JP2013216869A - スチレン系樹脂粒子、その製造方法、発泡性粒子、発泡粒子及び発泡成形体 - Google Patents

スチレン系樹脂粒子、その製造方法、発泡性粒子、発泡粒子及び発泡成形体 Download PDF

Info

Publication number
JP2013216869A
JP2013216869A JP2013039631A JP2013039631A JP2013216869A JP 2013216869 A JP2013216869 A JP 2013216869A JP 2013039631 A JP2013039631 A JP 2013039631A JP 2013039631 A JP2013039631 A JP 2013039631A JP 2013216869 A JP2013216869 A JP 2013216869A
Authority
JP
Japan
Prior art keywords
particles
monomer
styrene
resin particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013039631A
Other languages
English (en)
Other versions
JP5903395B2 (ja
Inventor
Yukio Aramomi
幸雄 新籾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2013039631A priority Critical patent/JP5903395B2/ja
Publication of JP2013216869A publication Critical patent/JP2013216869A/ja
Application granted granted Critical
Publication of JP5903395B2 publication Critical patent/JP5903395B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】曲げ強度に優れた発泡成形体を少ない蒸気量で与え得るスチレン系樹脂粒子を提供することを課題とする。
【解決手段】単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分とを含むスチレン系樹脂粒子であり、前記単官能アクリル酸エステル由来の樹脂成分が、前記スチレン系樹脂粒子の中心部に多く含まれ、前記多官能ビニル系モノマー由来の樹脂成分が、前記スチレン系樹脂粒子の表層に多く含まれ、前記表層が、25万〜60万の範囲の表層重量平均分子量を有することを特徴とするスチレン系樹脂粒子により課題を解決する。
【選択図】図2

Description

本発明は、スチレン系樹脂粒子、その製造方法、発泡性粒子、発泡粒子及び発泡成形体に関する。更に詳しくは、本発明は、少ない蒸気量で成形可能であり、かつ曲げ特性に優れた発泡成形体を与え得るスチレン系樹脂粒子、その製造方法、発泡性粒子、発泡粒子及び発泡成形体に関する。
従来、発泡成形体は軽量かつ、断熱性に優れることから魚箱や食品容器等の輸送用梱包材に使用されている。その中でも発泡性樹脂粒子を原料として製造される型内発泡成形体は所望の形状を得やすい等の利点から多く使用されている。
発泡成形体を製造するための原料である発泡性樹脂粒子として、発泡性スチレン樹脂粒子が汎用されており、例えば次のようにして発泡成形体が得られている。即ち、発泡性スチレン樹脂粒子のような発泡性粒子を蒸気で加熱して予備発泡させて発泡粒子(予備発泡粒子)を得る。得られた予備発泡粒子を金型のキャビティ内に充填する。次いで、充填された予備発泡粒子を蒸気で二次発泡させつつ、予備発泡粒子同士の熱融着により一体化させることで発泡成形体を得ることができる。この発泡成形体の製造法は、ビーズ法と称されている。近年、省エネルギーの観点から蒸気をボイラー等で生成する際に必要な重油量の削減が求められており、少ない蒸気量で発泡成形体を製造できる発泡性スチレン系樹脂粒子が要望されている。
一般に、上記のようなビーズ法により得られた発泡成形体は、予備発泡粒子同士を熱融着により一体化させているため、融着面の強度が融着面以外の部分より弱かった。この融着面の強度の弱さは、特に曲げ強度の要素が大きい、箱形状での箱側面の曲げ強度や引張強度を劣らせるという短所につながっている。特に少ない蒸気量で成形した場合、予備発泡粒子同士の熱融着の強度が劣る傾向にあり、その結果、十分な曲げ強度を有する発泡成形体が得られない場合が多い。従って、曲げに強い発泡成形体を提供することが望まれている。
蒸気量を低減する観点から、特開2011−26508号公報(特許文献1)において、少ない蒸気量で外観、融着に優れた発泡成形体を提供可能な発泡性スチレン系樹脂粒子が提案されている。
特開2011−26508号公報
上記公報に記載された技術でも、十分な曲げ強度を有する発泡成形体を省エネルギーで得ることができる。しかし、更なる省エネルギー性向上の観点から、より少ない蒸気量でも成形性を維持したままで、曲げ強度を有する発泡成形体の提供が望まれていた。
本発明の発明者は、発泡成形体の曲げ強度を向上するために、スチレン系樹脂粒子中の樹脂成分の吸光度比と平均分子量について見直した。その結果、中心部に単官能アクリル酸エステル由来の樹脂成分をリッチに含み、表層に多官能ビニル系モノマー由来の樹脂成分をリッチに含むことで、少ない蒸気量でも発泡成形体に優れた曲げ強度を与えうるスチレン系樹脂粒子を提供できることを見出し、本発明に至った。
かくして本発明によれば、単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分とを含むスチレン系樹脂粒子であり、
前記単官能アクリル酸エステル由来の樹脂成分が、前記スチレン系樹脂粒子の中心部に多く含まれ、
前記多官能ビニル系モノマー由来の樹脂成分が、前記スチレン系樹脂粒子の表層に多く含まれ、
前記表層が、25万〜60万の範囲の重量平均分子量を有することを特徴とするスチレン系樹脂粒子が提供される。
本発明によれば、上記スチレン系樹脂粒子と発泡剤とを含む発泡性粒子が提供される。更に、本発明によれば、上記発泡性樹脂粒子を発泡させて得られた発泡粒子が提供される。また、本発明によれば、上記発泡粒子を発泡成形させて得られた発泡成形体が提供される。
更に本発明によれば、上記スチレン系樹脂粒子の製造方法であり、スチレン系樹脂からなる種粒子に、スチレン系モノマーと単官能アクリル酸エステルとを含むモノマー混合物を含浸重合させる第1工程と、
前記工程で得られた粒子に、スチレン系モノマーを含浸重合させる第2工程と、
前記工程で得られた粒子に、スチレン系モノマーと多官能ビニル系モノマーとを含むモノマー混合物を含浸重合させる第3工程とを含むスチレン系樹脂粒子の製造方法が提供される。
本発明によれば、少ない蒸気量でも、曲げ強度に優れた発泡成形体を与えうる、スチレン系樹脂粒子、発泡性粒子及び発泡粒子を提供できる。この効果は、中心部に単官能アクリル酸エステル由来の樹脂成分をリッチに含み、表層に多官能ビニル系モノマー由来の樹脂成分をリッチに含むことにより奏されると発明者は考えている。本発明の曲げ強度に優れた発泡成形体により、成形時の省エネルギー化を維持しつつ、箱形状とした場合の箱側面の曲げ強度、引張強度が向上できる。
本発明の発泡成形体は、従来の発泡成形体より薄くても、同程度の曲げ強度を得ることができる。そのため原料であるスチレン系樹脂粒子の使用量を削減できる。発泡成形体の軽量化による輸送コストの削減も可能となる。本発明によれば、このような曲げ強度に優れた発泡成形体をより省エネルギーで得るためのスチレン系樹脂粒子の製造方法も提供できる。
また、スチレン系樹脂粒子が、該粒子の溶液のGPC測定により得られる23万〜40万の範囲の全粒子重量平均分子量を有し、表層重量平均分子量が、前記全粒子重量平均分子量より2〜30万大きい場合、曲げ強度に優れた発泡成形体をより省エネルギーで与えうる樹脂粒子を提供できる。
更に、スチレン系樹脂粒子の中心部が、0.4〜0.8の範囲の吸光度比(D1735/D1600)を示す場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。
また、スチレン系樹脂粒子が、中心部から表層に向かって低下する吸光度比(D1735/D1600)を示す場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。
更に、スチレン系樹脂粒子は、中心部の吸光度比(D1735/D1600)を1とした場合、半径の50%の部分の吸光度比(D1735/D1600)が、0.4〜0.8の範囲の相対値を示す粒子である場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。また、単官能アクリル酸エステルが、炭素数3〜20のモノマーであり、多官能ビニル系モノマーが、3〜15個のビニル基を有するモノマーである場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を提供できる。
更に、スチレン系樹脂粒子の製造方法において、第3工程が、多官能ビニル系モノマーの添加開始時から添加終了時までの時間を第1区分〜第3区分に等分割した際、
第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
第3区分の終了時の重合転化率を93%以上の範囲内
とする条件下で行われる場合、より曲げ強度に優れた発泡成形体を省エネルギーで与えうる樹脂粒子を簡便に提供できる。
吸光度比の測定手順を説明するための概略図である。 実施例1のスチレン系樹脂粒子の中心部から表層までの吸光度比の変化を示すグラフである。
(スチレン系樹脂粒子)
スチレン系樹脂粒子は、
・単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分とを含むスチレン系樹脂粒子であり、
・単官能アクリル酸エステル由来の樹脂成分が、スチレン系樹脂粒子の中心部に多く含まれ、
・多官能ビニル系モノマー由来の樹脂成分が、スチレン系樹脂粒子の表層に多く含まれている粒子である。
(1)構成成分
(a)スチレン系樹脂
スチレン系樹脂粒子はスチレン系モノマー由来の樹脂成分を含む。スチレン系モノマーとしては、特に限定されず、公知のモノマーをいずれも使用できる。例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。これらスチレン系モノマーは、一種類でも、複数種の混合物であってもよい。好ましいスチレン系モノマーは、スチレンである。
(b)単官能アクリル酸エステル由来の樹脂成分
単官能アクリル酸エステル由来の樹脂成分は、特に限定されないが、スチレン系モノマーと共重合可能なモノマーに由来する樹脂成分が好ましい。単官能アクリル酸エステルは、炭素数3〜20のエステルであることが好ましい。この範囲の炭素数のモノマーを使用することで、より曲げ強度が改善された発泡成形体を与えうるスチレン系樹脂粒子を提供できる。
具体的な単官能アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘプタデシル等が挙げられる。炭素数3以上のアルキル基は、直鎖状のアルキル基以外に、イソ構造、sec構造やtert構造のような構造異性のアルキル基も含む。
(c)多官能ビニル系モノマー由来の樹脂成分
多官能ビニル系モノマー由来の樹脂成分は、特に限定されないが、スチレン系モノマーと共重合可能なモノマーに由来する樹脂成分が好ましい。
多官能性ビニル系モノマーは、ビニル基を2〜15個有するモノマーであることが好ましい。このような特定数のビニル基を有する多官能性ビニル系モノマーに由来する樹脂成分を含む樹脂粒子は、より曲げ強度に優れた発泡成形体を提供可能である。ビニル基数は、発泡成形体の発泡成形性向上の観点から、2〜15個であることがより好ましい。
具体的な多官能性ビニル系モノマーとしては、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等の2官能モノマー、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、エトキシ化イソシアヌル酸トリアクリレート等の3官能モノマーが挙げられる。多官能性ビニル系モノマーは、1種のみ使用しても、複数種使用してもよい。
(d)樹脂成分の割合
スチレン系樹脂粒子を構成するスチレン系モノマー由来の樹脂成分と単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分の割合は、1:0.05〜0.25:0.6〜1(質量比)の範囲であることが好ましい。
単官能アクリル酸エステル由来の樹脂成分が0.05より少ない場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。0.25より多い場合、高倍の発泡成形体を得ることが困難となることがある。
多官能ビニル系モノマー由来の樹脂成分が0.6より少ない場合、所望の発泡成形体強度が得られないことがある。1より多い場合、低い成形蒸気圧で良好な発泡成形体が得られないことがある。
より好ましい割合は1:0.08〜0.25:0.6〜0.9の範囲であり、更に好ましい割合は1:0.08〜0.20:0.7〜0.9の範囲である。
また、単官能アクリル酸エステル由来の樹脂成分中、スチレン系モノマーと共重合した成分が占める割合は、70質量%以上であることが好ましい。一方、多官能ビニル系モノマー由来の樹脂成分中、スチレン系モノマーと共重合した成分が占める割合は、70質量%以上であることが好ましい。
なお、上記モノマー由来の樹脂成分の割合は、原料としてのモノマーの割合と実質的に一致している。
(e)他の成分
他の成分としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエステル等の樹脂成分が挙げられる。
また、物性を損なわない範囲内において、難燃剤、難燃助剤、可塑剤、滑剤、結合防止剤、融着促進剤、帯電防止剤、展着剤、気泡調整剤、架橋剤、充填剤、着色剤等の添加剤が含まれていてもよい。
難燃剤としては、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、トリスジブロモプロピルホスフェート、テトラブロモビスフェノールA、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピルエーテル)等が挙げられる。
難燃助剤としては、2,3−ジメチル−2,3−ジフェニルブタン、3,4−ジメチル−3,4−ジフェニルヘキサン、ジクミルパーオキサイド、クメンヒドロパーオキサイドの有機過酸化物が挙げられる。
可塑剤としては、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、ジアセチル化グリセリンモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペートのようなアジピン酸エステル等が挙げられる。
滑剤としては、パラフィンワックス、ステアリン酸亜鉛等が挙げられる。
結合防止剤としては、例えば、炭酸カルシウム、シリカ、ステアリン酸亜鉛、水酸化アルミニウム、エチレンビスステアリン酸アミド、第三リン酸カルシウム、ジメチルシリコン等が挙げられる。
融着促進剤としては、例えばステアリン酸、ステアリン酸トリグリセリド、ヒドロキシステアリン酸トリグリセリド、ステアリン酸ソルビタンエステル、ポリエチレンワックス等が挙げられる。
帯電防止剤としては、例えばポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド、ポリエチレングリコール等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
気泡調整剤としては、メタクリル酸エステル系共重合ポリマー、エチレンビスステアリン酸アミド、ポリエチレンワックス、エチレン−酢酸ビニル共重合体等が挙げられる。
(2)単官能アクリル酸エステル由来の樹脂成分の存在位置
単官能アクリル酸エステル由来の樹脂成分は、スチレン系樹脂粒子の中心部に多く含まれている。中心部に多く含まれることで、少ない蒸気量でも発泡成形体を与えうる、スチレン系樹脂粒子を提供できる。ここで、中心部とは粒子中心から粒子半径の約15%以内の領域を意味する。
単官能アクリル酸エステル由来の樹脂成分は、種々の方法で存在位置を確認することができる。その一方法として、赤外線吸収スペクトルの吸光度で確認する方法がある。
スチレン系樹脂粒子の中心部を測定した赤外吸収スペクトル中、1600cm-1での吸光度D1600に対する1735cm-1での吸光度D1735の比D1735/D1600(以下、吸光度比)により、単官能アクリル酸エステル由来の樹脂成分の存在位置を確認できる。ここで、1735cm-1の吸収は単官能アクリル酸エステルに含まれるエステル基のC=O間の伸縮振動に由来するピークを示している。1600cm-1の吸収はスチレン系樹脂に含まれるベンゼン環の面内振動に由来するピークの存在を示している。
なお、吸光度D1600及び吸光度D1735は、測定対象にその表面から入射した波長1600cm-1と1735cm-1の光が測定対象から測定機器へ反射する際に、光が測定対象中を移動しうる領域(例えば、表面から深さ数μmまでの領域)を意味する。
吸光度比は、スチレン系樹脂粒子の中心部から表層に向かって低下する傾向を示していることが好ましい。低下の傾向としては、例えば、中心部から表層に向かって直線的に低下する傾向でもよく、中心部に近い領域又は表層に近い領域で大きく低下しその後ほぼ一定値となる傾向でもよい。ここで、表層とは粒子表面から粒子半径の約20%以内の領域を意味する。
スチレン系樹脂粒子の中心部の吸光度比は、0.4〜0.8の範囲であることが好ましい。吸光度比が0.4未満の場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。吸光度比が0.8より大きい場合、所望の強度の発泡成形体が得られないことがある。好ましい吸光度比は0.4〜0.7の範囲であり、より好ましい吸光度比は0.5〜0.7の範囲である。
単官能アクリル酸エステル由来の樹脂成分が中心部に多く存在していることは、上記中心部の吸光度比と、以下の半径50%の部分の吸光度比を比較することで理解できる。
スチレン系樹脂粒子の半径50%の部分の吸光度比は、0.15〜0.65の範囲であることが好ましい。吸光度比が0.15未満の場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。吸光度比が0.65より大きい場合、強度に優れた発泡成形体が得られないことがある。好ましい吸光度比は0.20〜0.60の範囲であり、より好ましい吸光度比は0.20〜0.50の範囲である。
更に、半径50%の部分の吸光度比は、中心部の吸光度比を1とした場合、0.4〜0.8の範囲の相対値であることが好ましい。この相対値の範囲は、単官能アクリル酸エステル由来の樹脂成分が、中心部に多く含まれることを示している。相対値が0.4未満の場合、所望の強度の発泡成形体を得るには発泡成形時の蒸気圧を高く維持する必要があり、省エネルギー性に劣ることがある。相対値が0.8より大きい場合、強度に優れた発泡成形体が得られないことがある。好ましい相対値は0.4〜0.7の範囲であり、より好ましい相対値は0.5〜0.7の範囲である。
(3)多官能ビニル系モノマー由来の樹脂成分の存在位置
多官能ビニル系モノマー由来の樹脂成分は、スチレン系樹脂粒子の表層に多く含まれている。表層に多く含まれることで、曲げ強度の向上した発泡成形体を与えうる、スチレン系樹脂粒子を提供できる。
多官能ビニル系モノマー由来の樹脂成分は、種々の方法で存在位置を確認することができる。その一方法として、全粒子と表層の重量平均分子量を例えばGPC法で測定し、両者を比較する方法がある。即ち、多官能ビニル系モノマーは、スチレン系樹脂粒子の製造時に、架橋剤として分子量をより高くする役割も有する。従って、全粒子と表層の重量平均分子量を比較して、全粒子に対して表層の重量平均分子量が高ければ、表層に多官能ビニル系モノマー由来の樹脂成分が存在していると類推できる。
表層重量平均分子量は、25万〜60万の範囲とすることができる。表層重量平均分子量が25万未満である場合、表層の高分子成分による発泡成形体への曲げ強度の向上効果が十分得られないことがある。60万より大きい場合、発泡成形体を構成する発泡粒子間の融着性が低下し、その結果、曲げ強度が低下することがある。より好ましい表層重量平均分子量は28万〜60万の範囲であり、更に好ましくは30万〜55万の範囲である。
表層平均分子量を粒子自体から測定することは困難であるため、本明細書では、粒子から得た発泡成形体の表層から測定された平均分子量で代えている。これは、発泡成形体の表層が粒子の表層の連続体からなっていることを利用している。平均分子量の測定法は、実施例の欄で説明しているが、この測定法によれば、粒子の表面から半径の約15%の領域に対応する平均分子量が測定されていることになる。
全粒子重量平均分子量は、23万〜40万の範囲とすることができる。全粒子重量平均分子量が23万未満である場合、発泡成形体の強度が低下することがある。40万より大きい場合、発泡成形体を構成する発泡粒子間の融着性が低下し、その結果、曲げ強度が低下することがある。より好ましい表層重量平均分子量は25万〜40万の範囲であり、更に好ましくは25万〜35万の範囲である。
また、表層重量平均分子量は、全粒子重量平均分子量より2〜30万大きいことが好ましい。大きさの程度が2万未満である場合、表層の高分子成分による発泡成形体への曲げ強度の向上効果が十分得られないことがある。30万より大きい場合、発泡成形体を構成する発泡粒子間の融着性が低下し、その結果、曲げ強度が低下することがある。より好ましい大きさの程度は3万〜30万の範囲であり、更に好ましくは5万〜25万の範囲である。
(4)スチレン系樹脂粒子の形状
スチレン系樹脂粒子の形状は特に限定されない。例えば、球状、円柱状等が挙げられる。この内、球状であるのが好ましい。スチレン系樹脂粒子の平均粒子径は、用途に応じて適宜選択でき、例えば、0.2mm〜5mmの平均粒子径のものを使用できる。また、成形型内への充填性等を考慮すると、平均粒子径は、0.3mm〜2mmがより好ましく、0.3mm〜1.4mmが更に好ましい。
(スチレン系樹脂粒子の製造方法)
スチレン系樹脂粒子の製造方法は特に限定されない。例えば、スチレン系樹脂からなる種粒子に、スチレン系モノマーを含むモノマー混合物を吸収させ重合させることで、樹脂粒子を得ることができる。
(1)種粒子
種粒子は、公知の方法で製造されたものを用いることができ、例えば、(i)スチレン系樹脂を押出機で溶融混練し、ストランド状に押し出し、ストランドをカットすることにより種粒子を得る押出方法、(ii)水性媒体、スチレン系モノマー及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながらスチレン系モノマーを懸濁重合させて種粒子を製造する懸濁重合法、(iii)水性媒体及びスチレン系樹脂粒子をオートクレーブ内に供給し、スチレン系樹脂粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながらスチレン系モノマーを連続的にあるいは断続的に供給して、スチレン系樹脂粒子にスチレン系モノマーを吸収させつつ重合開始剤の存在下にて重合させて種粒子を製造するシード重合法等が挙げられる。
また、種粒子は一部、又は全部に樹脂回収品を用いることができる。回収品を使用する場合は、押出方法による種粒子の製造が向いている。
種粒子の平均粒子径は、樹脂粒子の平均粒子径に応じて適宜調整できる。例えば平均粒子径が1mmの樹脂粒子を得ようとする場合には、平均粒子径が0.7mm〜0.9mm程度の種粒子を用いることが好ましい。更に、種粒子の重量平均分子量は特に限定されないが10万〜70万が好ましく、更に好ましくは15万〜50万である。
(2)含浸工程
種粒子を水性媒体中に分散させてなる分散液中に、モノマー混合物を供給することで、各モノマーを種粒子に吸収させる。
水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
使用する各モノマーには、重合開始剤を含ませてもよい。重合開始剤としては、従来からモノマーの重合に用いられているものであれば、特に限定されない。例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサノエート、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられる。これら開始剤の内、残存モノマーを低減させるために、10時間の半減期を得るための分解温度が80〜120℃にある異なった二種以上の重合開始剤を併用することが好ましい。なお、重合開始剤は単独で用いられても二種以上が併用されてもよい。
水性媒体中には、モノマーの小滴及び種粒子の分散を安定させるために懸濁安定剤が含まれていてもよい。懸濁安定剤としては、従来からモノマーの懸濁重合に用いられているものであれば、特に限定されない。例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化マグネシウム等の難溶性無機化合物等が挙げられる。そして、前記懸濁安定剤として難溶性無機化合物を用いる場合には、アニオン界面活性剤を併用するのが好ましく、このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N−アシルアミノ酸又はその塩、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。
(3)重合工程
重合工程は、使用するモノマー種、重合開始剤種、重合雰囲気種等により異なるが、通常、70〜130℃の加熱を、3〜10時間維持することにより行われる。重合工程は、モノマーを含浸させつつ行ってもよい。
重合工程は、使用するモノマー全量を1段階で重合させてもよく、2段階以上に分けて重合させてもよい(種粒子の製造時の重合を含む)。2段階以上に分けるほうが、単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分の存在位置の調整がより容易である。更に、3段階以上に分けると、調整がより容易である。2段階以上に分けて重合させる場合、通常、含浸工程も2段階に分けて行われる。2段階以上に分けた重合工程の重合温度及び時間は、同一であっても、異なっていてもよい。重合工程は3段階であることが好ましい。
3段階で行われる場合、次のように重合工程を調整することが好ましい。
まず、スチレン系樹脂の種粒子に、スチレン系モノマーと単官能アクリル酸エステルを含む第1モノマー混合物を吸収させて種粒子内で重合させる(第1工程)。
次に、第1工程を経て得られた粒子に、スチレン系モノマーを吸収させつつ重合させる(第2工程)。
更に、第2工程を経て得られた粒子に、スチレン系モノマーと多官能性ビニル系モノマーとを含む第2モノマー混合物を吸収させつつ重合を行う(第3工程)。
ここで、単官能アクリル酸エステルは1〜30分かけて、多官能ビニル系モノマーは30〜180分かけて、それぞれ重合容器に添加することが好ましい。
第3工程においては、スチレン系樹脂と第2モノマー混合物の重合転化率を75質量%以上、100質量%未満の範囲に維持しつつ行うことが好ましい。重合転化率がこの範囲内であることで、単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分の存在位置の調整を簡便に行うことができる。75質量%より小さい場合、表層の高分子量成分が少なくなるため、発泡成形体の曲げ強度の向上効果が低下することがある。100質量%の場合、スチレン系樹脂粒子の製造時間が長くなり、製造コストが高くなることがある。好ましい重合転化率は、80〜98質量%の範囲であり、更に好ましい範囲は80〜97質量%である。
第3工程は、多官能ビニル系モノマーの添加開始時から添加終了時までの時間を第1区分〜第3区分に等分割した際、
第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
第3区分の終了時の重合転化率を93%以上の範囲内
とする条件下で行われることが好ましい。このように重合転化率を細かく制御することで、より発泡成形体の曲げ強度の向上効果が高いスチレン系樹脂粒子を得ることができる。
また、第2工程で使用するスチレン系モノマーの使用量は、第1工程〜第3工程までで使用するモノマー全量に対して、10質量%以上であることが好ましい。10質量%未満の場合、粒子の表層まで単官能アクリル酸エステル由来の樹脂成分が含まれたり、粒子の中心部まで多官能性ビニル系モノマー由来の樹脂成分が含まれたりすることになり、省エネ成形性と高強度性を有するスチレン系樹脂粒子を得ることが困難となることがある。前者のスチレン系モノマーの使用量は、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。
(発泡性粒子)
発泡性粒子は、上記スチレン系樹脂粒子に発泡剤を含浸させた粒子である。
(1)発泡剤
発泡剤としては、特に限定されず、公知のものをいずれも使用できる。特に、沸点がスチレン系樹脂の軟化点以下であり、常圧でガス状又は液状の有機化合物が適している。例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n−ヘキサン、石油エーテル等の炭化水素、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、トリクロロモノフルオロメタン、ジクロロジフルオロメタン等のハロゲン含有炭化水素、炭酸ガス、窒素、アンモニア等の無機ガス等が挙げられる。これらの発泡剤は、単独で使用してもよく、2種以上を併用してもよい。この内、炭化水素を使用するのが、オゾン層の破壊を防止する観点、及び空気と速く置換し、発泡成形体の経時変化を抑制する観点で好ましい。炭化水素の内、沸点が−45〜40℃の炭化水素がより好ましく、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン等が更に好ましい。
更に、発泡剤の含有量は、2〜12質量%の範囲であることが好ましい。2質量%より少ないと、発泡性粒子から所望の密度の発泡成形体を得られないことがある。加えて、型内発泡成形時の二次発泡力を高める効果が小さくなるために、発泡成形体の外観が良好とならないことがある。12質量%より多いと、発泡成形体の製造工程における冷却工程に要する時間が長くなって生産性が低下することがある。より好ましい発泡剤の含有量は、3〜10質量%である。
(2)発泡性粒子の製造方法
発泡性粒子は、上記スチレン系樹脂粒子に発泡剤を含浸させることにより得ることができる。含浸は、重合(例えば、第3工程)と同時に湿式で行ってもよく、重合後に湿式又は乾式で行ってもよい。湿式で行う場合は、上記重合工程で例示した、懸濁安定剤及び界面活性剤の存在下で行ってもよい。
発泡剤の含浸温度は、60〜120℃が好ましい。60℃より低いと、樹脂粒子に発泡剤を含浸させるのに要する時間が長くなって生産効率が低下することがある。また、120℃より高いと、樹脂粒子同士が融着して結合粒が発生することがある。より好ましい含浸温度は、70〜110℃である。
発泡助剤を、発泡剤と併用してもよい。発泡助剤としては、アジピン酸イソブチル、トルエン、シクロヘキサン、エチルベンゼン等が挙げられる。
(発泡粒子)
発泡粒子は、水蒸気等を用いて所望の嵩密度に発泡性粒子を発泡させることで得られる。発泡粒子は、クッションの充填材等の用途ではそのまま使用でき、更に型内発泡させるための発泡成形体の原料として使用できる。発泡成形体の原料の場合、発泡粒子は予備発泡粒子と、発泡粒子を得るための発泡は予備発泡と、通常称される。
発泡粒子の嵩密度は、0.01〜0.04g/cm3の範囲であることが好ましい。発泡粒子の嵩密度が0.01g/cm3より小さい場合、次に得られる発泡成形体に収縮が発生して外観性が低下することがある。加えて発泡成形体の断熱性能及び機械的強度が低下することがある。一方、嵩密度が0.04g/cm3より大きい場合、発泡成形体の軽量性が低下することがある。
なお、発泡前に、発泡性樹脂粒子の表面に、ステアリン酸亜鉛のような粉末状金属石鹸類を塗布しておくことが好ましい。塗布しておくことで、発泡性粒子の発泡工程において発泡粒子同士の結合を減少できる。
(発泡成形体)
発泡成形体は、例えば、食品、工業製品等の容器、魚、農産物等の梱包材、床断熱用の断熱材、盛土材、畳の芯材等に使用できる。発泡成形体は、これら使用用途に応じた形状をとり得る。本発明によれば、従来の発泡成形体より、同じ厚さであれば曲げ強度が約10%増強された(向上した)発泡成形体を提供でき、曲げ強度を同じにすれば約5%軽量化された発泡成形体を提供できる。
発泡成形体の密度は、0.01〜0.04g/cm3の範囲であることが好ましい。発泡成形体の密度が0.01g/cm3より小さい場合、発泡成形体に収縮が発生して外観性が低下することがある。加えて発泡成形体の断熱性能及び機械的強度が低下することがある。一方、密度が0.04g/cm3より大きい場合、発泡成形体の軽量性が低下することがある。
発泡成形体は、例えば以下の方法により得ることができる。
発泡粒子を多数の小孔を有する閉鎖金型内に充填し、熱媒体(例えば、加圧水蒸気等)で加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させることにより一体化させることで、発泡成形体を製造できる。その際、発泡成形体の密度は、例えば、金型内への発泡粒子の充填量を調整する等して調製できる。
加熱発泡は、例えば、110〜150℃の熱媒体で、5〜50秒加熱することにより行うことができる。この条件であれば、粒子相互の良好な融着性を確保できる。より好ましくは、加熱発泡成形は、90〜120℃の熱媒体で、10〜50秒加熱することにより行うことができる。本発明では、熱媒体の成形蒸気圧(ゲージ圧)を0.03〜0.05MPaと、一般的な蒸気圧(例えば、0.06〜0.08MPa)より低い圧力下で加熱発泡を行うことができる。そのため、少ない蒸気量で発泡成形体を製造できる。
発泡粒子は、発泡成形体の成形前に、例えば常圧で、熟成させてもよい。発泡粒子の熟成温度は、20〜60℃が好ましい。熟成温度が低いと、発泡粒子の熟成時間が長くなることがある。一方、高いと、発泡粒子中の発泡剤が散逸して成形性が低下することがある。
以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。なお、以下において、特記しない限り、「部」及び「%」は質量基準である。
<重合転化率>
核重合途中における種粒子(以下、成長途上粒子という)に含まれるモノマー量の測定方法は、下記要領で測定されたものをいう。
即ち、成長途上粒子を分散液中から取り出し、表面に付着した水分をガーゼにより拭き取り除去する。成長途上粒子を0.08g採取し、この採取した成長途上粒子をトルエン24mL中に溶解させてトルエン溶液を作製する。次に、このトルエン溶液中に、ウイス試薬10mL、5質量%のヨウ化カリウム水溶液30mL及び1質量%のでんぷん水溶液30mLを加える。得られた溶液を、N/40チオ硫酸ナトリウム溶液で滴定した結果を試料の滴定数(mL)とする。なお、ウイス試薬は、氷酢酸2リットルにヨウ素8.7g及び三塩化ヨウ素7.9gを溶解してなるものである。一方、成長途上粒子を溶解させることなく、トルエン24mL中に、ウイス試薬10mL、5質量%のヨウ化カリウム水溶液30mL及び1質量%のでんぷん水溶液30mLを加える。得られた溶液を、N/40チオ硫酸ナトリウム溶液で滴定した結果をブランクの滴定数(mL)とする。
得られた滴定数から、成長途上粒子中における未反応のモノマー量を下記式に基づいて算出する。
成長途上粒子中のモノマー量(質量%)=
0.1322×(ブランクの滴定数−試料の滴定数)/試料の滴定数
更に、重合転化率は下記の式で算出される。
重合転化率(%)=
100×(試料質量−成長途上粒子のモノマー量)/試料質量
<重量平均分子量>
樹脂粒子の表層重量平均分子量は、発泡成形体の表層から測定する。即ち、発泡成形体は、樹脂粒子を予備発泡させて、型内成形したものであるから、樹脂粒子表層は発泡成形体表層に相当し、樹脂粒子表層の平均分子量は発泡成形体表層の平均分子量に相当する。樹脂粒子の全粒子重量平均分子量は、樹脂粒子そのものから測定する。
密度0.0166g/cm3の発泡成形体を50℃で24時間乾燥後、ハムスライサー(富士島工機製:FK−18N型)を用い、発泡成形体の表面から0.3mm深さでカットし表層GPC測定用試料とする。全体GPC測定用試料は、樹脂粒子そのものを使用する。上記試料を以下のGPC(ゲルパーミエーションクロマトグラフィー)を用いて重要平均分子量(Mw)を測定する。尚、重量平均分子量はポリスチレン換算重量平均分子量を意味する。
上記試料0.003gをテトラヒドロフラン(THF)10mLに23℃で24時間静置することで完全溶解させる。この時点で完全溶解していない場合は、更に24時間静置毎(合計72時間まで)に完全溶解しているか否かを確認する。72時間後に完全溶解できない場合は、試料に架橋成分が含まれていると判断する。得られた溶液を非水系0.45μmのクロマトディスクで濾過して分子量を測定する(完全溶解できない場合は、溶解した成分の分子量を測定する)。予め測定し、作成しておいた標準ポリスチレンの検量線から試料の重量平均分子量を求める。また、クロマトグラフの条件は下記の通りとする。
・装置:高速GPC装置
・商品名:東ソー社製 HLC−8320GPC EcoSEC-WorkStation(RI検出器内蔵)
・分析条件
カラム:TSKgel SuperHZM−H×2本(4.6mmI.D×15cmL×2本)
ガードカラム:TSKguardcolumn SuperHZ−H×1本(4.6mmID×2cmL)
流量:試料側 0.175mL/min、リファレンス側 0.175mL/min
検出器:内蔵RI検出器
濃度:0.3g/L
注入量:50μL
カラム温度:40℃
システム温度:40℃
溶離液:THF
(検量線の作成)
検量線用標準ポリスチレン試料としては、東ソー社製商品名「TSK standard POLYSTYRENE」の重量平均分子量が、500、2630、9100、37900、102000、355000、3840000、及び5480000である標準ポリスチレン試料と、昭和電工社製商品名「Shodex STANDARD」の重量平均分子量が1030000である標準ポリスチレン試料を用いる。
検量線の作成方法は以下の通りである。まず、上記検量線用標準ポリスチレン試料をグループA(重量平均分子量が1030000のもの)、グループB(重量平均分子量が500、9100、102000及び3480000のもの)及びグループC(重量平均分子量が2630、37900、355000及び5480000のもの)にグループ分けする。グループAに属する重量平均分子量が1030000である標準ポリスチレン試料を5mg秤量した後にTHF20mLに溶解し、得られた溶液50μLを試料側カラムに注入する。グループBに属する重量平均分子量が500、9100、102000及び3480000である標準ポリスチレン試料をそれぞれ10mg、5mg、5mg、及び5mg秤量した後にTHF50mLに溶解し、得られた溶液50μLを試料側カラムに注入する。グループCに属する重量平均分子量が2630、37900、355000及び5480000である標準ポリスチレン試料をそれぞれ5mg、5mg、5mg、及び1mg秤量した後にTHF40mLに溶解し、得られた溶液50μLを試料側カラムに注入する。これら標準ポリスチレン試料の保持時間から較正曲線(三次式)をHLC−8320GPC専用データ解析プログラムGPCワークステーション(EcoSEC−WS)にて作成し、これをポリスチレン換算重量平均分子量測定の検量線として用いる。
<中心部及び半径の50%部分の吸光度比>
スチレン系樹脂粒子の中心部及び半径の50%部分の吸光度比(D1735/D1600)を次の顕微赤外分光光度計を用いて顕微透過イメージング法にて分析する。
(a)測定試料の作製
無作為に選択した10個の粒子をプラスチック試料支持台(日新EM社製)に固定する。次いで、粒子をウルトラミクロトーム(ライカマイクロシステムズ製、LEICA ULTRACUT UCT)を用いてダイヤモンドナイフによって、ほぼ中心を通って約10μm厚みにスライスすることで、スライスサンプルを得る。得られたスライスサンプルを2枚のフッ化バリウム結晶(ピアーオプティックス社製)で挟む。これを測定試料とする。スライスサンプルの画像を、下記測定装置付属のCCDで取り込む。画像の取り込みは、ウルトラミクロトームの刃の進行方向をY軸とし、それに対して垂直方向をX軸として行う。スライスサンプル中の粒子は、刃の進行方向に、極僅かに潰れが発生している。取り込まれる画像のY軸を刃の進行方向に合わせることで、測定される吸光度比がばらつくことを抑制する。
吸光度D1735及びD1600は、Perkin Elmer社から商品名「高速IRイメージングシステムSpectrum Spotlight 300」で販売されている装置を用いる。この装置を用いて、下記条件にて、スライスサンプル粒子断面の全吸光度イメージ画像を得、スライスサンプル粒子断面の各箇所における赤外吸収スペクトルを得る。
(測定条件)
モード:顕微透過イメージング法
ピクセルサイズ:6.25μm
測定領域:4000cm-1〜650cm-1
検出器:MCT
分解能:8cm-1
スキャン/ピクセル:2回
(バックグランド測定条件)
モード:顕微透過イメージング法
ピクセルサイズ:6.25μm
測定領域:4000cm-1〜650cm-1
検出器:MCT
分解能:8cm-1
スキャン/ピクセル:60回
その他:試料の近傍の試料の無い部分のフッ化バリウム結晶を測定した赤外吸収スペクトルをバックグランドとして測定スペクトルに関与しない処理を実施する。
取り込んだイメージ画像1から、図1に示すように、X座標値の最小値と最大値及びY軸のY座標値の最小値と最大値を線で結び、その線の交点を中心点Aとする。画像処理における、中心点のX、Y座標値設定は、中心点Aの±20μmの範囲内におさまるようにする。
次に、イメージ画像中に、中心点Aを通り、X軸に平行な直線を引く。この直線が、粒子(樹脂)が存在する末端の位置(X軸の最大値)と交わる点を点Dとする。点Aと点Dを結ぶ線上の赤外吸収スペクトルをX座標値で12±2μmごとに抽出する。尚、本発明での半径50%部分とは、A点からD点までの距離の50%の部分をいい、±20μmの範囲内におさまるようにする。
抽出した赤外吸収スペクトルから、吸光度D1735及びD1600をそれぞれ読み取り、中心部、及び半径50%部分における吸光度比(D1735/D1600)を算出する。10個の粒子について算出した個別吸光度比の相加平均を吸光度比とする。
なお、赤外吸収スペクトルから得られる1735cm-1での吸光度D1735は、上記エステルに含まれるエステル基のC=O間の伸縮振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、1735cm-1で他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。吸光度D1735は、1680cm-1と1785cm-1を結ぶ直線をベースラインとして、1680cm-1と1785cm-1間の最大吸光度を意味する。また、赤外吸収スペクトルから得られる1600cm-1での吸光度D1600は、スチレン系樹脂に含まれるベンゼン環の面内振動に由来する吸収スペクトルに対応する吸光度である。この吸光度の測定では、1600cm-1で他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。吸光度D1600は、1565cm-1と1640cm-1を結ぶ直線をベースラインとして、1565cm-1と1640cm-1間の最大吸光度を意味する。
<予備発泡粒子の嵩密度>
予備発泡粒子の嵩倍数は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定する。具体的は、まず、予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させる。メスシリンダー内に落下させた測定試料の体積Vcm3をJIS K6911に準拠した見掛け密度測定器を用いて測定する。Wg及びVcm3を下記式に代入することで、予備発泡粒子の嵩密度を算出する。
予備発泡粒子の嵩密度(g/cm3)=測定試料の質量(W)/測定試料の体積(V)
<発泡成形体の密度>
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×30mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm3)を求める。
<平均最大曲げ曲げ強度>
発泡体の平均最大曲げ強度をJIS K7221−2「硬質発泡プラスチック−曲げ試験」に記載の方法に準拠して測定する。具体的には、密度16.7kg/m3の発泡体から縦75mm×横300mm×厚さ30mmの直方体形状の試験片を切り出す。しかる後、この試験片を曲げ強度測定器(オリエンテック社製商品名「UCT−10T」)を用いて、試験速度10mm/分、支点間距離200mm、加圧くさび10R及び支持台10Rの条件下にて測定する。試験片を5個用意し試験片ごとに前記要領で、試験片が破壊する最大荷重を測定し、曲げ強度を算出する。
評価:平均最大曲げ強度が0.3MPa以上:○
0.3MPa未満:×
以下に実施例を示すが、本発明はこの実施例に限定されない。
(実施例1)
(種粒子の製造)
内容量100リットルの攪拌機付き重合容器に、水40000質量部、懸濁安定剤としてピロリン酸マグネシウム100質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸ナトリウム5.0質量部を供給し攪拌しながらスチレン40000質量部並びに重合開始剤としてベンゾイルパーオキサイド96.0質量部及びt−ブチルパーオキシベンゾエート28.0質量部を添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間後に冷却してスチレン系樹脂粒子(a)を得た。
前記スチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5〜0.71mmのスチレン系樹脂粒子(b)を得た。
次に、内容積25Lの撹拌機付き重合容器に、重量平均分子量が25万であるスチレン樹脂(平均粒子径0.63mm;b)の種粒子2350g、ピロリン酸マグネシウム30g及びドデシルベンゼンスルホン酸ナトリウム10gを供給して撹拌しつつ72℃に加熱して分散液を作製した。
続いて、ベンゾイルパーオキサイド45.9g、t−ブチルパーオキシベンゾエート6.1gをスチレン850g、アクリル酸n−ブチル150gの混合物に溶解させた溶液を全て前記分散液中に撹拌しつつ供給した。
そして分散液中に前記溶液を供給し終えてから60分間維持した(第1工程)。
その後にこの分散液を88℃まで60分かけて昇温しながら、スチレン2660gを一定速度で重合容器に投入し、種粒子に吸収させながら反応を行った(第2工程)。
次いで、分散液を88℃で保持しながらスチレン4000gにジビニルベンゼン(2官能モノマー、分子量130)0.6gを溶解したものを一定速度で、90分かけて重合容器に投入し、種粒子に吸収させながら重合反応を行った(第3工程)。
この第3工程を3区分に分割し、重合途中での各区分開始時の重合転化率、及び第3区分終了時の重合転化率を測定した。
各重合転化率は80%、88%、90%、94%であった。
第3工程終了後、更に分散液を120℃まで昇温しかつ、60分保持することで未反応のモノマーを反応させた。次いで、反応容器より平均粒子径1.0mmのスチレン系樹脂粒子を採取した。樹脂粒子をATR法赤外分光分析に付して1735cm-1での吸光度D1735と1600cm-1での吸光度D1600とを求め、D1735/D1600を算出した。結果、中心部の吸光度比は0.70であり、半径の50%の部分の吸光度比は0.51であった。更にこのスチレン系樹脂粒子全体のMwは24.0万であった。
得られたスチレン系樹脂粒子の中心部から表層までの吸光度比の変化を図2に示す。
次に、分散液を100℃に保持し、続いて、重合容器内にシクロヘキサン80g、アジピン酸ジイソブチル70g、ノルマルブタン700gを圧入して3時間に亘って保持することにより、樹脂粒子中にノルマルブタンを含浸させた。この後、重合容器内を25℃に冷却して発泡性樹脂粒子を得た。
発泡性樹脂粒子の表面に、帯電防止剤としてポリエチレングリコールを塗布した。この後、更に、発泡性樹脂粒子の表面にステアリン酸亜鉛及びヒドロキシステアリン酸トリグリセリドを塗布した。塗布後、発泡性樹脂粒子を13℃の恒温室にて5日間放置した。
そして、発泡性樹脂粒子を加熱して嵩密度0.0166g/cm3に予備発泡させて予備発泡粒子を得た。予備発泡粒子を20℃で24時間熟成させた。
次に、予備発泡粒子を金型内に充填して0.04MPaの蒸気圧で加熱発泡させて、縦400mm×横300mm×厚さ30mmの発泡成形体を得た。発泡成形体を50℃の乾燥室で6時間乾燥した後、密度を測定したところ、0.0166g/cm3(16.6kg/m3)であった。発泡成形体は、収縮もなく外観も優れていた。
得られた発泡成形体の表層のMw(スチレン系樹脂粒子表層のMwに相当)は28.1万であった。この発泡成形体の曲げ試験をJIS−A9511に準拠して測定した結果、曲げ強度は0.32MPaと優れていた。
(実施例2)
ジビニルベンゼンの添加量を1.2gとしたこと以外は、実施例1と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.71であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは26.0万であり、発泡成形体表層のMwは50.0万であった。この発泡成形体の曲げ強度は0.33MPaと優れるものであった。
(実施例3)
ジビニルベンゼンの代わりに、トリメチロールプロパントリメタクリレート(3官能モノマー、分子量338)を4g使用したこと以外は、実施例1と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.51であり、全体のMwは27.1万であった。更に発泡成形体表層のMwは36.9万であった。発泡成形体の曲げ強度は0.33MPaであった。
(実施例4)
第1重合工程で使用するスチレンを950g、アクリル酸n−ブチルを50gとしたこと以外は、実施例2と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.50であり、半径の50%の部分の吸光度比は0.35であり、全体のMwは25.4万であり、発泡成形体表層のMwは49.3万であった。発泡成形体の曲げ強度は0.32MPaであった。
(実施例5)
第1重合工程で使用するスチレンを800g、アクリル酸n−ブチルを200gとしたこと以外は、実施例2と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.73であり、半径の50%の部分の吸光度比は0.55であり、全体のMwは25.0万であり、発泡成形体表層のMwは49.9万であった。発泡成形体の曲げ強度は0.32MPaであった。
(実施例6)
第1重合工程で使用するスチレンを700g、アクリル酸n−ブチルを300gとしたこと以外は、実施例2と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.75であり、半径の50%の部分の吸光度比は0.59であり、全体のMwは24.9万であり、発泡成形体表層のMwは51.6万であった。発泡成形体の曲げ強度は0.32MPaであった。
(実施例7)
第2工程及び、第3工程の重合温度を86℃としたこと以外は実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは23.9万であり、発泡成形体表層のMwは26.0万であった。発泡成形体の曲げ強度は0.31MPaであった。
(実施例8)
第2工程及び、第3工程の重合温度を90℃としたこと以外は実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.71であり、半径の50%の部分の吸光度比は0.52であり、全体のMwは25.7万であり、発泡成形体表層のMwは30.5万であった。発泡成形体の曲げ強度は0.33MPaであった。
(比較例1)
第1重合工程で、アクリル酸ブチルを使用せず、スチレンのみを使用したこと以外は実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子全体のMwは24.3万であり、発泡成形体表層のMwは33.3万であった。発泡成形体は、0.04MPaの成形蒸気圧での発泡粒子の融着が十分でなかったため曲げ強度は0.28MPaと劣るものであった。
(比較例2)
第1重合工程でジビニルベンゼンを使用しないこと以外は、実施例1と同様にして発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは23.9万であり、発泡成形体表層のMwは23.0万であった。この発泡成形体は0.04MPaの成形蒸気圧で成形可能であったが、曲げ強度は0.28MPaと劣るものであった。
(比較例3)
トリメチロールプロパントリメタクリレート(3官能モノマー、分子量338)を20g使用したこと以外は実施例1と同様に発泡成形体を得た。スチレン系樹脂粒子中心部の吸光度比は0.70であり、半径の50%の部分の吸光度比は0.50であり、全体のMwは26.0万であり、発泡成形体表層のMwは65万であった。この発泡成形体は、0.04MPaの成形蒸気圧での発泡粒子の融着が十分でなかったため、曲げ強度は0.27MPaと劣るものであった。
(比較例4)
第2工程、第3工程の重合温度を84℃としたこと以外は実施例1と同様に発泡成形体を得た。この第3工程を3区分に分割し、重合途中での各区分開始時の重合転化率、及び第3区分終了時の重合転化率を測定したところ、各重合転化率は73%、80%、85%、90%であった。
スチレン系樹脂粒子中心部の吸光度比は0.69であり、半径の50%の部分の吸光度比は0.52であり、全体のMwは22.5万であった。発泡成形体表層のMwは23.0万であった。この発泡成形体は、0.04MPaの成形蒸気圧で成形可能であったが、曲げ強度は0.27MPaと劣るものであった。
実施例1〜8及び比較例1〜4の結果を表1にまとめて示す。
実施例1〜8から、単官能アクリル酸エステル由来の樹脂成分が、スチレン系樹脂粒子の中心部に多く含まれ、多官能ビニル系モノマー由来の樹脂成分が、スチレン系樹脂粒子の表層に多く含まれることで、少ない蒸気量でも曲げ強度の向上した発泡成形体を得られることが分かる。
比較例1から、単官能アクリル酸エステル由来の樹脂成分を含まない場合、発泡成形体の曲げ強度の向上効果が劣ることが分かる。
比較例2から、多官能ビニル系モノマー由来の樹脂成分を含まない場合、発泡成形体の曲げ強度の向上効果が劣ることが分かる。
比較例2〜4から、表層重量平均分子量が、25万〜60万の範囲でない場合、発泡成形体の曲げ強度の向上効果が劣ることが分かる。

Claims (13)

  1. 単官能アクリル酸エステル由来の樹脂成分と多官能ビニル系モノマー由来の樹脂成分とを含むスチレン系樹脂粒子であり、
    前記単官能アクリル酸エステル由来の樹脂成分が、前記スチレン系樹脂粒子の中心部に多く含まれ、
    前記多官能ビニル系モノマー由来の樹脂成分が、前記スチレン系樹脂粒子の表層に多く含まれ、
    前記表層が、25万〜60万の範囲の重量平均分子量を有することを特徴とするスチレン系樹脂粒子。
  2. 前記スチレン系樹脂粒子が、該粒子の溶液のGPC測定により得られる23万〜40万の範囲の全粒子重量平均分子量を有し、前記表層重量平均分子量が、前記全粒子重量平均分子量より2〜30万大きい請求項1に記載のスチレン系樹脂粒子。
  3. 前記スチレン系樹脂粒子の中心部が、0.4〜0.8の範囲の吸光度比(D1735/D1600)を示す請求項1又は2に記載のスチレン系樹脂粒子。
  4. 前記スチレン系樹脂粒子が、前記中心部から前記表層に向かって低下する吸光度比(D1735/D1600)を示す請求項1〜3のいずれか1つに記載のスチレン系樹脂粒子。
  5. 前記スチレン系樹脂粒子は、中心部の吸光度比(D1735/D1600)を1とした場合、半径の50%の部分の吸光度比(D1735/D1600)が、0.4〜0.8の範囲の相対値を示す粒子である請求項1〜4のいずれか1つに記載のスチレン系樹脂粒子。
  6. 前記単官能アクリル酸エステルが、炭素数3〜20のモノマーであり、前記多官能ビニル系モノマーが、3〜15個のビニル基を有するモノマーである請求項1〜5のいずれか1つに記載のスチレン系樹脂粒子。
  7. 前記スチレン系樹脂粒子が、
    スチレン系樹脂からなる種粒子に、スチレン系モノマーと単官能アクリル酸エステルとを含むモノマー混合物を含浸重合させる第1工程と、
    前記工程で得られた粒子に、スチレン系モノマーを含浸重合させる第2工程と、
    前記工程で得られた粒子に、スチレン系モノマーと多官能ビニル系モノマーとを含むモノマー混合物を含浸重合させる第3工程とを少なくとも経ることで得られる請求項1〜6のいずれか1つに記載のスチレン系樹脂粒子。
  8. 請求項1〜7のいずれか1つに記載のスチレン系樹脂粒子と発泡剤とを含む発泡性粒子。
  9. 請求項8に記載の発泡性粒子を発泡させて得られた発泡粒子。
  10. 請求項9に記載の発泡粒子を発泡成形させて得られた発泡成形体。
  11. 前記発泡成形体が、容器形状を有している請求項10に記載の発泡成形体。
  12. 上記請求項1〜7のいずれか1つに記載のスチレン系樹脂粒子の製造方法であり、スチレン系樹脂からなる種粒子に、スチレン系モノマーと単官能アクリル酸エステルとを含むモノマー混合物を含浸重合させる第1工程と、前記工程で得られた粒子に、スチレン系モノマーを含浸重合させる第2工程と、前記工程で得られた粒子に、スチレン系モノマーと多官能ビニル系モノマーとを含むモノマー混合物を含浸重合させる第3工程とを含むスチレン系樹脂粒子の製造方法。
  13. 前記第3工程が、前記多官能ビニル系モノマーの添加開始時から添加終了時までの時間を第1区分〜第3区分に等分割した際、
    前記第1区分の開始時の重合転化率を75%以上、85%未満の範囲内、
    前記第2区分の開始時の重合転化率を85%以上、90%未満の範囲内、
    前記第3区分の開始時の重合転化率を88%以上、93%の範囲内、及び
    前記第3区分の終了時の重合転化率を93%以上の範囲内
    とする条件下で行われる請求項12に記載のスチレン系樹脂粒子の製造方法。
JP2013039631A 2012-03-16 2013-02-28 スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法 Active JP5903395B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039631A JP5903395B2 (ja) 2012-03-16 2013-02-28 スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012060334 2012-03-16
JP2012060334 2012-03-16
JP2013039631A JP5903395B2 (ja) 2012-03-16 2013-02-28 スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法

Publications (2)

Publication Number Publication Date
JP2013216869A true JP2013216869A (ja) 2013-10-24
JP5903395B2 JP5903395B2 (ja) 2016-04-13

Family

ID=49589355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039631A Active JP5903395B2 (ja) 2012-03-16 2013-02-28 スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法

Country Status (1)

Country Link
JP (1) JP5903395B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043497A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014043498A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131722A (ja) * 2002-09-20 2004-04-30 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子及びスチレン系樹脂発泡成形体
JP2009079086A (ja) * 2007-09-25 2009-04-16 Sekisui Plastics Co Ltd 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP5689044B2 (ja) * 2011-09-12 2015-03-25 積水化成品工業株式会社 ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131722A (ja) * 2002-09-20 2004-04-30 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子及びスチレン系樹脂発泡成形体
JP2009079086A (ja) * 2007-09-25 2009-04-16 Sekisui Plastics Co Ltd 単中空粒子、その製造方法、樹脂組成物及び光拡散板
JP5689044B2 (ja) * 2011-09-12 2015-03-25 積水化成品工業株式会社 ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043497A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014043498A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器

Also Published As

Publication number Publication date
JP5903395B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5689044B2 (ja) ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法
JP6082637B2 (ja) 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体
JP6353803B2 (ja) ポリスチレン系樹脂発泡成形体
JP5903395B2 (ja) スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体の製造方法
JP6407077B2 (ja) ポリスチレン系発泡成形体、発泡性粒子、予備発泡粒子
JP6227955B2 (ja) 発泡成形体
JP5732358B2 (ja) ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法
JP5992349B2 (ja) 発泡性スチレン系樹脂粒子、その製造方法、発泡粒子及び発泡成形体
JP5914079B2 (ja) スチレン系発泡樹脂粒子及び発泡成形体
JP5876789B2 (ja) 発泡成形体及び樹脂発泡容器
JP5860220B2 (ja) 樹脂粒子、その製造方法、発泡性樹脂粒子、発泡粒子及び発泡成形体
JP5918709B2 (ja) 発泡成形体及び消失模型用加工品
JP6407078B2 (ja) 発泡成形体、発泡性樹脂粒子、予備発泡粒子
JP6031378B2 (ja) 発泡性スチレン系樹脂粒子、発泡粒子及び軽量コンクリート
JP6294040B2 (ja) スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体
JP6343485B2 (ja) ポリスチレン系発泡成形体及びその製造方法
JP5876790B2 (ja) 発泡成形体及び樹脂発泡容器
JP5918654B2 (ja) 発泡成形体及び樹脂発泡容器
JP5965853B2 (ja) 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体
JP5824377B2 (ja) ポリスチレン系樹脂粒子、発泡性樹脂粒子、それらの製造方法、発泡粒子及び発泡成形体
JP2012188543A (ja) 樹脂粒子、発泡性樹脂粒子、その製造方法、発泡粒子及び発泡成形体
JP5914080B2 (ja) 発泡性スチレン系樹脂粒子及びその製造方法
JP5592678B2 (ja) 発泡性ポリスチレン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP2015048356A (ja) 発泡性スチレン系樹脂粒子、発泡粒子、発泡成形体及び発泡粒子の製造方法
JP2012207097A (ja) 発泡成形体及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5903395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150