JP5482008B2 - オレフィン重合体の製造方法 - Google Patents

オレフィン重合体の製造方法 Download PDF

Info

Publication number
JP5482008B2
JP5482008B2 JP2009184213A JP2009184213A JP5482008B2 JP 5482008 B2 JP5482008 B2 JP 5482008B2 JP 2009184213 A JP2009184213 A JP 2009184213A JP 2009184213 A JP2009184213 A JP 2009184213A JP 5482008 B2 JP5482008 B2 JP 5482008B2
Authority
JP
Japan
Prior art keywords
polymerization
group
reactor
propylene
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009184213A
Other languages
English (en)
Other versions
JP2010059414A (ja
Inventor
由季 阿蘇
範幸 佐藤
伸一 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009184213A priority Critical patent/JP5482008B2/ja
Publication of JP2010059414A publication Critical patent/JP2010059414A/ja
Application granted granted Critical
Publication of JP5482008B2 publication Critical patent/JP5482008B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/905Polymerization in presence of transition metal containing catalyst in presence of hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、オレフィン重合体の製造方法に関するものであり、さらに詳しくは、効率的に水素濃度を低減させて、より高分子量のオレフィン重合体を製造することができ、かつ得られるオレフィン重合体のパウダーの粉体特性が良好なオレフィン重合体を製造することができるオレフィン重合体の製造方法に関するものである。
従来から、水素の存在下に、気相重合反応を用いるオレフィン重合体の製造方法において、気相重合反応器内の水素含有ガスの一部を抜き出し、次いで該抜出したガス中の水素をオレフィンに付加させて該ガスを水素化処理して、その後前記水素化処理後のガスを再び重合反応器に供給することにより、気相重合反応器内の水素濃度を低下させる、気相重合反応器内の水素濃度の制御方法が知られている(例えば、特許文献1参照)。
また、水素の存在下でのオレフィン重合体の製造方法において、反応器に水素添加触媒を添加して、水素濃度を低減させて、製造されるオレフィン重合体の分子量分布などを制御する方法が知られている(例えば、特許文献2参照)。
特開平10−204123号公報 特開平8−151408号公報
しかしながら、上記特許文献1に記載されている水素濃度の制御方法では、水素添加触媒を用いるために別途反応層を設ける必要があり、該反応層や循環ガスラインのつまりや触媒性能の低下が起こり、効率的に水素濃度を低減することができないという問題があった。
また、上記特許文献2に記載されている水素添加触媒を気相重合に用いた場合、水素添加触媒の添加によって、より高分子量のオレフィン重合体を製造することができるものの、得られるオレフィン重合体のパウダーが粘着性を帯び、その粉体特性が悪化する問題があった。
かかる現状に鑑み本発明の目的は、効率的に水素濃度を低減させて、より高分子量のオレフィン重合体を製造することができ、かつ得られるオレフィン重合体のパウダーの粉体特性が良好なオレフィン重合体を製造することができるオレフィン重合体の製造方法を提供することにある。
本発明者らは、本発明が上記課題を解決できることを見い出し、本発明を完成するに至った。
すなわち、本発明は、気相反応器を使用し、水素の存在下にオレフィン重合用触媒を用いてオレフィンを重合させるオレフィン重合体の製造方法であって、該気相反応器内に、水素添加触媒を添加する工程、及び重合活性抑制物質を添加する工程を有するオレフィン重合体の製造方法にかかるものである。
本発明のオレフィン重合体の製造方法により、効率的に水素濃度を低減させて、より高分子量のオレフィン重合体を製造することができ、かつ得られるオレフィン重合体のパウダーの粉体特性が良好なオレフィン重合体を製造することができる。
以下、本発明をさらに詳細に説明する。
本発明のオレフィン重合体の製造方法は、気相反応器を使用し、水素の存在下にオレフィン重合用触媒を用いてオレフィンを重合させるオレフィン重合体の製造方法であって、該気相反応器内に、水素添加触媒を添加する工程、及び重合活性抑制物質を添加する工程を有する。
[水素添加触媒]
本発明に用いる水素添加触媒とは、オレフィン性不飽和二重結合を選択的に水素化する能力を持つ触媒であり、気相反応器内に存在する水素は、プロピレンやエチレンなどのオレフィンと反応し、プロパンやエタンとなって除去される。水素添加触媒としては、公知の水素添加触媒が挙げられる。例えば、チタン、白金、パラジウム、パラジウム−クロム、ニッケル、ルテニウムを含有する化合物、具体的には、(イ)前記金属、(ロ)前記金属の酸化物、(ハ)前記金属のハロゲン化物、(ニ)上記の(イ)、(ロ)、(ハ)等をシリカ、アルミナ等の多孔質担体に担持させた化合物、等が挙げられる。
ニッケルを含有する化合物としては、例えば、ビス(1,5−シクロオクタジエン)ニッケル、ビス(シクロペンタジエニル)ニッケル、テトラキス(ジエチルフェニルホスフォナイト)ニッケル、テトラキス(メチルジフェニルホスフィン)ニッケル、テトラキス(トリフルオロホスフィン)ニッケル等が挙げられる。
チタンを含有する化合物としては、シクロペンタジエニル基、インデニル基、フルオレニル基およびそれらの誘導体からなる群から選ばれる少なくとも1種を配位子に持つチタノセン化合物、ジアルキルアミノ基、アルコキシ基、フェノキシ基、アリールオキシ基、チオアルコキシ基、チオアリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルホスフィノ基、アリールホスフィノ基、下記一般式[1]で表される基、下記一般式[2]で表される基、およびそれらの誘導体からなる群から選ばれる少なくとも1種を配位子に持つ非チタノセン化合物が挙げられる。
1 3P=N− [1]
(式中、R1は、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、炭化水素オキシ基、シリル基、アミノ基を表し、3つのR1は互いに同じであっても異なっていても良く、それら2つ以上が互いに結合していても良く、環を形成していても良い。)

Figure 0005482008
[2]

(式中、R2は、水素原子、ハロゲン原子、炭化水素基を表し、複数のR2は互いに同じであっても異なっていても良く、それら2つ以上が互いに結合していても良く、環を形成していても良い。)
上記(イ)、(ロ)、(ハ)等をシリカ、アルミナ等の多孔質担体に担持させた化合物としては、例えば、Pd/Al23、Pd/SiO2・Al23、Pd/SiO2、Pt/Al23、等が挙げられる。
これらの中でも、チタノセン化合物が好ましい。チタノセン化合物としては、例えば、ビス(シクロペンタジエニル)チタニウムジクロリド、ビス(シクロペンタジエニル)チタニウムジブロミド、ビス(シクロペンタジエニル)チタニウムジヨージド、ビス(シクロペンタジエニル)チタニウムジフルオリド、ビス(シクロペンタジエニル)チタニウムクロルブロミド、ビス(シクロペンタジエニル)チタニウムメトキシクロリド、ビス(シクロペンタジエニル)チタニウムエトキシクロリド、ビス(シクロペンタジエニル)チタニウムフェノキシクロリド、ビス(シクロペンタジエニル)チタニウムジメトキシド等が挙げられる。
また、本発明に用いる水素添加触媒としては、液状又は溶媒に可溶な状態のものが好ましい。
また、本発明に用いる水素添加触媒は、還元剤と組み合わせて用いることもできる。還元剤としては、例えば、有機アルミニウム化合物、有機リチウム化合物、有機マグネシウム化合物、有機亜鉛化合物等を挙げることができる。還元剤として、好ましくは、有機アルミニウム化合物である。
前記の有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、アルキルアルミニウムハライド、アルキルアルミニウムハイドライド、アルミニウムアルコキシド、アルモキサン等が挙げられる。
トリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等が挙げられる。
アルキルアルミニウムハライドとしては、例えば、ジエチルアルミニウムモノクロライド、ジイソブチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド等が挙げられる。
アルキルアルミニウムハイドライドとしては、例えば、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド等が挙げられる。
アルミニウムアルコキシドとしては、例えば、ジエチルアルミニウムエトキシド、ジエチルアルミニウムフェノキシド等が挙げられる。
アルモキサンとしては、例えば、メチルアルモキサン、エチルアルモキサン、イソブチルアルモキサン、メチルイソブチルアルモキサン等が挙げられる。
これらの中でも、トリアルキルアルミニウムが好ましく、トリエチルアルミニウムがより好ましい。
これらは、1種単独で用いてもよく、2種以上を併用して用いてもよい。
還元剤中の金属原子と水素添加触媒中の金属原子とのモル比は、1:1〜30:1であるのが好ましく、2:1〜10:1であるのがより好ましく、3:1〜7:1であるのが更に好ましい。
水素添加触媒は、不活性有機溶媒で希釈してフィードすることができる。この際、水素添加触媒は還元剤とあらかじめ接触しておいてもよい。前記の不活性有機溶媒とは、溶媒が水添反応のいかなる関与体とも反応しないものを意味する。好適な溶媒は、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類やその異性体、シクロヘキサン、シクロヘプタン等の脂環式炭化水素類やその誘導体、が挙げられる。
本発明に用いる水素添加触媒としては、チタノセン化合物を含むものであるのが好ましく、チタノセン化合物と還元剤とを接触させてなる化合物であるのがより好ましく、チタノセン化合物と有機アルミニウム化合物とを接触させてなる化合物であるのが更に好ましい。
[重合活性抑制物質]
本発明に用いる重合活性抑制物質とは、水素添加触媒投入により、得られるオレフィン重合体のパウダーが粘着性を帯びて、その粉体特性が悪化することを低減させる作用を持つ。
ここで用いられる重合活性抑制物質としては、一般的にオレフィン重合触媒の活性を低減させる作用を有し、例えば、電子供与性化合物、活性水素含有化合物、常温、常圧下で気体である酸素含有化合物が挙げられる。
電子供与性化合物としては、アルコキシシラン類、エステル類、エーテル類等が挙げられる。
活性水素含有化合物としては、アルコール類、水等が挙げられる。
常温、常圧下で気体である酸素含有化合物としては、酸素、一酸化炭素、二酸化炭素等が挙げられる。
アルコキシシラン類としては、テトラブトキシシラン、テトラエトキシシラン、テトラメトキシシラン等が挙げられる。
アルコール類としては、メタノール、エタノール、プロパノール、ブタノール等が挙げられる。
重合活性抑制物質として、好ましくは、活性水素含有化合物、又は常温、常圧下で気体である酸素含有化合物であり、より好ましくは、アルコール類、酸素又は一酸化炭素であり、更に好ましくは、メタノール、エタノール、プロパノール、ブタノール、酸素又は一酸化炭素である。
重合活性抑制物質は1種単独で又は2種以上を併用して用いてもよい。
重合活性抑制物質の添加量は、効果に応じて適宜選択することができるが、重合反応や水添反応が必要以上に著しく阻害されないように調整する必要がある。反応器内へは連続的に投入しても断続的に投入しても良い。また、そのまま投入しても、重合反応や水添反応に不活性な有機溶媒で希釈して投入しても良い。
[オレフィン重合用触媒]
本発明に用いるオレフィン重合用触媒としては、オレフィン重合に用いられる公知の重合触媒を使用することができ、チーグラーナッタ系触媒(例えば、特開昭57−63310号公報、特開昭58−83006号公報、特開昭61−78803号公報、特開平7−216017号公報、特開平10−212319号公報、特開昭62−158704号公報、特開平11−92518号公報に記載されている。)、又はメタロセン系触媒(特開平5−155930号公報、特開平9−143217号公報、特開2002−293817号公報、特開2003−171412号公報、特表平8−511044号公報、特開2001−31720号公報に記載されている。)を挙げることができる。
チーグラーナッタ系触媒としては、下記成分(a)、及び下記成分(b)を接触させてなるものが好ましく、下記成分(a)、下記成分(b)、及び下記成分(c)を接触させてなるものがより好ましい。
成分(a):チタン、マグネシウム、及びハロゲンを含有する固体成分
成分(b):有機アルミニウム化合物
成分(c):電子供与性化合物
チタン、マグネシウム、ハロゲンを含有する固体成分(a)の調製方法としては、以下(1)〜(5)の方法を例示することができる。
(1)ハロゲン化マグネシウム化合物とチタン化合物とを接触させる方法。
(2)ハロゲン化マグネシウム化合物と、電子供与体と、チタン化合物とを接触させる方法。
(3)ハロゲン化マグネシウム化合物とチタン化合物とを電子供与性溶媒に溶解させて溶液を得、次いで、該溶液を担体物質に含浸させる方法。
(4)ジアルコキシマグネシウム化合物と、ハロゲン化チタン化合物と、電子供与体とを接触させる方法。
(5)マグネシウム原子、チタン原子および炭化水素オキシ基を含有する固体成分と、ハロゲン化化合物と、電子供与体および/または有機酸ハライドとを接触させる方法。
なかでも(5)の方法により得られる固体成分が好ましく、電子供与体としてフタル酸エステル化合物を含有する固体成分であることがより好ましい。
成分(b)の有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、アルキルアルミニウムハライド、アルキルアルミニウムハイドライド、アルミニウムアルコキシド、アルモキサン等が挙げられる。
トリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等が挙げられる。
アルキルアルミニウムハライドとしては、例えば、ジエチルアルミニウムモノクロライド、ジイソブチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド等が挙げられる。
アルキルアルミニウムハイドライドとしては、例えば、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド等が挙げられる。
アルミニウムアルコキシドとしては、例えば、ジエチルアルミニウムエトキシド、ジエチルアルミニウムフェノキシド等が挙げられる。
アルモキサンとしては、例えば、メチルアルモキサン、エチルアルモキサン、イソブチルアルモキサン、メチルイソブチルアルモキサン等が挙げられる。
これらは、1種単独で用いてもよく、2種以上を併用して用いてもよい。
これらの中でも、トリアルキルアルミニウムが好ましく、トリエチルアルミニウムがより好ましい。
成分(c)の電子性供与化合物としては、下記一般式[3]で表されるケイ素化合物が好ましく用いられる。

3 rSi(OR44-r [3]

(式中、R3は、水素原子、炭素原子数1〜20の炭化水素基、又はヘテロ原子を含有する基を表し、R4は、炭素原子数1〜20の炭化水素基を表し、rは、0〜3の整数を表す。R3が複数ある場合は、複数のR3はそれぞれ同じであっても異なっていてもよい。R4が複数ある場合は、複数のR4はそれぞれ同じであっても異なっていてもよい。)
3の炭素原子数1〜20の炭化水素基としては、例えば、炭素原子数1〜20の直鎖状アルキル基、炭素原子数1〜20の分岐鎖状アルキル基、炭素原子数1〜20のシクロアルキル基、炭素原子数1〜20のシクロアルケニル基、炭素原子数1〜20のアリール基等が挙げられる。
炭素原子数1〜20の直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。
炭素原子数1〜20の分岐鎖状アルキル基としては、例えば、イソプロピル基、sec−ブチル基、tert−ブチル基、tert−アミル基等が挙げられる。
炭素原子数1〜20のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。
炭素原子数1〜20のシクロアルケニル基としては、例えば、シクロペンテニル基等が挙げられる。
炭素原子数1〜20のアリール基としては、例えば、フェニル基、トリル基等が挙げられる。
3のヘテロ原子を含有する基としては、例えば、酸素原子を含有する基、窒素原子を含有する基、硫黄原子を含有する基、リン原子を含有する基等が挙げられる。具体的には、ジメチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基、エチルn−プロピルアミノ基、ジn−プロピルアミノ基等のジアルキルアミノ基、ピロリル基、ピリジル基、ピロリジニル基、ピペリジル基、パーヒドロインドリル基、パーヒドロイソインドリル基、パーヒドロキノリル基、パーヒドロイソキノリル基、パーヒドロカルバゾリル基、パーヒドロアクリジニル基、フリル基、ピラニル基、パーヒドロフリル基、チエニル基等が挙げられ、これらの中でも、ヘテロ原子がケイ素化合物のケイ素原子と直接結合できる基が好ましい。
4の炭素原子数1〜20の炭化水素基としては、R3の炭素原子数1〜20の炭化水素基として例示したものと同じものを挙げることができる。
成分(c)の電子性供与化合物としては、上記一般式[3]において、ケイ素原子と直接結合した炭素原子が2級もしくは3級炭素である炭化水素基、又はジアルキルアミノ基をR3として少なくとも1つ持つケイ素化合物が好ましい。
成分(c)の電子性供与化合物の好ましい具体例としては、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、ジ−tert−ブチルジメトキシシラン、tert−ブチルメチルジメトキシシラン、tert−ブチルエチルジメトキシシラン、tert−ブチル−n−プロピルジメトキシシラン、tert−ブチル−n−ブチルジメトキシシラン、tert−アミルメチルジメトキシシラン、tert−アミルエチルジメトキシシラン、tert−アミル−n−プロピルジメトキシシラン、tert−アミル−n−ブチルジメトキシシラン、イソブチルイソプロピルジメトキシシラン、tert−ブチルイソプロピルジメトキシシラン、ジシクロブチルジメトキシシラン、シクロブチルイソプロピルジメトキシシラン、シクロブチルイソブチルジメトキシシラン、シクロブチル−tert−ブチルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロペンチルイソプロピルジメトキシシラン、シクロペンチルイソブチルジメトキシシラン、シクロペンチル−tert−ブチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルイソプロピルジメトキシシラン、シクロヘキシルイソブチルジメトキシシラン、シクロヘキシル−tert−ブチルジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルフェニルジメトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、フェニルイソプロピルジメトキシシラン、フェニルイソブチルジメトキシシラン、フェニル−tert−ブチルジメトキシシラン、フェニルシクロペンチルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソブチルジエトキシシラン、ジ−tert−ブチルジエトキシシラン、tert−ブチルメチルジエトキシシラン、tert−ブチルエチルジエトキシシラン、tert−ブチル−n−プロピルジエトキシシラン、tert−ブチル−n−ブチルジエトキシシラン、tert−アミルメチルジエトキシシラン、tert−アミルエチルジエトキシシラン、tert−アミル−n−プロピルジエトキシシラン、tert−アミル−n−ブチルジエトキシシラン、ジシクロペンチルジエトキシシラン、ジシクロヘキシルジエトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジエトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジエトキシシラン、2−ノルボルナンメチルジメトキシシラン、ビス(パーヒドロキノリノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、(パーヒドロキノリノ)(パーヒドロイソキノリノ)ジメトキシシラン、(パーヒドロキノリノ)メチルジメトキシシラン、(パーヒドロイソキノリノ)メチルジメトキシシラン、(パーヒドロキノリノ)エチルジメトキシシラン、(パーヒドロイソキノリノ)エチルジメトキシシラン、(パーヒドロキノリノ)(n−プロピル)ジメトキシシラン、(パーヒドロイソキノリノ)(n−プロピル)ジメトキシシラン、((パーヒドロキノリノ)(tert−ブチル)ジメトキシシラン、(パーヒドロイソキノリノ)(tert−ブチル)ジメトキシシラン、及びジエチルアミノトリエトキシシランが挙げられる。
これらは、1種単独で用いても良く、2種以上を併用して用いても良い。
オレフィン重合用触媒としてメタロセン系触媒を用いる場合は、メタロセン化合物としては、下記一般式[4]で表されるメタロセン化合物であるのが好ましい。

CpnMX4-n [4]

(式中、Cpは置換若しくは非置換のシクロペンタジエニル基、インデニル基又はフルオレニル基から選ばれる基、Mはジルコニウム、ハフニウムから選ばれる元素、Xは、水素、ハロゲン、アルコキシ基、アミノ基、炭素数1〜10個のアルキル基、又はアリーロキシ基から選ばれる基、複数のCpおよびXは互いに架橋基を介して結合してもよい。nは、1〜3の整数を表す。)
[重合工程]
本発明のオレフィン重合体の製造方法は、バッチ重合プロセスにも連続重合プロセスにも適用できる。また、例えばメタロセン系触媒をオレフィン重合用触媒とする場合、生成オレフィン重合体は末端に不飽和結合を持つものとして得られることが多いが、そのような不飽和結合は一旦生成した飽和末端が脱水素されて形成されるもののようであって、従って循環オレフィン中にはそのような水素が徐々に濃縮される可能性がある。よって、このような場合、単段の重合工程でその水素濃度を制御する技術として本発明が適用できる。
また、重合条件の異なる複数の重合工程を有する多段重合においても本発明が必要となる場合がある。多段重合は、ひとつの反応器で重合条件を変化させて重合を行っても、直列に接続された重合条件の異なる複数の反応器で重合を行ってもよい。ひとつの反応器で後段水素濃度を前段と比較して効率良く低い条件とする場合、あるいは、複数の反応器での多段重合において、前段反応器から後段反応器にパウダーと共に流入する水素を効率良く低減させるために本発明が適用できる。
従って、本発明のオレフィン重合体の製造方法においては、水素を含有する気相の存在下でオレフィンを重合できるものであれば、重合条件が単一の単段重合でも重合条件の異なる複数の重合工程からなる多段重合でもよく、ひとつの反応器を用いて重合を行っても、複数の反応器で重合を行ってもよい。ここで重合条件とは、重合形式、温度、圧力、原料組成等を指し、重合形式とは、液相重合あるいは気相重合を指す。多段重合の場合、水素添加触媒を添加する重合工程の前段が液相重合でも気相重合でもよい。液相重合とは、バルク重合やスラリー重合のことを指し、気相重合とは、攪拌槽式気相重合、流動層式気相重合、噴流層式気相重合を指す。本発明における気相重合としては、円塔型の反応器にガス分散板を備え、鉛直上方にガスを流通させる流動層式のものが好ましい。
流動層式気相重合における水素添加触媒の添加位置は、重合体と水素添加触媒がよく混ざって水添性能が上がる観点から、分散板直上に形成されるベッド部内であることが好ましい。分散板の高さを0、ベッド部の高さをHとした場合、0〜0.5Hの部分に添加するのが好ましく、0〜0.3Hの部分に添加するのが最も好ましい。
本発明に用いる水素添加触媒は、ベッド部に添加するのが好ましい。ベッド部とは、気相反応器中の流動状態での重合パウダーのかさ密度(以下、「ベッド密度」と記載することがある。)が0.10g/cc以上のパウダー濃厚部のことである。本発明においては、ベッド密度が0.13g/cc以上0.70g/cc以下のベッド部に水素添加触媒を添加するのが好ましく、ベッド密度が0.16g/cc以上0.50g/cc以下のベッド部に水素添加触媒を添加するのがより好ましい。
水素添加触媒の投入量は、反応器内の重合パウダー1kgに対する水素添加触媒の金属原子のモル量(mmol/kg)が、0.0001mmol/kg以上1mmol/kg以下が好ましく、0.0003mmol/kg以上0.5mmol/kg以下がより好ましく、0.001mmol/kg以上0.1mmol/kg以下が最も好ましい。
また、水素添加触媒は、反応器内に連続的に投入しても断続的に投入してもよい。
[本重合]
本発明のオレフィン重合体の製造方法において、気相反応器で製造されるオレフィン重合体としては、単独重合体であっても、共重合体であってもよい。本発明において、重合されるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン、1,4−ヘキサジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネン等が例示できるが、所望重合体製品の種類によって決定される。即ち、単独重合体製品として、例えばポリエチレン、ポリプロピレン、ポリブテン等を、また共重合体製品として、EPR(エチレン−プロピレン共重合体)、PBR(プロピレン−ブテン共重合体)、EPBR(エチレン−プロピレン−ブテン共重合体)等を製造する場合には、重合工程に使用されるオレフィンとしては、エチレン、プロピレン、ブテンであり、それ以外の極少量のオレフィンを使用する場合がある。
多段重合の場合は、各段で同じ重合体を製造しても良いし、組成の異なる重合体を製造しても良い。各段で同じ重合体を製造する場合は、後段の気相反応器内に水素添加触媒を添加することで、後段の気相反応器内の水素濃度を低減し、前段で製造する重合体に比して、後段で製造する重合体の方が分子量が高くなり、その結果、広い分子量分布を有するオレフィン重合体を製造することができる。また、各段で組成の異なる重合体を製造する場合は、前段で製造する組成の重合体の分子量を低くし、後段で製造する前段と異なる組成の重合体の分子量を高くしたオレフィン重合体を製造する際に本発明を用いることができる。
本発明のオレフィン重合体の製造方法おいては、水素及びオレフィン重合用触媒の存在下に、プロピレンを重合させてプロピレン単独重合体を得る第1重合工程と、前記第1重合工程によって得られたプロピレン単独重合体の存在下に、エチレン及びプロピレンを共重合させてエチレンとプロピレンとの共重合体を得る第2重合工程とを有するエチレン−プロピレンブロック共重合体の製造方法であって、前記第2重合工程が、気相反応器を使用し、該気相反応器内に、水素添加触媒を添加する工程及び重合活性抑制物質を添加する工程を有するエチレン−プロピレンブロック共重合体の製造方法であるのが好ましい。
前記エチレン−プロピレンブロック共重合体の製造方法においては、前記第1重合工程で生成するプロピレン単独重合体の極限粘度に対する前記第2重合工程で生成するエチレンとプロピレンとの共重合体の極限粘度の比が、好ましくは、2〜20であり、より好ましくは、2.5〜15であり、更に好ましくは、3.5〜10である。
また、前記第1重合工程及び/又は前記第2重合工程は、単段の重合工程であっても、多段の重合工程であってもよい。
重合温度はモノマーの種類、製品の分子量等によっても異なるが、オレフィン重合体の融点以下であり、好ましくは融点より10℃以上低い温度であり、更に好ましくは室温〜200℃であり、特に好ましくは40〜160℃であり、最も好ましくは60〜130℃である。また重合温度をこの範囲に維持するため、重合系は冷却器で冷却される。その他、重合圧力は、大気圧〜15MPaであり、好ましくは0.2〜7MPaであり、最も好ましくは1〜5MPaである。
本発明においては、多段重合に適用する場合は、前段の気相部の水素濃度が30%以下の条件にすることが好ましい。水素濃度が30%を超える程高くても本発明の製造方法を実施する上で特に支障はないが、後段に持ち込まれる多量の水素により気相反応器内で生成するオレフィン水素化物(プロパン、エタン等)の濃度が高くなり、後段の重合活性が低下するので、水素濃度が余り高すぎるのは好ましくない。
[予備重合]
重合工程の前に少量のオレフィンを重合(以下、予備重合と称する。)し、予備重合触媒成分としてもよい。予備重合されるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン、1,4−ヘキサジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネン等が例示できる。予備重合されるオレフィンの量は、触媒成分1g当たり、通常、0.1〜200gであり、該予備重合の方法としては、公知の方法があげられ、例えば、触媒成分及び有機アルミニウム化合物の存在下、少量のオレフィンを供給して溶媒を用いてスラリー状態で予備重合を実施する方法があげられる。予備重合に用いられる溶媒としては、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ベンゼン、トルエンなどの不活性炭化水素及び液状のオレフィンがあげられ、これらは2種類以上混合して用いてもよい。また、予備重合におけるスラリー濃度は、溶媒1L当たりに含まれる触媒成分の重量として、通常1〜500gであり、好ましくは3〜150gである。
予備重合における有機アルミニウム化合物の使用量は、触媒成分に含まれる遷移金属原子1モル当たり0.1〜700モルであり、好ましくは0.2〜200モルであり、より好ましくは0.2〜100モルである。予備重合において、必要に応じてアルコキシケイ素化合物などの電子供与体を共存させてもよく、電子供与体の使用量は、触媒成分に含まれる遷移金属原子1モル当たり、好ましくは0.01〜400モルであり、より好ましくは0.02〜200モルであり、さらに好ましくは0.03〜100モルである。
予備重合温度は、通常−20〜100℃であり、好ましくは0〜80℃である。また、予備重合時間は、通常2分〜15時間である。
以下、実施例及び比較例により本発明を説明する。物性測定及び評価は、下記の方法で行った。
(1)極限粘度(単位:dl/g)
ウベローデ粘度計を用いて、テトラリン溶媒及び温度135℃の条件で、濃度0.1、0.2、及び0.5g/dlの3点について還元粘度を測定した。次に「高分子溶液、高分子実験学11」(1982年共立出版会社刊)第491頁に記載の計算法に従い、還元粘度を濃度に対しプロットし、濃度をゼロに外挿する外挿法によって極限粘度を求めた。
(2)共重合部含有量(単位:重量%)
第1段共重合工程で生成した共重合部含有量X(重量%)は、下記式により算出した。
X=(Pb−Pa)/Pb×100
Pa:第3段プロピレン重合工程から排出された時間当りのポリマー重量
Pb:第1段共重合工程から排出された時間当りのポリマー重量
(3)共重合部で生成した重合体の極限粘度(単位:dl/g)
第3段プロピレン重合工程で生成した重合体成分の極限粘度[η]a(dl/g)、および第1段共重合工程で生成した重合体成分の極限粘度[η]b(dl/g)は、下記式により算出した。
[η]a=[η]1
[η]b=([η]2−[η]a×(1−X/100))/(X/100)
[η]1:第3段プロピレン重合工程後の重合体の極限粘度(dl/g)
[η]2:第1段共重合工程後の重合体の極限粘度(dl/g)
(4)嵩比重(単位:g/cc)
パウダーの嵩比重(g/cc)は、JIS K−6721(1966)に従って測定した。
(5)凝集塊の割合(ppm)
凝集塊の割合Y(ppm)は、下記式により算出した。
Y=(Y1/Y2)×106
Y1=JIS Z−8801(APERTURE:2mm)のふるいでふるった時の、ふるいの上に残ったパウダーの重量(g)
Y2=上記にて、ふるったパウダーの重量(g)
[実施例1]
[チタノセン化合物溶液の調製]
内容積1Lのフラスコ内を窒素で置換した。この容器内にジシクロペンタジエニルチタニウムジクロリド(関東化学製)4.5g、ヘキサン928mLを投入すると共に室温で攪拌し、トリエチルアルミニウム72ミリモルを投入して溶液を得た。この溶液を、更にヘキサンで希釈した。
[予備重合]
内容積3Lの撹拌機付きSUS製オートクレーブに、充分に脱水及び脱気処理したn−ヘキサン1.5L、トリエチルアルミニウム30ミリモル、シクロヘキシルエチルジメトキシシラン3.0ミリモルを収容させた。その中に特願2008−277945号の実施例1と同様の方法で製造した固体触媒成分16gを添加し、オートクレーブ内の温度を約3〜10℃に保ちながらプロピレン32gを約40分かけて連続的に供給して予備重合を行った。その後、予備重合スラリーを内容積200Lの攪拌機付きSUS製オートクレーブに移送し、液状ブタン132Lを加えて、予備重合触媒成分のスラリーとした。
上記のようにして調製した予備重合触媒成分のスラリーを用いて3段階のプロピレン単
独重合をそれぞれ異なるリアクターで行ってポリプロピレン粒子を製造した。その後、このポリプロピレン粒子の存在下、1段階のプロピレンとエチレンとの共重合を行ってプロピレン−エチレンブロック共重合体を製造した。以下、各重合ステージについて説明する。
[第1段プロピレン重合(液相重合反応)]
内容積163Lの攪拌機付きベッセルタイプのリアクターを用いて、プロピレンの単独重合を行った。すなわち、プロピレン、水素、トリエチルアルミニウム、シクロヘキシルエチルジメトキシシラン及び予備重合触媒成分のスラリーをリアクターに連続的に供給した。反応条件は、重合温度:73℃、攪拌速度:150rpm、リアクターの液レベル:44L、プロピレンの供給量:25kg/時間、水素の供給量:160NL/時間、トリエチルアルミニウムの供給量:40.6ミリモル/時間、シクロヘキシルエチルジメトキシシランの供給量:5.9ミリモル/時間、予備重合触媒成分のスラリーの供給量(重合触媒成分換算):0.445g/時間とした。当該リアクターにおいては、スラリーの平均滞留時間は0.73時間であり、排出されたポリプロピレン粒子量は5.0kg/時間であった。
[第2段プロピレン重合(液相重合反応)]
上記第1段のプロピレン重合を経たスラリーを、別のリアクター(ベッセルタイプ)に連続的に移送し、プロピレンの単独重合を更に行った。なお、当該リアクターに対しては、プロピレン及び水素の供給は行わなかった。反応条件は、重合温度:69℃、攪拌速度:150rpm、リアクターの液レベル:44Lとした。当該リアクターにおいては、スラリーの平均滞留時間は0.84時間であり、排出されたポリプロピレン粒子量は9.3kg/時間であった。
[第3段プロピレン重合(気相重合反応)]
上記第2段のプロピレン重合を経て得られたポリプロピレン粒子を、内容積1.4m3の攪拌機付き流動層反応器に連続的に移送し、このリアクターにプロピレン、水素を連続的に供給し、圧力を一定に保つように過剰ガスをパージしながら、プロピレンの単独重合を更に行った。反応条件は、重合温度:80℃、重合圧力:1.8MPa、循環ガス風量:100m3/時間、プロピレンの供給量:10kg/時間、水素の供給量:930NL/時間、流動層の重合体粒子ホールド量:50kgとした。当該反応器においては、ポリマー粒子の平均滞留時間は3.5時間であり、反応器内ガスの濃度比(モル%):水素/(水素+プロピレン)=8.9、排出されたポリマー粒子量は14.1kg/時間、その極限粘度は0.97dl/gであった。
[第1段共重合(気相重合反応)]
上記第3段のプロピレン重合を経て得られたポリプロピレン粒子を、別の内容積1m3のガス分散板、攪拌機付き流動層反応器に連続的に移送し、この反応器にプロピレン、エチレン及び水素を連続的に供給し、圧力を一定に保つように過剰ガスをパージしながら、プロピレンとエチレンとの共重合を行った。反応条件は、重合温度:70℃、重合圧力:1.4MPa、循環ガス風量:150m3/時間、プロピレンの供給量:22.5kg/時間、エチレンの供給量:8.3kg/時間、水素の供給量:200NL/時間、流動層の重合体粒子ホールド量:55kgとした。また、第1段プロピレン重合反応器に供給したトリエチルアルミニウム1モルに対し、チタノセン分子量に換算して2.56ミリモルに相当する量の上記チタノセン化合物溶液を、ベッド部に添加した。ベッド部のベッド密度は、303g/ccであった。また、第1段プロピレン重合反応器に供給したトリエチルアルミニウム1モルに対し、酸素分子量に換算して4.2ミリモルに相当する量の酸素を、重合活性抑制物質として当該反応器に添加した。当該反応器においては、ポリマー粒子の平均滞留時間は2.9時間であり、反応器内ガスの濃度比(モル%):エチレン/(プロピレン+エチレン)=27、水素/(水素+プロピレン+エチレン)=0.59、排出されたポリマー粒子量は19.1kg/時間、排出されたポリマー粒子の重合パウダーのかさ密度は0.452g/cc、凝集塊の割合は1110ppmであった。
[実施例2]
酸素の代わりにエタノールを、第1段プロピレン重合反応器に供給したトリエチルアルミニウム1モルに対し、エタノール分子量に換算して0.79モルに相当する量を、重合活性抑制物質として当該反応器に添加すること以外は、実施例1と同じ共重合部反応器内ガス濃度比(モル%)になるようにガス供給量を調整し、また、実施例1と同じ共重合部含有量となるように共重合部ホールド量を調整した。この時のベッド部のベッド密度は、310g/ccであった。当該反応器においては、水素供給量は270NL/Hであった。排出されたポリマー粒子の重合パウダーのかさ密度は0.464g/cc、凝集塊の割合は803ppmであった。
[比較例1]
酸素を添加しないこと以外は、実施例1と同じ共重合部反応器内ガス濃度比(モル%)になるようにガス供給量を調整し、また、実施例1と同じ共重合部含有量となるように共重合部ホールド量を調整した。当該反応器においては、水素供給量は433NL/Hと、十分な水添反応の進行が認められたが、排出されたポリマー粒子の重合パウダーのかさ密度は0.394g/cc、凝集塊の割合は34775ppmと、パウダー性状は悪化した。
[比較例2]
チタノセン化合物溶液および酸素を投入しないこと以外は、実施例1と同じ共重合部反応器内のガス濃度比(モル%)になるようにガス供給量を調整し、また、実施例1と同じ共重合部含有量となるように共重合部ホールド量を調整した。当該反応器においては、水素供給量は22NL/Hと、水添反応の進行は認められず、排出されたポリマー粒子の重合パウダーのかさ密度は0.449g/cc、凝集塊の割合は1173ppmと、パウダー性状は良好であった。

Claims (2)

  1. 気相反応器を使用し、水素の存在下にオレフィン重合用触媒を用いてオレフィンを重合させるオレフィン重合体の製造方法であって、
    該気相反応器内に重合活性抑制物質を添加する工程と、
    該気相反応器内のベッド部に、前記オレフィン重合用触媒とは別に、水素添加触媒を添加する工程
    を有するオレフィン重合体の製造方法。
  2. 重合活性抑制物質が、活性水素含有化合物、又は常温、常圧下で気体である酸素含有化合物である請求項1に記載のオレフィン重合体の製造方法。
JP2009184213A 2008-08-08 2009-08-07 オレフィン重合体の製造方法 Expired - Fee Related JP5482008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184213A JP5482008B2 (ja) 2008-08-08 2009-08-07 オレフィン重合体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008205263 2008-08-08
JP2008205263 2008-08-08
JP2009184213A JP5482008B2 (ja) 2008-08-08 2009-08-07 オレフィン重合体の製造方法

Publications (2)

Publication Number Publication Date
JP2010059414A JP2010059414A (ja) 2010-03-18
JP5482008B2 true JP5482008B2 (ja) 2014-04-23

Family

ID=41653532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184213A Expired - Fee Related JP5482008B2 (ja) 2008-08-08 2009-08-07 オレフィン重合体の製造方法

Country Status (4)

Country Link
US (1) US7960486B2 (ja)
JP (1) JP5482008B2 (ja)
CN (2) CN105732850A (ja)
DE (1) DE102009036410A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000106B2 (en) * 2012-05-02 2015-04-07 Exxonmobil Chemical Patents Inc. Copolymer production system and process
WO2017034722A1 (en) * 2015-08-26 2017-03-02 Exxonmobil Chemical Patents Inc. Method of regulating hydrogen to a polymerization reactor
CN109641986A (zh) * 2016-08-23 2019-04-16 埃克森美孚化学专利公司 烯烃聚合方法
JP7313350B2 (ja) 2017-12-18 2023-07-24 ダウ グローバル テクノロジーズ エルエルシー ジルコノセン-チタノセン触媒系

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPH07651B2 (ja) 1984-09-26 1995-01-11 三菱油化株式会社 オレフイン重合体の製造法
JPH06104693B2 (ja) 1986-01-06 1994-12-21 東邦チタニウム株式会社 オレフイン類重合用触媒
US4851488A (en) * 1987-04-23 1989-07-25 Shell Oil Company Process for altering hydrogenated polymer compositions from high melt flow to low melt flow
JP3230762B2 (ja) 1991-05-31 2001-11-19 三井化学株式会社 オレフィン重合用触媒およびオレフィンの重合方法
JP3338542B2 (ja) * 1992-12-30 2002-10-28 新日本石油化学株式会社 オレフィン気相重合反応器の運転法
JP3626186B2 (ja) 1993-05-25 2005-03-02 エクソンモービル・ケミカル・パテンツ・インク オレフィンの重合用の担持されたメタロセン触媒系、その製造法及び使用
JP2950168B2 (ja) 1993-12-08 1999-09-20 住友化学工業株式会社 α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法
JP3497080B2 (ja) 1994-05-12 2004-02-16 昭和電工株式会社 プロピレン系重合体の重合用触媒成分の製法
JPH08151408A (ja) 1994-11-30 1996-06-11 Tonen Corp α− オレフィンの重合方法
JPH09143217A (ja) 1995-11-24 1997-06-03 Sumitomo Chem Co Ltd オレフィン重合用触媒及びオレフィン重合体の製造方法
JP3832039B2 (ja) 1996-08-23 2006-10-11 住友化学株式会社 α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法
JP3518965B2 (ja) 1997-01-28 2004-04-12 三井化学株式会社 重合反応器内の水素濃度の制御方法及び制御装置
US6417298B1 (en) * 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
JP4754041B2 (ja) 1999-07-19 2011-08-24 日本ポリプロ株式会社 オレフィン重合用触媒成分及びそれを用いたオレフィン重合用触媒
US6288178B1 (en) * 1999-12-06 2001-09-11 Uop Llc Process for reducing transient operation time in polymerization reactors
JP3860702B2 (ja) * 2000-03-16 2006-12-20 株式会社プライムポリマー ポリオレフィンの製造方法および気相重合装置
JP3960039B2 (ja) 2000-12-26 2007-08-15 住友化学株式会社 改質された粒子およびその製造方法、担体、付加重合用触媒成分、付加重合用触媒ならびに付加重合体の製造方法
JP2002293817A (ja) 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd 予備重合済オレフィン重合用触媒成分、オレフィン重合用触媒、およびオレフィン重合体の製造方法
JP5261893B2 (ja) 2006-07-18 2013-08-14 富士電機株式会社 トレンチ型絶縁ゲートバイポーラトランジスタ
US7897705B2 (en) * 2008-08-08 2011-03-01 Sumitomo Chemical Company, Limited Process for producing olefin polymer

Also Published As

Publication number Publication date
US7960486B2 (en) 2011-06-14
US20100036076A1 (en) 2010-02-11
DE102009036410A1 (de) 2010-11-18
JP2010059414A (ja) 2010-03-18
CN105732850A (zh) 2016-07-06
CN101643522A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5521431B2 (ja) 水素添加触媒及びオレフィン重合体の製造方法
JP5577645B2 (ja) オレフィン重合体の製造方法
RU2443715C1 (ru) Твердый титановый компонент катализатора, катализатор полимеризации олефинов и способ полимеризации олефинов
EP2872538B1 (en) Ziegler-natta catalyst systems comprising a 1,2-phenylenedioate as internal donor and process for preparing the same
KR100505547B1 (ko) α-올레핀 중합용 고체 촉매 성분
EP3031832B1 (en) Method for preparing polyolefin
EP1533322B1 (en) Solid catalyst component for olefin polymerization and catalyst
EP2966099B1 (en) Particle size distribution control through internal donor in ziegler-natta catalyst
JP5554416B2 (ja) プロピレン重合用固体触媒の製造方法
EP3040124A1 (en) Method for producing hybrid-supported metallocene catalyst
JP2016510835A (ja) 1−オレフィン重合触媒のための混合内部供与体構造
JP2009532516A (ja) オレフィン重合および共重合方法
KR20180051222A (ko) 폴리프로필렌의 제조 방법
JP5482008B2 (ja) オレフィン重合体の製造方法
JPH1160625A (ja) オレフィン重合用固体触媒成分、オレフィン重合用触 媒及びオレフィン重合体の製造方法
KR20040014159A (ko) α-올레핀 중합용 촉매의 제조방법, 및 α-올레핀중합체의 제조방법
JP2013501129A (ja) 高メルトフローおよび高活性のための混合供与体系
JP2007204613A (ja) α−オレフィン重合用触媒およびα−オレフィン重合体の製造法
JP4505085B2 (ja) オレフィン重合触媒、オレフィン重合体の製造方法及びオレフィン重合体
JP5058401B2 (ja) オレフィン重合触媒、オレフィン重合体の製造方法及びオレフィン重合体
JP2004519530A (ja) エチレンおよびα−オレフィン類を重合するための触媒担体の製造方法、得られる担体並びに対応する触媒
JP2010275382A (ja) プロピレン単独重合体またはプロピレン系ランダム共重合体の製造方法
EP2003150A1 (en) A process for preparation of polyolefin alloy
EP3162819B1 (en) Improved ziegler-natta catalyst synthesis and process thereof
US20080312390A1 (en) Process for preparation of polyolefin alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees