JP5903395B2 - スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 - Google Patents
スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 Download PDFInfo
- Publication number
- JP5903395B2 JP5903395B2 JP2013039631A JP2013039631A JP5903395B2 JP 5903395 B2 JP5903395 B2 JP 5903395B2 JP 2013039631 A JP2013039631 A JP 2013039631A JP 2013039631 A JP2013039631 A JP 2013039631A JP 5903395 B2 JP5903395 B2 JP 5903395B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- styrene
- monomer
- resin particles
- styrene resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
Description
発泡成形体を製造するための原料である発泡性樹脂粒子として、発泡性スチレン樹脂粒子が汎用されており、例えば次のようにして発泡成形体が得られている。即ち、発泡性スチレン樹脂粒子のような発泡性粒子を蒸気で加熱して予備発泡させて発泡粒子(予備発泡粒子)を得る。得られた予備発泡粒子を金型のキャビティ内に充填する。次いで、充填された予備発泡粒子を蒸気で二次発泡させつつ、予備発泡粒子同士の熱融着により一体化させることで発泡成形体を得ることができる。この発泡成形体の製造法は、ビーズ法と称されている。近年、省エネルギーの観点から蒸気をボイラー等で生成する際に必要な重油量の削減が求められており、少ない蒸気量で発泡成形体を製造できる発泡性スチレン系樹脂粒子が要望されている。
蒸気量を低減する観点から、特開2011−26508号公報(特許文献1)において、少ない蒸気量で外観、融着に優れた発泡成形体を提供可能な発泡性スチレン系樹脂粒子が提案されている。
前記単官能アクリル酸エステル由来の樹脂成分が、前記スチレン系樹脂粒子の中心部に多く含まれ、
前記多官能ビニル系モノマー由来の樹脂成分が、前記スチレン系樹脂粒子の表層に多く含まれ、
前記表層が、25万〜60万の範囲の重量平均分子量を有するスチレン系樹脂粒子の製造方法であり、
スチレン系樹脂からなる種粒子に、スチレン系モノマーと単官能アクリル酸エステルとを含むモノマー混合物を含浸重合させる第1工程と、前記工程で得られた粒子に、スチレン系モノマーを含浸重合させる第2工程と、前記工程で得られた粒子に、スチレン系モノマーと多官能ビニル系モノマーとを含むモノマー混合物を含浸重合させる第3工程とを含み、
前記第3工程が、前記多官能ビニル系モノマーの添加開始時から添加終了時までの時間を第1区分〜第3区分に等分割した際、
前記第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
前記第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
前記第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
前記第3区分の終了時の重合転化率を93%以上の範囲内
とする条件下で行われることを特徴とするスチレン系樹脂粒子の製造方法が提供される。
本発明の発泡成形体は、従来の発泡成形体より薄くても、同程度の曲げ強度を得ることができる。そのため原料であるスチレン系樹脂粒子の使用量を削減できる。発泡成形体の軽量化による輸送コストの削減も可能となる。本発明によれば、このような曲げ強度に優れた発泡成形体をより省エネルギーで得るためのスチレン系樹脂粒子の製造方法も提供できる。
更に、スチレン系樹脂粒子の中心部が、0.4〜0.8の範囲の吸光度比(D1735/D1600)を示す場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。
また、スチレン系樹脂粒子が、中心部から表層に向かって低下する吸光度比(D1735/D1600)を示す場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。
更に、スチレン系樹脂粒子は、中心部の吸光度比(D1735/D1600)を1とした場合、半径の50%の部分の吸光度比(D1735/D1600)が、0.4〜0.8の範囲の相対値を示す粒子である場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。また、単官能アクリル酸エステルが、炭素数3〜20のモノマーであり、多官能ビニル系モノマーが、3〜15個のビニル基を有するモノマーである場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。
第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
第3区分の終了時の重合転化率を93%以上の範囲内
とする条件下で行われる場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を簡便に提供できる。
スチレン系樹脂粒子は、
・単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分とを含むスチレン系樹脂粒子であり、
・単官能アクリル酸エステル由来の樹脂成分が、スチレン系樹脂粒子の中心部に多く含まれ、
・多官能ビニル系モノマー由来の樹脂成分が、スチレン系樹脂粒子の表層に多く含まれている粒子である。
(a)スチレン系樹脂
スチレン系樹脂粒子はスチレン系モノマー由来の樹脂成分を含む。スチレン系モノマーとしては、特に限定されず、公知のモノマーをいずれも使用できる。例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。これらスチレン系モノマーは、一種類でも、複数種の混合物であってもよい。好ましいスチレン系モノマーは、スチレンである。
(b)単官能アクリル酸エステル由来の樹脂成分
単官能アクリル酸エステル由来の樹脂成分は、特に限定されないが、スチレン系モノマーと共重合可能なモノマーに由来する樹脂成分が好ましい。単官能アクリル酸エステルは、炭素数3〜20のエステルであることが好ましい。この範囲の炭素数のモノマーを使用することで、より曲げ強度が改善された発泡成形体を与えうるスチレン系樹脂粒子を提供できる。
多官能ビニル系モノマー由来の樹脂成分は、特に限定されないが、スチレン系モノマーと共重合可能なモノマーに由来する樹脂成分が好ましい。
多官能性ビニル系モノマーは、ビニル基を2〜15個有するモノマーであることが好ましい。このような特定数のビニル基を有する多官能性ビニル系モノマーに由来する樹脂成分を含む樹脂粒子は、より曲げ強度に優れた発泡成形体を提供可能である。ビニル基数は、発泡成形体の発泡成形性向上の観点から、2〜15個であることがより好ましい。
具体的な多官能性ビニル系モノマーとしては、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等の2官能モノマー、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、エトキシ化イソシアヌル酸トリアクリレート等の3官能モノマーが挙げられる。多官能性ビニル系モノマーは、1種のみ使用しても、複数種使用してもよい。
スチレン系樹脂粒子を構成するスチレン系モノマー由来の樹脂成分と単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分の割合は、1:0.05〜0.25:0.6〜1(質量比)の範囲であることが好ましい。
単官能アクリル酸エステル由来の樹脂成分が0.05より少ない場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。0.25より多い場合、高倍の発泡成形体を得ることが困難となることがある。
多官能ビニル系モノマー由来の樹脂成分が0.6より少ない場合、所望の発泡成形体強度が得られないことがある。1より多い場合、低い成形蒸気圧で良好な発泡成形体が得られないことがある。
より好ましい割合は1:0.08〜0.25:0.6〜0.9の範囲であり、更に好ましい割合は1:0.08〜0.20:0.7〜0.9の範囲である。
また、単官能アクリル酸エステル由来の樹脂成分中、スチレン系モノマーと共重合した成分が占める割合は、70質量%以上であることが好ましい。一方、多官能ビニル系モノマー由来の樹脂成分中、スチレン系モノマーと共重合した成分が占める割合は、70質量%以上であることが好ましい。
なお、上記モノマー由来の樹脂成分の割合は、原料としてのモノマーの割合と実質的に一致している。
他の成分としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエステル等の樹脂成分が挙げられる。
また、物性を損なわない範囲内において、難燃剤、難燃助剤、可塑剤、滑剤、結合防止剤、融着促進剤、帯電防止剤、展着剤、気泡調整剤、架橋剤、充填剤、着色剤等の添加剤が含まれていてもよい。
難燃剤としては、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、トリスジブロモプロピルホスフェート、テトラブロモビスフェノールA、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)等が挙げられる。
可塑剤としては、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、ジアセチル化グリセリンモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペートのようなアジピン酸エステル等が挙げられる。
滑剤としては、パラフィンワックス、ステアリン酸亜鉛等が挙げられる。
結合防止剤としては、例えば、炭酸カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルシリコン等が挙げられる。
帯電防止剤としては、例えばポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド、ポリエチレングリコール等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
気泡調整剤としては、メタクリル酸エステル系共重合ポリマー、エチレンビスステアリン酸アミド、ポリエチレンワックス、エチレン−酢酸ビニル共重合体等が挙げられる。
単官能アクリル酸エステル由来の樹脂成分は、スチレン系樹脂粒子の中心部に多く含まれている。中心部に多く含まれることで、少ない蒸気量でも発泡成形体を与えうる、スチレン系樹脂粒子を提供できる。ここで、中心部とは粒子中心から粒子半径の約15%以内の領域を意味する。
単官能アクリル酸エステル由来の樹脂成分は、種々の方法で存在位置を確認することができる。その一方法として、赤外線吸収スペクトルの吸光度で確認する方法がある。
なお、吸光度D1600及び吸光度D1735は、測定対象にその表面から入射した波長1600cm-1と1735cm-1の光が測定対象から測定機器へ反射する際に、光が測定対象中を移動しうる領域(例えば、表面から深さ数μmまでの領域)を意味する。
スチレン系樹脂粒子の中心部の吸光度比は、0.4〜0.8の範囲であることが好ましい。吸光度比が0.4未満の場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。吸光度比が0.8より大きい場合、所望の強度の発泡成形体が得られないことがある。好ましい吸光度比は0.4〜0.7の範囲であり、より好ましい吸光度比は0.5〜0.7の範囲である。
スチレン系樹脂粒子の半径50%の部分の吸光度比は、0.15〜0.65の範囲であることが好ましい。吸光度比が0.15未満の場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。吸光度比が0.65より大きい場合、強度に優れた発泡成形体が得られないことがある。好ましい吸光度比は0.20〜0.60の範囲であり、より好ましい吸光度比は0.20〜0.50の範囲である。
更に、半径50%の部分の吸光度比は、中心部の吸光度比を1とした場合、0.4〜0.8の範囲の相対値であることが好ましい。この相対値の範囲は、単官能アクリル酸エステル由来の樹脂成分が、中心部に多く含まれることを示している。相対値が0.4未満の場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。相対値が0.8より大きい場合、強度に優れた発泡成形体が得られないことがある。好ましい相対値は0.4〜0.7の範囲であり、より好ましい相対値は0.5〜0.7の範囲である。
多官能ビニル系モノマー由来の樹脂成分は、スチレン系樹脂粒子の表層に多く含まれている。表層に多く含まれることで、曲げ強度の向上した発泡成形体を与えうる、スチレン系樹脂粒子を提供できる。
多官能ビニル系モノマー由来の樹脂成分は、種々の方法で存在位置を確認することができる。その一方法として、全粒子と表層の重量平均分子量を例えばGPC法で測定し、両者を比較する方法がある。即ち、多官能ビニル系モノマーは、スチレン系樹脂粒子の製造時に、架橋剤として分子量をより高くする役割も有する。従って、全粒子と表層の重量平均分子量を比較して、全粒子に対して表層の重量平均分子量が高ければ、表層に多官能ビニル系モノマー由来の樹脂成分が存在していると類推できる。
表層平均分子量を粒子自体から測定することは困難であるため、本明細書では、粒子から得た発泡成形体の表層から測定された平均分子量で代えている。これは、発泡成形体の表層が粒子の表層の連続体からなっていることを利用している。平均分子量の測定法は、実施例の欄で説明しているが、この測定法によれば、粒子の表面から半径の約15%の領域に対応する平均分子量が測定されていることになる。
全粒子重量平均分子量は、23万〜40万の範囲とすることができる。全粒子重量平均分子量が23万未満である場合、発泡成形体の強度が低下することがある。40万より大きい場合、発泡成形体を構成する発泡粒子間の融着性が低下し、その結果、曲げ強度が低下することがある。より好ましい表層重量平均分子量は25万〜40万の範囲であり、更に好ましくは25万〜35万の範囲である。
スチレン系樹脂粒子の形状は特に限定されない。例えば、球状、円柱状等が挙げられる。この内、球状であるのが好ましい。スチレン系樹脂粒子の平均粒子径は、用途に応じて適宜選択でき、例えば、0.2mm〜5mmの平均粒子径のものを使用できる。また、成形型内への充填性等を考慮すると、平均粒子径は、0.3mm〜2mmがより好ましく、0.3mm〜1.4mmが更に好ましい。
スチレン系樹脂粒子の製造方法は特に限定されない。例えば、スチレン系樹脂からなる種粒子に、スチレン系モノマーを含むモノマー混合物を吸収させ重合させることで、樹脂粒子を得ることができる。
(1)種粒子
種粒子は、公知の方法で製造されたものを用いることができ、例えば、(i)スチレン系樹脂を押出機で溶融混練し、ストランド状に押し出し、ストランドをカットすることにより種粒子を得る押出方法、(ii)水性媒体、スチレン系モノマー及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながらスチレン系モノマーを懸濁重合させて種粒子を製造する懸濁重合法、(iii)水性媒体及びスチレン系樹脂粒子をオートクレーブ内に供給し、スチレン系樹脂粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながらスチレン系モノマーを連続的にあるいは断続的に供給して、スチレン系樹脂粒子にスチレン系モノマーを吸収させつつ重合開始剤の存在下にて重合させて種粒子を製造するシード重合法等が挙げられる。
また、種粒子は一部、又は全部に樹脂回収品を用いることができる。回収品を使用する場合は、押出方法による種粒子の製造が向いている。
種粒子を水性媒体中に分散させてなる分散液中に、モノマー混合物を供給することで、各モノマーを種粒子に吸収させる。
水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
重合工程は、使用するモノマー種、重合開始剤種、重合雰囲気種等により異なるが、通常、70〜130℃の加熱を、3〜10時間維持することにより行われる。重合工程は、モノマーを含浸させつつ行ってもよい。
重合工程は、使用するモノマー全量を1段階で重合させてもよく、2段階以上に分けて重合させてもよい(種粒子の製造時の重合を含む)。2段階以上に分けるほうが、単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分の存在位置の調整がより容易である。更に、3段階以上に分けると、調整がより容易である。2段階以上に分けて重合させる場合、通常、含浸工程も2段階に分けて行われる。2段階以上に分けた重合工程の重合温度及び時間は、同一であっても、異なっていてもよい。重合工程は3段階であることが好ましい。
まず、スチレン系樹脂の種粒子に、スチレン系モノマーと単官能アクリル酸エステルを含む第1モノマー混合物を吸収させて種粒子内で重合させる(第1工程)。
次に、第1工程を経て得られた粒子に、スチレン系モノマーを吸収させつつ重合させる(第2工程)。
更に、第2工程を経て得られた粒子に、スチレン系モノマーと多官能性ビニル系モノマーとを含む第2モノマー混合物を吸収させつつ重合を行う(第3工程)。
ここで、単官能アクリル酸エステルは1〜30分かけて、多官能ビニル系モノマーは30〜180分かけて、それぞれ重合容器に添加することが好ましい。
第3工程は、多官能ビニル系モノマーの添加開始時から添加終了時までの時間を第1区分〜第3区分に等分割した際、
第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
第3区分の終了時の重合転化率を93%以上の範囲内
とする条件下で行われることが好ましい。このように重合転化率を細かく制御することで、より発泡成形体の曲げ強度の向上効果が高いスチレン系樹脂粒子を得ることができる。
発泡性粒子は、上記スチレン系樹脂粒子に発泡剤を含浸させた粒子である。
(1)発泡剤
発泡剤としては、特に限定されず、公知のものをいずれも使用できる。特に、沸点がスチレン系樹脂の軟化点以下であり、常圧でガス状又は液状の有機化合物が適している。例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n−ヘキサン、石油エーテル等の炭化水素、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、トリクロロモノフルオロメタン、ジクロロジフルオロメタン等のハロゲン含有炭化水素、炭酸ガス、窒素、アンモニア等の無機ガス等が挙げられる。これらの発泡剤は、単独で使用してもよく、2種以上を併用してもよい。この内、炭化水素を使用するのが、オゾン層の破壊を防止する観点、及び空気と速く置換し、発泡成形体の経時変化を抑制する観点で好ましい。炭化水素の内、沸点が−45〜40℃の炭化水素がより好ましく、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン等が更に好ましい。
発泡性粒子は、上記スチレン系樹脂粒子に発泡剤を含浸させることにより得ることができる。含浸は、重合(例えば、第3工程)と同時に湿式で行ってもよく、重合後に湿式又は乾式で行ってもよい。湿式で行う場合は、上記重合工程で例示した、懸濁安定剤及び界面活性剤の存在下で行ってもよい。
発泡剤の含浸温度は、60〜120℃が好ましい。60℃より低いと、樹脂粒子に発泡剤を含浸させるのに要する時間が長くなって生産効率が低下することがある。また、120℃より高いと、樹脂粒子同士が融着して結合粒が発生することがある。より好ましい含浸温度は、70〜110℃である。
発泡助剤を、発泡剤と併用してもよい。発泡助剤としては、アジピン酸イソブチル、トルエン、シクロヘキサン、エチルベンゼン等が挙げられる。
発泡粒子は、水蒸気等を用いて所望の嵩密度に発泡性粒子を発泡させることで得られる。発泡粒子は、クッションの充填材等の用途ではそのまま使用でき、更に型内発泡させるための発泡成形体の原料として使用できる。発泡成形体の原料の場合、発泡粒子は予備発泡粒子と、発泡粒子を得るための発泡は予備発泡と、通常称される。
発泡粒子の嵩密度は、0.01〜0.04g/cm3の範囲であることが好ましい。発泡粒子の嵩密度が0.01g/cm3より小さい場合、次に得られる発泡成形体に収縮が発生して外観性が低下することがある。加えて発泡成形体の断熱性能及び機械的強度が低下することがある。一方、嵩密度が0.04g/cm3より大きい場合、発泡成形体の軽量性が低下することがある。
なお、発泡前に、発泡性樹脂粒子の表面に、ステアリン酸亜鉛のような粉末状金属石鹸類を塗布しておくことが好ましい。塗布しておくことで、発泡性粒子の発泡工程において発泡粒子同士の結合を減少できる。
発泡成形体は、例えば、食品、工業製品等の容器、魚、農産物等の梱包材、床断熱用の断熱材、盛土材、畳の芯材等に使用できる。発泡成形体は、これら使用用途に応じた形状をとり得る。本発明によれば、従来の発泡成形体より、同じ厚さであれば曲げ強度が約10%増強された(向上した)発泡成形体を提供でき、曲げ強度を同じにすれば約5%軽量化された発泡成形体を提供できる。
発泡成形体の密度は、0.01〜0.04g/cm3の範囲であることが好ましい。発泡成形体の密度が0.01g/cm3より小さい場合、発泡成形体に収縮が発生して外観性が低下することがある。加えて発泡成形体の断熱性能及び機械的強度が低下することがある。一方、密度が0.04g/cm3より大きい場合、発泡成形体の軽量性が低下することがある。
発泡粒子を多数の小孔を有する閉鎖金型内に充填し、熱媒体(例えば、加圧水蒸気等)で加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させることにより一体化させることで、発泡成形体を製造できる。その際、発泡成形体の密度は、例えば、金型内への発泡粒子の充填量を調整する等して調製できる。
核重合途中における種粒子(以下、成長途上粒子という)に含まれるモノマー量の測定方法は、下記要領で測定されたものをいう。
即ち、成長途上粒子を分散液中から取り出し、表面に付着した水分をガーゼにより拭き取り除去する。成長途上粒子を0.08g採取し、この採取した成長途上粒子をトルエン24mL中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10mL、5質量%のヨウ化カリウム水溶液30mL及び1質量%のでんぷん水溶液30mLを加える。得られた溶液を、N/40チオ硫酸ナトリウム溶液で滴定した結果を試料の滴定数(mL)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。一方、成長途上粒子を溶解させることなく、トルエン24mL中に、ウイス試薬10mL、5質量%のヨウ化カリウム水溶液30mL及び1質量%のでんぷん水溶液30mLを加える。得られた溶液を、N/40チオ硫酸ナトリウム溶液で滴定した結果をブランクの滴定数(mL)とする。
得られた滴定数から、成長途上粒子中における未反応のモノマー量を下記式に基づいて算出する。
成長途上粒子中のモノマー量(質量%)=
0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
更に、重合転化率は下記の式で算出される。
重合転化率(%)=
100×(試料質量−成長途上粒子のモノマー量)/試料質量
樹脂粒子の表層重量平均分子量は、発泡成形体の表層から測定する。即ち、発泡成形体は、樹脂粒子を予備発泡させて、型内成形したものであるから、樹脂粒子表層は発泡成形体表層に相当し、樹脂粒子表層の平均分子量は発泡成形体表層の平均分子量に相当する。樹脂粒子の全粒子重量平均分子量は、樹脂粒子そのものから測定する。
密度0.0166g/cm3の発泡成形体を50℃で24時間乾燥後、ハムスライサー(富士島工機製:FK−18N型)を用い、発泡成形体の表面から0.3mm深さでカットし表層GPC測定用試料とする。全体GPC測定用試料は、樹脂粒子そのものを使用する。上記試料を以下のGPC(ゲルパーミエーションクロマトグラフィー)を用いて重要平均分子量(Mw)を測定する。尚、重量平均分子量はポリスチレン換算重量平均分子量を意味する。
・商品名:東ソー社製 HLC−8320GPC EcoSEC-WorkStation(RI検出器内蔵)
・分析条件
カラム:TSKgel SuperHZM−H×2本(4.6mmI.D×15cmL×2本)
ガードカラム:TSKguardcolumn SuperHZ−H×1本(4.6mmID×2cmL)
流量:試料側 0.175mL/min、リファレンス側 0.175mL/min
検出器:内蔵RI検出器
濃度:0.3g/L
注入量:50μL
カラム温度:40℃
システム温度:40℃
溶離液:THF
検量線用標準ポリスチレン試料としては、東ソー社製商品名「TSK standard POLYSTYRENE」の重量平均分子量が、500、2630、9100、37900、102000、355000、3840000、及び5480000である標準ポリスチレン試料と、昭和電工社製商品名「Shodex STANDARD」の重量平均分子量が1030000である標準ポリスチレン試料を用いる。
検量線の作成方法は以下の通りである。まず、上記検量線用標準ポリスチレン試料をグループA(重量平均分子量が1030000のもの)、グループB(重量平均分子量が500、9100、102000及び3480000のもの)及びグループC(重量平均分子量が2630、37900、355000及び5480000のもの)にグループ分けする。グループAに属する重量平均分子量が1030000である標準ポリスチレン試料を5mg秤量した後にTHF20mLに溶解し、得られた溶液50μLを試料側カラムに注入する。グループBに属する重量平均分子量が500、9100、102000及び3480000である標準ポリスチレン試料をそれぞれ10mg、5mg、5mg、及び5mg秤量した後にTHF50mLに溶解し、得られた溶液50μLを試料側カラムに注入する。グループCに属する重量平均分子量が2630、37900、355000及び5480000である標準ポリスチレン試料をそれぞれ5mg、5mg、5mg、及び1mg秤量した後にTHF40mLに溶解し、得られた溶液50μLを試料側カラムに注入する。これら標準ポリスチレン試料の保持時間から較正曲線(三次式)をHLC−8320GPC専用データ解析プログラムGPCワークステーション(EcoSEC−WS)にて作成し、これをポリスチレン換算重量平均分子量測定の検量線として用いる。
スチレン系樹脂粒子の中心部及び半径の50%部分の吸光度比(D1735/D1600)を次の顕微赤外分光光度計を用いて顕微透過イメージング法にて分析する。
無作為に選択した10個の粒子をプラスチック試料支持台(日新EM社製)に固定する。次いで、粒子をウルトラミクロトーム(ライカマイクロシステムズ製、LEICA ULTRACUT UCT)を用いてダイヤモンドナイフによって、ほぼ中心を通って約10μm厚みにスライスすることで、スライスサンプルを得る。得られたスライスサンプルを2枚のフッ化バリウム結晶(ピアーオプティックス社製)で挟む。これを測定試料とする。スライスサンプルの画像を、下記測定装置付属のCCDで取り込む。画像の取り込みは、ウルトラミクロトームの刃の進行方向をY軸とし、それに対して垂直方向をX軸として行う。スライスサンプル中の粒子は、刃の進行方向に、極僅かに潰れが発生している。取り込まれる画像のY軸を刃の進行方向に合わせることで、測定される吸光度比がばらつくことを抑制する。
吸光度D1735及びD1600は、Perkin Elmer社から商品名「高速IRイメージングシステムSpectrum Spotlight 300」で販売されている装置を用いる。この装置を用いて、下記条件にて、スライスサンプル粒子断面の全吸光度イメージ画像を得、スライスサンプル粒子断面の各箇所における赤外吸収スペクトルを得る。
モード:顕微透過イメージング法
ピクセルサイズ:6.25μm
測定領域:4000cm-1〜650cm-1
検出器:MCT
分解能:8cm-1
スキャン/ピクセル:2回
(バックグランド測定条件)
モード:顕微透過イメージング法
ピクセルサイズ:6.25μm
測定領域:4000cm-1〜650cm-1
検出器:MCT
分解能:8cm-1
スキャン/ピクセル:60回
その他:試料の近傍の試料の無い部分のフッ化バリウム結晶を測定した赤外吸収スペクトルをバックグランドとして測定スペクトルに関与しない処理を実施する。
次に、イメージ画像中に、中心点Aを通り、X軸に平行な直線を引く。この直線が、粒子(樹脂)が存在する末端の位置(X軸の最大値)と交わる点を点Dとする。点Aと点Dを結ぶ線上の赤外吸収スペクトルをX座標値で12±2μmごとに抽出する。尚、本発明での半径50%部分とは、A点からD点までの距離の50%の部分をいい、±20μmの範囲内におさまるようにする。
予備発泡粒子の嵩倍数は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定する。具体的は、まず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させる。メスシリンダー内に落下させた測定試料の体積Vcm3をJIS K6911に準拠した見掛け密度測定器を用いて測定する。Wg及びVcm3を下記式に代入することで、予備発泡粒子の嵩密度を算出する。
予備発泡粒子の嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×30mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm3)を求める。
発泡体の平均最大曲げ強度をJIS K7221−2「硬質発泡プラスチック−曲げ試験」に記載の方法に準拠して測定する。具体的には、密度16.7kg/m3の発泡体から縦75mm×横300mm×厚さ30mmの直方体形状の試験片を切り出す。しかる後、この試験片を曲げ強度測定器(オリエンテック社製商品名「UCT−10T」)を用いて、試験速度10mm/分、支点間距離200mm、加圧くさび10R及び支持台10Rの条件下にて測定する。試験片を5個用意し試験片ごとに前記要領で、試験片が破壊する最大荷重を測定し、曲げ強度を算出する。
評価:平均最大曲げ強度が0.3MPa以上:○
0.3MPa未満:×
(種粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム100質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸ナトリウム5.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子(a)を得た。
前記スチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5〜0.71mmのスチレン系樹脂粒子(b)を得た。
続いて、ベンゾイルパーオキサイド45.9g、t−ブチルパーオキシベンゾエート6.1gをスチレン850g、アクリル酸n−ブチル150gの混合物に溶解させた溶液を全て前記分散液中に撹拌しつつ供給した。
その後にこの分散液を88℃まで60分かけて昇温しながら、スチレン2660gを一定速度で重合容器に投入し、種粒子に吸収させながら反応を行った(第2工程)。
次いで、分散液を88℃で保持しながらスチレン4000gにジビニルベンゼン(2官能モノマー、分子量130)0.6gを溶解したものを一定速度で、90分かけて重合容器に投入し、種粒子に吸収させながら重合反応を行った(第3工程)。
この第3工程を3区分に分割し、重合途中での各区分開始時の重合転化率、及び第3区分終了時の重合転化率を測定した。
各重合転化率は80%、88%、90%、94%であった。
得られたスチレン系樹脂粒子の中心部から表層までの吸光度比の変化を図2に示す。
次に、分散液を100℃に保持し、続いて、重合容器内にシクロヘキサン80g、アジピン酸ジイソブチル70g、ノルマルブタン700gを圧入して3時間に亘って保持することにより、樹脂粒子中にノルマルブタンを含浸させた。この後、重合容器内を25℃に冷却して発泡性樹脂粒子を得た。
そして、発泡性樹脂粒子を加熱して嵩密度0.0166g/cm3に予備発泡させて予備発泡粒子を得た。予備発泡粒子を20℃で24時間熟成させた。
次に、予備発泡粒子を金型内に充填して0.04MPaの蒸気圧で加熱発泡させて、縦400mm×横300mm×厚さ30mmの発泡成形体を得た。発泡成形体を50℃の乾燥室で6時間乾燥した後、密度を測定したところ、0.0166g/cm3(16.6kg/m3)であった。発泡成形体は、収縮もなく外観も優れていた。
得られた発泡成形体の表層のMw(スチレン系樹脂粒子表層のMwに相当)は28.1万であった。この発泡成形体の曲げ試験をJIS−A9511に準拠して測定した結果、曲げ強度は0.32MPaと優れていた。
ジビニルベンゼンの添加量を1.2gとしたこと以外は、実施例1と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.71であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは26.0万であり、発泡成形体表層のMwは50.0万であった。この発泡成形体の曲げ強度は0.33MPaと優れるものであった。
(実施例3)
ジビニルベンゼンの代わりに、トリメチロールプロパントリメタクリレート(3官能モノマー、分子量338)を4g使用したこと以外は、実施例1と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.51であり、全体のMwは27.1万であった。更に発泡成形体表層のMwは36.9万であった。発泡成形体の曲げ強度は0.33MPaであった。
第1重合工程で使用するスチレンを950g、アクリル酸n−ブチルを50gとしたこと以外は、実施例2と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.50であり、半径の50%の部分の吸光度比は0.35であり、全体のMwは25.4万であり、発泡成形体表層のMwは49.3万であった。発泡成形体の曲げ強度は0.32MPaであった。
(実施例5)
第1重合工程で使用するスチレンを800g、アクリル酸n−ブチルを200gとしたこと以外は、実施例2と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.73であり、半径の50%の部分の吸光度比は0.55であり、全体のMwは25.0万であり、発泡成形体表層のMwは49.9万であった。発泡成形体の曲げ強度は0.32MPaであった。
第1重合工程で使用するスチレンを700g、アクリル酸n−ブチルを300gとしたこと以外は、実施例2と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.75であり、半径の50%の部分の吸光度比は0.59であり、全体のMwは24.9万であり、発泡成形体表層のMwは51.6万であった。発泡成形体の曲げ強度は0.32MPaであった。
(実施例7)
第2工程及び、第3工程の重合温度を86℃としたこと以外は実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは23.9万であり、発泡成形体表層のMwは26.0万であった。発泡成形体の曲げ強度は0.31MPaであった。
第2工程及び、第3工程の重合温度を90℃としたこと以外は実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.71であり、半径の50%の部分の吸光度比は0.52であり、全体のMwは25.7万であり、発泡成形体表層のMwは30.5万であった。発泡成形体の曲げ強度は0.33MPaであった。
(比較例1)
第1重合工程で、アクリル酸ブチルを使用せず、スチレンのみを使用したこと以外は実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子全体のMwは24.3万であり、発泡成形体表層のMwは33.3万であった。発泡成形体は、0.04MPaの成形蒸気圧での発泡粒子の融着が十分でなかったため曲げ強度は0.28MPaと劣るものであった。
第1重合工程でジビニルベンゼンを使用しないこと以外は、実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは23.9万であり、発泡成形体表層のMwは23.0万であった。この発泡成形体は0.04MPaの成形蒸気圧で成形可能であったが、曲げ強度は0.28MPaと劣るものであった。
(比較例3)
トリメチロールプロパントリメタクリレート(3官能モノマー、分子量338)を20g使用したこと以外は実施例1と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.70であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは26.0万であり、発泡成形体表層のMwは65万であった。この発泡成形体は、0.04MPaの成形蒸気圧での発泡粒子の融着が十分でなかったため、曲げ強度は0.27MPaと劣るものであった。
第2工程、第3工程の重合温度を84℃としたこと以外は実施例1と同様に発泡成形体を得た。この第3工程を3区分に分割し、重合途中での各区分開始時の重合転化率、及び第3区分終了時の重合転化率を測定したところ、各重合転化率は73%、80%、85%、90%であった。
スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.52であり、全体のMwは22.5万であった。発泡成形体表層のMwは23.0万であった。この発泡成形体は、0.04MPaの成形蒸気圧で成形可能であったが、曲げ強度は0.27MPaと劣るものであった。
実施例1〜8及び比較例1〜4の結果を表1にまとめて示す。
比較例1から、単官能アクリル酸エステル由来の樹脂成分を含まない場合、発泡成形体の曲げ強度の向上効果が劣ることが分かる。
比較例2から、多官能ビニル系モノマー由来の樹脂成分を含まない場合、発泡成形体の曲げ強度の向上効果が劣ることが分かる。
比較例2〜4から、表層重量平均分子量が、25万〜60万の範囲でない場合、発泡成形体の曲げ強度の向上効果が劣ることが分かる。
Claims (10)
- 単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分とを含むスチレン系樹脂粒子であり、
前記単官能アクリル酸エステル由来の樹脂成分が、前記スチレン系樹脂粒子の中心部に多く含まれ、
前記多官能ビニル系モノマー由来の樹脂成分が、前記スチレン系樹脂粒子の表層に多く含まれ、
前記表層が、25万〜60万の範囲の重量平均分子量を有するスチレン系樹脂粒子の製造方法であり、
スチレン系樹脂からなる種粒子に、スチレン系モノマーと単官能アクリル酸エステルとを含むモノマー混合物を含浸重合させる第1工程と、前記工程で得られた粒子に、スチレン系モノマーを含浸重合させる第2工程と、前記工程で得られた粒子に、スチレン系モノマーと多官能ビニル系モノマーとを含むモノマー混合物を含浸重合させる第3工程とを含み、
前記第3工程が、前記多官能ビニル系モノマーの添加開始時から添加終了時までの時間を第1区分〜第3区分に等分割した際、
前記第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
前記第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
前記第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
前記第3区分の終了時の重合転化率を93%以上の範囲内
とする条件下で行われることを特徴とするスチレン系樹脂粒子の製造方法。 - 前記スチレン系樹脂粒子が、該粒子の溶液のGPC測定により得られる23万〜40万の範囲の全粒子重量平均分子量を有し、前記表層重量平均分子量が、前記全粒子重量平均分子量より2〜30万大きい請求項1に記載のスチレン系樹脂粒子の製造方法。
- 前記スチレン系樹脂粒子の中心部が、0.4〜0.8の範囲の吸光度比(D1735/D1600)を示す請求項1又は2に記載のスチレン系樹脂粒子の製造方法。
- 前記スチレン系樹脂粒子が、前記中心部から前記表層に向かって低下する吸光度比(D1735/D1600)を示す請求項1〜3のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
- 前記スチレン系樹脂粒子は、中心部の吸光度比(D1735/D1600)を1とした場合、半径の50%の部分の吸光度比(D1735/D1600)が、0.4〜0.8の範囲の相対値を示す粒子である請求項1〜4のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
- 前記単官能アクリル酸エステルが、炭素数3〜20のモノマーであり、前記多官能ビニル系モノマーが、3〜15個のビニル基を有するモノマーである請求項1〜5のいずれか1つに記載のスチレン系樹脂粒子の製造方法。
- 請求項1〜6のいずれか1つに記載のスチレン系樹脂粒子に発泡剤を含浸させる発泡性粒子の製造方法。
- 請求項7に記載の発泡性粒子を発泡させて得られる発泡粒子の製造方法。
- 請求項8に記載の発泡粒子を発泡成形させて得られる発泡成形体の製造方法。
- 前記発泡成形体が、容器形状を有している請求項9に記載の発泡成形体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013039631A JP5903395B2 (ja) | 2012-03-16 | 2013-02-28 | スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012060334 | 2012-03-16 | ||
JP2012060334 | 2012-03-16 | ||
JP2013039631A JP5903395B2 (ja) | 2012-03-16 | 2013-02-28 | スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013216869A JP2013216869A (ja) | 2013-10-24 |
JP5903395B2 true JP5903395B2 (ja) | 2016-04-13 |
Family
ID=49589355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013039631A Active JP5903395B2 (ja) | 2012-03-16 | 2013-02-28 | スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5903395B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5876789B2 (ja) * | 2012-08-24 | 2016-03-02 | 積水化成品工業株式会社 | 発泡成形体及び樹脂発泡容器 |
JP5876790B2 (ja) * | 2012-08-24 | 2016-03-02 | 積水化成品工業株式会社 | 発泡成形体及び樹脂発泡容器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4226421B2 (ja) * | 2002-09-20 | 2009-02-18 | 積水化成品工業株式会社 | 発泡性スチレン系樹脂粒子及びスチレン系樹脂発泡成形体 |
JP5473204B2 (ja) * | 2007-09-25 | 2014-04-16 | 積水化成品工業株式会社 | 単中空粒子の製造方法 |
JP5689044B2 (ja) * | 2011-09-12 | 2015-03-25 | 積水化成品工業株式会社 | ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法 |
-
2013
- 2013-02-28 JP JP2013039631A patent/JP5903395B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013216869A (ja) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5689044B2 (ja) | ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法 | |
JP6082637B2 (ja) | 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体 | |
JP6407077B2 (ja) | ポリスチレン系発泡成形体、発泡性粒子、予備発泡粒子 | |
JP6353803B2 (ja) | ポリスチレン系樹脂発泡成形体 | |
JP5903395B2 (ja) | スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 | |
JP5992349B2 (ja) | 発泡性スチレン系樹脂粒子、その製造方法、発泡粒子及び発泡成形体 | |
JP5732358B2 (ja) | ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法 | |
JP6227955B2 (ja) | 発泡成形体 | |
JP5914079B2 (ja) | スチレン系発泡樹脂粒子及び発泡成形体 | |
JP5876789B2 (ja) | 発泡成形体及び樹脂発泡容器 | |
JP5860220B2 (ja) | 樹脂粒子、その製造方法、発泡性樹脂粒子、発泡粒子及び発泡成形体 | |
JP5918709B2 (ja) | 発泡成形体及び消失模型用加工品 | |
JP6407078B2 (ja) | 発泡成形体、発泡性樹脂粒子、予備発泡粒子 | |
JP2011026505A (ja) | 低密度発泡成形用発泡性ポリスチレン系樹脂粒子とその製造方法、低密度ポリスチレン系樹脂予備発泡粒子及び低密度ポリスチレン系樹脂発泡成形体 | |
JP6294040B2 (ja) | スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体 | |
JP2015048356A (ja) | 発泡性スチレン系樹脂粒子、発泡粒子、発泡成形体及び発泡粒子の製造方法 | |
JP6343485B2 (ja) | ポリスチレン系発泡成形体及びその製造方法 | |
JP5876790B2 (ja) | 発泡成形体及び樹脂発泡容器 | |
JP5918654B2 (ja) | 発泡成形体及び樹脂発泡容器 | |
JP5965853B2 (ja) | 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体 | |
JP5824377B2 (ja) | ポリスチレン系樹脂粒子、発泡性樹脂粒子、それらの製造方法、発泡粒子及び発泡成形体 | |
JP5914080B2 (ja) | 発泡性スチレン系樹脂粒子及びその製造方法 | |
JP5592678B2 (ja) | 発泡性ポリスチレン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体 | |
JP2012188543A (ja) | 樹脂粒子、発泡性樹脂粒子、その製造方法、発泡粒子及び発泡成形体 | |
JP5713726B2 (ja) | 発泡性ポリスチレン系樹脂粒子、発泡粒子及び発泡成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160314 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5903395 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |