当する期間を検出し、その検出期間の長さと定常速度における電気角60度相当期間とを比較する。尚、この場合、誘起電圧の「ゼロ点」とはモータの仮想中性点電位,または電源電圧の1/2である。即ち、三相モータをセンサレス方式で駆動する場合には、誘起電圧のゼロクロスタイミングから電気角60度に相当期間を容易に得ることができるので、当該期間を検出して基準値と比較すれば脱調の兆候を簡単に検出できる。
請求項4記載のモータ駆動装置によれば、脱調予測手段は、モータに対する出力電圧の各相発生パターンが所定の発生パターンと不一致となる期間が所定値以上となった場合に、脱調状態に移行しようとする兆候を検出する。即ち、モータが正常に回転している場合は、各相の出力電圧は所定のパターンを繰り返しているので、その所定のパターンより逸脱したパターンが生じた場合は脱調に移行する可能性が高い。従って、その状態を捉えることで脱調の兆候を確実に検出することができる。
請求項5記載のモータ駆動装置によれば、脱調予測手段は、出力電圧の各相発生パターンを検出する場合、出力電圧をハイレベル,ロウレベル,非通電レベルとの3レベルに判定する。即ち、モータを駆動している場合には、非通電状態(ハイインピーダンス)となっている相に誘起電圧がそのまま現れるため、その期間の出力電圧レベルは、誘起電圧に応じてハイレベル,ロウレベルの間で変化する。従って、上記3レベルを判定し分けるように電圧レベルを比較すれば、モータの回転状態をより明確に監視することができる。
請求項6記載のモータ駆動装置によれば、脱調予測手段は、モータに通電される電流を検出し、その電流の変動が所定値以上となった場合に脱調の兆候を検出する。即ち、モータが脱調しようとする場合には出力トルクが比較的大きく変動するので、そのトルク変動が通電電流に反映される。従って、その状態を捉えることで脱調の兆候を確実に検出することができる。
(第1実施例)
以下、本発明の第1実施例について図1乃至図3を参照して説明する。図1は、例えば電気自動車の走行用モータを駆動する装置の概略構成を示すものである。モータ駆動装置1は、図示しない車両の駆動電源用バッテリより駆動用電源VBが供給されており、ブラシレスDCモータ2は、インバータ部3を介して駆動される。インバータ部3は、例えば6個のNチャネルパワーMOSFET3a〜3fを三相ブリッジ接続して構成されており、インバータ部3の各相出力端子は、夫々モータ2の各相ステータコイル(巻線)2U,2V,2Wに接続されている。尚、図中の下向き矢印はグランドを示す。
インバータ部3は、マイクロコンピュータ又は論理回路で構成される通電制御回路(駆動制御手段)4により制御され、各FET3a〜3fのゲートにはゲート駆動回路5a〜5fを介して駆動信号が出力される。コンパレータ6U,6V,6Wは、インバータ部3の各相出力電圧と仮想中性点電位とを比較して、比較信号PU,PV,PWを通電制御回路4と脱調監視回路(脱調予測手段)7とに出力する。コンパレータ6U,6V,6Wの(+)端子は、インバータ部3の各相出力端子OUT_U,V,Wに夫々接続されており、(−)端子には、仮想中性点電位(又はVB/2)に相当する基準電圧源8が共通に接続されている。
通電制御回路4は、上記比較信号PU,PV,PWに基づいてインバータ部3における転流パターン信号を生成し、ゲート駆動回路5を介して各FET3のゲートに出力する。脱調監視回路7は、通電制御回路4と同様にマイコンや論理回路で構成されており、上記比較信号PU,PV,PWに基づいてモータ2が脱調状態に移行しようとする兆候を検出する。そして、その兆候を検出すると、通電制御回路4に対して所定時間だけ駆動停止信号を出力し、通電制御回路4は、前記駆動停止信号が出力されている間はインバータ部3の駆動制御を停止してモータ2を空走状態とするようになっている。
次に、本実施例の作用について図2及び図3も参照して説明する。図2は、通電制御回路4並びに脱調監視回路7による処理内容を示すフローチャートである。駆動装置1に電源が投入されると、通電制御回路4は、モータ2の巻線2U,2V,2Wに直流励磁を行ってロータの位置決めを行う(ステップS1)。それから、巻線2U,2V,2Wに所定の転流パターンで通電を行うことでモータ2を強制転流によって起動させる(ステップS2)。
モータ2が起動されて回転数がある程度上昇すると、巻線2U,2V,2Wに発生する誘起電圧が観測可能となる。そこで、通電制御回路4は、モータ2の駆動方式をセンサレスモードに切り替える(ステップS3)。即ち、上述したように、比較信号PU,PV,PWに基づいてインバータ部3における転流パターン信号を生成し、各FET3a〜3fのゲートにゲート信号UH〜WLを出力する。尚、誘起電圧のゼロクロスタイミングは、適切な通電タイミングより電気角30度の位相遅れがあるので、通電制御回路4は、その位相遅れを調整して転流パターン信号を生成する。
モータ2をセンサレスモードで駆動している間、脱調監視回路7は、脱調予測を行うためのデータを取得し(ステップS4)、そのデータに基づきモータ2の駆動状態に脱調の兆候があるか否かを判定する(ステップS5)。そして、脱調の兆候が無いと判断すると(「NO」)ステップS7に移行する。
ステップS7では、通電制御回路4が、その時点でモータ2が回転しているか否かを比較信号PU,PV,PWに基づき検出し、回転していれば(「YES」)ステップS3に移行してセンサレスモードを継続する。一方、モータ2が停止している場合は(「NO」)ステップS1に戻り、位置決め→強制転流によりモータ2を再起動する。
ここで、ステップS4,S5における脱調予測検出は、以下のようにして行なう。図3は、モータ2が回転している場合におけるインバータ部3の出力電圧波形を示すものである。三相モータを駆動する場合、その電圧波形は、ハイサイドとロウサイドとの間で通電が行われている二相がハイレベル,ロウレベルとなり、通電されていない残り一相はハイインピーダンス状態にあり、その期間には巻線2U〜2Vに発生した誘起電圧が現れ、ハイレベル,ロウレベル間の過渡的な電圧変化を示す。尚、図3では上記期間で誘起電圧が直線的に上昇,下降するように示しているが、実際には正弦波状に変化している。
そして、各相の非通電期間において誘起電圧のゼロクロス点が発生する(異なる相間の)間隔は、電気角60度に相当する期間T60となる。尚、図3(a)〜(c)に示すように、転流パターンの切替わりには、FET3a〜3fのフライホイールダイオードを経由して電流が還流する期間が一瞬生じて「ゼロクロス」点が発生するため、コンパレータ6U〜6Wによって出力される比較信号PU〜PWには上記の期間が反映されている。しかし、上記期間は、通電制御回路4ならびに脱調監視回路7の内部における波形処理により無視されて、図3(d)〜(f)に示すように位置信号PU’,PV’,PW’が生成される。
脱調監視回路7は、位置信号PU’,PV’,PW’に基づき各相間のゼロクロス間隔期間T60を検出し、その期間T60がモータ2の定常回転数に応じた時間となっているか否かを判定する。例えば、モータ2の定常回転数が定格速度10000rpmであり、且つ、モータ2の極数がNである場合、単位時間当たりの回転周期の1/6は(2/N)msとなる。従って、脱調監視回路7は、ゼロクロス間隔期間T60が(2/N)msよりも所定時間だけ長くなった場合に、モータ2が脱調状態に移行しようとしていると判定し(ステップS5,「YES」)、通電制御回路4に対して駆動停止信号を出力する。
すると、通電制御回路4は、上述のように駆動停止信号が出力されている期間はモータ2の駆動制御を停止して、モータ2を空走状態にする(フリーラン制御,ステップS6)。ここで、モータ2を空走状態にする時間は、例えば、数100μs〜数ms程度である。そして、モータ2を所定時間だけ空走状態にすると、通電制御回路4はステップS7に移行し、モータ2の回転が停止していなければ(「YES」)センサレスモードによる駆動制御を継続する。
以上のように本実施例によれば、モータ駆動装置1の脱調監視回路7は、ブラシレスDCモータ2の回転状態を監視することで当該モータ2が脱調状態に移行しようとする兆候を検出し、その兆候が検出されると、通電制御回路4はモータ2の駆動を一時的に停止して空走状態とした後、当該モータ2の駆動を再開するように制御する。従って、モータ2が完全に脱調してその回転が停止することを未然に回避して、モータの回転駆動を継続させることができる。
具体的には、脱調監視回路7はモータ2の速度を検出し、その検出速度と当該モータ2の定常速度とを比較して、両者の差が所定値以上となった場合に脱調状態に移行しようとする兆候を検出する。即ち、モータ2が脱調しようとする場合は、モータ2の速度に急激な変動が発生する。そして。脱調監視回路7は、モータ2の誘起電圧のゼロクロスタイミングに基づいて電気角60度に相当する期間T60を検出し、その検出期間T60の長さと定常速度における電気角60度相当期間とを比較するので、脱調状態に移行しようとする兆候を簡単に検出することができる。
(第2実施例)
図4及び図5は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。第2実施例は、第1実施例の図2におけるステップS4,S5について、脱調予測を行う場合の異なる検出方式を示すものである。脱調監視回路7は、位置信号PU’,PV’,PW’に基づき内部で論理合成を行うことで、図4(g)に示すように切替え信号を生成する。
この切替え信号は、位置信号PU’,PV’,PW’の何れか2相分がハイレベルを示す期間にハイレベルとなることで、電気角60度に相当する期間でハイ,ロウレベルを繰り返す。そして、モータ2が定常速度で回転している場合、インバータ部3の各相出力電圧は所定のパターンを繰り返すので、切替え信号はデューティ50%の矩形波信号となっている。そして、その所定のパターンと異なるパターンが生じた場合は脱調に移行する可能性が高いので、脱調監視回路7は、切替え信号の出力状態を監視して脱調予測を行なう。
例えば、図5(a)に示す切替え信号の波形は、モータ2の転流タイミングが定常速度よりも早くなった場合を示しており、切替え信号の周期が急に短くなった状態である。逆に転流タイミングが遅くなると、切替え信号の周期は長くなる。また、図5(b)に示す切替信号の波形は、モータ2の転流タイミングが期待通りに切替わらなかった場合であり、切替え信号の周期が一時的に短くなった状態である。これらの状態が所定時間以上に亘って検出された場合には、モータ2が脱調しようとしている兆候とみなしてステップS5で「YES」と判定する。
以上のように第2実施例によれば、脱調監視回路7は、インバータ部3の出力電圧の各相発生パターンが所定のパターンと不一致となる期間が所定値以上となった場合に、脱調状態に移行しようとする兆候を検出するので、前記兆候を確実に検出することができる。
(第3実施例)
図6及び図7は本発明の第3実施例を示すものであり、第1,第2実施例と異なる部分について説明する。第3実施例のモータ駆動装置11では、脱調監視回路(脱調予測手段)12が、第2実施例の脱調監視回路7と同様に誘起電圧の各相発生パターンを監視するが、そのためのコンパレータ13を各相毎に3個ずつ備えている。
コンパレータ13UM,13VM,13VMは、第1実施例のコンパレータ6U,6V,6Wと同様に、インバータ部3の出力電圧を基準電圧源8Mの仮想中性点電位と比較するもので、コンパレータ13UH,13VH,13WHは、上記出力電圧を基準電圧源8Mの電位よりも高く設定されている基準電圧源8Hのハイ側閾値と比較し、コンパレータ13UL,13VL,13WLは、上記出力電圧を基準電圧源8Mの電位よりも低く設定されている基準電圧源8Lのロウ側閾値と比較する。
尚、図6では図示しないが、コンパレータ13UM,13VM,13VMが出力する比較信号PU,PV,PWは、第1実施例と同様に通電制御回路4に与えられている。また、図3では、FET3a〜3fのフライホイールダイオードの図示を省略すると共に、ゲート駆動回路5を1つのボックスで示している。
次に、第3実施例の作用について説明する。尚、以下では、各相について共通の作用を説明する場合には符号の添え字に「U,V,W」を付さない。脱調監視回路12は、各相毎にコンパレータ13H,13M,13Lが出力する比較信号PH,PM,PLより得られる位置信号PH’,PM’,PL’に基づいて、各相の通電パターンを、ハイレベルSH,中間レベル(ハイインピーダンス)SM,ロウレベルSLの3段階に判定して監視する。尚、図7(d),(e),(f)には、U相の位置信号PUH’,PUM’,PUL’を示す。
即ち、ハイレベルSH,ロウレベルSLについては夫々SH=PH’,SL=/PL’(「/」は否定を示す)で決まるが、中間レベルSMについては以下のように判定する。
SM=(/PH’・PM’)+(/PM’・PL’)
そして、中間レベルSMが判定可能となることで、脱調監視回路12は、モータ2の回転が正常であれば、U,V,W各相の通電パターンが電気角60度毎に以下のようなステート1〜6に遷移することを認識できる(但し、「M」はハイインピーダンスを示す)。
ステート→1 2 3 4 5 6
U L L M H H M
V H M L L M H
W M H H M L L
従って脱調監視回路12は、上記ステート1〜6の循環が正しいパターンで繰り返されているか否かを監視し、正しいパターンからの逸脱があった場合には脱調の兆候があると判定する。
以上のように第3実施例によれば、脱調監視回路12は、モータ2に対する出力電圧の各相発生パターンを検出する場合、その出力電圧をハイレベル,ロウレベル,非通電レベル(中間レベル)との3レベルに判定するので、モータの回転状態をより明確に監視することができる。
(第4実施例)
図8及び図9は、本発明の第4実施例を示すものである。第4実施例のモータ駆動装置21は、脱調監視回路(脱調予測手段)22がモータ2に対する通電電流を検出し、その電流の変動状態に基づいて脱調予測を行う。図8は、図1の一部相当図であり、インバータ部3のFET3aのドレイン,ゲートには、電流センス用のNチャネルパワーMOSFET23のドレイン,ゲートが夫々接続されており、両者は共通のゲート信号によって同時にON/OFFされるようになっている。そして、FET3a,23がONした場合、夫々に流れる電流比は、例えば、100:1〜5000:1程度となるように設定されている。
FET23のソースは、ダイオード24及びNPNトランジスタ25のコレクタ−エミッタ、並びに抵抗26を介してグランド線に接続されていると共に、オペアンプ27の(+)端子に接続されている。そのオペアンプ27の(−)端子は、FET3aのソースに接続されており、出力端子は、トランジスタ25のベースに接続されている。また、トランジスタ25のエミッタはコンパレータ28の(+)端子に接続されており、コンパレータ28の(−)端子は、比較用の基準電圧を与える電圧源29に接続されている。そして、コンパレータ28の出力信号は、通電制御回路4に入力されるようになっている。
次に、第4実施例の作用について図9も参照して説明する。FET3a,23が同時にONすると、両者の電流比に応じたドレイン電流が夫々に流れる。この場合、オペアンプ27の作用(イマジナリーショート)により双方のソース電圧は等しくなるので、電流センス用のFET23側に抵抗26が接続されていても、両者の電流比は設定通りに維持されるようになっている。
そして、FET23がオンした場合に流れる電流は、ダイオード24及びトランジスタ25を介して抵抗26に流れる。そして、コンパレータ28により抵抗26の端子電圧が電圧源29の基準電圧と比較され、前者のレベルが高くなるとコンパレータ28は出力信号をハイレベルに変化させる。
ここで、図9は、モータ2が脱調状態に移行しようとする前段階において、モータ2の通電電流が変動する状態を示すイメージ図である。但し、FET23によって検出される電流ではなく、例えば、直流電源線に流れる全電流のイメージである。モータ2が定常状態で回転している場合には、通電電流は殆ど変動することなく略一定を示すが、モータ2の回転に異常が発生したことにより出力トルクが大きく変動したような場合には、それに伴って通電電流の変動も大きくなる。従って、脱調予測回路22は、その場合の電流変動(増加)を捉えることで脱調予測を行う。
即ち、上述のように、コンパレータ28が出力信号をハイレベルに変化させると、通電制御回路4は、そのレベル変化をトリガとしてモータ2を空走状態にする。即ち、これらの処理が、図2におけるステップS4〜S6の処理に対応する。
以上のように第4実施例によれば、モータ駆動装置21の脱調監視回路22は、モータ2に通電される電流を検出し、その電流の変動が所定値以上となった場合に脱調の兆候を検出するので、脱調予測を確実に行うことができる。
本発明は上記し又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形が可能である。
第3実施例において、中間レベルSMを以下のように更に2レベルに分けて、出力電圧のパターンを細分化しても良い。
SMH=/PH’・PM’
SML=/PM’・PL’
また、コンパレータ13UM,13VM,13VMを削除して、
SM=/PH’・PL’
と判定しても良い。
更に、ステート1〜6について、ハイインピーダンスとなる期間「M」のみを選択的に検出し、期間「M」の発生パターンが正常に循環しているか否かを監視しても良い。
各実施例の脱調予測方式を組合わせて、それらのOR条件で予測を行っても良い。
電気自動車の走行用モータを駆動するものに限らず、ブラシレスDCモータをセンサレス方式で駆動する場合に、脱調によりモータの回転を停止させることが困難であるアプリケーションであれば、広く適用することができる。
本発明の第1実施例であり、モータ駆動装置の概略構成を示す図 通電制御回路,脱調監視回路による処理内容を示すフローチャート モータが回転している場合のインバータ部の出力電圧波形を示す図 本発明の第2実施例を示す図3相当図 脱調の前段階における切替信号の変動を説明する図 本発明の第3実施例を示す図1相当図 図3相当図 本発明の第4実施例を示す図1の一部相当図 モータが脱調しようとする前段階に、通電電流が変動する状態を示すイメージ図
符号の説明
図面中、1はモータ駆動装置、2はブラシレスDCモータ、2U,2V,2Wはステータコイル(巻線)、4は通電制御回路(駆動制御手段)、7は脱調監視回路(脱調予測手段)、11はモータ駆動装置、12は脱調監視回路(脱調予測手段)、21はモータ駆動装置、22は脱調監視回路(脱調予測手段)を示す。

Claims (12)

  1. ブラシレスDCモータの巻線に発生する誘起電圧を検出し、その誘起電圧に基づき前記モータのロータ位置を推定することで、当該モータに対する通電タイミングを得て駆動を行うモータ駆動装置において、
    前記モータの回転状態を監視することで、当該モータが脱調状態に移行しようとする兆候を検出する脱調予測手段と、
    この脱調予測手段によって前記兆候が検出されると、前記モータの駆動を一時的に停止して空走状態とした後、当該モータの駆動を再開するように制御する駆動制御手段とを備えたことを特徴とするモータ駆動装置。
  2. 前記脱調予測手段は、前記モータの速度を検出し、その検出速度と当該モータの定常速度とを比較して、両者の差が所定値以上となった場合に前記兆候を検出することを特徴とする請求項1記載のモータ駆動装置。
  3. 前記モータが三相モータである場合、
    前記脱調予測手段は、前記モータの誘起電圧のゼロクロスタイミングに基づいて電気角60度に相当する期間を検出し、その検出期間の長さと、前記定常速度における電気角60度相当期間と比較することを特徴とする請求項2記載のモータ駆動装置。
  4. 前記脱調予測手段は、前記モータに対する出力電圧の各相発生パターンが所定の発生パターンと不一致となる期間が所定値以上となった場合に前記兆候を検出することを特徴とする請求項1乃至3の何れかに記載のモータ駆動装置。
  5. 前記脱調予測手段は、前記誘起電圧の各相発生パターンを検出する場合、当該誘起電圧を、ハイレベル,ロウレベルと、それらの中間となる非通電レベルとの3レベルに判定することを特徴とする請求項4記載のモータ駆動装置。
  6. 前記脱調予測手段は、前記モータに通電される電流を検出し、その電流の変動が所定値以上となった場合に前記兆候を検出することを特徴とする請求項1乃至5の何れかに記載のモータ駆動装置。
  7. ブラシレスDCモータの巻線に発生する誘起電圧を検出し、その誘起電圧に基づき前記モータのロータ位置を推定することで、当該モータに対する通電タイミングを得て駆動を行うモータ駆動方法において、
    前記モータの回転状態を監視することで、当該モータが脱調状態に移行しようとする兆候を検出し、
    前記兆候を検出すると、前記モータの駆動を一時的に停止して空走状態とした後、当該モータの駆動を再開するように制御することを特徴とするモータ駆動方法。
  8. 前記モータの速度を検出し、その検出速度と当該モータの定常速度とを比較して、両者の差が所定値以上となった場合に前記兆候を検出することを特徴とする請求項7記載のモータ駆動方法。
  9. 前記モータが三相モータである場合、
    前記モータの誘起電圧のゼロクロスタイミングに基づいて電気角60度に相当する期間を検出し、その検出期間の長さと、前記定常速度における電気角60度相当期間と比較した結果に基づいて前記兆候を検出することを特徴とする請求項8記載のモータ駆動方法。
  10. 前記モータに対する出力電圧の各相発生パターンが所定の発生パターンと不一致となる期間が所定値以上となった場合に、前記兆候を検出することを特徴とする請求項7乃至9の何れかに記載のモータ駆動方法。
  11. 前記誘起電圧の各相発生パターンを検出する場合、当該誘起電圧を、ハイレベル,ロウレベルと、それらの中間となる非通電レベルとの3レベルに判定することを特徴とする請求項10記載のモータ駆動方法。
  12. 前記モータに通電される電流を検出し、その電流の変動が所定値以上となった場合に前記兆候を検出することを特徴とする請求項7乃至11の何れかに記載のモータ駆動方法。
JP2006323947A 2006-11-30 2006-11-30 モータ駆動装置及びモータ駆動方法 Pending JP2008141828A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006323947A JP2008141828A (ja) 2006-11-30 2006-11-30 モータ駆動装置及びモータ駆動方法
US11/979,250 US7893638B2 (en) 2006-11-30 2007-10-31 Apparatus and method for driving rotary machine
CN201410339412.8A CN104092415B (zh) 2006-11-30 2007-11-30 用于驱动旋转机械的装置和方法
CN2010101433045A CN101789736B (zh) 2006-11-30 2007-11-30 用于驱动旋转机械的装置和方法
DE200710057746 DE102007057746A1 (de) 2006-11-30 2007-11-30 Vorrichtung und Verfahren zum Ansteuern einer Drehmaschine
CN201210124225.9A CN102710191B (zh) 2006-11-30 2007-11-30 用于驱动旋转机械的装置和方法
CN2007101940743A CN101192803B (zh) 2006-11-30 2007-11-30 用于驱动旋转机械的装置和方法
US12/926,541 US8217603B2 (en) 2006-11-30 2010-11-24 Apparatus and method for driving rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323947A JP2008141828A (ja) 2006-11-30 2006-11-30 モータ駆動装置及びモータ駆動方法

Publications (1)

Publication Number Publication Date
JP2008141828A true JP2008141828A (ja) 2008-06-19

Family

ID=39487607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323947A Pending JP2008141828A (ja) 2006-11-30 2006-11-30 モータ駆動装置及びモータ駆動方法

Country Status (2)

Country Link
JP (1) JP2008141828A (ja)
CN (1) CN101192803B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200438A (ja) * 2009-02-24 2010-09-09 Panasonic Corp インバータ制御装置と電動圧縮機および家庭用電気機器
JP2013538034A (ja) * 2010-09-27 2013-10-07 ワールプール,ソシエダッド アノニマ ブラシレス電気モータをモニタし制御するためのシステム及び方法
JP2014236595A (ja) * 2013-06-03 2014-12-15 三菱電機株式会社 電動機駆動装置
WO2018146957A1 (ja) 2017-02-08 2018-08-16 北斗制御株式会社 センサレスモータの駆動方法
JP2020031735A (ja) * 2018-08-28 2020-03-05 株式会社ナカニシ 医療装置
CN112751511A (zh) * 2019-10-31 2021-05-04 精工爱普生株式会社 电机驱动电路、集成电路装置、电子设备和电机控制方法
US11128243B2 (en) 2018-07-31 2021-09-21 Aisin Seiki Kabushiki Kaisha Drive apparatus of electric motor and electric pump apparatus
CN114430881A (zh) * 2019-09-30 2022-05-03 大金工业株式会社 马达驱动方法和马达驱动装置
WO2022265979A1 (en) * 2021-06-14 2022-12-22 Mantis Robotics, Inc. Servo joint safety position monitoring apparatus and method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8185342B2 (en) * 2009-08-14 2012-05-22 GM Global Technology Operations LLC Estimating rotor angular position and velocity and verifying accuracy of position sensor outputs
CN102497144A (zh) * 2011-11-28 2012-06-13 北京动力机械研究所 基于硬件比较采集过零点的直流无刷电机驱动控制装置
CN103701372B (zh) 2012-09-27 2017-07-04 比亚迪股份有限公司 一种同步电机的失步检测方法
EP2835704B1 (en) * 2013-08-06 2016-03-23 ABB Technology Oy Actuator assembly
CN103916057B (zh) * 2014-03-31 2017-09-19 北京自动化控制设备研究所 一种陀螺磁滞电机失步解决方法及其电路
DE102014008462A1 (de) * 2014-06-06 2015-12-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren zum Betrieb eines bürstenbehafteten Kommutatormotors eines Verstellantriebs und Verstellantrieb
EP3161496B8 (de) * 2014-06-30 2020-11-04 Elmos Semiconductor SE Verfahren zur erlangung eines hinweises, insbesondere eines anfangshinweises auf eine mögliche fehlerhafte lastbedingung eines mehrphasigen elektromotors
CN105897085B (zh) * 2014-12-23 2019-07-12 恩智浦美国有限公司 用于电机控制器的过零检测电路及其方法
CN106033946B (zh) * 2015-03-19 2018-11-23 四川长虹电器股份有限公司 空调室外机电机转速及电机转子位置检测方法
CA2932101C (en) * 2015-06-10 2023-10-03 Rolls-Royce Corporation Synchronizing motors for an electric propulsion system
DE102015213893A1 (de) * 2015-07-23 2017-01-26 Robert Bosch Gmbh Verfahren zum Ermitteln einer Übergangskompensation bei einer Brennkraftmaschine mit Saugrohreinspritzung und Direkteinspritzung
JP6596253B2 (ja) * 2015-07-27 2019-10-23 株式会社日立産機システム 電力変換装置および電力変換装置の制御方法
CN105262397B (zh) * 2015-10-29 2018-06-29 四川长虹电器股份有限公司 一种变频电机定位电流控制方法
EP3291438B1 (en) * 2016-08-30 2021-11-10 Valeo Klimasysteme GmbH Method for detecting stalling of an electric stepper motor, an electric stepper motor and a heating, ventilation and/or air conditioning system with an electric stepper motor
US10774762B2 (en) * 2017-03-06 2020-09-15 HELLA GmbH & Co. KGaA Purge pump system with emergency stop
KR102295580B1 (ko) * 2017-04-04 2021-08-30 현대자동차주식회사 차량용 dc모터의 과전류 감지 제어장치 및 제어방법
CN110445427B (zh) * 2018-05-03 2021-11-19 南京德朔实业有限公司 电动工具
CN110850850B (zh) * 2019-11-29 2021-04-09 安徽江淮汽车集团股份有限公司 冷却水泵的下线检测方法、装置、设备及存储介质
CN111537879B (zh) * 2020-05-13 2024-01-16 江苏首智新能源技术有限公司 一种同步电机失步诊断方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251098A (ja) * 1990-02-28 1991-11-08 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置
JPH05236788A (ja) * 1992-02-19 1993-09-10 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置
JP2005204383A (ja) * 2004-01-14 2005-07-28 Fujitsu General Ltd ブラシレスdcモータの制御方法
JP2006271197A (ja) * 2006-06-01 2006-10-05 Yaskawa Electric Corp ブラシレスdcモータの駆動装置および駆動方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680016B2 (ja) * 2001-09-03 2005-08-10 三菱電機株式会社 同期電動機の脱調検出装置
CN1307781C (zh) * 2004-01-19 2007-03-28 苏州市苏开电气成套公司 触屏式程控同步电机励磁装置及其程控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251098A (ja) * 1990-02-28 1991-11-08 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置
JPH05236788A (ja) * 1992-02-19 1993-09-10 Matsushita Electric Ind Co Ltd ブラシレスモータの駆動装置
JP2005204383A (ja) * 2004-01-14 2005-07-28 Fujitsu General Ltd ブラシレスdcモータの制御方法
JP2006271197A (ja) * 2006-06-01 2006-10-05 Yaskawa Electric Corp ブラシレスdcモータの駆動装置および駆動方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200438A (ja) * 2009-02-24 2010-09-09 Panasonic Corp インバータ制御装置と電動圧縮機および家庭用電気機器
JP2013538034A (ja) * 2010-09-27 2013-10-07 ワールプール,ソシエダッド アノニマ ブラシレス電気モータをモニタし制御するためのシステム及び方法
JP2014236595A (ja) * 2013-06-03 2014-12-15 三菱電機株式会社 電動機駆動装置
WO2018146957A1 (ja) 2017-02-08 2018-08-16 北斗制御株式会社 センサレスモータの駆動方法
US10840834B2 (en) 2017-02-08 2020-11-17 Hokuto Control Co., Ltd. Method for driving sensorless motor
US11128243B2 (en) 2018-07-31 2021-09-21 Aisin Seiki Kabushiki Kaisha Drive apparatus of electric motor and electric pump apparatus
JP2020031735A (ja) * 2018-08-28 2020-03-05 株式会社ナカニシ 医療装置
EP4040668A4 (en) * 2019-09-30 2022-11-30 Daikin Industries, Ltd. ENGINE DRIVE METHOD AND ENGINE DRIVE DEVICE
CN114430881A (zh) * 2019-09-30 2022-05-03 大金工业株式会社 马达驱动方法和马达驱动装置
CN114430881B (zh) * 2019-09-30 2023-03-24 大金工业株式会社 马达驱动方法和马达驱动装置
CN112751511A (zh) * 2019-10-31 2021-05-04 精工爱普生株式会社 电机驱动电路、集成电路装置、电子设备和电机控制方法
CN112751511B (zh) * 2019-10-31 2024-02-13 精工爱普生株式会社 电机驱动电路、集成电路装置、电子设备和电机控制方法
WO2022265979A1 (en) * 2021-06-14 2022-12-22 Mantis Robotics, Inc. Servo joint safety position monitoring apparatus and method

Also Published As

Publication number Publication date
CN101192803B (zh) 2011-05-04
CN101192803A (zh) 2008-06-04

Similar Documents

Publication Publication Date Title
JP2008141828A (ja) モータ駆動装置及びモータ駆動方法
US8593092B2 (en) Control system for multiphase electric rotating machine
JP4735681B2 (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP4513914B2 (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
CN105991072B (zh) 电机驱动控制装置及其控制方法
JP2007097363A (ja) 油圧用ブラシレスモータの制御方法および制御装置
JP2007110780A (ja) モータ制御装置
US8729840B2 (en) Sensorless control unit for brushless DC motor
JP6463966B2 (ja) モータ駆動装置およびモータ駆動用モジュール並びに冷凍機器
JPH11155297A (ja) モータの駆動装置
JP2018160972A (ja) モータ駆動回路の制御装置及びモータ駆動回路の診断方法
CN108075690B (zh) 马达驱动系统及其运转回复方法
JP2004364381A (ja) モータ駆動装置
JP2008259360A (ja) ブラシレスモータ用通電制御回路
JP2007074834A (ja) センサレスモータの起動装置
JP6693178B2 (ja) モータ制御装置
US20140055066A1 (en) Brushless motor control device and brushless motor control method
JP2007236169A (ja) スイッチト・リラクタンス・モータの制御装置及びその制御方法
JP2008043073A (ja) ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置
JP4085818B2 (ja) 直流電動機の駆動方法および直流電動機の駆動装置
JP2005312145A (ja) ブラシレスモータの駆動装置
JP2013236431A (ja) ブラシレスモータの制御方法及び制御装置
JP2018198497A (ja) モータ駆動制御装置及びモータの駆動制御方法
JP5396828B2 (ja) ブラシレスモータの安定制御装置
JP5542168B2 (ja) 電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110