JP2008043073A - ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置 - Google Patents

ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置 Download PDF

Info

Publication number
JP2008043073A
JP2008043073A JP2006214959A JP2006214959A JP2008043073A JP 2008043073 A JP2008043073 A JP 2008043073A JP 2006214959 A JP2006214959 A JP 2006214959A JP 2006214959 A JP2006214959 A JP 2006214959A JP 2008043073 A JP2008043073 A JP 2008043073A
Authority
JP
Japan
Prior art keywords
rotational speed
brushless motor
duty ratio
power supply
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214959A
Other languages
English (en)
Inventor
Yasushi Shinojima
靖 篠島
Yasutoshi Sugihara
康敏 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006214959A priority Critical patent/JP2008043073A/ja
Publication of JP2008043073A publication Critical patent/JP2008043073A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】電源電圧が変動しても異音を抑制して回転数制御が可能なブラシレスモータの回転数制御方法及びブラシレスモータの回転数制御装置を提供すること。
【解決手段】PWM信号のデューティ比によりロータ3bの回転数が制御されるブラシレスモータ3の回転数制御方法であって、ロータ3bの回転数を検出するステップ(S2)と、回転数が目標回転数に一致するようデューティ比を制御するステップ(S3〜S6)と、回転数と目標回転数が一致した場合、ブラシレスモータ3の電源電圧が所定以上変動するまでデューティ比の変更を保留するステップ(S7〜9)と、を有することを特徴とする。
【選択図】図7

Description

本発明は、ブラシレスモータの回転数制御方法及びブラシレスモータの回転数制御装置に関する。
車両には種々のモータが使用されており、従来はブラシ付きモータによりフューエルポンプやウォータポンプ等が駆動されていたが、モータ電流の大容量化に伴いブラシレスモータへの移行が検討されている。
ブラシレスモータは、ステータ内にある3つのコイル(3相の場合)に各々独立した交流電流を与えることにより永久磁石を有するロータを回転させるものである。ブラシレスモータを所望の回転数で駆動するため、ステータ部分にロータの極の位置を検出するための位置検出素子(例えばホール素子)を電気角で60度又は120度の間隔で複数個配置されている。また、これらのホール素子が出力する位置検出信号に基づいてステータのステータコイルへの通電タイミングを決定する論理変換部が設けられていて、この論理変換部の結果によりステータコイルに通電するインバータ回路が設けられている。
しかしながら、ロータの位置をホール素子により検出すると、ホール素子と接続する電力線や出力線など構造が複雑になりコストの増加をもたらす等の不都合が多い。
そこで、ブラシレスモータでは、ロータの位置検出のためにホール素子等を用いずに、ステータコイルに生ずる誘起電圧により回転数を制御するようにしたセンサレスモータが知られている(例えば、特許文献1参照。)。
図1はDCブラシレスモータ装置(センサレスモータ)の概略構成図を示す。ブラシレスモータ装置は、DCブラシレスモータ3の三相(U相、V相、W相)の各相に通電する電圧及び周波数を与えるインバータ2と、DCブラシレスモータ3の端子電圧に基づいてロータ3bの位置を検出し、この位置検出信号を出力する位置検出手段4と、この位置検出信号に基づいてDCブラシレスモータ3を回転制御するための電圧印加タイミングを得ると共に電圧印加タイミングによりインバータ2の各スイッチ素子をオン、オフしてパルス幅変調(以下PWMと称する)により制御する制御部5を備えている。
制御部5は、直流電源1をインバータ2でスイッチングしてDCブラシレスモータ3の相巻線に電圧を印加し通電を切り替える一方、通電休止相の端子電圧波形に基づいてロータ3bの位置を検出し、この位置検出信号に基づいてインバータ2を制御してDCブラシレスモータ3を回転制御する。
図2は、制御部5がDCブラシレスモータのロータ位置を検出する原理図の一例を示す。位置検出手段4は、非通電相に発生する誘起電圧と誘起電圧と比較するための基準電圧(一般に直流電圧の1/2=Vcc/2)の比較結果を出力するので、制御部5は誘起電圧がVcc/2とクロスするタイミングを基に各端子の位置を検出する。制御部5は、各端子の位置に基づきスイッチ素子の駆動信号を生成して、各時刻におけるインバータ2のスイッチ素子を所定にチョッピングする。
特許第2642357号公報
ところで、DCブラシレスモータを定速回転で制御した場合、電源電圧が変動すると回転数が変動してしまうため、電圧変動による回転数のばらつきを低減するためロータの回転数制御が必要になる。特に、車両では電源電圧(12V電源)の変動が大きいため、ポンプなどを正確に駆動するためには回転数制御が必須とされることが多い。
図3は、電源電圧が変動する場合にDCブラシレスモータを定速回転する制御手順を示すフローチャート図である。制御部5はDCブラシレスモータを利用するECUから指示回転数Aを受信する(S1)。制御部5は、例えば電気角度60度毎に検出されるクロスタイミングを利用してロータの回転数Bを算出する(S2)。
電気角1周期中ではUVW各相が1回ずつ立ち上がり・立ち下がりの極性反転を行うため、計6回の磁極位置を検出できる。この場合、位置検出手段4からの位置情報は電気角60度毎に得られることとなる。制御部5は、60度毎の位置情報を得ると共にその位置情報の時間間隔を計測し、回転数Bを演算する。
制御部5は、指示回転数Aと算出された回転数Bとを比較し(S3)、A>Bの場合はPWM信号のデューティ比を増加させ(S4)、A=Bの場合はデューティ比を維持(S5)し、A<Bの場合はデューティ比を減少させる(S6)。
この処理を繰り返すことで、電源電圧が変動してもDCブラシレスモータの回転数がほぼ一定に保持される。
しかしながら、このような制御を繰り返すとDCブラシレスモータ3から異音が発生するという問題があった。これは、PWM信号の周期に対して、位置信号の周期が15倍以上と遅いため、位置検出(回転数の算出)に基づくPWM信号のデューティ比のフィードバック制御が速やかに実現されていないためと考えられる。
また、図2に拡大して示したように誘起電圧にはPWM信号のチョッピングノイズが含まれるため、複数の誘起電圧のパルスが基準電圧Vcc/2に対し位置検出条件を満たすこととなり、位置検出自体に誤差を生じるためと考えられる。
本発明は、上記課題に鑑み、電源電圧が変動しても異音を抑制して回転数制御が可能なブラシレスモータの回転数制御方法及びブラシレスモータの回転数制御装置を提供することを目的とする。
上記課題を解決するため、本発明は、PWM信号のデューティ比によりロータの回転数が制御されるブラシレスモータの回転数制御方法であって、ロータの回転数を検出するステップ(例えば、図7のS2)と、回転数が目標回転数に一致するようデューティ比を制御するステップ(同S3〜S6)と、回転数と目標回転数が一致した場合、ブラシレスモータの電源電圧が所定以上変動するまでデューティ比の変更を保留するステップ(同S7〜S9)と、を有することを特徴とする。
電源電圧が変動しても異音を抑制して回転数制御が可能なブラシレスモータの回転数制御方法及びブラシレスモータの回転数制御装置を提供することができる。
以下、本発明を実施するための最良の形態について、図面を参照しながら実施例を挙げて説明する。
図4は、DCブラシレスモータ3及び回転数制御装置6の全体構成図を示す。なお、図4において図1と同一構成部には同一の符号を付した。回転数制御装置6は、直流電源1、インバータ2、位置検出手段4及び制御部5から構成される。
直流電源1は電源部11及びコンデンサ12を有し、これらの正端子及び負端子は母線13及び14に接続されている。また、直流電源1の電圧値はA/D変換部15に出力され、直流電源1の電圧値が制御部5の入力端子I4に接続されている。
インバータ2は、母線13及び14の間にスイッチング素子であるPNP形のトランジスタ21〜23及びNPN形のトランジスタ24〜26を3相ブリッジ接続して構成されている。ステータ3aは、三相のU,V及びW相のステータコイル3U,3V及び3Wを有し、ロータ3bはN極S極が交互に配置された永久磁石を有する。
そして、ステータコイル3U、3V及び3Wの一端子は共通に接続され、それぞれの他端子は、トランジスタ21及び24の共通接続点である出力端子OU、トランジスタ22及び25の共通接続点である出力端子OV及びトランジスタ23及び26の共通接続点である出力端子OWに接続されている。
母線13及び14には、抵抗61及び62が直列に接続されており、その共通接続点である検出端子ONは基準電圧としてステータコイル3U,3V及び3Wの中性点の電圧(直流電源1の電圧のVcc/2である仮相中性点の電圧)を出力するようになっている。
位置検出手段4は、コンパレータ41、42、43を有し、これらの各非反転入力端子(+)は抵抗43〜45を介して出力端子OU,OV及びOWにそれぞれ接続され、各反転入力端子(−)は検出端子ONに接続されている。
そして、コンパレータ41〜43の出力端子は、入出力端子、演算素子、ROM、RAM等を備えたマイクロコンピュータである制御部5に接続されている。制御部5の入力端子I1、I2及び、I3は、コンパレータ41〜43の出力端子に、出力端子O1〜O3はトランジスタ24〜26の各ベースに接続され、出力端子O4〜O6はトランジスタ21〜23の各ベースに接続されている。
演算素子がROMに格納されたプログラムを実行することで、ロータ3bの回転数を検出する回転数検出手段と、ロータ3bの回転数が指示された目標回転数に制御された場合に、電源電圧が所定以上変動するか又は一定時間が経過するまでPWM信号のデューティ比を固定するデューティ比固定手段と、を実現する。
図5は、回転数制御のタイムチャート図を示す。図5(a)〜(c)は、定常動作時におけるステータコイル3U、3V及び3Wのコイル電圧(端子電圧)VU,VV及びVWを示す。これらは、インバータ2による供給電圧VUa,VVa及びVWaと、ステータコイル3U、3V及び3Wに発生する誘起電圧VUb,VVb及びVWbと、通電モード切換え時にインバータ2のダイオードのいずれかが導通することにより生ずるパルス状電圧VUc,VVc及びVWcとの合成波形となる。
そして、図5(d)〜(f)は、コイル電圧VU,VV及びVWと、直流電源電圧の1/2に相当する基準電圧VNとをコンパレータ41〜43により比較した出力信号PSU,PSV及びPSWである。出力信号PSU,PSV及びPSWは、誘起電圧VUb,VVb及びVWbの正及び負並びに位相を表わす信号PSUa,PSVa及びPSWaと、パルス状電圧VUc,VVc及びVWcに対応する信号PSUb,PSVb及びPSWbとからなる。
そして、制御部5は、非通電相の誘起電圧と基準電圧VNとのクロスタイミングを、出力信号PSU,PSV及びPSWがロウレベルからハイレベルへ又はハイレベルからロウレベルへ変化した時点として検出し、ロータの位置を検出する。また、そこから30度遅れた電気角が通電相の切り替えを考慮したモータ駆動時点である。図5(g)に示す各時間Tは電気角で60度を示すものであり、図5(h)に示す時間T/2は電気角で30度に相当する遅延時間を示す。
制御部5は、各出力信号PSU,PSV及びPSWの状態に基づいて、図5(i)に示す6つのモードA〜Fを認識する。そして、制御部5はモードに応じて、図5(j)〜(o)に示すインバータ2を駆動するための駆動信号OU+〜OW−を出力する。本実施形態では駆動信号OU+〜OW−はPWM信号になる。制御部5はPWM信号のデューティ比を調整することでロータ3bの回転数を制御する。
以下、本実施形態の回転数制御方法について説明する。
本実施例では、直流電源1の電源電圧を監視して、電源電圧が一定値以上変化した場合のみ、回転数制御を行う回転数制御方法について説明する。
図6は、回転数制御の概略を説明するための図を示す。図6に示すように、電源電圧は時間と共に変動するが、変動の早さは10Hz以下と位置検出の早さに比べて極めて緩やかであるため、ロータの回転数は電源電圧の変動に十分に追従できる。
図6では、回転数制御を開始する電源電圧の変動量をXとした。したがって、電源電圧がX変動する毎に回転数制御が開始され、変動後の電圧値で所望の回転数が得られるデューティ比のPWM信号がインバータ2に印可される。また、回転数制御が終了したら次に電源電圧がX変動するまでデューティ比は固定される。図6では、回転数制御する時間帯をMの矢印で、デューティ比が固定される時間帯をNの矢印で、それぞれ示した。
図7は、電源電圧が一定値以上変化した場合のみ、DCブラシレスモータの回転数制御を行う制御手順のフローチャート図を示す。
制御部5はDCブラシレスモータ3を利用するECUから指示回転数Aを入力される(S1)。DCブラシレスモータ3がフューエルポンプを駆動する場合、このECUは例えばエンジンECUである。
ついで、制御部5は、コンパレータ41〜43が出力する誘起電圧と基準電圧との比較結果に基づき電気角度60度毎に検出されるクロスタイミングを検出し、現在のロータの回転数Bを算出する(S2)。制御部5の回転数検出手段は、60度毎の位置情報を得ると共にその位置情報の時間間隔を計測し、回転数Bを演算する。
制御部5は、指示回転数Aと算出された回転数Bとを比較する(S3)。
A>Bの場合、制御部5は回転数を上昇させるためPWM信号のデューティ比を増加させる(S4)。そして、再度、制御部5は回転数Bを算出し(S2)、指示回転数Aと算出された回転数Bとを比較する(S3)。このフィードバック処理を、指示回転数Aが算出された回転数Bとがほぼ一致するまで繰り返す。
同様に、A<Bの場合、制御部5は回転数を減少させるためPWM信号のデューティ比を減少させる(S6)。そして、再度、制御部5は回転数Bを算出し(S2)、指示回転数Aと算出された回転数Bとを比較する(S3)。このフィードバック処理を、指示回転数Aが算出された回転数Bとがほぼ一致するまで繰り返す。
指示回転数Aと算出された回転数Bが一致すると、制御部5はそのデューティ比を維持する(S5)。また、制御部5は指示回転数Aと算出された回転数Bが一致した時の電源電圧をRAMやレジスタなどの記憶素子に記憶する(S7)。
そして、制御部5は、直流電源1の電源電圧を監視して(S8)、電源電圧が所定値X以上変動したか否かを判定する(S9)。電源電圧が所定値X以上変動しなければ、監視及び判定を繰り返す(S9のNo)。この間、制御部5のデューティ比固定手段は、PWM信号のデューティ比を固定して、駆動信号をインバータ2に出力する。
電源電圧が所定値X以上変動した場合(S9のYes)、ステップS2に戻り、制御部5は回転数制御を実行する。
本実施例によれば、いったん、所望の回転数で制御されると電源電圧が所定値X以上変動するまで、PWM信号のデューティ比が変更されない。この制御により、周期が長い位置信号に基づき周期の短いPWM信号のデューティ比を変更する頻度が少なくなり、DCブラシレスモータ3の異音を低減することができる。
本実施例の回転数制御方法では、回転数制御を行い指示回転数とロータの回転数が一致したら、PWM信号のデューティ比を固定する。この動作を一定時間毎に行うことで所望の回転数に制御する回転数制御について説明する。
図8は、回転数制御の概略を説明するための図を示す。図8に示すように、電源電圧は時間と共に変動するが、所定時間内であれば電源電圧の変動量も所定値内と想定することができる。したがって、所定時間毎に回転数制御を行うことで、電源電圧の変動による回転数の変動を抑制しながら所望の回転数に制御することができる。なお、所定時間は、電源電圧が変動する早さ(例えば、10Hz以下)よりも短ければよく、所定時間をこのように決定しておけば電源電圧の変動に追従できる。
図8では回転数制御を実行するまでの時間をTとした。したがって、一定時間Tが経過するたびに回転数制御が開始され、一定時間T経過後に変動した電圧値において所望の回転数が得られるデューティ比のPWM信号がインバータ2に印可される。また、回転数制御が終了したら一定時間Tが経過するまでデューティ比は固定される。図8では、回転数制御する時間帯をMの矢印で、デューティ比が固定される時間帯をNの矢印で、それぞれ示した。
図9は、一定時間毎にDCブラシレスモータの回転数制御を行う制御手順のフローチャート図を示す。なお、図9において図7と同一ステップには同一の符号を付した。
制御部5はDCブラシレスモータを利用するECUから指示回転数Aを入力される(S1)。DCブラシレスモータ3がフューエルポンプを駆動する場合、このECUは例えばエンジンECUである。
ついで、制御部5は、コンパレータ41〜43が出力する誘起電圧と基準電圧との比較結果に基づき、電気角度60度毎に検出されるクロスタイミングを検出し、現在のロータの回転数Bを算出する(S2)。制御部5は、60度毎の位置情報を得ると共にその位置情報の時間間隔を計測し、回転数Bを演算する。
制御部5は、指示回転数Aと算出された回転数Bとを比較する(S3)。
A>Bの場合、制御部5は回転数を上昇させるためPWM信号のデューティ比を増加させる(S4)。そして、再度、制御部5は回転数Bを算出し(S2)、指示回転数Aと算出された回転数Bとを比較する(S3)。このフィードバック処理を、指示回転数Aが算出された回転数Bとがほぼ一致するまで繰り返す。
同様に、A<Bの場合、制御部5は回転数を減少させるためPWM信号のデューティ比を減少させる(S6)。そして、再度、制御部5は回転数Bを算出し(S2)、指示回転数Aと算出された回転数Bとを比較する(S3)。このフィードバック処理を、指示回転数Aが算出された回転数Bとがほぼ一致するまで繰り返す。
指示回転数Aと算出された回転数Bが一致すると、制御部5のデューティ比固定手段は一定時間Tの間、その時のデューティ比を固定して駆動信号をインバータ2に出力する(S20)。
そして、一定時間Tが経過するとステップS2に戻り、制御部5は回転数制御を実行する。一定時間の経過の検出は、例えば、制御部5が有するタイマ割り込み等を利用する。
本実施例によれば、いったん所望の回転数で制御されると、PWM信号のデューティ比が一定時間変更されない。この制御により、周期が長い位置信号に基づき周期の短いPWM信号のデューティ比を変更する頻度が少なくなり、DCブラシレスモータ3の異音を低減することができる。
本実施例の回転数制御方法では、回転数制御を行い指示回転数とロータの回転数が一致したらPWM信号のデューティ比を固定する。そして、一定時間毎にこの動作を行う制御を基本に、一定時間内であっても電源電圧が所定以上変動した場合には回転数制御を行う。
図10は、電源電圧が所定以上変動しない限り一定時間デューティ比を固定してDCブラシレスモータ3の回転数制御を行う制御手順のフローチャート図を示す。なお、図10において図7と同一ステップには同一の符号を付した。
制御部5はDCブラシレスモータを利用するECUから指示回転数Aを入力される(S1)。DCブラシレスモータ3がフューエルポンプを駆動する場合、このECUは例えばエンジンECUである。
ついで、制御部5は、コンパレータ41〜43が出力する誘起電圧と基準電圧との比較結果に基づき、電気角度60度毎に検出されるクロスタイミングを検出し、現在のロータの回転数Bを算出する(S2)。制御部5は、60度毎の位置情報を得ると共にその位置情報の時間間隔を計測し、回転数Bを演算する。
制御部5は、指示回転数Aと算出された回転数Bとを比較する(S3)。
A>Bの場合、制御部5は回転数を上昇させるためPWM信号のデューティ比を増加させる(S4)。そして、再度、制御部5は回転数Bを算出し(S2)、指示回転数Aと算出された回転数Bとを比較する(S3)。このフィードバック処理を、指示回転数Aが算出された回転数Bとがほぼ一致するまで繰り返す。
同様に、A<Bの場合、制御部5は回転数を減少させるためPWM信号のデューティ比を減少させる(S6)。そして、再度、制御部5は回転数Bを算出し(S2)、指示回転数Aと算出された回転数Bとを比較する(S3)。このフィードバック処理を、指示回転数Aが算出された回転数Bとがほぼ一致するまで繰り返す。
指示回転数Aと算出された回転数Bが一致すると、制御部5はそのデューティ比を維持する(S5)。また、制御部5は指示回転数Aと算出された回転数Bが一致した時の電源電圧をRAMやレジスタなどの記憶素子に記憶する(S7)。一定時間が経過するか又は電源電圧が所定値X以上変動するまで、デューティ比固定手段はPWM信号のデューティ比を固定して、インバータ2に駆動信号を出力する。
すなわち、制御部5は、直流電源1の電源電圧を監視して、電源電圧が所定値X以上変動したか否かを判定する(S30)。電源電圧が所定値X以上変動しなければ(S30のNo)、一定時間が経過したか否かを判定する(S40)。電源電圧が所定値X以上変動した場合(S30のYes)、ステップS2に戻り、制御部5は回転数制御を実行する。
また、電源電圧が所定値X以上変動しなくても、一定時間が経過すると(S40のYes)、制御部5はステップS2に戻り回転数制御を実行する。
本実施例によれば、いったん所望の回転数で制御されると原則的には一定時間PWM信号のデューティ比が変更されない。この制御により、周期が長い位置信号に基づき周期の短いPWM信号のデューティ比を変更する頻度が少なくなり、DCブラシレスモータ3の異音を低減することができる。
また、一定時間内であっても電源電圧が所定以上変動した場合は回転数制御を実行するので、予想よりも大きな電源電圧の変動があっても回転数を精度よく制御できる。また、一定時間Tを実施例2よりも長めにとることができるので、回転数制御の頻度を実施例2よりも少なくすることができ、異音を低減することができる。
〔効果〕
本実施形態の回転数制御方法の効果について説明する。図11(a)(b)はUVW各相に通電する電流とモータに通電されたモータ電流を示す。図11(a)は、回転数の検出の度にデューティ比を増減する制御方法によるモータ電流を、図11(b)は電源電圧が所定値X以上変動した場合のみデューティ比を増減する制御方法によるモータ電流をそれぞれ示す。
図11(a)のモータ電流の振動波形は、細かな位相波を有すると共にその包絡波形に現れる群波(以下、電流脈動という)を有する。この電流脈動は数十Hzの振動数(図では20Hz)を有し、回転数の検出の度にデューティ比を増減する制御方法では、この電流脈動が異音の要因となっていると考えられる。
これに対し図11(b)のモータ電流の振動波形は、電流脈動が図11(a)よりも遙かに小さいか確認できない。モータ電流の波形から明らかなように、電源電圧が所定値X以上変動した場合のみデューティ比を増減する制御により異音の要因となる電流脈動を小さくすることができる。なお、本実施形態の回転数制御では、ほとんど異音が確認されなかった。
また、図11(a)のモータ電流の振動波形は最大約1〔A〕の振幅を示しているが、図11(b)の振動波形では最大でも約0.7〔A〕とモータ電流の振幅が小さくなっている。波が伝達するエネルギーはその振幅の2乗に比例することを考慮すると、電流脈動の振幅が小さくなっている点からも異音が低減されることが分かる。
以上のように、本実施形態の回転数制御方法によれば、電源電圧が変動しても異音を抑制すると共に精度よく回転数を制御することができる。したがって、電源電圧の変動が大きい装置に用いる場合でも、精度よくデバイスを制御できる。追加する構成も少ないのでコスト増を回避できる。
DCブラシレスモータ装置(センサレスモータ)の概略構成図である。 センサレス駆動のDCブラシレスモータにおけるロータ位置検出の原理図の一例である。 電源電圧が変動する場合にDCブラシレスモータを定速回転する制御手順を示すフローチャート図である。 DCブラシレスモータの全体構成図である。 回転数制御のタイムチャート図である。 回転数制御の概略を説明するための図である(実施例1)。 電源電圧が一定値以上変化した場合のみ、DCブラシレスモータの回転数制御を行う制御手順のフローチャート図である。 回転数制御の概略を説明するための図である(実施例2)。 一定時間毎にDCブラシレスモータの回転数制御を行う制御手順のフローチャート図である。 電源電圧が所定以上変動しない限り一定時間デューティ比を固定してDCブラシレスモータの回転数制御を行う制御手順のフローチャート図である。 UVW各相に通電する電流とモータに通電されたモータ電流の一例を示す図である。
符号の説明
1 直流電源
2 インバータ
3 DCブラシレスモータ
4 位置検出手段
5 制御部
6 回転数制御装置

Claims (3)

  1. PWM信号のデューティ比によりロータの回転数が制御されるブラシレスモータの回転数制御方法であって、
    前記ロータの前記回転数を検出するステップと、
    前記回転数が目標回転数に一致するよう前記デューティ比を制御するステップと、
    前記回転数と前記目標回転数が一致した場合、前記ブラシレスモータの電源電圧が所定以上変動するまで前記デューティ比の変更を保留するステップと、
    を有することを特徴とするブラシレスモータの回転数制御方法。
  2. PWM信号のデューティ比によりロータの回転数が制御されるブラシレスモータの回転数制御方法であって、
    前記ロータの前記回転数を検出するステップと、
    前記回転数が目標回転数に一致するよう前記デューティ比を制御するステップと、
    前記回転数と前記目標回転数が一致した場合、所定時間が経過するまで前記デューティ比の変更を保留するステップと、
    を有することを特徴とするブラシレスモータの回転数制御方法。
  3. ブラシレスモータのステータコイルに通電するインバータと、
    前記ステータコイルの誘起電圧に基づきロータの位置を検出する位置検出手段と、
    前記位置検出手段により検出された前記ロータの位置に基づき前記ロータの回転数を検出する回転数検出手段と、
    前記インバータに回転数を制御するためのPWM信号を出力する駆動信号出力手段と、を有するブラシレスモータの回転数制御装置であって、
    電源電圧を監視する電源電圧監視手段と、
    前記ロータの前記回転数が目標回転数に制御された場合、前記電源電圧が所定以上変動するまで前記PWM信号のデューティ比を固定するデューティ比固定手段と、
    を有することを特徴とするブラシレスモータの回転数制御装置。

JP2006214959A 2006-08-07 2006-08-07 ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置 Pending JP2008043073A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214959A JP2008043073A (ja) 2006-08-07 2006-08-07 ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214959A JP2008043073A (ja) 2006-08-07 2006-08-07 ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置

Publications (1)

Publication Number Publication Date
JP2008043073A true JP2008043073A (ja) 2008-02-21

Family

ID=39177475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214959A Pending JP2008043073A (ja) 2006-08-07 2006-08-07 ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置

Country Status (1)

Country Link
JP (1) JP2008043073A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185678A (ja) * 2009-02-10 2010-08-26 Dkk Toa Corp 酸化還元電流測定装置
JP2014073070A (ja) * 2012-09-28 2014-04-21 Samsung Electro-Mechanics Co Ltd モータ駆動装置及びモータ駆動方法
JP2018148642A (ja) * 2017-03-02 2018-09-20 株式会社デンソー モータ駆動回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111469A (ja) * 2001-09-28 2003-04-11 Sharp Corp モータの制御方法および制御装置
JP2003224991A (ja) * 2002-01-29 2003-08-08 Sanden Corp ブラシレスモータの駆動制御装置
JP2004254366A (ja) * 2003-02-18 2004-09-09 Fujitsu General Ltd ブラシレスモータの制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111469A (ja) * 2001-09-28 2003-04-11 Sharp Corp モータの制御方法および制御装置
JP2003224991A (ja) * 2002-01-29 2003-08-08 Sanden Corp ブラシレスモータの駆動制御装置
JP2004254366A (ja) * 2003-02-18 2004-09-09 Fujitsu General Ltd ブラシレスモータの制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185678A (ja) * 2009-02-10 2010-08-26 Dkk Toa Corp 酸化還元電流測定装置
JP2014073070A (ja) * 2012-09-28 2014-04-21 Samsung Electro-Mechanics Co Ltd モータ駆動装置及びモータ駆動方法
JP2018148642A (ja) * 2017-03-02 2018-09-20 株式会社デンソー モータ駆動回路

Similar Documents

Publication Publication Date Title
JP2008141828A (ja) モータ駆動装置及びモータ駆動方法
CN107241047B (zh) 电机驱动控制装置
JP4735681B2 (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP2008301588A (ja) ブラシレスモータの駆動装置
US10944351B2 (en) Motor drive control device and motor drive control method
CN111628678A (zh) 电机驱动控制装置及电机驱动控制方法
JP2009100526A (ja) モータ制御装置
JP2008043073A (ja) ブラシレスモータの回転数制御方法、ブラシレスモータの回転数制御装置
JP2007074834A (ja) センサレスモータの起動装置
JP5330728B2 (ja) ブラシレスモータの駆動装置
JP2008259360A (ja) ブラシレスモータ用通電制御回路
JP6133177B2 (ja) モータ駆動制御装置及びモータ駆動制御装置の制御方法
JP2005312216A (ja) ブラシレスdcモータの駆動装置
EP2704308A1 (en) Brushless motor control device and brushless motor control method
JP2012239355A (ja) ロータ位置検出装置
JP2012191728A (ja) モータの制御装置
JP5606899B2 (ja) ブラシレスモータの駆動制御装置
JP6576371B2 (ja) モータ駆動制御装置
JP6673092B2 (ja) 駆動装置
JP6577306B2 (ja) モータ駆動装置およびモータユニット
JP7468381B2 (ja) 演算装置及びモータ駆動装置
TWI389445B (zh) 無刷直流馬達之無感測器啟動方法
JP2005278360A (ja) ブラシレスモータのセンサレス制御方法、ブラシレスモータのセンサレス制御装置及び電動ポンプ
US20220109388A1 (en) Motor drive control device and method for controlling the same
JP5422526B2 (ja) ブラシレスモータの駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712