JP2008271698A - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
JP2008271698A
JP2008271698A JP2007110929A JP2007110929A JP2008271698A JP 2008271698 A JP2008271698 A JP 2008271698A JP 2007110929 A JP2007110929 A JP 2007110929A JP 2007110929 A JP2007110929 A JP 2007110929A JP 2008271698 A JP2008271698 A JP 2008271698A
Authority
JP
Japan
Prior art keywords
excitation
rotor
positioning
motor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007110929A
Other languages
English (en)
Inventor
Kiyoshi Yamamoto
山本  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuto Seigyo KK
Original Assignee
Hokuto Seigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuto Seigyo KK filed Critical Hokuto Seigyo KK
Priority to JP2007110929A priority Critical patent/JP2008271698A/ja
Publication of JP2008271698A publication Critical patent/JP2008271698A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡単な回路構成でロータの停止位置を安定させ確実でスムーズな始動を実現するモータ駆動装置を提供する。
【解決手段】モータ駆動制御部は、モータ駆動停止時に、ロータが低速回転でロータとステータ間の磁気抵抗が最小となる位置でロータが停止する励磁相を選んで励磁して位置決め励磁を行い、モータ始動時に、ロータが停止した位置で最大始動トルクが得られる励磁相を選んで励磁する。
【選択図】図6

Description

本発明は、例えばDCブラシレスモータをセンサレス駆動する場合にロータ停止位置を決定しかつ停止位置から確実に始動するモータ駆動装置に関する。
DCブラシレスモータをセンサレス駆動する場合、停止時は逆起電力が発生していないためロータ位置を検出できない。始動時は特に大きなトルクが要求され、ロータ位置に応じて最大トルクを発生する励磁相に通電する必要がある。しかしセンサレス駆動においてはセンサがないためロータ位置がわからず最大トルクを発生する励磁相を選定できない。そこで、任意の相に通電し強制的にロータを回転させ逆起電力を発生させ、ロータ位置を検出する方法が用いられている。この方法は最大トルクを発生する相が選択されるとは限らず、ロータ位置に対し不適切な相が選択された場合はトルク不足で始動できない、あるいは逆転する、あるいはハンチングしていて始動時間が長くかかるという課題があった。
高周波電流を与えてロータ位置をセンシングしたりベクトル制御したりする方法は回路が煩雑化する課題がある。
以下では、初めに+側端子に接続される相を表記し、ハイフンの後ろに−側端子に接続される相を表記することにする。例えば、U相からV相へ通電する場合は、U−Vと表記する。また、ロータ位置を示す角度は電気的位置を意味している。機械的に1回転する中で、電気角はポールペア数だけ繰り返される。例えば8極モータの場合、ポールペア=4であり、電気角360°は機械角の90°に相当し、12極モータの場合は、電気角360°は機械角の60°に相当する。また、本文ではモータはサイン波着磁されているものとして説明する。トルクカーブもサイン波とし、計算もそれに準ずる。
図8は3相DCブラシレスモータのステータに相当する3個の巻き線を表す模式図である。図8において、W相を開放し、U相からV相に一定電流を流しながら、ロータを外力にて回転させると回転力あるいは制動力が発生する。図9に、そのときのトルクカーブを示す。次に、外力を加えずロータが自由に回転する状態でU相からV相に一定電流を流すと、ロータが0°から180°の位置にあった場合は励磁トルクによりロータはCW(時計回り)に回転し、180°から360°の位置にあった場合は同様にCCW(反時計回り)に回転し、0°あるいは360°に位置していた場合は不安定で、CWかCCWのいずれかに回転し、ロータはどこに位置していても最終的には180°の位置で停止する。即ち、電気角中に必ず一箇所のトルク安定点ができ、そこにロータは位置することになる。これが停止時にロータを位置決めできる原理である。
図8と同様に任意の2相に一定電流を流した場合の、トルクが+側の波形を図10に示す。コイルが3個ある場合は6種類の励磁パターンがあり得る。区間60°から120°ではU−V相励磁が最大トルクを発生しておりロータはCWに回転することになる。区間120°から180°ではU−W相励磁が最大トルクを発生させる。区間180°から240°ではV−W相励磁が最大トルクを発生させる。区間240°から300°ではV−U相励磁が最大トルクを発生させる。区間300°から360°ではW−U相励磁が最大トルクを発生させる。区間0°から60°ではW−V相励磁が最大トルクを発生させる。ロータ位置に応じて60°ごとに適切な励磁相を選択し切り替えてやればロータは最大トルクでCWに回転する。これがDCブラシレスモータの励磁切り替え方法である。なお、この例のように2個のコイルに通電することを本文では2相励磁と称する。
例えば前述のごとくUーV相励磁により位置決めされたロータを始動する場合の最大トルクを発生する励磁相とそのトルクを図11に示す。U−V相励磁した場合、ロータは180°の位置が安定点となり180°の位置に停止している。この位置からCWに回転させるには前述図10より明らかなようにV−W相励磁が適合する励磁相である。そこで、位置決めのためのU−V相励磁から、V−W相励磁に切り替えるとロータは停止状態からCW回転を始める。ここで重要なのは、例えばU−V相励磁でロータの位置決めを行った場合、始動は一義的にV−W相励磁と決定できることである。この特性により始動回路が非常に簡略となり広く利用される大きな要因である。さて、ロータが60°回転し240°に達したらV−U相励磁に切り替えてやればCW回転が継続し300°まで回転する。以下同様に、ロータ位置に応じて最適な励磁相を選択していけばロータは連続回転することになる。
特開平11−187690号公報
しかしながら、上記方法でロータ位置決めを行った場合、励磁を切るとロータがわずかに回転する現象が起こる。ロータは永久磁石で構成されているので非通電時も磁気回路が形成される。磁気抵抗はロータとステータの対向面積により変化し、対向面積が最大の位置で磁気抵抗は最小となる。停止状態のロータにはわずかではあるが磁気抵抗が最小となる位置へ動くトルクが発生する。ここではそのトルクをコギングトルクと呼ぶことにする。この磁気抵抗が最小となる位置は当然のことであるが励磁トルク最大の位置でもある。位置決めのために励磁して停止する安定点と、安定点付近の最大コギングトルクとなる位置は30°ずれていることが判明している。これが原因で、位置決め励磁をやめたときロータは30°回転する。図12において、非通電時に180°付近で発生するコギングトルクとそれによるロータ移動後の停止位置を示す。U−V相励磁により180°に位置決めされたロータは励磁を停止すると、隣接するコギングトルク最大の位置、150°(図12のA点)あるいは210°(図12のB点)のいずれかに移動する。
ロータ位置決めの励磁からただちに始動の励磁に移ればコギングによるロータ移動は発生せず直ちに始動する。つまり始動の直前にロータの位置決め励磁を行えばロータ移動を防止できるが、位置決めには数秒間を要する。現実には始動指令が与えられてから数秒間も経過してから始動することが許されることはほとんどない。別の方法として停止期間中、ずっと励磁しつづけることが考えられる。しかし長時間停止する場合、継続的に位置決め励磁を行うことはモータや回路の発熱や消費電力の増加から得策ではない。実際には回転していたモータが停止したときに位置決め励磁を一定時間行い、以後は励磁を切ることが大半である。したがって、実際の使用状況においてはほとんどの場合、始動時には位置ずれが発生していると考えてよい。
図13において、ロータ停止位置が150°側に位置ずれが発生したときの始動トルクを示す。この状態では始動トルクは最大トルクの50%に低下してしまい、始動トルクが不足して始動できない可能性がある。さらに、軸受けによる粘性抵抗が影響すると位置ずれが増大しトルクはさらに低下し50%以下となる場合もある。そのため始動時は最適な停止位置の数倍もの多大な始動電流を流す必要があった。また、位置決め励磁などで静止させたとき完全に静止するまでにはかなりの時間がかかるため、実際にはまだゆらゆらと低周波振動している最中に始動励磁に入る場合も想定される。30°以上振動していた場合や粘性抵抗によりロータは120°より前方に位置する可能性があり、その場合はV−W相励磁により−側にトルクが発生し、ロータは逆転を始める。逆転すると始動できないか、あるいは次の励磁の際にロータが反転し大きなショックが発生するおそれがある。
本発明はこれらの課題を解決すべくなされたものであり、その目的とするところは、簡易な回路構成でブラシレスモータのロータの停止位置を安定させ、十分な始動トルクでスムーズな始動を実現するモータ駆動装置を提供することにある。
本発明は上記目的を達成するため、次の構成を備える。
ブラシレスモータの駆動制御を行うモータ駆動装置であって、モータコイルに通電する励磁相を切り替えてモータを駆動制御するモータ駆動制御部を備え、該モータ駆動制御部はモータ駆動停止時に、ロータが低速回転でロータとステータ間の磁気抵抗が最小となる位置でロータを静止させる励磁相を選んで通電する位置決め励磁を行い、モータ始動時に、ロータが停止位置から最大始動トルクで始動する励磁相を選んで励磁することを特徴とする。
また、モータ駆動制御部は、モータを駆動停止する際にロータ回転速度が低速回転となった状態で位置決め指令が入力されると、ロータを静止するのに必要な一定時間だけ選定された励磁相に通電する位置決め励磁が行なわれることを特徴とする。
また、モータ駆動制御部は、モータコイルにPWM制御により通電される励磁電流をロータの位置決め励磁の開始時ほど通電間隔が短く時間の経過とともに励磁電流の通電間隔が漸進増加するように通電制御することを特徴とする。
また、モータ駆動制御部は、ロータの回転速度が低速回転になったことを検出する低速検出手段と、コントローラから位置決め励磁指令が入力され低速検出手段がロータの低速回転を検出すると位置決め信号パルスを発生する発振手段と、発振手段から発生した位置決め信号が入力している間だけ位置決め励磁を行なう励磁制御手段を備えたことを特徴とする。
或いは、モータ駆動制御部は、ロータが1回転すると1パルスのインデックス信号を出力する回転センサと、ロータの回転速度が低速回転になったことを検出する低速検出手段と、回転センサから入力されるインデックス信号のエッジに同期して低速検出手段からの低速検出信号及びコントローラからの位置決め励磁指令の論理積をとって出力信号を出力する論理回路と、論理回路からの出力信号を受けて位置決め信号を発生する発振手段と、発振手段から発生した位置決め信号が入力している間だけ位置決め励磁を行なう励磁制御手段を備えたことを特徴とする。
上述したモータ駆動装置を用いれば、モータ駆動制御部はモータ駆動停止時に、ロータが低速回転でロータとステータ間の磁気抵抗が最小となる位置でロータが停止する励磁相を選んで励磁して位置決め励磁を行うので、ロータが静止した後通電を停止してもロータが移動することがない。また、位置決め励磁によりロータが安定点に収束するように停止するため、ハンチングが抑制され振幅が小さくなり時間も短縮される。
また、モータ始動時に、ロータが停止した位置で最大起動トルクが得られる励磁相を選んで励磁することでロータを起動させ、起動したロータを回転方向に付勢する励磁シーケンスで励磁相を切り替え制御する。よって、ロータ停止位置で最大トルクとなる励磁相を選んで励磁すれば必ず所定方向にモータを十分な始動トルクでスムーズに起動することができる。また、最大トルクで加速するので短時間でかつ瞬時に始動することができ、始動電流を低減することができる。
また、モータ駆動制御部は、モータコイルにPWM制御により通電されるモータ電流をロータの位置決め励磁の開始時ほど通電間隔が短く時間とともに励磁電流の通電間隔が漸進増加するように通電制御すると、ロータの回転停止時の振動を低減することができる。
特に、DCブラシレスモータをセンサレス駆動する場合に、ロータの停止位置を安定させ、停止位置から確実に始動することができる。
また、センサ駆動ではあるが、回転センサから入力されるインデックス信号のエッジに同期して低速検出信号及びコントローラからの位置決め励磁指令の論理積をとって出力信号を出力し、位置決め信号を発生して位置決め励磁を行なうようにすると、4極以上の多極ブラシレスモータにおいて、回路コストがかからずロータの位置決め停止及び停止位置からの安定した始動を行なうことができる。
以下、本発明に係るモータ駆動装置の最良の実施形態について、添付図面を参照しながら説明する。本願発明は永久磁石ロータと固定子を備えたブラシレスモータを駆動するモータ駆動装置に広く適用することができる。
以下では、3相DCブラシレスモータを駆動するモータ駆動装置について説明する。3相のモータコイルのすべてを+か−に接続し通電する方法を1−2相励磁と呼ぶことにする。図1において、例えば3相DCブラシレスモータを2相励磁で回転させる場合は、1−2相励磁すれば最大トルク発生位置に停止する。1−2相励磁する相は任意にきめることができ、それが決まっていれば、最適な始動励磁相も一義的に決定できる。始動励磁にてロータが30°回転した時点で次の励磁相に切り替え、以後60°ごとに通常の励磁シーケンスで励磁してゆけば連続回転する。
図1ではモータコイル11の1相を+に、残りの2相を−に接続した例を図示する。例えばU相を+、V相およびW相を−に接続し通電しながら外力でロータを回転させると、図2のグラフ図のようなトルクカーブとなる。2相励磁であるU−V相励磁の波形と比較すると、1−2相励磁の波形は30°位相が遅れている。ここで外力をなしとし自由回転の状態で励磁すると、ロータは最終的に210°の位置で停止する。この状態で励磁を停止した場合、停止位置は最大コギングトルクの位置と一致している。このため、ロータの移動は発生せず210°の位置に安定している。このようにして位置決めされた状態から、V−W相励磁すれば必ず最大トルクで始動する。ロータの逆転やハンチングがないのでスムーズに始動され、最大トルクで加速するので最短時間で始動することが可能となる。始動励磁にてロータが30°回転した時点で次の励磁相に切り替え、以後60°ごとに通常の励磁シーケンスで励磁してゆけば連続回転する。
ロータが低速回転時に位置決め励磁を行うと、0°〜180°の区間は加速し、180°〜360°の区間は減速し、加速減速を繰り返しながら停止する。停止する力は軸受けの摩擦や負荷や風損などである。減衰振動の様子を図3のグラフ図に示す。
ここで位置決め励磁電流を最初は小さくしてスタートさせ、時間とともに励磁電流を増加させてゆくと振動が抑制され、振幅は小さくなり短時間で静止する。時間とともに励磁電流を増加させる励磁通電回路1の一例を図4に示し、そのタイミングチャートを図5に示す。モータ駆動制御部から位置決め指令がランプ波発生回路2に入力されると、ランプ波発生回路2はランプ波をオペアンプ3の+側入力端子へ出力する。また、オぺアンプ3の−側入力端子にはのこぎり波発生回路4からのこぎり波が入力される。オペアンプ3はランプ波とのこぎり波を合成した出力信号を励磁信号として出力段へ出力する。このため、モータコイル11へPWM出力制御により位置決め励磁するモータ電流の平均値は、ランプ状に増加する。これにより、ロータ停止時の振動が低減されることが分かる。
ここで、モータ駆動制御部の回路構成例について図6を参照して説明する。
低速検出部(低速検出手段)5はモータ基板に設けられるFGコイル(FGセンサ)などからロータの回転速度が低速回転になったことを検出する。ワンショットマルチバイブレータ(発振手段)6は、低速検出部5からの低速検出信号によりコントローラ10から出力される位置決め励磁指令に応じて位置決め信号パルスを発生する。
また、励磁制御手段(ドライブ回路)7はワンショットマルチバイブレータ6から発生した位置決め信号に応じて、スイッチング素子(例えばトランジスタQ1、Q4、Q6)をONにしてU相を+端子、V相およびW相を−端子に接続して1−2相励磁(位置決め励磁)を行なう。
モータ駆動停止時の位置決め動作の一例を説明する。図6において、低速検出部5はモータ基板に設けられるFGコイル(FGセンサ)などの速度情報から、ロータの回転速度を監視する。コントローラ10はロータの位置決めを行なうため位置決め励磁指令をワンショットマルチバイブレータ6に出力しロータの位置決め動作を許可する。ロータの回転速度が低速回転(例えば1〜10rpm程度)になると、低速検出信号がワンショットマルチバイブレータ6に入力される(トリガーパルスが入力される)。このときワンショットマルチバイブレータ6は、ロータが静止するに必要な所定時間だけ位置決め信号パルスを発生する。励磁制御手段7は位置決め信号が入力されている間は位置決め励磁パターンを出力する。
モータコイル11に接続するトランジスタQ1〜Q6は励磁用の3相ブリッジ回路で任意の相を+端子側あるいは−端子側に接続できる。図6は一例としてU−VW相励磁が行われる場合の通電が行なわれる有効な結線のみを図示し、電流制限や保護用の抵抗やダイオードなどの回路素子は省略してある。図6において励磁制御手段7から1−2相励磁パターンが出力されており、トランジスタQ1がオンするとU相は+端子側に接続される。トランジスタQ4がオンするとV相は−端子側に接続される。トランジスタQ6がオンするとW相は−端子側に接続される。コントローラ10は、ロータの位置決めを行なうため位置決め励磁指令をH(ハイ)にして位置決め動作を許可する。モータが停止する直前になると低速検出部5から低速検出信号が出力され、励磁制御手段7から一定パルス幅の位置決め信号が発生する。これによりロータはU−VW相が一定時間位置決め励磁されて停止する。励磁時間はロータ静止に必要な所定時間(数秒間)だけであるのでモータコイル11やドライブ回路が必要以上に過熱することはない。この後、任意のタイミングでV−W相励磁を行えばモータは停止位置から確実に始動する(図2参照)。
次に、モータ駆動装置の他例について図7を参照して説明する。尚、図6と同一部材には同一番号を付して説明を援用するものとする。
4極以上の多極モータでは、前述したロータの位置決め制御方法によると1回転中に複数の停止位置が発生する。停止位置はポールペア数だけ存在し、そのどこに停止するかは不定である。計測器などでは1回転中の特定の1箇所に位置決めしたい、つまり機械角で位置決めしたい場合がある。しかし現状のモータ駆動回路ではセンサ・センサレスを問わず停止するごとに機械角での位置が変化してしまうという課題がある。そこで、1回転1パルスのインデックス信号を出力する回転センサ(ホール素子、フォトセンサなど)8を設ける。この回転センサ8から出力されるインデックス信号を論理回路9に入力する。ロータが低速回転時に、インデックス信号のエッジに同期して位置決め励磁を行う。
図7において、論理回路9には、回転センサ8からのインデックス信号、低速検出部5からの低速検出信号、コントローラ10からの位置決め指令信号が入力される。論理回路9はこれら入力信号の論理積をとって出力信号をワンショットマルチバイブレータ6へ出力する。ワンショットマルチバイブレータ6は、アンドゲートの立ち上がりで1パルス位置決め信号を出力する。励磁制御手段7は、位置決め信号が入力されている間はモータコイル11へ位置決め励磁パターンを出力する。
ロータ位置決め動作の一例について説明する。図7において、回転センサ8からのインデックス信号はインデックス位置のときH(ハイ)となり低速検出部5の低速検出信号は低速時にHとなる。コントローラ10の位置決め励磁指令は位置決めを許可するときはHとする。アンドゲート9は3入力すべてがHのときHを出力する。ワンショットマルチバイブレータ6はアンドゲート9の立ち上がりで1パルス出力する。
コントローラ10はロータの位置決めを行なうため位置決め励磁指令をHにして位置決め動作を許可する。モータが停止する直前になると低速検出部5から低速検出信号が出力され始める。低速回転時はブレーキを解除し惰性で少なくとも1回転以上回転させる。低速で空走中にインデックス位置にさしかかるとインデックス信号がHとなる。この瞬間にワンショットマルチバイブレータ6が出力し、励磁制御手段7から一定時間だけ位置決め励磁が行われる。これにより特定の電気角で位置決めが行われ、1回転中の特定の一箇所にロータは停止する。
上記構成によれば、4極以上の多極ブラシレスモータにおいて、従来のアブソリュートエンコーダーと位置決めサーボのできる駆動回路を用いる高価な専用システムと比べて回路コストがかからずロータの位置決め停止及び停止位置から安定した始動を行なうことができる。また、回転センサ8はエンコーダなどを追加することなく非接触センサで足りるため、機械加工が簡略化され製造コストを低減できる。また、慣性質量が同じなので、モータ挙動が変化せず測定に影響しないし、回路時定数を変更する必要もない。回転センサ8の位置を最適に設定すれば振動がなくスムーズに停止可能なブレーキとなり短時間で静止できる。
モータコイルの励磁電流の通電方向を示す説明図である。 U−V−W相を各々励磁した場合のトルクカーブを示すグラフ図である。 ロータの減衰振動を示すグラフ図である。 励磁通電回路の説明図である。 励磁電流の通電波形を示すグラフ図である。 モータ駆動制御部のブロック構成図である。 他例に係るモータ駆動制御部のブロック構成図である。 従来のモータコイルへの励磁電流の通電方向を示す説明図である。 U−V相励磁した場合のトルクカーブを示すグラフ図である。 U−V−W相を各々励磁した場合のトルクカーブを示すグラフ図である。 U−V相励磁のトルクカーブとV−W励磁のトルクカーブの位相差を示すグラフ図である。 ロータ停止時に作用するコギングトルクの説明図である。 ロータ停止位置が位置ずれが発生したときの始動トルクを示す説明図である。
符号の説明
1 励磁通電回路
2 ランプ波発生回路
3 オペアンプ
4 のこぎり波発生回路
5 低速検出部
6 ワンショットマルチバイブレータ
7 励磁制御手段
8 回転センサ
9 論理回路
10 コントローラ
11 モータコイル

Claims (5)

  1. ブラシレスモータの駆動制御を行うモータ駆動装置であって、
    モータコイルに通電する励磁相を切り替えてモータを駆動制御するモータ駆動制御部を備え、該モータ駆動制御部はモータ駆動停止時に、ロータが低速回転でロータとステータ間の磁気抵抗が最小となる位置でロータを静止させる励磁相を選んで通電する位置決め励磁を行い、モータ始動時に、ロータが停止位置から最大始動トルクで始動する励磁相を選んで励磁するモータ駆動装置。
  2. モータ駆動制御部は、モータを駆動停止する際にロータ回転速度が低速回転となった状態で位置決め指令が入力されると、ロータを静止するのに必要な一定時間だけ選定された励磁相に通電する位置決め励磁が行なわれる請求項1記載のモータ駆動装置。
  3. モータ駆動制御部は、モータコイルにPWM制御により通電される励磁電流をロータの位置決め励磁の開始時ほど通電間隔が短く時間の経過とともに励磁電流の通電間隔が漸進増加するように通電制御する請求項1記載のモータ駆動装置。
  4. モータ駆動制御部は、ロータの回転速度が低速回転になったことを検出する低速検出手段と、コントローラから位置決め励磁指令が入力され低速検出手段がロータの低速回転を検出すると位置決め信号パルスを発生する発振手段と、発振手段から発生した位置決め信号が入力している間だけ位置決め励磁を行なう励磁制御手段を備えた請求項1記載のモータ駆動装置。
  5. モータ駆動制御部は、ロータが1回転すると1パルスのインデックス信号を出力する回転センサと、ロータの回転速度が低速回転になったことを検出する低速検出手段と、回転センサから入力されるインデックス信号のエッジに同期して低速検出手段からの低速検出信号及びコントローラからの位置決め励磁指令の論理積をとって出力信号を出力する論理回路と、論理回路からの出力信号を受けて位置決め信号を発生する発振手段と、発振手段から発生した位置決め信号が入力している間だけ位置決め励磁を行なう励磁制御手段を備えた請求項1記載のモータ駆動装置。
JP2007110929A 2007-04-19 2007-04-19 モータ駆動装置 Pending JP2008271698A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110929A JP2008271698A (ja) 2007-04-19 2007-04-19 モータ駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110929A JP2008271698A (ja) 2007-04-19 2007-04-19 モータ駆動装置

Publications (1)

Publication Number Publication Date
JP2008271698A true JP2008271698A (ja) 2008-11-06

Family

ID=40050497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110929A Pending JP2008271698A (ja) 2007-04-19 2007-04-19 モータ駆動装置

Country Status (1)

Country Link
JP (1) JP2008271698A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269070A (ja) * 2009-05-25 2010-12-02 Toshiba Corp 洗濯機
JP2012244869A (ja) * 2011-05-24 2012-12-10 Toshiba Carrier Corp 圧縮機駆動装置
JP2013118782A (ja) * 2011-12-05 2013-06-13 Aisin Seiki Co Ltd モータ制御装置
CN108847796A (zh) * 2018-05-31 2018-11-20 南京航空航天大学 三级式无刷同步电机磁阻式起动控制方法及系统
US10787065B2 (en) 2017-03-22 2020-09-29 Aisin Seiki Kabushiki Kaisha Vehicular opening/closing body control device and motor control device
CN112398381A (zh) * 2019-08-16 2021-02-23 联合汽车电子有限公司 无刷直流电机的停机方法、控制方法及电机控制器和电气装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269070A (ja) * 2009-05-25 2010-12-02 Toshiba Corp 洗濯機
JP2012244869A (ja) * 2011-05-24 2012-12-10 Toshiba Carrier Corp 圧縮機駆動装置
JP2013118782A (ja) * 2011-12-05 2013-06-13 Aisin Seiki Co Ltd モータ制御装置
US10787065B2 (en) 2017-03-22 2020-09-29 Aisin Seiki Kabushiki Kaisha Vehicular opening/closing body control device and motor control device
CN108847796A (zh) * 2018-05-31 2018-11-20 南京航空航天大学 三级式无刷同步电机磁阻式起动控制方法及系统
CN108847796B (zh) * 2018-05-31 2022-01-18 南京航空航天大学 三级式无刷同步电机磁阻式起动控制方法及系统
CN112398381A (zh) * 2019-08-16 2021-02-23 联合汽车电子有限公司 无刷直流电机的停机方法、控制方法及电机控制器和电气装置

Similar Documents

Publication Publication Date Title
US7345440B2 (en) Method for starting single phase BLDCM having asymmetrical air gap
JP4959460B2 (ja) モータ起動装置及びモータ起動方法
US6483266B2 (en) Sensorless motor driving apparatus
JP3906429B2 (ja) 同期モータの駆動装置
JP2008022678A (ja) モータ駆動装置及びモータ制動方法
JP2008271698A (ja) モータ駆動装置
CN110476348B (zh) 电动机的磁场位置检测方法
JP2014075931A (ja) ステッピングモータの駆動制御装置
JP7004540B2 (ja) ブラシレス三相同期電気モータの始動コントロール方法
CN111049433A (zh) 磁极初始位置检测装置以及磁极位置检测装置
JP2011030385A (ja) モータ駆動装置、及びモータに備えられたロータの相対位置の判別方法
JP2009171738A (ja) モータ駆動装置
JP2007074834A (ja) センサレスモータの起動装置
JP4624522B2 (ja) ステッピングモータ駆動装置
JP2017022867A (ja) モータ駆動方法
JP2018014773A (ja) センサレスモータの回転子位置検出方法及びセンサレスモータ駆動装置
JP5968738B2 (ja) ブラシレスモータの制御装置
WO2018037830A1 (ja) モータ制御装置
JP2017034767A (ja) 3相ブラシレスモータのセンサレス駆動方法
JP2005278320A (ja) ブラシレスモータの起動方法、ブラシレスモータの制御装置及び電動ポンプ
JP5384908B2 (ja) ブラシレスモータ起動方法及び制御装置
JP2005333753A (ja) 3相ブラシレスモータの制御装置
JP2013118782A (ja) モータ制御装置
JP3114817B2 (ja) ブラシレスモータの回転子位置検出方法
JP5218818B2 (ja) Dcブラシレスモータの並列駆動回路