JP5936209B2 - カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法 - Google Patents

カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法 Download PDF

Info

Publication number
JP5936209B2
JP5936209B2 JP2014148559A JP2014148559A JP5936209B2 JP 5936209 B2 JP5936209 B2 JP 5936209B2 JP 2014148559 A JP2014148559 A JP 2014148559A JP 2014148559 A JP2014148559 A JP 2014148559A JP 5936209 B2 JP5936209 B2 JP 5936209B2
Authority
JP
Japan
Prior art keywords
cnt
film
touch panel
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014148559A
Other languages
English (en)
Other versions
JP2015038727A (ja
Inventor
ヴィジャヤン エス. ヴィーラサミ
ヴィジャヤン エス. ヴィーラサミ
Original Assignee
ガーディアン・インダストリーズ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ガーディアン・インダストリーズ・コーポレーション filed Critical ガーディアン・インダストリーズ・コーポレーション
Publication of JP2015038727A publication Critical patent/JP2015038727A/ja
Application granted granted Critical
Publication of JP5936209B2 publication Critical patent/JP5936209B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)
  • Paints Or Removers (AREA)
  • Semiconductor Memories (AREA)

Description

本発明の特定の実施形態例は、カーボンナノチューブ類(CNT類)及びナノワイヤー複合材料を含む大面積透明導電性コーティング類(transparent conductive coatings:TCC類)、及びその製造方法に関する。具体的には、本発明の特定の実施形態例は、ガラス基材及び/又は他の基材上で広範囲にわたって実施可能なCNTをベースとするフィルムの安定な化学ドーピング及び/又は合金化によって、σdc/σopt比を高める技術に関する。
特定の実施形態例では、CNTフィルムは、堆積後、化学的に官能化によってドーピングしてもよく、及び/又は、銀及び/又ははパラジウムで合金化してもよい。p型ドーパント及びn型ドーパントのどちらを使用してもよい。特定の実施形態例では、銀ナノワイヤー及び/又は他のナノワイヤーを供給することで、例えばシート抵抗を更に低減することも可能である。
カーボンナノチューブ(CNT)は、桁はずれの電気特性、光学特性、機械的性質及び化学的性質のために、有望な透明導電性材料である。透過限界を超えるCNTネットワーク系の超薄膜は、特定の用途ではインジウムスズ酸化物(ITO)を上回る剛性や化学安定性といった有益な特性を有している。CNTナノメッシュフィルムは柔軟性を示すので、鋭角になり易く、曲がり易くしかも変形し易いしなやかな基材上にもコーティングを破断することなく堆積することができる。モデル化実験からは、CNTフィルムが、有望な利点、例えば化学処理、大きな表面積に起因するキャリア注入の強化並びにナノチューブの先端部及び表面での電界増強効果によって調節可能な電子物性等を有し得ることが分かった。また、ITOはn型電導体であるが、このようなCNTフィルムはドーピング処理によってp型となる可能性もあり、そしてフィルムがRMS粗さ1.5nm以下まで平滑であれば、例えばOLED装置の陽極又は放出口に応用できることも分かる。
ITOフィルムは、シート伝導性や透明性の点ではCVTフィルムよりもまだ優れているが、上記利点に加えて予想コスト削減が、ITOに替わる透明導電体としてカーボンナノチューブフィルムを利用することにかなり重要な期待を促進している。この期待に応えるために、CNTフィルムは、低いシート抵抗に加えて高い透明性を示す必要があった。薄い導電性フィルムでは、透明性とシート抵抗との関係は導電性と光学伝導度との比σdc/σoptで制御され、通常、この比は高い方が好ましい。
とはいえ、これまでの実行可能なCNT合成方法では、様々な対掌性を持つチューブの多分散混合物が生成され、そのうちのほぼ3分の1が金属性で、残りは半導体である。このようなフィルムの測定基準である低いσdc/σoptは、主に、大部分の半導体種と関連がある。その結果、前記半導体チューブは束状のチューブをもたらし、フィルムネットワークの接合点の抵抗を増加させる傾向がある。
CNTフィルムの典型的なσopt値は、フィルムの密度によって決まる。透過限界を丁度超えたところで、この値は、550nmではほぼ1.7×10S/mである傾向があるが、現時点での電気伝導性は5×10S/m域にある。しかし、工業的な仕様では、90%超の透過率と90オーム/平方未満のシート抵抗が必要である。これらの値を得るために必要なdc伝導度は、7×10S/m超であると割り出すことができる。そのため、当該技術分野では、最良のCNTフィルムであっても、σdc/σopt比を高めるように電子特性を改良する必要があることが分かるであろう。この多分散は、SWNTの特異的な構造に由来するものであって、ナノチューブの直径の影響も非常に受けやすい。
本発明の特定の実施形態例は、ガラス基材上にナノメッシュCNTフィルムを堆積すること、特に鉄分が少ない又は鉄分を含まない薄いソーダ石灰ガラス基材及び他の基材(例えば、他のソーダ石灰ガラス及びホウケイ酸ガラス等の他のガラス基材、プラスチック、ポリマー、シリコンウェハ等)の上にσdc/σoptの高いコーティングを開発することに関する。さらに、本発明の特定の実施形態例は次の点に関する:(1)CNTをベースとするフィルムσdc/σoptメトリックを安定な化学ドーピン及び/又は合金化によって向上させる方法といった、実行可能な手段を見出すこと、及び(2)実験期間のほとんどは柔軟なプラスチック製基材を中心に進めていたので、ガラスに好適な大面積コーティング方法を開発すること。特定の実施形態例は、フィルムの形態学的特性をσdc/σoptと結びつけたモデルにも関する。
本発明の特定の実施形態例では、太陽電池が提供される。ガラス基材を供給する。ガラス基材上に第1のCNTをベースとする導電層を直接又は間接的に配置する。第1半導体層は、第1のCNTをベースとする導電層と接触している。第1半導体層上に、少なくとも1層の吸収層を直接又は間接的に配置する。少なくとも1層の吸収層上に第2半導体層を直接又は間接的に配置する。第2のCNTをベースとする導電層は、第2半導体層と接触している。第2のCNTをベースとする導電層上にバック接点を直接又は間接的に配置する。
本発明の特定の実施形態例では、光起電デバイスが提供される。基材を供給する。少なくとも1層の光起電薄膜層を供給する。第1電極及び第2電極を供給する。第1及び第2のCNTをベースとする透明導電層を供給する。第1及び第2のCNTをベースとする層をそれぞれn型及びp型ドーパントでドーピング処理する。
本発明の特定の実施形態例では、タッチパネルサブアセンブリが提供される。ガラス基材を供給する。ガラス基材上に、第1のCNTをベースとする透明導電層を直接又は間接的に供給する。変形可能な箔を供給する。ここで、変形可能な箔は、ガラス基材と実質上平行でかつ離間した状態にある。変形可能な箔の上に、第2のCNTをベースとする透明導電層を直接又は間接的に供給する。本発明の特定の実施形態例では、ディスプレイ(それ自体が1層以上のCNTをベースとする層を含んでいてよいもの)を備えるタッチパネルアセンブリを提供することも可能である。
本発明の特定の実施形態例では、基材で支持されたCNTをベースとする層を含むデータ線/バス線が提供される。CNTをベースとする層の一部をイオンビーム/プラズマ照射処理すること及び/又はHでエッチングすることにより、当該部分の導電性を低下させる。
特定の実施形態例では、電子デバイスの製造方法が提供される。基材を供給する。基材上に、CNTをベースとする層を供給する。CNTをベースとする層をドーピング処理する。CNTをベースとする層をイオンビーム/プラズマ照射及びHでのエッチングのうちの一方で選択的にパターニングする。
特定の実施形態例では、冷蔵又は冷凍装置用の物品の製造方法が提供される。実質上平行でかつ離間した状態にある第1ガラス基材及び第2ガラス基材を供給する。ここで、第1基材は物品の内側に供給され、そして第2基材は物品の外側に供給される。1つ以上の透明導電性コーティング(transparent conductive coatings:TCCs)をそれぞれ、第1基材及び/又は第2基材の1つ以上の主要表面に堆積させる。少なくとも第1基材及び第2基材を、(例えば、その上の1つ以上のTCCによって)熱的に強化する。TCCはそれぞれ少なくとも1層のCNT含有層を含んでいる。
特定の実施形態例では、レインセンサーが提供される。検出回路は、窓の外部表面についた水分に敏感な少なくとも第1検出コンデンサ及び第2検出コンデンサを備えている。ここで、検出コンデンサはそれぞれ、少なくとも1層のCNTをベースとする層を含んでいる。検出回路は更に、少なくとも1つのミミックコンデンサであって、第1検出コンデンサ及び第2検出コンデンサのうち少なくとも1つの充電及び放電の少なくとも一方を模倣するものも備えている。書き込みパルスが少なくとも第1検出コンデンサを充電させ、そして消去パルスが第1検出コンデンサ及びミミックコンデンサをそれぞれ実質的に放電させる。窓の外部表面上の第1検出コンデンサの検出範囲に雨が当たると、ミミックコンデンサの領域には雨が当たっていなくても、ミミックコンデンサの出力電極での電圧が、第1検出コンデンサの出力電極での電圧変動に比例した形で変動する。ミミックコンデンサの出力電極からの出力信号に基づいて、雨が検出される。出力信号は、少なくとも前記書き込みパルスの終点から前記消去パルスの始点までの間に読み取る。ミミックコンデンサを検出コンデンサから物理的に分離する。書き込みパルスは、第1検出コンデンサを充電させるが、第2検出コンデンサを充電させず、しかもミミックコンデンサをも充電させる。
本明細書に記載の特徴、態様、利点及び実施形態例を組み合わせて、更なる実施形態を実行してもよい。
典型的な実施形態についての以降の詳述を図面と併せて参照することで、前記特徴及び利点並びにその他の特徴及び利点を更に十分に理解することができる。
典型的な元の状態の非ドープフィルムのラマンスペクトルの生データを示す。 Gピーク及びDピークを示しており、それぞれの強度比は、グラファイトの格子の完成度に関するものである。 ガラス上の典型的なCNTフィルムの走査型電子顕微鏡写真である。 実施態様例による、ネットワークが約4分の1を占めるようなCNTに組み込まれたPEDOT/PSS複合体の走査型電子顕微鏡写真である。 実施形態例で製造された堆積時のままの試料とHSOで化学変性した試料の両者に関する、熱起電力の温度依存性を表す。 実施形態例による高分解能FTIRスペクトルデータを表しており、約1050〜1100cm−1にSO基による化学ドーピングが示されている。 非ドープCNTフィルムと、本発明の実施形態例によってドープしたCNTフィルムとの間のシフトを表すXPSグラフである。 1.7mm半導体二層チューブの状態密度(DOS)を表す曲げ図である。 実施形態例による、非ドープのCNT薄膜、ドープ済みCNT薄膜及びドープ済みCNT薄膜複合体のTvis対Rsグラフを表す。 一実施形態例によるパラジウム及び/又は銀での合金化方法例を表すフローチャートである。 一実施形態例で製造された様々な試料に関する、合金化前後の可視透過率及びシート抵抗を記した表である。 特定の実施形態例による、CNTをベースとする層を組み込んだタッチスクリーンの断面概略図である。 特定の実施形態例による導電性データ線/バス線の作製方法例を表すフローチャートである。 CNTをベースとするコーティングを組み込んだ、一実施形態例のOLEDの断面図の例である。 グラフェン系の層(graphene−based layers)を組み込んだ、特定の実施形態例の太陽光発電装置の断面概略図である。 一実施形態例に従ってCNTをベースとするインクを適用して化学的に官能化するための具体的な方法を表すフローチャートである。 一実施形態例に従ってCNTをベースとするインクを適用して合金化する及び/又は化学的に官能化するための具体的な方法を表すフローチャートである。 一実施形態例で製造された銀ナノワイヤーの透過型電子顕微鏡(TEM)写真である。
カーボンナノチューブのランダムメッシュネットワークから得られる薄膜は、様々な透明基材上に堆積することには成功しているが、光起電装置及び他の電子用途、例えばOLED等に使用できるようにするには、更に改善する必要がある。ところが、特定の実施形態例は、可視透過率83.5%超において100オーム/平方未満の安定なシート抵抗を有する、化学変性された二層ナノチューブ及び複合体から製造された平滑な溶液堆積薄膜に関する。以下に詳述するように、カーボンナノチューブの変性による効果は、熱電能対温度の測定を利用して実証することができ、また変性フィルムの、風化作用に関する光電子工学特性の変化は、SEM、XPS、IR/ラマン及び分光透過率測定で調査することが可能である。また、特定の実施形態例は、ドープ済みフィルムをガラス上に適用すること、すなわち、容量方式タッチセンサー電極及び高速曇り除去装置における機能性コーティングとも関係がある。いずれの場合も、これらのフィルムは、従来の透明導電性酸化物の実行可能な代替物として有望である。
溶液中での凝集傾向と関係のある、発達したカーボンナノチューブの疎水性は、材料の加工性を制限する多くの製造上の課題を有している。これまで、研究者らは、カーボンナノチューブ水溶液の真空ろ過方法を利用して、一般にバッキーペーパーと呼ばれるカーボンナノチューブ製の薄いマットを濾紙上に成形した。しかし、高度多孔質材料は、チューブ間のファン・デル・ワールス力が比較的弱いため、もろくて壊れやすい。カーボンナノチューブが提供する機械的性質を十分に利用するためには、フィルム全体でナノチューブ接続性の均一で高密度な分布が望ましい。この制限に応じて、特性の実施形態例は、ガラスに適合する有効な水性インクにCNTを誘導体化する工程と、拡張可能でしかも電気光学フィルム品質を高いスループットで達成可能な垂直スロットコーティング法を利用する工程とを含んでいる。
長さ分布5〜10ミクロンの高品質CNTチューブは、触媒CVD法を用いて調製された。この方法では、一部の個々のSWNTと個々の平均直径が約1.4nmの大部分のDWNTとを含むナノチューブ混合物が製造される。これらナノチューブは、化学的耐性を有し、しかも大量生産が可能である。その後、得られた精製CNTは、界面活性剤を用いて低電力超音波処理で水に溶解し分散させて、前駆体インクを生成する。ガラス基材上でのインクレオロジーとコーティング性能を調整するためにコーティング助剤を用いた。このようなコーティング助剤には、例えばBTAC、DMF、NPH等を挙げることができる。このインクは、様々な剛性基材又はフレキシブル基材(例えば、ガラス、プラスチック、金属、シリコン等)にもコーティング可能である。垂直スロット法を用いて薄いソーダ石灰ガラス基材上にCNT薄膜を堆積した。垂直スロット法は、例えばスプレー法に比べて高いライン速度性能や大面積に及ぶ優れた均一性といった多くの利点をもたらす。定量方式の垂直スロットのヘッドは、インク流体のレオロジー特性に基づく公差を処理するように設計されていた。流体レオロジー設計パラメータは、特定の温度での粘度対ずり速度の比を暗号化するものであって、その内部流動形状を設計するのに用いられる。胴部材は、清掃のために分解してバラバラにすることができる。スロットは、塗布するのに適した温度で流体を保持し、流体を所望の被覆幅まで均一に分配し、そしてそれをガラス基材に適用するのに役立つ。流量のダイレクト設定は、コーティングされたフィルムの湿潤厚を求めるのに役立つ。前記方法には、精密な液体運搬システムと、横方向分配用スロットヘッドが必要である。うねりが無くしかも欠陥数が非常に少ない、ほぼ均一なコーティングがガラス上に形成される。前記方法には、例えば、東京エレクトロン(Tokyo Electron)及び/又はシャフリー・テクニクス(Shafley techniques)製の装置が含まれていてよい。
スロットコーティングは、多層コーティングの適用に十分適している。CNTフィルムの湿潤厚は数十ミクロンの範囲であり、70〜90℃で迅速に乾燥することで5〜100nmの範囲の最終CNTフィルム厚が得られる。ガラス基材上のCNTフィルムをその後、9M HSO酸に10分間浸漬するか又はガス系のスルホン化処理に付した。これにより、フィルムの導電性が十分に低下する。ナノチューブ薄膜とガラス基材との接着を強化するだけでなく、ドープ済みのフィルムを安定化するためにも、同様のスロット法を用いて3〜5nm厚のPVPポリマーオーバーコートを適用して、CNTフィルムを封止する。硫酸処理した表面は、カルボン酸基とSOOH基を両方形成することでCNT表面に官能性を持たせる。別の実施例では、他の「超酸」を用いてフィルムに官能性を持たせることも可能であることが分かる。
PVPオーバーコートに加えて又はその代わりに、オーバーコート又はパッシベーション層を官能化CNT薄膜の上に適用してもよい。このようなオーバーコート又はパッシベーション層は、酸を洗脱するときにフィルムを水から保護するのに役立ち、洗脱した酸に人が接触し得るのを防ぐのに役立ち、及び/又は下位層を(例えば、燃え尽きること等から)保護するのにも役立つ可能性がある。このようなコーティングは、ZnO、酸化ジルコニウム、酸化ケイ素、窒化ケイ素、オキシ窒化ケイ素、シリコンカードバイン(silicon cardbine)等の薄膜層であってよい。また、このようなコーティングは、ポリマー系の層、樹脂(例えば、エポキシ)等であってもよい。UV遮断コーティングをオーバーコート/パッシベーション層に使用してもよい。
CNTコーティングを更に安定化するために、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(4−スチレンスルホネート)(PEDOT:PSS)−PEG複合薄膜を水分散液からスロットコーティングする。バイトロン(Baytron)P500中のポリエチレングルコール(PEG)添加物は、PEDOT:PSSの導電性向上に役立つ。また、PEGは、酸素を含む多数のエーテル基も両末端のヒドロキシル基の間に有している。遊離型未グラフト化PEG添加物を含有するPSCを、カルボニル基で官能基化したCNT上にコーティングすると、この遊離型未グラフト化PEG分子のヒドロキシル基が、CNT壁にあるカルボキシル基と反応する。これによって、PEGがHSO官能基化CNTにグラフト化する。PEG−PEDOT:PSSは、グラフト化PEGのエーテル基と遊離型未グラフト化PEGの両末端ヒドロキシル基との水素結合によってCNT壁に付着する。高い安定性は、空気から水を取り込み難くなったことから生じるが、これはPEDOT:PSS:PEG/CNT複合体のより高密度なパッキングに起因すると思われる。フィルムのシート抵抗及び粗さは、PSC溶液でコーティングした後に再び測定した。また、対照として、PSC溶液を裸のソーダ石灰ガラス基材にコーティングすることで、スピンコーティングしたフィルムの実際のシート抵抗及び粗さも調べた。この試験結果は以下に記載する。
堆積したままのフィルムを真空中又はオーブンに入れると、コーティングの乾燥及び/又は過剰水分の除去を促進する可能性があることも分かるであろう。さらに、官能化CNT薄膜が熱的に強化され得ることも分かるであろう。
また、化学的な官能化は、より永続的な又はより安定なドーパントを用いて行ってもよい。前記方法を、前記超酸手段の代わりに又はそれと組み合わせて使用してもよい。例えば、ジアゾニウム塩によってCNTを化学的に官能化することも可能である。例えば、4−ブロモベンゼンジアゾニウムテトラフルオロボレート(BDF)及び/又はトリエチルオキソニウムヘキサクロロアンチモネート(OA)を用いてCNTをドーピングしてもよい。BDFは、CNTから電子を取り出して窒素を放出する傾向がある。前記反応は、安定な電荷移動錯体の形成が引き金となり、結果としてCNTがp型ドーピング処理される。一電子酸化剤としてOAを用いても、同様のドーピング状態となる。装置は、BDFの5.5mM水溶液で10分間又はOAの2.7mMクロロベンゼン溶液で12時間のいずれかで処理した。化学変性後、試料は、大気中100℃で焼きなましした。どちらの化学反応も、CNTに正孔注入を生じさせて、CNTの側壁の欠陥に優先的に作用する。条件を最適化すると、付加的な構造欠陥を取り込む可能性が低減される及び/又はなくなる。
別の例としては、ポリオール法を用いてもよく、その結果、金属塩前駆体(例えば、臭素及び/又はヨウ素を含む)が、ヒドロキシル基を複数含有する化合物であるポリオールによって還元される。この合成法で用いられるポリオールであるエチレングリコールは、還元剤と溶媒の両方の役割をしていた。エチレングリコール10mLを撹拌しながら(260rpm)150℃で1時間加熱した。この予熱は、油浴に浸けた使い捨てガラス瓶内で行った。4mMのCuCl・2HO/エチレングリコール溶液40μLを加えて、溶液を15分間加熱した。その後、114mMのPVP/エチレングリコール1.5mL、次いで100mMのAgNO/エチレングリコール1.5mLを、各瓶に添加した。試薬は全てピペットで投与した。約1時間後、反応を停止すると、溶液が灰色の薄い色になった。反応は、瓶に冷水を入れることで停止した。生成物を洗浄して、CNTインクに混合した。この方法及び/又は他の方法では、銀ナノワイヤーをインクに混合してから基材に適用してもよい。このことは、基材に銀ナノワイヤーを形成する代わりに又はそれに加えて(例えば、変性若しくは未変性のCNT含有インクを適用する前、適用中又は適用後に)行ってもよい。
前記塩を臭化銀に変えてもよく、また、上記と同様のポリオール還元法を用いてもよい。形成されたAgワイヤーの密度及び統計学的な性質は銀の性質と同様であったが、臭化銀は、前記塩に比べると低いシート抵抗をもたらす可能性がある。UVを利用して銀の還元を光誘起することで、BrイオンをBrへ酸化してもよい。このことは、臭素がCNTチューブに対して有効なドーパントであることを示している。
LiイオンがLiPONの状態で存在すると、純粋なCNTフィルムのシート抵抗を少なくとも50%低下させる効果があることも分かった。LiPONをガラスにスパッタしてから、例えばメイヤーロッド法を用いてCNTフィルムを堆積してもよい。同じような取り組みとして、LiPONをガラスに組み込んでからCNTインクをコーティングし、そしてその後、熱処理によって活性化してもよい。
超酸と塩を用いた化学的な官能化法はp型ドーピングをもたらすことが分かるであろう。しかし、先に示唆したように、CNTはn型ドーパントにも適応し得る。n型ドーピングは、別のドーパントを用いるならば、前記と同様の方法を用いて行ってもよい。例えばAu、Al、Ti及び/又は他の金属等のドーパントを前記方法と共に使用してよい。例えばポリエチレンイミン(PEI)を包含する有機化学物質を用いてもよい。特にPEIはメタノールに溶解してもよい。そこへCNTコーティングを浸漬して、物理吸着及び化学吸着(physiand chemsorbtion)によってドーピングを行ってもよい。
また、前記方法例の代わりに又はそれに加えて、リモート低エネルギー酸素プラズマ又はオゾンプラズマ処理をCNT薄膜に適用してもよい。この処理により、本質的にCOOHラジカルが生成する。特定の実施形態例では、基本的なコロナ放電(正極性若しくは負極性放電又はパルス放電)を利用して空気絶縁破壊を行って閉鎖領域にオゾンを発生させることで、フィルムをオゾンに暴露させる。コロナ放電の先端をコーティングから5〜10cm上に設定する。次に、フィルムをオゾンに暴露する。曝露時間は1分〜10分まで変えてよい。ガラスが放電している下を移動しているときにコロナを発生させるチップの付いた多重ロッドシステムを用いて、この方法を行ってもよい。本発明の別の実施形態では、他のオゾン発生器を用いてもよい。ガラス近傍でのこのオゾン放電は、堆積したCNTフィルムを炭素の酸化によって官能化するのに有用であり、これにより、チューブ表面に官能性部位を生成してチューブの導電性を高めることで、フィルムのp型ドーピングを有効に行う。
次に、前記超酸法例の結果について、フィルムの特徴とCNTフィルム/ガラスの接着の観点から更に詳細に説明する。
チューブの欠陥度合いは、ラマン分光法を用いて定量化することができる。例えば、図1aには、典型的な元の状態の非ドープフィルムのラマンスペクトル生データを示す。これは、CNTの呼吸モードの重要な特徴を表している(約240cm−1)。観測された一重及び二重のRBMピークはそれぞれ、SWNT及びDWNTの存在を裏付けるものである。ラマンシフトωRBMは、ωRBM(cm−1)≒A/d+Bという関係によって直径と結びついている。式中、Aは234及びBは約10であることから、1.01nmという値が得られる。DWNTにおいて、ΔωRBMを用いると、チューブの内部と外部との距離は約0.32nmであると推測できる。図1bにはGピークとDピークが示されており、それらの強度比はグラファイト格子の完全性と関連している。この比は一般に15程度であり、RBMモードと合わせて考慮すると、極めて薄い(約1.6nm)高電子品質のチューブの存在を裏付けるものである。一番下の線は、シリコン基材単独の場合のデータに相当し、真ん中の線は、単層チューブに関するデータに相当し、そして一番上の線は、二層チューブに関するデータに相当する。
図2aの走査型電子顕微鏡(SEM)写真は、ガラス上の典型的なCNTフィルムのものである。このようなナノメッシュフィルムの直径及び長さの統計値をかなり正確に推測することができる。図から分かるように、フィルムは、ガラス基材の平面にチューブが付いたナノメッシュである。フィルム形態は、間隙率と束の平均直径で特徴づけることができる(束は個々のチューブで構成されている)。SEM写真はラマンデータを裏付けるものであり、個々のDWNTの直径が約1.6nmであること及び束の直径の中央値が約18nmであることが分かる。フィルム形態は、空隙率(空洞率でもあり、フィルムが細い又は薄いほど増加する)及び束の平均直径(インクの剥離及び超音波処理が良好であれば小さくなる傾向がある)で特徴づけることができる。本出願の発明者が行ったモデル化では、電気伝導度は、空隙率が低いほど増加することが分かった。空隙率は、フィルム濃度(浮遊法から抽出されるもの)及び個々のチューブ濃度との比から推測し得る。空隙率は、40〜70%の範囲であると推定される。図2bは、実施態様例による、ネットワークが全体の約4分の1を占めるようにCNTに組み込まれたPEDOT/PSS複合体の走査型電子顕微鏡写真である。モデルの詳細を以下に記載する。
堆積した3種類のフィルム、すなわち、非ドープフィルム、ドープ済みフィルム及びPSC被覆フィルムについて原子間力顕微鏡(AFM)測定を行った。RMS粗さは、薄膜では約〜9nmであるが、PSC被覆フィルムでは約4nmまで低減していることが分かる。
ガラス基材上のフィルムの分光透過率Tvis及び反射率Rvisは、5nm〜40nmの範囲のCNTフィルム厚さの関数として測定した。特に、直径1.4〜1.6nmの金属製SWNTは、可視スペクトルの透過率が550nm近辺で最も高いと考えられるので、汎用の透明伝導に望ましい対掌性であるように見てとれる。ドープ済みHSO官能化フィルムの透過率は、非ドープ状態の同様のフィルムよりも系統的には常に大きい(≦1%)。フィルムは更に、有効媒質近似を利用した偏光解析法を用いて光学的に特徴付けることで、曲線因子(又は空隙率)を推測した。
フィルムのシート抵抗(Rδ)は、1〜100オーム/平方及び100〜1000オーム/平方において高度な測定が可能な4点プローブを用いて測定した。追加試験として、Nagyを用いて非接触式シート電気抵抗測定も行った。紫外光子放出分光法を用いた仕事関数測定からは、元のフィルムでは仕事関数が約5eVであり、化学変性したフィルムでは0.3eV高いことが分かる。
図3aは、実施形態例によって製造された堆積時のままの試料とHSOで化学変性した試料の両者について測定した熱起電力の温度依存性を表している。フィルムの活性化エネルギーは低下することが分かり、フェルミ準位のシフトとDWNTでのHSOのドーピング効果に関して明らかな証拠を示している。右上がりの熱起電力からは、ITOのn型特徴と比べて、元のCNTフィルム及び変性されたCNTフィルムの両者では正孔が主要な電荷担体であるので、これらのフィルムには新しい有望な用途が広がっていることが分かる。図3bは、高分解能FTIRスペクトルデータを表しており、約1050〜1100cm−1にSO基による化学ドーピングが示されている。FTIRは反射モードで操作する。
図3cは、非ドープCNTフィルムと、本発明の実施形態例によってドープしたCNTフィルムとの間のシフトを表すXPSグラフである。図3cから分かるように、炭素K端は低エネルギー側に約0.35eVだけシフトする。これは、BDFとHSOが化学結合している証拠である。特定の実施形態例では、ドーパントは、基材に染み込ませた又は供給した後でCNTインクでコーティングしてもよいことが分かるであろう。例えば、ガラスは、低密度ジルコニアでコーティングしてよく、そしてそのジルコニアをHSOでスルホン化してもよい。特定の実施形態例では、CNTは、スルホン化されたZrOの上部にコーティングしてよい。ZrOのある代表的な利点は、HSO部分を固定することと、そのHSO部分を化学ドーピングできることである。図3cのXPSグラフは、CNTでオーバーコートしたZrO:HSOに関する。炭素1sコアのシフトは、UV露光後でもドーパントを安定化できることを証明するのに役立つ。K端のシフトはSOOH部位及びSOOOH部位と関係があると考えられることに留意する。
CNTナノメッシュフィルムのガラスに対する接着性を測定するために、被覆基材上で肉眼及び顕微鏡による引張り試験を行った。エポキシベースの引張り試験を、試料の、膜厚が10nm〜100nmまで様々なCNT複合フィルムが付いた範囲で行った。接着基準値の下限は、3.4×10Pa(500psi)を超え、使用されるエポキシ接着剤の強度又は引張破壊によってのみ制限されることが分かった。AFMチップを用いて顕微鏡による接着性試験を行って、フィルムの接着剤の表面エネルギーSを測定した。この方法は非常に再現性が良く、約0.12J/mのS値及び約0.15J/mのS値が得られるが、これは平均10Paに相当する。また別の手段では、約1J/mで引き合う2つの理想表面間のファン・デル・ワールス力により、接着強度計算値約10Paが得られる。ファン・デル・ワールス結合は通常「弱い」と考えられているが、2つの表面間のこの種の引力は、コーティングに関する一般的な接着強度に比べると大きい。比較として、市販の引っ張り試験器を用いて測定した接着値の上限は、5×10〜7.0×10Pa程度であり、エポキシ樹脂接着剤の強度で制限される。興味深いことに、前記値は、本出願の発明者が行ったDFT計算に基づく計算値0.2J/mで十分に立証される。各CNT間の接触が高い引っ張り強度を担う場合、何層かのナノメッシュCNTフィルムとガラス等の基材との間の接着が界面領域又は基材内のどちらかで不良となる可能性がある。図4は、1.7nmの半導体二層チューブの状態密度(density of states:DOS)を表す曲げ図である。
ナノメータ―スケールでは、フィルムは、基材とほぼ平行に配向された非常に大きな縦横比(L/D≧100)の個々のチューブと束とで構成された多孔質のメッシュ様構造からなる。束化は、半導体チューブでは最も一般的であって、長距離の未検査のファン・デル・ワールス力によって生じる可能性があり、また、直径分布をもたらす。光学伝導度と同様にdc伝導度も、束から束への電荷移動のトンネル現象によって制限されるが、dc伝導度全体は、フィルム全体の伝導性パスの数並びに特定パス上の束間接合点の数及び平均接合点の抵抗に左右される。したがって、σdc/σopt比又はTvis/R比は、フィルム形態を制御することに加えて、金属フィルムと半導体フィルムとの割合を高めることによって最適化され得る。実施形態例によって製造された非ドープCNT薄膜、ドープ済みCNT薄膜及びドープ済みCNT複合薄膜のTvis対Rを示す図5のTvis対R曲線における左側へのシフトは、半導体分画のドーピングで説明することができ、これにより、形態構造を変化しないという理由からネットワーク中の個々のチューブの伝導度が改善される。よって、ナノチューブ間の接合点の抵抗は、個々の半導体チューブの抵抗よりも大きいか又はそれとほぼ同程度であると推定され得る。
透明導電性SWNTフィルムの厚さは100nm未満であり、これは可視域及び赤外域の光学波長よりもかなり短いので、前記フィルムのシート抵抗は、前記フィルムの透過率と関連している場合がある。
Figure 0005936209
前記式中、σoptは光学伝導度であって、光周波数ωの関数として変化するものであり、σdcは直流伝導度であり、そしてZは自由空間のインピーダンス300オームに等しい定数である。この式の合計平均から非ドープ導電性フィルム、ドープ済み導電性フィルム及びドープ済み導電性複合フィルムに関するスペクトル透過率測定データ(400nm〜800nm)に合致するTvis対Rを求めた後、σdc/σopt基準値を計算してもよい。
Figure 0005936209
このようにして、化学変化したフィルムでは、元のフィルムに比べて約6倍高い伝導度が観測される。PEDOT:PSS/PEG複合体が多孔質ネットワークを備えしかも正孔の流量について電流の流れに平行な経路を与えることから、複合フィルムのファクターは更に高くなる。複合フィルムの安定度が高いことは、初期基準値と湿度及びUV光に10日間曝露してエージングした基準値との比で表される安定度が高いことからも分かる。ドープ済みDWNT−PSC複合フィルム群についてこれまでに観測された最良の結果は、前記複合体によって緻密なネットワークがもたらされることから、吸収されたSOOH種の損失が低減するということで説明することができる。
前記ドーピング法の代わりに又はそれに加えて、CNT薄膜は、例えばパラジウム及び/又は銀により合金化又は別の方法で金属化されてもよい。図6は、一実施形態例によるパラジウム及び/又は銀での合金化方法例を表すフローチャートである。工程S61で、CNTインクベースコートを供給する。これは、特定の実施形態例では、スロットダイ法と関連してロッド寸法を5インチ又は10インチとすることで達成され得る。次に、工程S63で、被覆物品をPdCl溶液槽に入れる。PdClは、0.01〜1.0重量%、好ましくは0.03〜0.5重量%、さらに好ましくは0.05〜0.1重量%の濃度で供給される。この濃度は、5重量%濃度のPdClを供給した後、選択された濃度まで希釈することで達成してもよい。その後、この溶液を、予め堆積したCNTフィルムにコーティングする。フィルムはある程度の空隙率を有する(最も薄いフィルムでは、一般に約65%以下)。Pdが孔に効率良く(無電極的に)供給されると、より多くの電子をナノチューブに送り込むように働き、その結果、5秒〜1分間、より好ましくは10秒〜30秒間曝露することで電気伝導度が向上する。
パラジウムに加えて又はパラジウムの代わりに銀による合金化又は金属化も利用できる。これに関し、銀による合金化又は金属化が工程S65で好ましい場合、その後の工程S66では、被覆物品を銀溶液槽に浸漬する。この処理は、銀鏡試験で行われる酸化反応に類似している。この試験では、アルデヒドをトレンス試薬で処理する。前記トレンス試薬は、水酸化ナトリウム溶液を硝酸銀溶液に滴下して、酸化銀(I)を沈殿させることによって調製する。希釈するのに足るだけのアンモニア溶液を添加して沈殿をアンモニア水に再び溶解すると、[Ag(NH錯体が得られる。この試薬は、炭素−炭素二重結合を攻撃せずに、アルデヒドをカルボン酸に転化する。「銀鏡試験」という名前は、この反応が銀沈殿物を生成し、その銀沈殿物の有無がアルデヒドの有無を試験するのに使用され得ることに由来する。アルデヒドがエノラート(例えば、ベンズアルデヒド)を生成し得ない場合、強塩基を添加してカニッツァロ反応を誘導する。この反応により、不均化が生じて、アルコールとカルボン酸の混合物が生成される。
工程S66でCNTが銀によって合金化されたか又は金属化されたかに関わらず、トップコートを、例えばパラジウム及び/又は銀で合金化又は金属化したCNTを含むCNTをベースとするフィルム上に供給してよい。このトップコートは、例えば上記に従って銀又はパラジウムを更に堆積したものであってもよい。すなわち、工程S67で第2のトップコートが望まれる場合は、それを工程S68で供給してもよい。図示されていない1つ以上の工程で、前記封止オーバーコート又はパッシベーション層を供給してもよい。特定の実施形態例では、薄膜、ポリマー、樹脂及び/又は他の層は、例えば前記方法を用いて適用されてもよい。
以下に記載するパラジウム及び/又は銀による合金化方法並びに加工条件は、例示であることが分かるであろう。別の例では、PdCl開始溶液(10%HCl中5%)を選択された濃度(5%HCl中0.25%又は0.2%HCl中0.1%)まで脱イオン水で希釈した。硝酸銀(0.01g)を脱イオン水に溶解した(10mL)。0.1N水酸化ナトリウム23mLを溶液に撹拌しながら滴下することで、混濁した褐色の酸化銀沈殿物が生成した。沈殿物溶液に、溶液が透明になるまで5Nアンモニアを滴下した(約0.4mL)。これはトレンス試薬の生成を表している。黒色の銀コロイド分散体が十分に生成するまで、希釈液であるヴァルスパー(Valspar)製GMPMA2000を溶液に撹拌しながら滴下した(2〜10mL)。CNTコーティングの付いたガラスを標準的な方法で調製及び測定して、ソリューションロスを抑制するために(一例では、0.25m×0.25mに)切断して小さくした。ガラスをPdCl溶液槽に予め決めた時間(10〜30秒、ただし、それ以上の時間浸漬することも可能)浸漬してから、余剰溶液をブロー乾燥させた。より大きな試料はすすぎ処理してもよいことに留意する。ガラスを次に、銀めっき溶液に10秒以内浸漬してから、ブロー乾燥させた。試料の裏面を硝酸で洗浄して残渣を除去してから、試料全体をNPAですすぎ洗いしてブロー乾燥することで、試料前面に付いた残渣による筋状の跡を取り除いた。この過程は、湿式ミラーラインで行うと高い生産水準が得られる可能性があることが分かるであろう。よって、特定の実施形態例の一つの代表的な利点は、既存装置、例えばミラーラインを用いてナノワイヤーを製造する及び/又はCNTを金属化することが可能であることである。このような実施例では、CNTの堆積は、垂直スロットと合金化用のミラーラインを用いて行ってよい。このような場合、ミラーコーティングを作製する代わりに、反応を抑制して、Pd及びAgワイヤーだけを堆積させてもよい。
図7は、実施形態例によって製造された様々な試料に関する、合金化前後の可視透過率及びシート抵抗を記した表である。表から分かるように、シート抵抗(オーム/平方で表示)は著しく低下するが、可視透過率は比較的変化しない。このことは、σdc/σopt比の著しい増大は、本明細書に記載の合金化方法例を用いるて達成され得ることを示唆している。
上述の通り、金属製及び半導体製のチューブ(束)の間に形成された接合点は、本質的には電気遮断接点であり、概して電流フローを制限する。この問題を回避する一つの方法は、専ら金属ナノチューブから構成されたCNTインクを供給することであり、金属又は半金属となるように対掌性を制御する。残念なことに、現在は、このようなインクを工業規模で供給することはできない。
本出願の発明者は、ユニダイム(Unidym)製の市販インクを用いて銀ナノワイヤー及び炭素ナノチューブから成る溶液堆積型複合フィルムを合成することにより、前記及び/又は他の問題を緩和できることを確かめた。銀ナノワイヤーは、長距離の電荷移動に応じ、しかも特定の電流路内の炭素ナノチューブ抵抗接合点の数を減少させる。一方、炭素ナノチューブの束を少なくすると、銀ナノワイヤーメッシュの多孔領域に電荷が収集されて、銀ナノワイヤーへ電荷が運搬される。フィルムは、純銀ナノワイヤーと同等のシート抵抗と透明度を示す。試験からは、銀がCNTメッシュによって環境劣化から保護されていることも分かる。
具体的には、エチレングリコール中、ポリ(ビニルピロリドン)(PVP)の存在下で硝酸Agを還元することによってAgナノワイヤーを合成した。得られたAgナノワイヤーの長さは2〜5ミクロンであり、直径は17〜80nmであった。ナノワイヤー懸濁液を用いて透明電極を作製するために、100nm厚の事前パターニングしたAgフリット導体パッドの付いたガラス基材に大量のナノワイヤー懸濁液を投下し、それを撹拌器で撹拌しながら10分間風乾させた。得られたフィルムは、ワイヤーがそれほど束化しておらず、基材の全領域でほぼ均一な、Agナノワイヤーのランダムメッシュであった。
高分解能TEM及びSEM顕微鏡写真を一組として撮影して、CNT及び銀ナノチューブのメッシュネットワークを精査した。さらに、原子間力顕微鏡(AFM)及びSTM測定も行うことで、炭素ナノチューブ束の薄膜における抵抗損失を調べた。本発明の譲受人が使用したAFMリソグラフィー法は、装置内の電流を一本の束又は単独接合点に制限することでEFM(電界マッピング)を可能にして、電流路に沿って電位対距離のマップを作製するものである。こうすることで、ナノチューブの束に沿って生じる抵抗降下と束の接合点で生じる抵抗降下とを測定することができる。予備データからは、束の抵抗約5〜9Ω/μm及び束の接合点の抵抗20〜40kΩ/μmが得られることが分かっている。これら初期値からは、束の接合点の抵抗が、文献に記載の個々のチューブの接合点の抵抗値(約1MΩ/μm)よりも小さいことが分かる。
ガラス基材上の透明導電性酸化物(transparent conductive oxide:TCO)膜は、アナログ抵抗性タッチパネル、投影型容量方式タッチパネル及び表面容量方式タッチパネルを含む様々なタッチパネルに使用される。現在ではITOが、PET、ポリカーボネート又は薄いガラス基材のどれに堆積されているかにかかわらず、前記用途の大部分における主力コーティングである。残念なことに、湿式エッチング処理にかかる費用と手間が(特に、投影型容量方式タッチパネルのようにTCCのパターニングが必要な用途において)ITOの役割を制限している。CNTをベースとするコーティングは、シート抵抗が約120オーム/平方以下のときにTvisが86%を超えれば、ITOを補完する又はITOと完全に置き換えるチャンスがある。CNTをベースとするコーティングは曲面基材上で特に有利な可能性があり、スロット塗工機でコーティングを移動した後でコーティングにレーザ描画することも可能である。
本出願人の譲受人は、局所接触によって指紋の採取が可能な電子機器を組み込んだ、新たな完全一体型容量方式センサーを開発している。例えば、出願番号12/318,912号を参照し、この内容を全て参照として本明細書に組み込む。0.7mmのガラス及びPET基材上のドープ済みCNTコーティングに、レーザアブレーションを用いて2組の直交する電極パターンを作製する。その後、基材を積層すると、パターニングされたCNT電極で作製したフリンジ効果キャパシタアレイが形成される。スマートカード用の薄いフレキシブル基板は、付属の実装電子部品を内蔵している。
タッチパネルディスプレイは、ITO若しくは他の導電層を含む容量方式又は抵抗性タッチパネルディスプレイであってよい。例えば、米国特許第7,436,393号、同第7,372,510号、同第7,215,331号、同第6,204,897号、同第6,177,918号及び5,650,597号並びに出願番号12/292,406号を参照し、これらの開示内容を参照として本明細書に組み込む。ITO及び/又は他の導電層は、このようなタッチパネルではCNTをベースとする層と置き換えられてよい。例えば、図8は、特定の実施形態例による、CNTをベースとする層を組み込んだタッチスクリーンの断面概略図である。図8には、下部のディスプレイ802が含まれており、これは、特定の実施形態ではLCDディスプレイ、プラズマディスプレイ又は他のフラットパネルディスプレイであってよい。光学的に透明な接着剤804が、ディスプレイ802と薄いガラスシート806とを結合している。図8の実施形態例では、変形可能なPET箔808が最上層として供給されている。PET箔808は、複数のピラースペーサー810及びエッジシール812によって、薄いガラス基材806の上面から離して配置されている。第1及び第2のCNTをベースとする層814及び816はそれぞれ、PET箔808の、ディスプレイ802に近い方の表面と、薄いガラス基材806の、PET箔808と対向している表面とに供給されてよい。CNTをベースとする層814及び816の一方又は両方は、例えばイオンビーム及び/又はレーザエッチングによってパターニングされていてもよい。
図8に示すものと同様の実施形態では、CNTをベースとする層のシート抵抗は、約500オーム/平方未満が好ましく、またCNTをベースとする層のシート抵抗は、約300オーム/平方未満が有利である。
ディスプレイ802に通常含まれるITOを、1層以上のCNTをベースとする層で置き換えてよいことが分かるであろう。例えば、ディスプレイ802がLCDディスプレイであれば、カラーフィルター基材上の共通電極として及び/又はいわゆるTFT基材上のパターニングされた電極としてCNTをベースとする層を供給してよい。ドープ済み又は非ドープのCNTをベースとする層は当然、個々のTFTの設計及び製造に関連して用いられてよい。また、同様の配置は、プラズマディスプレイ及び/又は他のフラットパネルディスプレイと関連して展開してもよい。
前記方法のさらに別の種類では、CNT電極を、フロントガラスの表面4に(又は表面2及び表面3のそれぞれの間に)印刷する。ドライバー電子機器は、容量方式で連結されていても、又はピンによって直接接触していてもよく、それにより、CNTコーティングをベースとして励起電極、対極板及びシールド電極と組み合せた、フラクタルに基づく電界センサーシステムが製造される。例えば、出願番号12/453,755号を参照し、この内容を全て参照として本明細書に組み込む。このシステムは、1500mmのセンサー領域を獲得することができ、フロントガラスの表面に適合する。前記システムには、互いに重ねられかつ電気的に絶縁及び遮断された複数の分散アレイコンデンサ層が収容されている。このコンパクト設計では、フリップチップ光センサーを内蔵することで、車内に入ってくる夜間の視界と太陽光の輻射の両者における可視スペクトルとIRスペクトルの両方をモニターすることも可能である。例えば、米国特許第7,504,957号を参照し、この内容を全て参照として本明細書に組み込む。前記センサーは、消費電力(mW)を削減し、しかも高解像度(ミリメートル)、低遅延(ミリ秒)、高い更新率(1kHz)及び高いノイズ耐性(>70dB)をも有し得る。
前記光センサー及びレインセンサーは、冷蔵庫/冷凍庫のドア用途にも利用され得る。容量方式センサーを供給してもよく、少なくとも1層のCNTをベースとする層を含んでいてもよい。水分又は凝縮が検出された場合は、活性溶液によって、CNTをベースとするライン又は層を選択的に加熱して結露を抑制してもよい。例えば、出願番号12/419,640号を参照し、この内容を全て参照として本明細書に組み込む。このような活性な結露防止用途では、CNTをベースとするライン又は層を用いてITO又は他のTCOと置き換えてもよい。このことは、CNTをベースとするライン又は層が電流により上手く耐え得るという点で特に有利な場合がある。というのも、CNTをベースとするライン又は層は、例えばTCO(例えば、ITOが挙げられる)ほど迅速に分解又は酸化しないためである。活性溶液の例は、例えば出願番号12/458,790号、米国特許第7,246,470号、同第6,268,594号、同第6,144,017号及び第5,852,284号、並びに公開番号2006/0059861号に開示されており、これらの内容を全て参照として本明細書に組み込む。
曇り除去及び凍結防止に関する実施形態例は、シート抵抗が10オーム/平方のCNT含有フィルムを用いて製造した。このフィルム例は、銀コーティングとITOのどちらよりも優れている。例えば、約1000回の曇り除去サイクル後でも腐食が生じなかった。それに引き換え、ITOは、この回数のサイクルでは酸素を放出して変色し始め、また、純銀薄膜は腐食し始める。チップでの高電場は、「より鮮明に」又はより明確に作用すると考えられる。1平方メートル当たり10kW程度を12×12の試料に印加したが、この程度では性能は非常に良好であった。
また、CNTをベースとする層を用いて導電性データライン/バス線、母線、アンテナ等を作製してもよい。このような構造はガラス基材、シリコンウェハ等に形成/適用され得る。同様に、CNTをベースとする層を用いて、例えば固体バルブ等を組み込んだガラス上にp−n接合点、整流装置、トランジスタ、電子機器を形成してもよい。図9は、特定の実施形態例による導電性データ線/バス線の作製方法例を表すフローチャートである。工程S901で、CNTをベースとする層を好適な基材上に形成する。任意工程S903では、CNTをベースとする層の上に保護層を供給してよい。工程S905で、CNTをベースとする層を選択的に除去又はパターニングする。この除去又はパターニングはレーザエッチングで行ってよい。このような場合、レーザの分解能が十分に高ければ、保護層の必要性は軽減される可能性がある。あるいは又はさらに、イオンビーム/プラズマ処理に晒すことでエッチングを行ってもよい。さらには、例えば熱フィラメントと関連してHを使用してもよい。エッチングにイオンビーム/プラズマ処理を使用する場合、保護層が望まれる場合がある。例えば、フォトレジスト材料を用いて、重要なCNT領域を保護してもよい。このようなフォトレジストは、例えば工程S903でスピンコーティングする等によって適用されてよい。このような場合は、別の任意工程S907で任意の保護層を除去する。例えばUV露光を、適切なフォトレジストと併用してもよい。
CNTをベースとする層は、適性水準のシート抵抗を付与できるのであれば、光起電装置、例えば半導体層及び/又は吸収層に使用されてもよい。CNTをベースとする層は、先に説明した通り、ドーピングされたp型又はn型である可能性があるので、このような場合には特に有利かもしれない。
上述の通り、CNTをベースとするコーティングをOLEDディスプレイに関連して使用してもよい。一般的なOLEDは、2層の有機層、すなわち電子伝達層と正孔輸送層を含み、これらは2つの電極間に埋め込まれている。上部電極は通常、高反射率の金属ミラーである。下部電極は通常、ガラス基材で支持された透明導電層である。上部電極は一般に陰極であり、そして下部電極は一般に陽極である。ITOは、陽極に使用されることが多い。電極に電圧をかけると、電場の影響を受けて電荷が装置内を移動し始める。電子は陰極から放出され、また、正孔は陽極から逆方向へ移動する。前記電荷の再結合により、発光分子のLUMOの準位とHOMOの準位とのエネルギー差(E=hν)によって生じた振動数で光子が生成される。このことは、電極に加えた電力が光に変換されたことを表す。様々な物質及び/又はドーパントを用いて異なる色を発生させてもよく、これらの色を組み合わせと更に別の色が得られる。CNTをベースとするフィルムを用いて、通常は陽極に含まれているITOと置き換えてもよい。さらに、CNTをベースとするフィルムをホールド輸送層(hold−transporting layer)に関連して使用してもよい。
図10は、CNTをベースとするコーティングを組み込んだ、一実施形態例のOLEDの断面図の例である。ガラス基材1002は透明陽極層1004を支持するものであってよく、透明陽極層1004はCNTをベースとする層であってよい。正孔輸送層1006もまた、適切なドーパントでドープ処理するのであればCNTをベースとする層であってよい。従来の電子伝達発光層及び陰極層1008及び1010を供給することも可能である。OLED装置に関する追加情報については、例えば米国特許第7,663,311号、同第7,663,312号、同第7,662,663号、同第7,659,661号、同第7,629,741号及び同第7,601,436号を参照し、これらの内容を全て参照として本明細書に組み込む。
特定の実施形態例では、前記方法によって製造されたCNTをベースとするフィルムを、低放射率用途に関連して用いてもよい。例えば、CNTをベースとするフィルムを、モノリシックな絶縁ガラス(IG)窓に設けてもよい。前記CNTをベースとするフィルムは熱処理できるため、それを支持する基材は、その上のフィルムと合わせてアニールされても又は熱的に強化されてもよい。CNTをベースとするフィルムは存続可能なので、このような窓のどの表面に設けてもよい。当然、それらをオーバーコート又はパッシベーション層で封止することで、残存性及び環境への曝露を確実にするのに役立つ場合もあることも分かるであろう。
CNTをベースとする層を1層以上使用してよい電子デバイスの別の例は、太陽光発電装置である。このようなデバイス例としては、前面電極又は背後電極を挙げることができる。このようなデバイスでは、CNTをベースとする層を、一般にその中に用いられているITOと単純に置き換えてもよい。光起電装置については、例えば米国特許第6,784,361号、同第6,288,325号、同第6,613,603号及び同第6, 123,824号、米国出願公開番号2008/0169021号、同2009/0032098号、同2008/0308147号及び同2009/0020157号、並びに出願番号12/285,374号、同12/285,890号及び同12/457,006号に開示されており、これらの内容を参照として本明細書に組み込む。光起電装置はまた、「シリコンウェハレイが形成された、吸収性の高いフレキシブル太陽電池(Highly Absorbing, Flexible Solar Cells With Silicon Wire Arrays Created)」、ScienceDaily、2010年2月17日にも開示されており、この内容は全て参照として本明細書に組み込まれるもにであり、また、このような装置にCNTをベースとする層を使用してもよい。
あるいは又はさらに、ドープ済みのCNTをベースとする層は、隣接する半導体層と調和するように中に組み込まれてもよい。例えば、図11は、CNTをベースとする層を組み込んだ、特定の実施形態例の太陽光発電装置の断面概略図である。図11の実施形態例には、ガラス基材1102が供給されている。例であって限定されるものではないが、ガラス基材1102は、米国特許出願番号11/049,292号及び同11/122,218号に記載のいずれかのガラスであってよく、これらの開示内容を参照として本明細書に組み込む。ガラス基材は、例えば太陽電池の効率を高めるために、場合により表面ナノ構造化されていてもよい。例えば透過率を上げるために、反射防止(AR)コーティング1104をガラス基材1102の外面に設けてもよい。反射防止コーティング1104は、単層反射防止(SLAR)コーティング(例えば、酸化ケイ素反射防止コーティング)であってもよく、又は多層反射防止(MLAR)コーティングであってもよい。このようなARコーティングは、任意の好適な方法を用いて形成されてよい。
例えば図11の実施形態例に示すような背後電極装置の場合、1層以上の吸収層1106を、ARコーティング1104とは反対側のガラス基材1102に設けてもよい。吸収層1106は、第1半導体と第2半導体に挟持されていてよい。図11の実施形態例では、吸収層1106は、n型半導体層1108(ガラス基材1102に近い方)とp型半導体層1110(ガラス基材1102から遠い方)の間に挟持されている。(例えば、アルミニウム又は他の好適な材料の)バック接点1112をさらに設けてもよい。半導体1108とガラス基材1102の間及び/又は半導体1110とバック接点1112との間に、ITO又は他の導電性材料を設けるよりもむしろ第1及び第2のCNTをベースとする層1114及び1116を設けてよい。CNTをベースとする層1114及び1116はそれぞれ、隣接する半導体層1108及び1110と調和するようにドーピング処理されてよい。したがって、図11の実施形態例では、CNTをベースとする層1114はn型ドーパントでドーピングされてよく、また、CNTをベースとする層1116はp型ドーパントでドーピングされてよい。
CNTをベースとする層を直接構造化するのが困難な場合があることから、ガラス基材1102と第1のCNTをベースとする層1114の間に任意の層1118を設けてもよい。ただし、CNTをベースとするフィルムは柔軟性があるため、一般には、配置された表面になじむと考えられる。その結果、任意の層1118を構造化すると、そのテクスチャーが一般にコンフォーマルなCNTをベースとする層1114に「転写」され得るか又は別の方法で反映され得る可能性がある。この観点から、構造化された任意の層1118が亜鉛ドープ済み酸化スズ(ZTO)を含む場合もある。特定の実施形態では、半導体1108及び1110のうち一方又は両方を導電性高分子材料で置き換えてもよいことに留意する。
CNTが近赤外域及び中赤外域で高透過性であるということは、最も高透過性の長波長放射線の侵入を可能にし、そして単一接合及びタンデム接合型太陽電池の両者のi層の深い部分に電荷を生成させ得ることを示唆している。このことは、CNTをベースとする層を用いれば既に効率が数%程度向上しているので、バック接点を形成する必要がない可能性があることを示している。
CdS/CdTe太陽電池のヘテロ接合では現在、スクリーン印刷法、蒸発法及び焼結法並びに高温でのCdCl処理が用いられている。前記電池は高い曲線因子を有している(FF>0.8)。一方、直列抵抗Rsは効率制限信号(efficiency limiting artifact)である。Rsには、CdS層のシート抵抗から分布する部分と、そのすぐ上のCdTe及びグラファイトベース接点に関連する別の成分とが存在する。CNTをベースとする層を1層以上使用することが、Rsへの両者の寄与を軽減するのを助長する場合がある。このようなソーラー構造物に前面接点とバック接点の両方を配置する場合にCNTをベースとする層を組み込むことで、効率が実質的に向上する可能性がある。
特定の実施形態例は単一接合型太陽電池を対象してよいが、特定の実施形態例はタンデム型太陽電池も対象としてよいことが分かるであろう。特定の実施形態例は、CdS太陽電池、CdTe太陽電池、CIS/CIGS太陽電池、アモルファスSi及び/又は他の種類の太陽電池であってよい。
ドープ済みCNTをPd及び銀ナノワイヤーとともに組み込んだ特定の実施形態例は、10オーム/平方のシート抵抗を平均して約30%の分散で達成することができる。このコーティング例は、例えばソーラー用途(例としては、TCC等)に即有望な応用性を有している。表面粗さRMSは約10nmだが、他の場所で示したように、コーティングはどのような方法で平坦化されてもよい。この低シート抵抗のコーティングに関する他の有望な応用性には、超コンデンサ、例えば電荷貯蔵用のものも含まれる。前記インクは当然、平坦であっても又は曲面であってもよい多種多様な基材(例えば、ガラス、プラスチック、ポリマー、シリコンウェハ等)に印刷できるので、多くの異なる用途(may different applications)が考えられる。実際、CNTをベースとするコーティングは、特にZnO層(又はインク若しくは基材のZnOドーピング)に関連して配置される場合に、有望な抗菌性コーティングとして使用される可能性がある。このような有望な抗菌性は、本明細書に記載の冷蔵庫/冷凍庫のドア及び/又は他の用途に関して有利な場合がある。
他の部分に示したように、CNTをベースとするコーティングは、例えば車両のフロントガラスのような曲面をコーティングするのに適している。この材料は、曲げが最大のライオン(reion)が薄くなりにくい。また、パターンをインクでスクリーン印刷することで、例えば銀フリットと置き換えてもよい。考えられる一例は、アンテナ 母線、曇り除去/凍結防止用途等である。
特定の実施形態例は、さらに、エレクトロクロミック用途に関して使用してもよい。例えば、米国特許第7,547,658号、同第7.545,551号、同第7,525,714号、同第7,511,872号、同第7,450,294号、同第7,411,716号、同第7,375,871号及び同第7,190,506号、並びに出願公開番号61/237,580号を参照し、これらの内容を全て参照として本明細書に組み込む。CNTをベースとするフィルムは、ITOが経時的に分解し易い場合及び/又はそれ以外にITOがCNTをベースとするフィルムほど十分に機能しない場合に、ITOと置き換えることが可能である。
ここで、前記モデルについて詳述する。前記モデルは、フィルム形態を理解しかつ制御することでσdc/σopt比を最適化することが可能であるという発明者の認識に依るものである。具体的には、上記観点から、CNTをベースとするコーティングの性能はネットワークと結びついており、また、ネットワークは、束の平均寸法<D>、束の平均長さ<L>、曲線因子φ、相互接続密度ni、個々のナノチューブの品質であるG/D比そしてNTの長さと関係があることが分かるであろう。これらを認めることで、本出願の発明者は、前記電流を生じさせかつ実験データの検証によってネットワークの予測が可能な現象学的モデルを導き出した。厚さは、システムが、どの検証フィルムにおいても浸透限界を上回る程度であると考えられる。
特徴的な長さスケール又は尺度は、電気特性を精査する部分全体と規定する。そこで、スケールLcは、接合点間の平均距離とみなすことができる。長さスケールがLp<Lcであることを調べる場合、単一又は束状NTの個々の電動度がネットワークの電気特性で最も重要である。Lp>Lcという別の極値では、長さスケールは接合点数個分に及ぶ。接合密度が高いほど平行経路の選択肢は増加するので、制限因子、つまり平均接触抵抗は軽減し、それに応じて電気特性も減衰する。しかし、この単純な概念は、チューブの電気伝導度が等しい場合に及びその場合に限って通用する。したがって、フィルム伝導度は、チューブの対掌性、黒鉛化、ドーパント濃度及びチューブの長さによって決まる個々のチューブ電動度σNTで調節される。
したがって、大きなスケールや
Figure 0005936209
で表されるスケールを超える場合、前記チューブ電動度σNTは、一般式として、σ=f(σNTで表すことができる。
また、n=n <c>と表すこともでき、ここで、nはNT束の密度であって、
Figure 0005936209
と表される。前記式中、Lは束又はチューブの平均長さであって、通常2〜3ミクロンであり、<d>は、チューブ束の平均二乗直径であって、チューブ剥離の程度に応じて2〜20μmであってよい。FFは、フィルムの曲線因子であって、ρ/ρNTに等しく、浮遊法又はフィルムの吸収係数(数4)から推定することができる。
Figure 0005936209
<c>は、チューブあたりに形成される接合点の平均半数(mean half−number)であって、次の前提とオンサーガー(Onsager)と同様の論法にを用いて評価することで(c)を推測してよい。
・平均場近似、ただし、ナノチューブの数密度は平均数密度である。
・平均束D/L<<1
・接点には相関関係がない(全体的にランダムである)。
ランダムに配列した、縦横比の大きな長いロッド又はひもの集合(平均数密度<ρ>)について検討する。試験粒子はP及び隣接物はNであり、これらの中心はベクトルrで結合されていると仮定する。自由空間では、Nだけが任意の配列を選択することができる。ただし、粒子Pの存在下では、予想される配列の割合fex(r)が見込まれる。この排除割合は、ランダムな配列を考えた場合、中心をrとした場合にNがPと接触する確率でもある。この仮定によれば、次の式(i)で表わされる:
Figure 0005936209
前記式中、<ρ>は平均ナノチューブ(束)数密度であり、そしてVexは、チューブが柔軟なものであるという追加の仮定によって表される平均排除体積である。柔軟なコアの相互間貫入可能なシリンダーの排除堆積は次の通りである。
Figure 0005936209
各束の平均体積は、
Figure 0005936209
と表され、前記式(i)〜(iii)から、特定のメッシュの曲線因子φを用いて束当たりの平均接点数を表すと次のようになる。
Figure 0005936209
したがって、平均束密度nは次のように表される。
Figure 0005936209
上記式から、nは次のように近似できることが分かる。
Figure 0005936209
その結果、フィルムの伝導度は、チューブの長さの平均平方と前記平均の二乗との比で決まる。この比は、基本的に、長さ分布と前記平均の二乗との差である。さらに、前記解析は、有望な用途にフィルムネットワークを堆積させる場合には束の長さと直径の統計的分布を考慮することが重要であることも強調している。
個々のチューブ又は束の抵抗が大半を占め、接合点の抵抗よりも極めて小さいLp>>Lcというスケールでは、フィルムのシート抵抗Rは次のように表すことができる。
Figure 0005936209
ここで、σ=knj/Rjにより、フィルム厚が
Figure 0005936209
である場合、厚さtのフィルムのシート抵抗は、透過率の関数として次の式で表される。
Figure 0005936209
αは、有効媒質近似と曲線因子φとの比であり、定数を全てまとめて新たな定数k"とする。(差分Dが非常に小さい(実際に本明細書の場合のように)と仮定して)前記式を組み合わせると、次の式が得られる。
Figure 0005936209
これは、T'=1−A/Rと表すこともできる。曲線因子は大きいほど、実際の様々なフィルム密度の関数として、得られた曲線を説明するのに役立つ。曲線因子φは空隙率と、φ=1−Pという関係にある。
符号Aは、T対R曲線の特性を制御する因子である。後者の解析は、ドーピング処理を行うと曲線が左側へシフトする(例えば、図5)理由を考えるのに役立つ可能性がある。L及びDといったパラメータはいずれも、曲線因子と同様に固定する。Rjも影響を受ける。というのも、半導体チューブのドーピングが接合点の抵抗を下げるように作用するためである。ある時点では、ドーピング効果が飽和し、接合点の数密度が固定されて、ドーピング効率も飽和状態となると推量される。
差分がゼロであり、しかもチューブの長さが全て等しい場合、長さへの依存性はほとんど現れないと考えられる。その結果、Aは、πDRj/(4k"φ)と等しくなる。ただし、これは、ネットワーク形態の特徴及びインクそれぞれのCNTの統計データから明白なため、実際には当てはまらない。
現時点では、NT伝導度の長さ依存性は考慮する必要がある。これは、電荷移動の平均自由行程が極めて大きいことが原因であり、SWCNTでは通常、約1μmである。密度汎関数法に基づく計算からは、DWNTの場合、この長さしきい値は約1μm超である(1〜10μm)と推量される。各DWCNTを1μmよりも短くすると、その全体的な抵抗はそれ以上増加しない。よって、導電性は、数ナノメートルという短い長さでは急に低下する。1μm超のDWCNTは銅よりも約一桁分高い抵抗を有し、また、長さ100nmのSWCNTの抵抗はWを上回る。DWCNTでは、平均自由行程は計算上、1μm超、一般的に約5μmである。上記の事実から、個々のチューブの伝導度の一次近似は、テイラー展開通り、チューブの長さの関数として次のように表すことができる。
Figure 0005936209
ここで、式(viii)の結果を考慮すると、Rは(LとDの差分がゼロの範囲では)本質的に、個々のチューブの電気伝導度を空間Lp∧3内で平行なチューブの数で割った値によって決まる。Rは、チューブの長さの逆数で表すことができる。ここで、Aは、πDRj/(4k"φ)1/σNTに相当する。その結果、チューブの長さ及びチューブの最高伝導度σNTDが、特にL<Lpのスケールにおいて、ネットワークの伝導率をどのようにして調節するかが分かる。上述の通りドーピング効果は飽和するので、その事実を利用して、フィルムが特定の空隙率を有しており、ナノ金属粒子で核を形成し、その核の作用がキャリアに平行経路を与えて接合点でチューブからチューブまでトンネル効果を生じさせるということを予測することができる。最後に、チューブの並置効果を処理し、因子<sinθ>で符号化する。この因子は、チューブの配列に左右される。平均値を計算するために、確率密度関数を積分して配向角Pθ sinθを求める。出力は余弦関数なので、チューブが導電チャネルに沿って好ましい方向に配列するのであれば、この因子は長さ効果の方を増幅する。一様な角度分布では、伝導又は異方性の採択は期待できない。
このモデルは、σdc/σopt比を考える場合、チューブの種類(金属であるか又は半導体であるか)が重要であることを示している。したがって、ある部分的な解決法は、CNTをベースとするフィルムをドーピングすることである。前記モデルはまた、接合点の抵抗が結局は最も重要なので、最終的にはドーピングで作業を停止することも示唆している。この課題は、合金化又は金属化する或いはPEDOT等での化学的な官能化することで前記接合点を短絡させることによって解決する場合がある。最終的に前記モデルからは、CNTをベースとするフィルムには次の特徴が望まれていることが分かる:チューブ径が小さいこと、チューブが長いこと、長さが様々であること、及び直径変動が小さいこと。
図12及び13により、本明細書に記載の特定の方法例を簡潔に説明する。具体的には、図12は、一実施形態例によりCNTをベースとするインクを適用して化学的に官能化するための具体的な方法を表すフローチャートである。工程S1201で、CNT含有インクを供給する。CNT含有インクは、例えば平均直径が約1.7nmの二層ナノチューブを含む又は本質的にそれから成るものであってよい。工程S1203では、例えば界面活性剤及び/又はコーティング助剤をCNT含有インクに添加することによってCNT含有インクのレオロジー特性を調整してもよく、そうすることで、インク内に含まれている半導体CNTが凝集又は凝固しないようにする。言い換えれば、CNT含有インクを、むしろ水に近いものにしてもよい。特定の実施形態例では、インクは水溶性であってよい。本発明の別の実施形態例では、有機及び/若しくは無機添加物並びに/又は溶媒を必要としない場合もある。特定の実施形態例では、インクを作製して脱イオン水に単に溶解してよいが、ある実施形態例では、アルコールを加えて(例えば水分蒸発を促進して)もよい。場合により、図には示していない工程で、Agナノワイヤーをインクに混入してもよい。工程S1205では、調節したレオロジー特性を有するインクを基材に適用して中間コーティングを形成してよい。スロットダイ装置を用いてこの応用を遂行してもよい。工程S1207で、中間コーティングを乾燥させる又は乾燥させておく。工程S1209では、中間コーティング上に、基材との接着性を高めるための材料(例えば、オーバーコート又はパッシベーション層)を供給する。この材料には、例えば、PVP、PEDOT:PSS、PEDOT:PSS−PEG複合体、ジルコニア、シリコン含有薄膜、ポリマー又は樹脂等を含むことができる。工程S1211では、塩及び/又は超酸を用いて中間コーティングをドーピング処理することで、CNT含有薄膜を形成する際に中間コーティングを化学的に官能化する。特定の実施形態例では、ドーピングは、PVPの供給とほぼ同時に行ってよい。特定の実施形態例では、超酸はHSOであり、またある実施形態例では、塩はジアゾニウム塩である(例えば、BDF又はOA等)。チューブは、ドーピングしてp型又はn型にすることができる。工程S1213では、例えば中間コーティング上に供給した材料又は別の導電層若しくは非導電性(だが、薄い)層を用いて、フィルムを実質上平坦化してよい。場合により、基材の近くで酸素又はオゾンを放電させて、そこに存在する炭素を酸化することによって中間コーティング及び/又はCNT含有フィルムを官能化してもよい。場合により、図には示していない1つ以上の工程で、エチレングリコール(及び/又はPVP)の存在下で硝酸銀を還元することによって銀ナノワイヤーを合成してもよい。特定の実施形態例では、銀ナノワイヤーは、長さ2〜5ミクロン及び直径17〜80nmであってよい。合成された銀ナノワイヤー懸濁液をガラス基材に投下した後、CNTをベースとするインクを適用してもよい。これに関し、図14は、一実施形態例で製造された銀ナノワイヤーの透過型電子顕微鏡(TEM)写真である。
図13は、一実施形態例によりCNTをベースとするインクを適用して合金化する及び/又は化学的に官能化するための具体的な方法を表すフローチャートである。工程S1301で、CNT含有インクを供給する。CNT含有インクは、二層ナノチューブを含む又は本質的にそれから成るものであってよい。工程S1303で、例えば界面活性剤をCNT含有インクに添加することによってCNT含有インクのレオロジー特性の調整を加減してよく、そうすることで、インク内に含まれている半導体CNTが凝集しないようにする及び/又はインクをむしろ水に近いものにする。工程1305で、インクを基材に適用して(例えばスロットダイ装置を用いて)中間コーティングを形成する。工程S1307で、中間コーティングを乾燥させる又は乾燥させておく。工程S1309で、中間コーティング上に基材との接着性を高めるための材料(例えば、PVP)を供給する。場合により、工程S1311では、中間コーティングをドーピング処理することで、CNT含有薄膜を形成する際に中間コーティングを化学的に官能化する。ドーピング方法例は先に詳述している。工程1313で、PdCl溶液を供給して、このPdCl溶液に中間コーティングを曝露させる。Pdは中間コーティング内の接合点で核を形成し、その結果、CNT含有薄膜を形成する際に中間コーティングの空隙率を低減する。これより、結果としてシート抵抗は低下するが、可視透過率は比較的変化がない。工程1315では、銀めっき溶液を供給し、この銀めっき溶液に中間コーティングを暴露することで、例えば中間コーティング内の接合点を短絡させる。中間コーティングは、PdCl溶液に曝露してから銀めっき溶液に暴露してもよい。銀めっき溶液は、硝酸銀を脱イオン水に溶解することで調製され得る。工程S1317では、前記曝露工程の後で、中間コーティング上にオーバーコート又はパッシベーション層(例えば、PEDOT:PSS、ジルコニア、シリコン系薄膜、ポリマー及び/又は樹脂等を含む)を設ける。工程1319では、CNT含有フィルムを実質上平坦化することで、表面粗さを軽減してよい。この平坦化は、オーバーコート又はパッシベーション層によって、或いは追加の層を堆積することによって行われてよい。
本明細書で使用するとき、用語「の上に」及び「で支持された」等は、特に明記している場合を除き、2つの構成要素が互いに直接隣り合っていないことを表すものと解釈すべきである。つまり、1層以上の層が間に存在していても、第1の層が第2の層「の上に」又は第2の層「で支持されている」ということができる。
本発明は、現在、最も有用で好ましい実施形態であると考えられているものに関して説明してきたが、本発明は、開示した実施形態に限定されるものではなく、むしろ、添付の特許請求の範囲の主旨及び範囲に含まれる様々な変更及び同価値の構造をも網羅するものと理解されるべきである。

Claims (10)

  1. ガラス基材と、
    前記ガラス基材上に直接又は間接的に供給された第1のCNTをベースとする透明導電層と、
    前記ガラス基材と実質上平行でかつ離間した状態にある変形可能な箔と、
    前記変形可能な箔の上に直接又は間接的に供給された第2のCNTをベースとする透明導電層と、
    を備え
    前記第1及び第2のCNTをベースとする透明導電層の少なくとも一方が、n型ドーパント及びp型ドーパントの少なくとも一方でドーピングされている
    タッチパネルサブアセンブリ。
  2. 前記第1及び/又は第2のCNTをベースとする層がパターニングされている
    請求項1に記載のタッチパネルサブアセンブリ。
  3. 前記変形可能な箔と前記ガラス基材との間に配置された複数のピラーと、
    前記サブアセンブリの周辺部にある少なくとも1つのエッジシールと、
    を更に含む
    請求項2に記載のタッチパネルサブアセンブリ。
  4. 前記変形可能な箔がPET箔である
    請求項3に記載のタッチパネルサブアセンブリ。
  5. 前記第1及び/又は第2のCNTをベースとする層のシート抵抗が500オーム/平方未満である
    請求項1に記載のタッチパネルサブアセンブリ。
  6. 前記第1及び/又は第2のCNTをベースとする層のシート抵抗が300オーム/平方未満である
    請求項1に記載のタッチパネルサブアセンブリ。
  7. 請求項1に記載のタッチパネルサブアセンブリと、
    前記タッチパネルサブアセンブリの前記ガラス基材の、前記変形可能な箔とは反対側の表面に接続されたディスプレイと、
    を備える、タッチパネル装置。
  8. 前記ディスプレイがLCDディスプレイである
    請求項7に記載のタッチパネル装置。
  9. 前記タッチパネル装置が容量方式タッチパネル装置である
    請求項8に記載のタッチパネル装置。
  10. 前記タッチパネル装置が抵抗性タッチパネル装置である
    請求項8に記載のタッチパネル装置。
JP2014148559A 2010-03-04 2014-07-22 カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法 Expired - Fee Related JP5936209B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/659,352 US8604332B2 (en) 2010-03-04 2010-03-04 Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
US12/659,352 2010-03-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012556073A Division JP5693616B2 (ja) 2010-03-04 2011-01-18 カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015038727A JP2015038727A (ja) 2015-02-26
JP5936209B2 true JP5936209B2 (ja) 2016-06-22

Family

ID=43858354

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012556073A Expired - Fee Related JP5693616B2 (ja) 2010-03-04 2011-01-18 カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法
JP2014148559A Expired - Fee Related JP5936209B2 (ja) 2010-03-04 2014-07-22 カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012556073A Expired - Fee Related JP5693616B2 (ja) 2010-03-04 2011-01-18 カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法

Country Status (10)

Country Link
US (2) US8604332B2 (ja)
EP (1) EP2543087B1 (ja)
JP (2) JP5693616B2 (ja)
KR (1) KR101861862B1 (ja)
CN (1) CN102823012B (ja)
BR (1) BR112012022222A2 (ja)
MX (1) MX2012010132A (ja)
RU (2) RU2560031C2 (ja)
TW (1) TWI541828B (ja)
WO (1) WO2011109123A1 (ja)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2688335C (en) 2007-05-29 2015-07-21 Innova Materials, Llc Surfaces having particles and related methods
EP2328731A4 (en) * 2008-08-21 2017-11-01 Tpk Holding Co., Ltd Enhanced surfaces, coatings, and related methods
TW201030998A (en) 2008-10-23 2010-08-16 Alta Devices Inc Photovoltaic device
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US8829342B2 (en) * 2009-10-19 2014-09-09 The University Of Toledo Back contact buffer layer for thin-film solar cells
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US20150380576A1 (en) 2010-10-13 2015-12-31 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US20170141256A1 (en) 2009-10-23 2017-05-18 Alta Devices, Inc. Multi-junction optoelectronic device with group iv semiconductor as a bottom junction
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US20130270589A1 (en) * 2012-04-13 2013-10-17 Alta Devices, Inc. Optoelectronic device with non-continuous back contacts
TW201203041A (en) * 2010-03-05 2012-01-16 Canatu Oy A touch sensitive film and a touch sensing device
US20130048078A1 (en) * 2010-05-20 2013-02-28 Korea Institute Of Machinery And Materials Carbon nanotube-invaded metal oxide composite film, manufacturing method thereof, and organic solar cell with improved photoelectric conversion efficiency and improved duration using same
WO2012006621A2 (en) * 2010-07-09 2012-01-12 The Regents Of The University Of Michigan Carbon nanotube hybrid photovoltaics
US9112166B2 (en) * 2010-07-30 2015-08-18 The Board Of Trustees Of The Leland Stanford Junior Univerity Conductive films
CA2829242A1 (en) 2010-08-07 2012-02-16 Arjun Daniel Srinivas Device components with surface-embedded additives and related manufacturing methods
CN104040642B (zh) 2011-08-24 2016-11-16 宸鸿科技控股有限公司 图案化透明导体和相关制备方法
KR20130030903A (ko) * 2011-09-20 2013-03-28 엘지이노텍 주식회사 태양전지 및 이의 제조방법
WO2013049816A1 (en) 2011-09-30 2013-04-04 Sensitronics, LLC Hybrid capacitive force sensors
KR20130040358A (ko) * 2011-10-14 2013-04-24 한국전자통신연구원 태양전지
EP2608643A1 (en) * 2011-12-23 2013-06-26 British Telecommunications public limited company Cable
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US9524806B2 (en) 2012-02-07 2016-12-20 Purdue Research Foundation Hybrid transparent conducting materials
KR101442727B1 (ko) * 2012-02-13 2014-09-23 주식회사 잉크테크 레이저 에칭을 이용한 패턴 형성 방법
JP2013211305A (ja) * 2012-03-30 2013-10-10 Hitachi Zosen Corp 3次元ホモ接合型cnt太陽電池
US9472694B2 (en) * 2012-04-23 2016-10-18 The Board Of Trustees Of The Leland Stanford Junior University Composition and method for upconversion of light and devices incorporating same
TWI486975B (zh) * 2012-05-22 2015-06-01 Teco Nanotech Co Ltd 觸控面板的透明導電層之高解析度雷射蝕刻方法
CN103455179A (zh) * 2012-05-28 2013-12-18 东元奈米应材股份有限公司 触控面板的透明导电层的高解析度激光蚀刻方法
US8608525B1 (en) 2012-06-05 2013-12-17 Guardian Industries Corp. Coated articles and/or devices with optical out-coupling layer stacks (OCLS), and/or methods of making the same
US20140014171A1 (en) 2012-06-15 2014-01-16 Purdue Research Foundation High optical transparent two-dimensional electronic conducting system and process for generating same
TWI506652B (zh) * 2012-07-05 2015-11-01 Univ Nat Taiwan 一種含銀及奈米碳管之導電薄膜、銀/奈米碳管複合物、及一種分散奈米碳管之方法
CN105210204A (zh) * 2012-12-20 2015-12-30 耶路撒冷希伯来大学伊森姆研究发展有限公司 钙钛矿肖特基型太阳能电池
US9499128B2 (en) 2013-03-14 2016-11-22 The Crawford Group, Inc. Mobile device-enhanced user selection of specific rental vehicles for a rental vehicle reservation
CN103236429B (zh) * 2013-05-14 2015-09-09 哈尔滨工业大学 带加热单元的微型碳纳米管湿度传感器芯片
US9905797B2 (en) * 2013-10-25 2018-02-27 Boe Technology Group Co., Ltd. OLED display device and fabrication method thereof
CN103853410B (zh) * 2014-03-05 2017-02-08 江西省天翌光电有限公司 一种ogs触摸屏的功能片制作工艺
KR101586902B1 (ko) 2014-04-09 2016-01-19 인트리 주식회사 나노구조의 패턴을 구비한 광투과성 도전체 및 그 제조방법
CN104049826B (zh) * 2014-05-20 2017-07-28 深圳市航泰光电有限公司 一种纳米碳管电容式触摸屏及其制作方法
US9482477B2 (en) 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
CN104347038B (zh) * 2014-10-28 2017-04-05 广东欧珀移动通信有限公司 显示屏感光装置、移动终端和显示屏感光装置的制造方法
KR101687992B1 (ko) 2014-11-18 2016-12-20 인트리 주식회사 나노섬유 패턴을 구비한 광투과성 도전체를 제조하기 위한 포토마스크 및 그 제조방법
KR101739726B1 (ko) 2014-12-19 2017-05-25 인트리 주식회사 나노섬유 패턴을 구비한 광투과성 도전체의 제조방법
EP3243225A1 (en) 2015-01-07 2017-11-15 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Self-assembly of perovskite for fabrication of transparent devices
US10265930B2 (en) * 2015-01-12 2019-04-23 The Boeing Company Spacecraft and spacecraft protective blankets
CN104599746B (zh) * 2015-01-27 2017-06-09 京东方科技集团股份有限公司 一种触控元件及其制备方法和触摸屏
CN104616838B (zh) 2015-02-10 2018-02-06 京东方科技集团股份有限公司 一种电子器件的制作方法及电子器件
KR101707002B1 (ko) * 2015-03-04 2017-02-15 숭실대학교산학협력단 복합 감지형 센서 및 제조방법
KR101766828B1 (ko) * 2015-04-28 2017-08-09 고려대학교 산학협력단 메탈 메쉬 형성 방법 및 메탈 메쉬를 구비하는 반도체 소자
CN104934551B (zh) * 2015-05-14 2017-07-28 京东方科技集团股份有限公司 一种柔性电极层及其制备方法、显示基板、显示装置
KR102345543B1 (ko) 2015-08-03 2021-12-30 삼성전자주식회사 펠리클 및 이를 포함하는 포토마스크 조립체
KR102409776B1 (ko) 2015-08-06 2022-06-16 엘지이노텍 주식회사 와이퍼 구동 장치 및 이의 구동 방법
JP6809791B2 (ja) * 2016-01-08 2021-01-06 株式会社名城ナノカーボン 積層体シートおよびその製造方法
CN105529401A (zh) * 2016-01-28 2016-04-27 上海交通大学 碳纳米管分子内p-n结二极管及其制备方法
CN105529402B (zh) * 2016-01-28 2018-04-10 上海交通大学 基于无序网状碳纳米管的p‑n结二极管及其制备方法
CN105514208B (zh) * 2016-01-28 2019-08-23 上海交通大学 局部选区掺杂的碳纳米管分子内p-i-n结光伏器件及制备方法
CN105467708B (zh) * 2016-02-03 2021-04-20 京东方科技集团股份有限公司 一种写字板、电子写字设备及制作方法
US10067599B2 (en) * 2016-07-29 2018-09-04 Ncr Corporation Touchscreen defroster
FI127417B (en) * 2016-09-16 2018-05-31 Nordic Flex S L Multilayer film with a conductive coating and process for manufacturing the same
KR102601451B1 (ko) * 2016-09-30 2023-11-13 엘지디스플레이 주식회사 전극 및 이를 포함하는 유기발광소자, 액정표시장치 및 유기발광표시장치
CN107039298B (zh) * 2016-11-04 2019-12-24 厦门市三安光电科技有限公司 微元件的转移装置、转移方法、制造方法、装置和电子设备
WO2018152768A1 (en) * 2017-02-24 2018-08-30 Intel Corporation Flexible nanowire touch screen
WO2018190842A1 (en) * 2017-04-13 2018-10-18 Hewlett-Packard Development Company, L.P. An antenna for an electronic device
CN109428006B (zh) * 2017-08-30 2020-01-07 清华大学 有机发光二极管
CN109427984B (zh) * 2017-08-30 2020-01-07 清华大学 有机发光二极管的制备方法
CN109599270B (zh) * 2017-09-30 2020-08-11 清华大学 一种光电自储能器件的制备方法
RU2694113C9 (ru) * 2017-11-24 2019-11-07 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления
PL425137A1 (pl) * 2018-04-05 2019-10-07 Blue Dot Solutions Spółka Z Ograniczoną Odpowiedzialnością Panel siateczkowy satelitarnego źródła energii
KR102580292B1 (ko) * 2018-05-29 2023-09-19 삼성디스플레이 주식회사 표시 장치, 그 제조 방법 및 표시 장치 제조를 위한 레이저 가공 장치
CN111384188A (zh) * 2018-12-27 2020-07-07 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池及其制备方法
RU198698U1 (ru) * 2020-01-30 2020-07-23 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Устройство генерации импульсного тока от солнечной батареи
CN111653638A (zh) * 2020-07-02 2020-09-11 河北大学 一种多交界面结太阳电池及其制备方法
RU2738459C1 (ru) * 2020-07-08 2020-12-14 Общество с ограниченной ответственностью «КАТОД» Полупрозрачный фотокатод
WO2022093926A1 (en) * 2020-10-27 2022-05-05 The Regents Of The University Of Michigan Water splitting device protection
CN114732262A (zh) * 2021-01-07 2022-07-12 开利公司 透视介质系统和制冷装置
KR102560687B1 (ko) * 2021-05-27 2023-07-27 한국세라믹기술원 적외선 차단 기능을 갖는 고유연 투명전극 구조체 및 그 제조 방법
CN114187618A (zh) * 2021-12-09 2022-03-15 深圳市汇顶科技股份有限公司 指纹检测电路、指纹检测装置和制造指纹检测电路的方法

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929205A (en) 1988-10-07 1990-05-29 Jones Elene K Leg immobilizer-drag for training swimmers
US5227038A (en) 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
US5300203A (en) 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
JPH06122277A (ja) * 1992-08-27 1994-05-06 Toshiba Corp アモルファス有機薄膜素子およびアモルファス有機ポリマー組成物
US5591312A (en) 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
DE4313481A1 (de) 1993-04-24 1994-10-27 Hoechst Ag Fullerenderivate, Verfahren zur Herstellung und deren Verwendung
AU7211494A (en) 1993-06-28 1995-01-17 William Marsh Rice University Solar process for making fullerenes
US5650597A (en) 1995-01-20 1997-07-22 Dynapro Systems, Inc. Capacitive touch sensor
US6162926A (en) 1995-07-31 2000-12-19 Sphere Biosystems, Inc. Multi-substituted fullerenes and methods for their preparation and characterization
US7338915B1 (en) 1995-09-08 2008-03-04 Rice University Ropes of single-wall carbon nanotubes and compositions thereof
US6183714B1 (en) 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
DE69728410T2 (de) 1996-08-08 2005-05-04 William Marsh Rice University, Houston Makroskopisch manipulierbare, aus nanoröhrenanordnungen hergestellte vorrichtungen
US6123824A (en) 1996-12-13 2000-09-26 Canon Kabushiki Kaisha Process for producing photo-electricity generating device
US5852284A (en) 1997-01-07 1998-12-22 Libbey-Owens-Ford Co. Insulating glass with capacitively coupled heating system
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
AU6545698A (en) 1997-03-07 1998-09-22 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6144017A (en) 1997-03-19 2000-11-07 Libbey-Owens-Ford Co. Condensation control system for heated insulating glass units
JPH1146006A (ja) 1997-07-25 1999-02-16 Canon Inc 光起電力素子およびその製造方法
US6129901A (en) 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
JP2002518280A (ja) 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
US6077722A (en) 1998-07-14 2000-06-20 Bp Solarex Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US6057903A (en) 1998-08-18 2000-05-02 International Business Machines Corporation Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
US6204897B1 (en) 1998-08-18 2001-03-20 International Business Machines Corporation Integrated resistor for measuring touch position in a liquid crystal display device
EP1115655B1 (en) 1998-09-18 2006-11-22 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US6835366B1 (en) 1998-09-18 2004-12-28 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes
US7150864B1 (en) 1998-09-18 2006-12-19 William Marsh Rice University Ropes comprised of single-walled and double-walled carbon nanotubes
EP1112224B1 (en) 1998-09-18 2009-08-19 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes
US6692717B1 (en) 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
DE19844046C2 (de) 1998-09-25 2001-08-23 Schott Glas Mehrscheibenisolierglas
WO2000026138A1 (en) 1998-11-03 2000-05-11 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
DE19905797A1 (de) 1999-02-12 2000-08-17 Bayer Ag Elektrochrome Vorrichtung mit Nanoteilchen und UV-Absorber in der Schutzschicht
US7507903B2 (en) * 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US6808606B2 (en) 1999-05-03 2004-10-26 Guardian Industries Corp. Method of manufacturing window using ion beam milling of glass substrate(s)
US7064882B2 (en) 2002-09-30 2006-06-20 Gentex Corporation Electrochromic devices having no positional offset between substrates
CN101104514A (zh) 1999-10-27 2008-01-16 威廉马歇莱思大学 碳质毫微管的宏观有序集合体
US7195780B2 (en) 2002-10-21 2007-03-27 University Of Florida Nanoparticle delivery system
DE10021320A1 (de) 2000-05-02 2001-11-08 Voith Paper Patent Gmbh Doppelsiebformer
US6407847B1 (en) 2000-07-25 2002-06-18 Gentex Corporation Electrochromic medium having a color stability
US7008563B2 (en) 2000-08-24 2006-03-07 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
US6359388B1 (en) 2000-08-28 2002-03-19 Guardian Industries Corp. Cold cathode ion beam deposition apparatus with segregated gas flow
US6784361B2 (en) 2000-09-20 2004-08-31 Bp Corporation North America Inc. Amorphous silicon photovoltaic devices
US7052668B2 (en) 2001-01-31 2006-05-30 William Marsh Rice University Process utilizing seeds for making single-wall carbon nanotubes
US6913789B2 (en) 2001-01-31 2005-07-05 William Marsh Rice University Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
US6752977B2 (en) 2001-02-12 2004-06-22 William Marsh Rice University Process for purifying single-wall carbon nanotubes and compositions thereof
US7090819B2 (en) 2001-02-12 2006-08-15 William Marsh Rice University Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
US6602371B2 (en) 2001-02-27 2003-08-05 Guardian Industries Corp. Method of making a curved vehicle windshield
FR2821519B1 (fr) 2001-02-28 2003-05-02 Saint Gobain Element vitre isolant, notamment pour enceinte refrigeree
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
US6890506B1 (en) 2001-04-12 2005-05-10 Penn State Research Foundation Method of forming carbon fibers
US7014737B2 (en) 2001-06-15 2006-03-21 Penn State Research Foundation Method of purifying nanotubes and nanofibers using electromagnetic radiation
US7256923B2 (en) 2001-06-25 2007-08-14 University Of Washington Switchable window based on electrochromic polymers
US7125502B2 (en) 2001-07-06 2006-10-24 William Marsh Rice University Fibers of aligned single-wall carbon nanotubes and process for making the same
JP2005501935A (ja) 2001-08-29 2005-01-20 ジョージア テク リサーチ コーポレイション 剛性ロッドポリマーとカーボンナノチューブを含む組成物及びその製造方法
US6538153B1 (en) 2001-09-25 2003-03-25 C Sixty Inc. Method of synthesis of water soluble fullerene polyacids using a macrocyclic malonate reactant
DE10228523B4 (de) 2001-11-14 2017-09-21 Lg Display Co., Ltd. Berührungstablett
US7138100B2 (en) 2001-11-21 2006-11-21 William Marsh Rice Univesity Process for making single-wall carbon nanotubes utilizing refractory particles
WO2003057955A1 (en) 2001-12-28 2003-07-17 The Penn State Research Foundation Method for low temperature synthesis of single wall carbon nanotubes
TW200307563A (en) 2002-02-14 2003-12-16 Sixty Inc C Use of BUCKYSOME or carbon nanotube for drug delivery
AU2003216481A1 (en) 2002-03-01 2003-09-16 Planar Systems, Inc. Reflection resistant touch screens
EP1483202B1 (en) 2002-03-04 2012-12-12 William Marsh Rice University Method for separating single-wall carbon nanotubes and compositions thereof
JP3962376B2 (ja) 2002-03-14 2007-08-22 カーボン ナノテクノロジーズ インコーポレーテッド 極性重合体及び単層壁炭素ナノチューブを含有する複合体材料
US6899945B2 (en) 2002-03-19 2005-05-31 William Marsh Rice University Entangled single-wall carbon nanotube solid material and methods for making same
US7192642B2 (en) 2002-03-22 2007-03-20 Georgia Tech Research Corporation Single-wall carbon nanotube film having high modulus and conductivity and process for making the same
US7135160B2 (en) 2002-04-02 2006-11-14 Carbon Nanotechnologies, Inc. Spheroidal aggregates comprising single-wall carbon nanotubes and method for making the same
EP1503956A1 (en) 2002-04-08 2005-02-09 William Marsh Rice University Method for cutting single-wall carbon nanotubes through fluorination
EP1513621A4 (en) 2002-05-21 2005-07-06 Eikos Inc METHOD FOR CONFIGURING COATING OF CARBON NANOTUBES AND WIRING OF CARBON NANOTUBES
US7061749B2 (en) 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US6852410B2 (en) 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
US7250148B2 (en) 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
US6849911B2 (en) * 2002-08-30 2005-02-01 Nano-Proprietary, Inc. Formation of metal nanowires for use as variable-range hydrogen sensors
KR100480823B1 (ko) 2002-11-14 2005-04-07 엘지.필립스 엘시디 주식회사 표시장치용 터치 패널
US7273095B2 (en) 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
ATE380384T1 (de) 2003-04-24 2007-12-15 Carbon Nanotechnologies Inc Leitfähiger kohlenstoff- nanoröhrenpolymerverbundstoff
US7220818B2 (en) 2003-08-20 2007-05-22 The Regents Of The University Of California Noncovalent functionalization of nanotubes
US7109581B2 (en) 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7163956B2 (en) 2003-10-10 2007-01-16 C Sixty Inc. Substituted fullerene compositions and their use as antioxidants
US7211795B2 (en) 2004-02-06 2007-05-01 California Institute Of Technology Method for manufacturing single wall carbon nanotube tips
KR20050080609A (ko) * 2004-02-10 2005-08-17 삼성에스디아이 주식회사 디스플레이 장치용 투명 도전막 및 그 제조 방법
US7450294B2 (en) 2004-03-12 2008-11-11 Boeing Co Multi-color electrochromic apparatus and methods
CN1934212B (zh) 2004-04-19 2010-12-22 Lg化学株式会社 包括离子液体的胶凝聚合物电解质以及使用该电解质的电致变色器件
US7601436B2 (en) 2004-05-18 2009-10-13 The University Of Southern California Carbene metal complexes as OLED materials
US7856770B2 (en) 2004-08-31 2010-12-28 Hussmann Corporation Multi-pane glass assembly for a refrigerated display case
US7279916B2 (en) 2004-10-05 2007-10-09 Nanoconduction, Inc. Apparatus and test device for the application and measurement of prescribed, predicted and controlled contact pressure on wires
US7375871B2 (en) 2004-11-03 2008-05-20 Leviton Manufacturing Co., Inc. Electrochromic glass control device
KR100635575B1 (ko) 2004-11-17 2006-10-17 삼성에스디아이 주식회사 풀 칼라 유기 전계 발광 표시 소자 및 그 제조방법
JP4937560B2 (ja) 2004-12-22 2012-05-23 株式会社フジクラ 光電変換素子用の対極及び光電変換素子
CN100533850C (zh) * 2004-12-22 2009-08-26 株式会社藤仓 光电转换元件用对电极以及光电转换元件
US7629741B2 (en) 2005-05-06 2009-12-08 Eastman Kodak Company OLED electron-injecting layer
US7535462B2 (en) * 2005-06-02 2009-05-19 Eastman Kodak Company Touchscreen with one carbon nanotube conductive layer
US7538040B2 (en) 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
JP2007011997A (ja) * 2005-07-04 2007-01-18 Fujitsu Component Ltd タッチパネル
JP5105140B2 (ja) 2005-09-12 2012-12-19 独立行政法人産業技術総合研究所 全固体型反射調光エレクトロクロミック素子及びそれを用いた調光部材
WO2008051205A2 (en) * 2005-10-14 2008-05-02 Eikos, Inc. Carbon nanotube use in solar cell applications
US7504957B2 (en) 2006-01-10 2009-03-17 Guardian Industries Corp. Light sensor embedded on printed circuit board
AU2007314229A1 (en) * 2006-03-23 2008-05-08 Solexant Corp. Photovoltaic device containing nanoparticle sensitized carbon nanotubes
KR100791260B1 (ko) * 2006-06-29 2008-01-04 한국과학기술원 탄소나노튜브 필름을 이용한 투명전극의 제조방법
EP2279986B1 (en) 2006-06-30 2014-12-17 Cardinal CG Company Carbon nanotube coating technology
US7663312B2 (en) 2006-07-24 2010-02-16 Munisamy Anandan Flexible OLED light source
RU2336595C2 (ru) * 2006-09-01 2008-10-20 Александр Иванович Завадский Способ изготовления объемных мини-модулей для радиоэлектронной аппаратуры
KR100790216B1 (ko) * 2006-10-17 2008-01-02 삼성전자주식회사 전도성 분산제를 이용한 cnt 투명전극 및 그의 제조방법
JP5326093B2 (ja) * 2006-11-22 2013-10-30 日本電気株式会社 半導体装置及びその製造方法
US20080169021A1 (en) 2007-01-16 2008-07-17 Guardian Industries Corp. Method of making TCO front electrode for use in photovoltaic device or the like
US7964238B2 (en) 2007-01-29 2011-06-21 Guardian Industries Corp. Method of making coated article including ion beam treatment of metal oxide protective film
US20080192014A1 (en) 2007-02-08 2008-08-14 Tyco Electronics Corporation Touch screen using carbon nanotube electrodes
JP5181105B2 (ja) * 2007-03-02 2013-04-10 株式会社日立ハイテクサイエンス 集積回路の修正配線形成方法
KR20080082811A (ko) 2007-03-09 2008-09-12 성균관대학교산학협력단 카본나노튜브 함유 투명 전극 및 그의 제조방법
KR100838082B1 (ko) 2007-03-16 2008-06-16 삼성에스디아이 주식회사 유기발광 표시장치 및 그 제조방법
US7662663B2 (en) 2007-03-28 2010-02-16 Eastman Kodak Company OLED patterning method
KR20080108686A (ko) * 2007-06-11 2008-12-16 주식회사 대우일렉트로닉스 냉장고 투시창 자동제어 시스템 및 그 자동제어 방법
US20080308147A1 (en) 2007-06-12 2008-12-18 Yiwei Lu Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US7875945B2 (en) 2007-06-12 2011-01-25 Guardian Industries Corp. Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20090032098A1 (en) 2007-08-03 2009-02-05 Guardian Industries Corp. Photovoltaic device having multilayer antireflective layer supported by front substrate
WO2009031349A1 (ja) * 2007-09-07 2009-03-12 Nec Corporation カーボンナノチューブ膜を用いる半導体装置及びその製造方法
CN101620454A (zh) * 2008-07-04 2010-01-06 清华大学 便携式电脑
JP4335278B2 (ja) * 2007-12-14 2009-09-30 住友ゴム工業株式会社 空気入りタイヤの製造方法、及び空気入りタイヤ
CN101458607B (zh) * 2007-12-14 2010-12-29 清华大学 触摸屏及显示装置
JP2009158734A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd 光電変換素子
CN201163132Y (zh) * 2008-01-10 2008-12-10 博西华电器(江苏)有限公司 具有液晶电视的冰箱
JP5063500B2 (ja) * 2008-02-08 2012-10-31 富士通コンポーネント株式会社 パネル型入力装置、パネル型入力装置の製造方法、及びパネル型入力装置を備えた電子機器
CN101562203B (zh) * 2008-04-18 2014-07-09 清华大学 太阳能电池
JP2009238394A (ja) * 2008-03-25 2009-10-15 Fujifilm Corp 導電性ポリマー組成物、導電性ポリマー材料及び電極材料
CN101625468B (zh) * 2008-07-09 2011-03-23 鸿富锦精密工业(深圳)有限公司 触摸式液晶屏的制备方法
JP4737249B2 (ja) 2008-08-12 2011-07-27 ソニー株式会社 薄膜の製造方法及びその装置、並びに電子装置の製造方法
US8729387B2 (en) * 2008-08-22 2014-05-20 Konica Minolta Holdings, Inc. Organic photoelectric conversion element, solar cell and optical sensor array
KR101025613B1 (ko) * 2008-08-27 2011-03-30 한국표준과학연구원 정전용량 방식의 멀티터치에 따른 접촉위치 및 누름힘 측정용 터치입력구조

Also Published As

Publication number Publication date
US20120327024A1 (en) 2012-12-27
JP5693616B2 (ja) 2015-04-01
CN102823012B (zh) 2016-12-07
EP2543087B1 (en) 2020-01-01
KR20130058664A (ko) 2013-06-04
BR112012022222A2 (pt) 2016-07-05
RU2015128832A (ru) 2015-11-10
EP2543087A1 (en) 2013-01-09
TW201135751A (en) 2011-10-16
JP2015038727A (ja) 2015-02-26
TWI541828B (zh) 2016-07-11
MX2012010132A (es) 2012-11-23
JP2013527974A (ja) 2013-07-04
US8604332B2 (en) 2013-12-10
WO2011109123A1 (en) 2011-09-09
RU2012142175A (ru) 2014-04-27
RU2560031C2 (ru) 2015-08-20
KR101861862B1 (ko) 2018-06-29
US8609975B2 (en) 2013-12-17
US20110214728A1 (en) 2011-09-08
CN102823012A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5936209B2 (ja) カーボンナノチューブ及びナノワイヤー複合体を含有する透明導電性コーティングを含む電子デバイス、及びその製造方法
JP5700583B2 (ja) ドープ済みカーボンナノチューブ及びナノワイヤー複合体を含む大面積透明導電性コーティング、及びその製造方法
JP5690852B2 (ja) 合金化カーボンナノチューブ薄膜を含む被覆物品の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5936209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees