JP5457429B2 - リチウムイオン二次電池用電解液及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用電解液及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP5457429B2
JP5457429B2 JP2011500586A JP2011500586A JP5457429B2 JP 5457429 B2 JP5457429 B2 JP 5457429B2 JP 2011500586 A JP2011500586 A JP 2011500586A JP 2011500586 A JP2011500586 A JP 2011500586A JP 5457429 B2 JP5457429 B2 JP 5457429B2
Authority
JP
Japan
Prior art keywords
group
lithium
ion secondary
lithium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011500586A
Other languages
English (en)
Other versions
JPWO2010095572A1 (ja
Inventor
亜沙美 大橋
義行 石井
浩明 岡本
由紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Asahi Kasei E Materials Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY, Asahi Kasei E Materials Corp filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2011500586A priority Critical patent/JP5457429B2/ja
Publication of JPWO2010095572A1 publication Critical patent/JPWO2010095572A1/ja
Application granted granted Critical
Publication of JP5457429B2 publication Critical patent/JP5457429B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池用電解液及びリチウムイオン二次電池に関する。
従来、各種産業分野で有機液体類を固化するのに、低分子量又は高分子量の有機ゲル化剤が用いられている。低分子量のゲル化剤としては、例えばアミノ基、アミド基、尿素基などの水素結合性官能基を分子内に有する低分子量化合物群が知られている。低分子量のゲル化剤は、化粧品、香粧品、汚泥処理などの分野で好適に用いられている。
一方、高分子ゲル化剤とは、三次元的なネットワーク構造を分子内に有する高分子化合物群のことである。高分子ゲル化剤として、例えばポリエーテル系化合物などがよく知られている。
高分子ゲル化剤についての研究例は多く、様々な分野に展開されている。
低分子量の有機ゲル化剤は、高分子量のものに比べて開発が比較的遅く、知られているゲル化剤の種類は少ない。低分子量の有機ゲル化剤として、例えば、ジアルキルウレア誘導体(特許文献1)、ペルフルオロアルキル誘導体(特許文献2、3、非特許文献1)が知られている。
特開平8−231942号公報 特開2007−191626号公報 特開2007−191661号公報
J.Fluorine Chem.110、p47−58(2001年)
ところで、現在、リチウムイオン二次電池は携帯機器の充電池として主に用いられている。ところが、リチウムイオン二次電池には有機溶媒系の電解液が用いられており、その安全性の更なる改善は大きな課題となっている。特に、近い将来に展開が期待されている自動車用途ではこれまで以上に高い電池安全性(非漏洩、難燃、デンドライド抑制等)が求められる。そのため、例えばポリマー(ゲル)電池、イオン性液体やフルオロ溶媒を電解液として用いた電池などの開発が進められている。しかしながら、現在のところ、安全性と電池特性とはトレードオフの関係になっているのが実情であり、安全性と電池特性(充放電特性、低温作動性、高温耐久性等)とを両立することは困難である。例えば、ポリマー(ゲル)電池は電池安全性に加えて電池小型化や形態自由度を増す観点からも期待されているが、既存のドライポリマー電池は電池特性(特に低温作動性)が高いものとはいえない。また、ゲルポリマー電池は、ドライポリマー電池よりも電池特性(特にレート特性や低温作動性)の改善効果は認められるものの、液状の電解質電池には及ばない。
一方、低分子量の有機ゲル化剤を用いた電池の研究例は、現在のところ、ほとんどない。
そこで、本発明は上記事情にかんがみてなされたものであり、高い電池特性を有すると同時に高い安全性をも実現するリチウムイオン二次電池用電解液及びリチウムイオン二次電池を提供することを目的とする。
本発明者らは上記目的を達成すべく、上記特許文献に記載のものを始めとする低分子量の有機ゲル化剤について、そのリチウムイオン二次電池への応用の可能性を検討した。その結果、特定の低分子量の有機ゲル化剤が高い電池特性と高い安全性とを両立できることを見出し、本発明を完成するに至った。
すなわち、本発明は下記のとおりである。
[1]非水溶媒と、リチウム塩と、下記一般式(1)で表される化合物と、を含有するリチウムイオン二次電池用電解液。
Figure 0005457429
(式中、Arは置換又は無置換の核原子数5〜30の2価の芳香族基を示し、Rは飽和又は不飽和の炭素数1〜20の1価の炭化水素基を示し、mは2〜16の自然数を示し、pは0〜6の整数を示す。)
[2]前記Arは、置換又は無置換の核原子数8〜20の2価の芳香族基である、[1]に記載のリチウムイオン二次電池用電解液。
[3]前記Arは、ビフェニレン基、ナフチレン基、ターフェニレン基及びアントラニレン基からなる群より選ばれる基である、[1]又は[2]に記載のリチウムイオン二次電池用電解液。
[4]前記非水溶媒は、2種類以上の溶媒の混合溶媒である、[1]〜[3]のいずれか一つに記載のリチウムイオン二次電池用電解液。
[5]前記電解液はゲル化したものである、[1]〜[4]のいずれか一つに記載のリチウムイオン二次電池用電解液。
[6][1]〜[5]のいずれか一つに記載のリチウムイオン二次電池用電解液と、
正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有する正極と、
負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有する負極と、
を備えるリチウムイオン二次電池。
[7]前記正極は、前記正極活物質として、リチウム含有化合物を含む、[6]に記載のリチウムイオン二次電池。
[8]前記リチウム含有化合物は、リチウムを有する金属酸化物及びリチウムを有する金属カルコゲン化物からなる群より選ばれる1種以上の化合物を含む、[7]に記載のリチウムイオン二次電池。
[9]前記負極は、前記負極活物質として、金属リチウム、炭素材料、及び、リチウムと合金形成が可能な元素を含む材料、からなる群より選ばれる1種以上の材料を含有する、[6]〜[8]のいずれか一つに記載のリチウムイオン二次電池。
本発明によると、高い電池特性(例えば、充放電特性、低温作動性、高温耐久性)を有すると同時に高い安全性(例えば、漏液低減性、デンドライド抑制性、難燃性)をも実現するリチウムイオン二次電池用電解液及びリチウムイオン二次電池を提供することができる。
本実施形態のリチウムイオン二次電池の一例を概略的に示す断面図である。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本実施形態のリチウムイオン二次電池用電解液(以下、単に「電解液」ともいう。)は非水溶媒とリチウム塩と上記一般式(1)で表される化合物からなる群より選ばれる1種以上の化合物とを含有する。また、本実施形態のリチウムイオン二次電池は、上記電解液と、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有する正極と、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な負極材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有する負極とを備えるものである。
<電解液>
本実施形態に係る電解液は、(i)非水溶媒と(ii)リチウム塩と(iii)ゲル化剤とを含有する。
(i)非水溶媒としては、非プロトン性溶媒が挙げられ、非プロトン性極性溶媒が好ましい。その具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、トランス−2,3−ブチレンカーボネート、シス−2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、トランス−2,3−ペンチレンカーボネート、シス−2,3−ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネートに代表される環状カーボネート;γ−ブチロラクトン、γ−バレロラクトンに代表されるラクトン;スルホランに代表される環状スルホン;テトラヒドロフラン、ジオキサンに代表される環状エーテル;メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、メチルトリフルオロエチルカーボネートに代表される鎖状カーボネート;アセトニトリルに代表されるニトリル;ジメチルエーテルに代表されるエーテル;プロピオン酸メチルに代表される鎖状カルボン酸エステル;ジメトキシエタンに代表される鎖状エーテルカーボネート化合物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
特にリチウムイオン二次電池の充放電に寄与するリチウム塩の電離度を高めるために、非水溶媒は、環状の非プロトン性極性溶媒を1種類以上含むことが好ましく、特に、環状カーボネートを1種類以上含むことがより好ましい。
また、非水溶媒は、リチウム塩の溶解性、伝導度及び電離度という機能を全て良好にするために、2種以上の溶媒の混合溶媒であることが好ましい。この混合溶媒における非水溶媒としては、上記と同様のものを例示できる。
(ii)リチウム塩は、通常の非水電解質として用いられているものであれば特に限定されず、いずれのものであってもよい。そのようなリチウム塩の具体例としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO2k+1〔kは1〜8の整数〕、LiN(SO2k+1〔kは1〜8の整数〕、LiPF(C2k+16−n〔nは1〜5の整数、kは1〜8の整数〕、LiBF((C2k+14−n〔nは1〜3の整数、kは1〜8の整数〕、LiB(Cで表されるリチウムビスオキサリルボレート、LiBF(C)で表されるリチウムジフルオロオキサリルボレート、LiPF(C)で表されるリチウムトリフルオロオキサリルフォスフェートが挙げられる。
また、下記一般式(5a)、(5b)及び(5c)で表されるリチウム塩を用いることもできる。
LiC(SO11)(SO12)(SO13) (5a)
LiN(SOOR14)(SOOR15) (5b)
LiN(SO16)(SOOR17) (5c)
ここで、式中、R11、R12、R13、R14、R15、R16及びR17は、互いに同一であっても異なっていてもよく、炭素数1〜8のパーフルオロアルキル基を示す。
これらのリチウム塩は1種を単独で又は2種以上を組み合わせて用いられる。これらのリチウム塩のうち、特に、LiPF、LiBF及びLiN(SO2k+1〔kは1〜8の整数〕が好ましい。
リチウム塩は、電解液中に好ましくは0.1〜3モル/リットル、より好ましくは0.5〜2モル/リットルの濃度で含有される。
(iii)ゲル化剤には、上記一般式(1)で表される化合物を用いる。
上記一般式(1)で表される化合物(以下、「化合物(1)」と表記する。)は、ペルフルオロアルキル(オリゴメチレン)スルホニル基と炭化水素オキシ基とを有する芳香族化合物である。一般式(1)において、Arは置換又は無置換の核原子数5〜30の2価の芳香族基を示す。その2価の芳香族基は、いわゆる「芳香族性」を示す環式の2価の基である。この2価の芳香族基は、炭素環式の基であっても複素環式の基であってもよい。これらの2価の芳香族基は、置換基により置換されていてもよく、置換されていない無置換のものであってもよい。2価の芳香族基の置換基は、後述のペルフルオロアルキル(オリゴメチレン)チオ基の導入及び炭化水素オキシ基の導入を容易に可能にする観点から選ぶこともできる。あるいは、2価の芳香族基の置換基は、ゲル化剤の溶解温度及びゲル化能の観点から選ぶこともできる。
炭素環式の基は、その核原子数が6〜30であり、置換基により置換されていてもよく、置換されていない無置換のものであってもよい。その具体例としては、例えば、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ピレニレン基、クリセニレン基及びフルオランテニレン基に代表される核を有する2価の基が挙げられる。
複素環式の基は、その核原子数が5〜30であり、例えば、ピローレン基、フラニレン基、チオフェニレン基、トリアゾーレン基、オキサジアゾーレン基、ピリジレン基及びピリミジレン基に代表される核を有する2価の基が挙げられる。
Arは、原料入手容易性及び合成容易性の観点並びに電解液に対するゲル化能の観点から、置換又は無置換の核原子数8〜20の2価の芳香族基であると好ましく、ビフェニレン基、ナフチレン基、ターフェニレン基及びアントラニレン基からなる群より選ばれる基であるとより好ましい。
また、上記置換基としては、メチル基及びエチル基に代表されるアルキル基、並びにハロゲン原子が挙げられる。
は飽和又は不飽和の炭素数1〜20の1価の炭化水素基を示し、脂肪族炭化水素基であってもよく、更に芳香族炭化水素基を有していてもよい。この炭化水素基が1価の脂肪族炭化水素基である場合、分岐していてもよく分岐していなくてもよい。また、1価の炭化水素基が芳香族炭化水素基を有する場合、その芳香族炭化水素基が更に置換基を有していてもよく有していなくてもよい。ただし、その1価の炭化水素基は、化合物(1)が非水溶媒に溶解して、その非水溶媒をゲル化させるために、ベンジル基に代表されるアリールアルキル基等の、化合物(1)を非水溶媒に溶解可能にする炭化水素基である必要がある。その1価の炭化水素基の炭素数が21以上であると、原料の入手が困難となる。Rで示される1価の炭化水素基は、本発明による上記効果をより有効かつ確実に奏する観点から、炭素数1〜14のアルキル基であると好ましく、炭素数5〜14のアルキル基であるとより好ましく、炭素数6〜10のアルキル基であると更に好ましい。また、Rは、ゲル化能とハンドリング性との観点から、直鎖のアルキル基であると好ましい。
mは2〜16の自然数を示し、4〜10の自然数であると好ましい。mの範囲を上記の範囲にすることで化合物(1)はより高いゲル化能を示すと共に、合成容易性及びハンドリング性にも優れる化合物となる。
化合物(1)のゲル化能の観点からpは0〜6の整数を示し、2〜4の自然数であると好ましい。
化合物(1)の製造では、例えば、水酸基とチオール基とを有する下記一般式(1a)で表される芳香族化合物に、まず、ペルフルオロアルキル(オリゴメチレン)チオ基を導入した後、炭化水素オキシ基を導入して下記一般式(1’)で表される化合物(以下、「化合物(1’)」と表記する。)を得る。その後、更にペルフルオロアルキル(オリゴメチレン)チオ基におけるスルフィド基を酸化してスルホニル基に置換することにより、化合物(1)が製造される。
Figure 0005457429
ここで、式(1’)中、Ar、R、m及びpは、それぞれ一般式(1)におけるものと同義である。
[ペルフルオロアルキル(オリゴメチレン)チオ基の導入]
下記一般式(1a)で表される芳香族化合物をテトラヒドロフラン(THF)等の溶媒に溶解し、アミン等の塩基の存在下でペルフルオロアルキル(オリゴメチレン)基を有する下記一般式(1b)で表されるハロゲン化化合物と反応させる。その後、塩酸で中和し、溶媒及び未反応物質を留去して、水酸基及びペルフルオロアルキル(オリゴメチレン)基を有する下記一般式(1c)で表される芳香族化合物を生成する。なお、それぞれの式中、Ar、m及びpは、それぞれ一般式(1)におけるものと同義であり、Xはチオール基との反応性を有するハロゲン原子を示し、例えば、塩素原子、臭素原子、ヨウ素原子及びフッ素原子が挙げられる。
Figure 0005457429
[炭化水素オキシ基の導入]
上記一般式(1c)で表される芳香族化合物を溶媒に溶解した溶液に、ハロゲン化炭化水素と塩基とを加え還流して反応させる。反応終了後、必要に応じて一旦濾過し、反応液から溶媒及び未反応物質を留去し、残渣をシリカゲルクロマトグラフにより精製する。こうして、炭化水素オキシ基を導入して、化合物(1’)を得る。上記ハロゲン化炭化水素におけるハロゲン原子としては、上記一般式(1c)で表される芳香族化合物の水酸基OHとの反応性を有していればよく、塩素原子、臭素原子、ヨウ素原子及びフッ素原子が挙げられる。
[スルフィド基のスルホニル基への酸化]
化合物(1’)を溶媒に溶解した溶液に、過酸化水素水などの酸化剤を加えて加熱しながら撹拌して酸化反応させる。反応終了後、エーテル及び水を用いて抽出分離をし、水相を除去した後、さらに有機相から溶媒及び未反応物質を留去し、残渣をシリカゲルクロマトグラフにより精製する。こうして、スルフィド基をスルホニル基へ酸化して化合物(1)を得る。
ただし、化合物(1)の製造方法は、上記方法に限定されるものではない。
化合物(1)は、多様な非水溶媒を、5%程度以下の少量の添加でゲル化することができる。化合物(1)を非水溶媒に添加し、昇温して溶解し、生成した溶液を常温に戻すことによりゲル化する。化合物(1)は、電解液に適した高誘電率溶媒、例えば、プロピレンカーボネート及びブチレンカーボネートに代表される環状カーボネート;γ−ブチロラクトン及びγ−バレロラクトンに代表されるラクトン;アセトニトリルに代表されるニトリルなどに、例えば0.3〜5質量%、好適には0.5〜3質量%程度の少量添加することでゲル化することが可能である。電解液をゲル化することにより、漏液低減及び燃焼遅延の点で安全性を向上させることができる。
化合物(1)を本実施形態のリチウムイオン二次電池に用いる場合、LiClO、LiPF、LiN(CFSO、LiN(CSO、LiBF、LiOSOCFなどのリチウム塩を非水溶媒に溶解させ、これに化合物(1)を添加してゲル化するのが好ましい。
これらのゲル化剤は1種を単独で又は2種以上を組み合わせて用いられる。
ゲル化剤と非水溶媒との混合比は任意であるが、ゲル化能とハンドリング性とを良好にする観点から、質量基準で、ゲル化剤:非水溶媒が0.1:99.9〜20:80であると好ましく、0.3:99.7〜10:90であるとより好ましく、0.3:99.7〜5:95であると更に好ましい。ゲル化剤が多いほど相転移点が高く強固なゲルとなり、ゲル化剤が少ないほど粘度が低く取り扱いやすいゲルとなる。
非水溶媒とリチウム塩とゲル化剤との混合比は目的に応じて選択できる。非水溶媒に対しリチウム塩を好ましくは0.1〜3モル/リットル、より好ましくは0.5〜2モル/リットル混合した混合液に対して、ゲル化剤を質量基準のゲル化剤:非水溶媒で、好ましくは0.1:99.9〜20:80、より好ましくは0.3:99.7〜10:90、更に好ましくは0.3:99.7〜5:95添加するのが好ましい。このような組成で電解液を作製することで、電池特性、取扱い性及び安全性の全てを一層良好なものとすることができる。
非水溶媒としては非プロトン性極性溶媒が好ましく用いられるが、その中でも環状の非プロトン性極性溶媒を1種類以上含むことが好ましい。非水溶媒が、環状の非プロトン性極性溶媒として、例えばエチレンカーボネート及びプロピレンカーボネートに代表される環状カーボネートを含むことが好ましい。環状の化合物は誘電率が高く、リチウム塩の電離を助けると共にゲル化能を高めるためにも有効である。
リチウム塩としては、目的に応じて様々な塩が選択できるが、LiPF、LiBF及びLiN(SO2k+1〔kは1〜8の整数〕が好ましい。このリチウム塩は、電池特性や安定性に加え、ゲル化能を高めることができる。
<正極>
正極は、リチウムイオン二次電池の正極として作用するものであれば特に限定されず、公知のものであってもよい。正極は、正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有すると好ましい。そのような材料としては、例えば、下記一般式(6a)及び(6b)で表される複合酸化物、トンネル構造及び層状構造の金属カルコゲン化物及び金属酸化物が挙げられる。
LiMO (6a)
Li (6b)
ここで、式中、Mは遷移金属から選ばれる1種以上の金属を示し、xは0〜1の数、yは0〜2の数を示す。
より具体的には、例えば、LiCoOに代表されるリチウムコバルト酸化物;LiMnO、LiMn、LiMnに代表されるリチウムマンガン酸化物;LiNiOに代表されるリチウムニッケル酸化物;LiMO(MはNi、Mn、Co、Al及びMgからなる群より選ばれる2種以上の元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物;LiFePOで表されるリン酸鉄オリビンが挙げられる。また、正極活物質として、例えば、S、MnO、FeO、FeS、V、V13、TiO、TiS、MoS及びNbSeに代表されるリチウム以外の金属の酸化物も例示される。さらには、ポリアニリン、ポリチオフェン、ポリアセチレン及びポリピロールに代表される導電性高分子も正極活物質として例示される。
また、正極活物質としてリチウム含有化合物を用いると、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。このようなリチウム含有化合物としては、リチウムを含有するものであればよく、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムと遷移金属元素とを含むリン酸化合物及びリチウムと遷移金属元素とを含むケイ酸金属化合物(例えばLiSiO、Mは上記式(6a)と同義であり、tは0〜1の数、uは0〜2の数を示す。)が挙げられる。より高い電圧を得る観点から、特に、リチウムと、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)及びチタン(Ti)からなる群より選ばれる1種以上の遷移金属元素とを含む複合酸化物並びにリン酸化合物が好ましい。
より具体的には、かかるリチウム含有化合物としてリチウムを有する金属酸化物、リチウムを有する金属カルコゲン化物及びリチウムを有するリン酸金属化合物が好ましく、例えば、それぞれ下記一般式(7a)、(7b)で表される化合物が挙げられる。
Li (7a)
LiIIPO (7b)
ここで、式中、M及びMIIはそれぞれ1種以上の遷移金属元素を示し、v及びwの値は電池の充放電状態によって異なるが、通常vは0.05〜1.10、wは0.05〜1.10の数を示す。
上記一般式(7a)で表される化合物は一般に層状構造を有し、上記一般式(7b)で表される化合物は一般にオリビン構造を有する。これらの化合物において、構造を安定化させる等の目的から、遷移金属元素の一部をAl、Mg、その他の遷移金属元素で置換したり結晶粒界に含ませたりしたもの、酸素原子の一部をフッ素原子等で置換したものも挙げられる。更に、正極活物質表面の少なくとも一部に他の正極活物質を被覆したものも挙げられる。
正極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。
正極活物質の数平均粒子径(一次粒子径)は、好ましくは0.05μm〜100μm、より好ましくは1μm〜10μmである。正極活物質の数平均粒子径は湿式の粒子径測定装置(例えば、レーザー回折/散乱式粒度分布計、動的光散乱式粒度分布計)により測定することができる。あるいは、透過型電子顕微鏡にて観察した粒子100個をランダムに抽出し、画像解析ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、商品名「A像くん」)で解析し、その相加平均を算出することでも得られる。この場合、同じ試料に対して、測定方法間で数平均粒子径が異なる場合は、標準試料を対象として作成した検量線を用いてもよい。
正極は、例えば、下記のようにして得られる。すなわち、まず、上記正極活物質に対して、必要に応じて、導電助剤やバインダー等を加えて混合した正極合剤を溶剤に分散させて正極合剤含有ペーストを調製する。次いで、この正極合剤含有ペーストを正極集電体に塗布し、乾燥して正極合剤層を形成し、それを必要に応じて加圧し厚みを調整することによって、正極が作製される。
ここで、正極合剤含有ペースト中の固形分濃度は、好ましくは30〜80質量%であり、より好ましくは40〜70質量%である。
正極集電体は、例えば、アルミニウム箔、又はステンレス箔などの金属箔により構成される。
<負極>
負極は、リチウムイオン二次電池の負極として作用するものであれば特に限定されず、公知のものであってもよい。負極は、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有すると好ましい。そのような材料としては金属リチウムの他、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、カーボンブラックに代表される炭素材料が挙げられる。これらのうち、コークスとしては、例えば、ピッチコークス、ニードルコークス及び石油コークスが挙げられる。また、有機高分子化合物の焼成体は、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものである。なお、本発明においては、負極活物質に金属リチウムを採用した電池もリチウムイオン二次電池に含めるものとする。
更に、リチウムイオンを吸蔵及び放出することが可能な材料としては、リチウムと合金を形成可能な元素を含む材料も挙げられる。この材料は金属又は半金属の単体であっても合金であっても化合物であってもよく、またこれらの1種又は2種以上の相を少なくとも一部に有するようなものであってもよい。
なお、本明細書において、「合金」には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを有するものも含める。また、合金が、その全体として金属の性質を有するものであれば非金属元素を有していてもよい。その合金の組織には固溶体、共晶(共融混合物)、金属間化合物又はこれらのうちの2種以上が共存する。
このような金属元素及び半金属元素としては、例えば、チタン(Ti)、スズ(Sn)、鉛(Pb)、アルミニウム、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ハフニウム(Hf)、ジルコニウム(Zr)及びイットリウム(Y)が挙げられる。
これらの中でも、長周期型周期表における4族又は14族の金属元素及び半金属元素が好ましく、特に好ましいのはチタン、ケイ素及びスズである。
スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、マグネシウム(Mg)、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン(Ti)、ゲルマニウム、ビスマス、アンチモン及びクロム(Cr)からなる群より選ばれる1種以上の元素を有するものが挙げられる。
ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、マグネシウム、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる1種以上の元素を有するものが挙げられる。
チタンの化合物、スズの化合物及びケイ素の化合物としては、例えば酸素(O)又は炭素(C)を有するものが挙げられ、チタン、スズ又はケイ素に加えて、上述の第2の構成元素を有していてもよい。
負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。
負極活物質の数平均粒子径(一次粒子径)は、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmである。負極活物質の数平均粒子径は、正極活物質の数平均粒子径と同様にして測定される。
負極は、例えば、下記のようにして得られる。すなわち、まず、上記負極活物質に対して、必要に応じて、導電助剤やバインダー等を加えて混合した負極合剤を溶剤に分散させて負極合剤含有ペーストを調製する。次いで、この負極合剤含有ペーストを負極集電体に塗布し、乾燥して負極合剤層を形成し、それを必要に応じて加圧し厚みを調整することによって、負極が作製される。
ここで、負極合剤含有ペースト中の固形分濃度は、好ましくは30〜80質量%であり、より好ましくは40〜70質量%である。
負極集電体は、例えば、銅箔、ニッケル箔又はステンレス箔などの金属箔により構成される。
正極及び負極の作製にあたって、必要に応じて用いられる導電助剤としては、例えば、グラファイト、アセチレンブラック及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の数平均粒子径(一次粒子径)は、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmであり、正極活物質の数平均粒子径と同様にして測定される。また、バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム及びフッ素ゴムが挙げられる。
<セパレータ>
本実施形態のリチウムイオン二次電池は、正負極の短絡防止、シャットダウン等の安全性付与の観点から、正極と負極との間にセパレータを備えると好ましい。セパレータとしては、公知のリチウムイオン二次電池に備えられるものと同様であってもよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータとしては、例えば、織布、不織布、合成樹脂製微多孔膜が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、あるいは、これらのポリオレフィンを共に含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製など、耐熱樹脂製の多孔膜が用いられる。
セパレータは、1種の微多孔膜を単層又は複数積層したものであってもよく、2種以上の微多孔膜を積層したものであってもよい。
本実施形態のリチウムイオン二次電池は、例えば、図1に概略的に断面図を示すリチウムイオン二次電池である。図1に示されるリチウムイオン二次電池100は、セパレータ110と、そのセパレータ110を両側から挟む正極120と負極130と、さらにそれらの積層体を挟む正極集電体140(正極の外側に配置)と、負極集電体150(負極の外側に配置)と、それらを収容する電池外装160とを備える。正極120とセパレータ110と負極130とを積層した積層体は、本実施形態に係る電解液に含浸されている。これらの各部材としては、電解液を除いて、従来のリチウムイオン二次電池に備えられるものを用いることができ、例えば上述のものであってもよい。
<電池の作製方法>
本実施形態のリチウムイオン二次電池は、上述の電解液、正極、負極及び必要に応じてセパレータを用いて、公知の方法により作製される。例えば、正極と負極とを、その間にセパレータを介在させた積層状態で巻回して巻回構造の積層体に成形したり、それらを折り曲げや複数層の積層などによって、交互に積層した複数の正極と負極との間にセパレータが介在する積層体に成形したりする。次いで、電池ケース(外装)内にその積層体を収容して、本実施形態に係る電解液をケース内部に注液し、上記積層体を電解液に浸漬して封印することによって、本実施形態のリチウムイオン二次電池を作製することができる。あるいは、ゲル化させた電解液を含む電解質膜を予め作製しておき、正極、負極、電解質膜及び必要に応じてセパレータを、上述のように折り曲げや積層によって積層体を形成した後、電池ケース内に収容してリチウムイオン二次電池を作製することもできる。本実施形態のリチウムイオン二次電池の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形及びラミネート形などが好適に採用される。
本実施形態のリチウムイオン二次電池用電解液は、高い伝導度(リチウムイオンの拡散及びリチウムイオンの輸率)と高い安全性(例えば、難燃性、保液性)を実現し、リチウムイオン二次電池は、高い電池特性(例えば、充放電特性、低温作動性、高温耐久性等)を有すると同時に高い安全性(リチウムデンドライト)をも実現する。具体的には、電解液がその性質に対して影響の小さいゲル化剤を含むため、本実施形態のリチウムイオン二次電池用電解液及びリチウムイオン二次電池は、特に、従来のポリマー電池に見られた低温での伝導性や電池特性の大幅な低下を抑制することができる。また、電解液がゲル化剤を含有することにより、電解液の電池外部への漏洩を防止できるのはもちろんのこと、本実施形態のリチウムイオン二次電池は、リチウムデンドライトによる危険性や燃焼の危険性も更に低減することができる。
以上、本発明を実施するための形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、リチウムイオン二次電池用電解液及びリチウムイオン二次電池の各種特性及び安全性は下記のようにして測定、評価された。
(i)電解液のゲル化能の評価
電解液をガラスサンプル瓶内で調製し、25℃で2時間放置した後にサンプル瓶を上下逆にして、その際の流動性を確認することでゲル化能を評価した。流動しないものを「ゲル」と評価し、非水溶媒とゲル化剤との混合比を変化させ、電解液をゲル化させるために必要なゲル化剤の最低濃度(電解液の総量を基準とするゲル化剤の濃度)をゲル化濃度として求めた。
(ii)電解液成分の拡散係数測定

調製した電解液をシゲミ社製対称型試料管(5mmΦ、DMSO用)に導入し、所定温度(−20℃、30℃、70℃)でのリチウムイオン及び対アニオンの拡散係数を評価した。拡散係数の評価は、日本電子社製のPFG−NMRであるECA400(商品名、周波数400MHz)を用い、13T/mまで磁場勾配パルス印加が可能なGRプローブを装着して行った。磁場勾配NMR測定法では、観測されるピーク高さをE、磁場勾配パルスを与えない場合のピーク高さをE、核磁気回転比をγ(T−1・s−1)、磁場勾配強度をg(T・m−1)、磁場勾配パルス印加時間をδ(s)、拡散待ち時間をΔ(s)、自己拡散係数をD(m・s−1)とした場合、下記式(17)が成り立つ。 Ln(E/E)=−D×γ×g×δ×(Δ−δ/3) (17)
NMRシーケンスとしてbpp−led−DOSY法を用いた。Δ及びδを固定して、gを0からLn(E/E)≦−3となる範囲で15点以上変化させ、Ln(E/E)をY軸、γ×g×δ×(Δ−δ/3)をX軸としてプロットした直線の傾きからDを得た。測定核にはLi(リチウムイオン)、19F(対アニオン)を用いて測定した。拡散係数が大きいほど拡散速度が大きいと判断できる。
また、リチウムイオン及び対アニオンの拡散係数比からリチウムイオン輸率を算出した。
(iii)電解液の安全性試験(燃焼試験)
電解液成分の燃焼試験を行い電池の安全性を評価した。70℃に昇温した電解液を13mm×125mm×2mmのガラスろ紙に1mL吸液させた後、そのガラスろ紙を25℃まで降温することでサンプルを調製した。サンプルを東洋精機(株)製のマルチカロリーメーターである「mcm―2」(商品名)にセットし、UL94HBの水平燃焼試験を行い、着火後、炎がろ紙の端まで伝播するのに要した時間(経過時間)を測定した。時間が長いほど燃焼を遅延させる効果があり、安全性が高いと判断できる。
(iv)電解液の保液性試験
電解液成分を5cm×0.012cmのポリプロピレン製不織布(空隙率73%)に十分に含浸させた後、その不織布を2枚のガラス板で挟むことでサンプルを調製した。当該サンプルを台に載置し、片面(上面)からサンプルを油圧プレスで加圧して、漏液が開始した時の圧力を測定した。また、加圧前後のサンプルの質量を測定し、4kgf/cm(約0.39MPa)まで加圧したときの保液率、すなわち含浸した電解液の質量に対する加圧前後でのサンプルの質量差を求めた。
(v)リチウムイオン二次電池の放電容量測定
特定の放電電流における放電容量を測定してリチウムイオン二次電池の放電特性を評価した。測定用のリチウムイオン二次電池として、1C=6mAとなる小型電池を作製して用いた。測定は、アスカ電子(株)製充放電装置ACD−01(商品名)及び二葉科学社製恒温槽PLM−63S(商品名)を用いて行った。6mAの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で、合計3時間充電を行った。その後、定電流で3.0Vまで放電したときの放電容量を測定した。なお、放電電流を6mAと18mAとにして放電容量を測定した。このときの電池周囲温度は25℃に設定した。
(vi)ラミネート型リチウムイオン二次電池の放電容量測定
「(v)リチウムイオン二次電池の放電容量測定」と同様に放電容量を測定してリチウムイオン二次電池の放電特性を評価した。測定用のリチウムイオン二次電池として、1C=45.0mAとなる単層ラミネート型電池を作製して用いた。測定は、アスカ電子(株)製充放電装置ACD−01(商品名)及び二葉科学社製恒温槽PLM−63S(商品名)を用いて行った。9.0mAの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で、合計8時間充電を行った。その後、定電流で2.75Vまで放電したときの放電容量を測定した。なお、放電電流を45.0mAと135.0mAとにして放電容量を測定した。このときの電池周囲温度は25℃に設定した。
(vii)リチウムイオン二次電池の容量維持率測定(サイクル試験)
容量維持率の測定は、アスカ電子(株)製充放電装置ACD−01(商品名)及び二葉科学社製恒温槽PLM−63S(商品名)を用いて行った。測定用のリチウムイオン二次電池として、「(v)リチウムイオン二次電池の放電容量測定」と同様にして作製した電池を用いた。充放電サイクル試験では、まず、6mAの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で、合計3時間充電を行った。その後、6mAの定電流で放電し、3.0Vに到達した時点で再び、充電を繰り返した。充電と放電とを各々1回ずつ行うのを1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの100サイクル目の放電容量を容量維持率とした。電池の周囲温度は25℃に設定した。
(viii)リチウムイオン二次電池の低温での放電容量測定
電池周囲温度を−20℃、−10℃、0℃にそれぞれ設定して、「(v)リチウムイオン二次電池の放電容量測定」と同様にして放電容量を測定した。なお、放電電流を3mAにして放電容量を測定した。
(ix)リチウムイオン二次電池の高温耐久性試験
電池周囲温度を60℃に設定して、「(vii)リチウムイオン二次電池の容量維持率測定(サイクル試験)」と同様にして充放電サイクル試験を50サイクルまで行い、高温時の容量維持率を測定した。
(x)リチウムイオン二次電池のリチウム析出試験
リチウム析出試験は、「(vi)ラミネート型リチウムイオン二次電池の放電容量測定」と同様にして作製した単層ラミネート型電池を用いて行った。9.0mAの定電流で4.2Vまで充電した電池を9.0mAで3.0Vまで放電し、さらに45mAの定電流で1.5時間充電を行った。この充電池を露点が−60℃以下、水分濃度10ppm以下の雰囲気下で解体した。解体した電池の負極表面を倍率2000倍の光学顕微鏡で観察し、リチウム析出挙動を下記の基準で評価した。
A:リチウムの析出が認められない。
B:リチウムの析出は認められるが析出物の表面は平滑である。
C:リチウムの析出が認められ、析出物の表面には鋭い樹状突起(デンドライト)が認められる。
なお、デンドライトの析出は電池短絡の要因となり、電池の安全性が低下する原因となる。
(実施例1)
(1)電解液の調製
エチレンカーボネートとメチルエチルカーボネートとを質量比で1:2になるように混合し、その混合液に、LiPFを1モル/Lになるよう添加してゲル化されていない電解液(A)を作製した(以下、ゲル化剤添加前の電解液を「母電解液」という。)。その母電解液(A)に対して、ゲル化剤として下記式(8)で表される化合物を添加し、70℃に加熱して均一に混合した後、25℃に降温して電解液(a)を得た。なお、ゲル化剤を少量から徐々に母電解液に添加していったところ、添加量が電解液の総量に対して0.3質量%に達したときに十分にゲル化したので、そこでゲル化剤の添加を停止した。すなわち、電解液(a)の総量に対するゲル化剤の含有量は0.3質量%であった。
Figure 0005457429
(実施例2)
母電解液(A)に代えて、エチレンカーボネートとプロピレンカーボネートとγ−ブチロラクトンとを質量比で1:1:2になるように混合し、その混合液にLiBFを1.5モル/Lになるよう添加して作製した母電解液(B)を用いる以外は実施例1と同様にして、電解液(b)を得た。
(実施例3〜8、10、11)
ゲル化剤として、上記式(8)で表される化合物に代えて、下記式(9)、(10)、(11)、(12)、(13)、(14)、(15)及び(16)で表される化合物のいずれかを用いた以外は実施例1と同様にして、電解液(c)、(d)、(e)、(f)、(g)、(h)、(j)及び(k)をそれぞれ得た。
Figure 0005457429
(実施例9)
ゲル化剤として、上記式(8)で表される化合物に代えて、上記式(14)で表される化合物を用いた以外は実施例2と同様にして、電解液(i)を得た。
実施例1〜11の電解液について、上記「(i)電解液のゲル化能の評価」に記載の評価を行った。結果を表1に示す。
Figure 0005457429
(実施例12〜16)
母電解液(A)に対して、上記式(8)、(9)、(11)、(14)及び(16)で表されるゲル化剤のいずれかを、表2に示す添加量(電解液の総量を基準として)で添加した以外は実施例1と同様にして、電解液(l)、(n)、(o)、(p)及び(q)をそれぞれ調製した。その電解液について、上記「(ii)電解液成分の拡散係数測定」に記載の測定を行った。結果を表2に示す。
Figure 0005457429
(比較例1)
母電解液(A)をそのまま電解液として用いた。その電解液について、上記「(ii)電解液成分の拡散係数測定」に記載の測定を行った。結果を表2に示す。
(実施例17)
母電解液(B)に対して、上記式(14)で表されるゲル化剤を、表2に示す添加量(電解液の総量を基準として)で添加した以外は実施例2と同様にして、電解液(r)を調製した。その電解液について、上記「(ii)電解液成分の拡散係数測定」に記載の測定を、30℃のみで行った。結果を表3に示す。
Figure 0005457429
(比較例2)
母電解液(B)をそのまま電解液として用いた。その電解液をついて、上記「(ii)電解液成分の拡散係数測定」に記載の測定を、30℃のみで行った。結果を表3に示す。
(比較例3)
母電解液(B)に対して、数平均分子量(GPC法により測定)が1000、OH価が110mgKOH/gのジオール化合物とイソシアネートとから合成されたポリウレタンを(電解液の総量を基準として)20質量%添加し、そのポリウレタンに母電解液(B)を吸液させてポリウレタンゲル電解質(s)を得た。電解質(s)の電解液成分について、上記「(ii)電解液成分の拡散係数測定」に記載の測定を、30℃のみで行った。結果を表3に示す。
(実施例18〜23、比較例4)
母電解液(A)に対して、上記式(8)で表されるゲル化剤を、電解液の総量を基準として3.0質量%添加した以外は実施例1と同様にして、電解液(m)を調製した。電解液(l)、(m)、(n)、(o)、(p)及び(q)並びに母電解液(A)について、上記「(iii)電解液の安全性試験(燃焼試験)」に記載の試験を行った。結果を表4に示す。
Figure 0005457429
(実施例24、比較例5)
電解液(m)及び母電解液(A)について、上記「(iv)電解液の保液性試験」に記載の試験を行った。結果を表5に示す。
Figure 0005457429
(実施例25)
<正極の作製>
正極活物質として数平均粒子径5μmのリチウムコバルト酸(LiCoO)と、導電助剤として数平均粒子径3μmのグラファイト炭素粉末と、バインダーとしてポリフッ化ビニリデン(PVdF)とを85:10:5の質量比で混合した。得られた混合物にN−メチル−2−ピロリドンを固形分60質量%となるように投入して更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ20μmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて正極(α)を得た。
<負極の作製>
負極活物質として数平均粒子径5μmのメソカーボンマイクロビーズと、バインダーとしてジエン系ゴム(ガラス転移温度:−5℃、乾燥時の数平均粒子径:120nm、分散媒:水、固形分濃度40質量%)とをカルボキシメチルセルロースで粘度調整しつつ負極活物質の固形分濃度が60質量%になるように混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ10μmの銅箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて負極(β)を得た。
<電池組み立て>
上述のようにして作製した正極(α)と負極(β)とをポリエチレンからなるセパレータ(膜厚25μm、空孔率50%、孔径0.1μm〜1μm)の両側に重ね合わせた積層体を、SUS製の円盤型電池ケースに挿入した。次いで、その電池ケース内に70℃に加熱した電解液(l)を0.5mL注入し、積層体を電解液(l)に浸漬した後、電池ケースを密閉してリチウムイオン二次電池(小型電池)を作製した。このリチウムイオン二次電池を70℃で1時間保持した後、25℃まで降温して電池(l1)を得た。
(実施例26、比較例6)
電解液(l)に代えて、電解液(m)又は(A)を用いた以外は実施例25と同様にして、それぞれ電池(m1)及び(A1)を得た。
(実施例27)
<正極の作製>
正極活物質として数平均粒子径11μmのリチウムのニッケル、マンガン及びコバルト混合酸化物と、導電助剤として数平均粒子径6.5μmのグラファイト炭素粉末及び数平均粒子径48nmのアセチレンブラック粉末と、バインダーとしてポリフッ化ビニリデン(PVdF)とを、100:4.2:1.8:4.6の質量比で混合した。得られた混合物にN−メチル−2−ピロリドンを固形分68質量%となるように投入して更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ20μmのアルミニウム箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて正極(γ)を得た。
<負極の作製>
負極活物質として数平均粒子径12.7μmのグラファイト炭素粉末及び数平均粒子径6.5μmのグラファイト炭素粉末と、バインダーとしてカルボキシメチルセルロース溶液(固形分濃度1.83質量%)と、ジエン系ゴム(ガラス転移温度:−5℃、乾燥時の数平均粒子径:120nm、分散媒:水、固形分濃度40質量%)とを、90:10:1.44:1.76の固形分質量比で全体の固形分濃度が45質量%になるように混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ10μmの銅箔の片面に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延した。圧延後のものを直径16mmの円盤状に打ち抜いて負極(δ)を得た。
<電池組み立て>
上述のようにして作製した正極(γ)と負極(δ)とをポリエチレンからなるセパレータ(膜厚25μm、空孔率50%、孔径0.1μm〜1μm)の両側に重ね合わせた積層体を、SUS製の円盤型電池ケースに挿入した。次いで、その電池ケース内に70℃に加熱した電解液(l)を0.5mL注入し、積層体を電解液(l)に浸漬した後、電池ケースを密閉してリチウムイオン二次電池(小型電池)を作製した。このリチウムイオン二次電池を70℃で1時間保持した後、25℃まで降温して電池(l2)を得た。
(実施例28〜31、比較例7)
電解液(l)に代えて、電解液(n)、(o)、(p)及び(q)並びに母電解液(A)のいずれかを用いた以外は実施例27と同様にして、それぞれ電池(n)、(o)、(p)、(q)及び(A2)を得た。
実施例25〜31、比較例6及び7の電池(l1)、(m1)、(l2)、(n)、(o)、(p)、(q)、(A1)及び(A2)について、上記「(v)リチウムイオン二次電池の放電容量測定」に記載の測定を行った。結果を表6に示す。
Figure 0005457429
また、実施例25〜27及び30、並びに比較例6及び7の電池(l1)、(m1)、(l2)、(p)、(A1)及び(A2)について、上記「(viii)リチウムイオン二次電池の低温での放電容量測定」に記載の測定を行った。結果を表7に示す。いずれの電池も低温放電が可能であり、ゲル化剤による低温特性の低下は認められなかった。
Figure 0005457429
さらに、実施例25及び26並びに比較例6の電池(l1)、(m1)及び(A1)について、上記「(ix)リチウムイオン二次電池の高温耐久性試験」に記載の試験を行った。結果を表8に示す。いずれの電池も充放電サイクル試験後の容量維持率に遜色なく、ゲル化剤による劣化の促進は認められなかった。
Figure 0005457429
(実施例32)
<正極の作製>
正極活物質としてリチウムコバルト酸(LiCoO)と、導電助剤としてアセチレンブラックと、バインダーとしてポリフッ化ビニリデン(PVdF)とを、89.5:4.5:6.0の質量比で混合した。得られた混合物にN−メチル−2−ピロリドンを更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ20μm、幅200nmのアルミニウム箔に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延し、更に150℃で10時間真空乾燥を行い、50mm×30mmの矩形状に打ち抜いて正極(ε)を得た。なお、得られた電極における真空乾燥後の合材について、片面あたりの目付量が24.8g/cm±3%、片面での厚さが82.6μm±3%、密度が3.0g・cm±3%、塗工幅がアルミニウム箔の幅200nmに対して150nmになるように溶剤量を調整しながら、上記スラリー状の溶液を調製した。
<負極の作製>
負極活物質としてグラファイト炭素粉末(商品名「MCMB25−28」、大阪ガスケミカル(株)製)と、導電助剤としてアセチレンブラックと、バインダーとしてポリフッ化ビニリデン(PVdF)とを、93.0:2.0:5.0の質量比で混合した。得られた混合物にN−メチル−2−ピロリドンを更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ14μm,幅200nmの銅箔に塗布し、溶剤を乾燥除去した後、ロールプレスで圧延し、更に150℃で10時間真空乾燥を行い、52mm×32mmに打ち抜いて負極(ζ)を得た。なお、得られた電極における真空乾燥後の合材について、片面あたりの目付量が11.8g/cm±3%、片面での厚さが84.6μm±3%、密度が1.4g・cm±3%、塗工幅が銅箔の幅200nmに対して150nmになるように溶剤量を調整しながら、上記スラリー状の溶液を調製した。
<電池組み立て>
アルミニウム層と樹脂層とを積層したラミネートフィルム(絞り加工なし、厚さ120μm、68mm×48mm)2枚を、アルミニウム層側を外側にして重ねて、三辺をシールしてラミネートセル外装を作製した。続いて、セパレータとしてポリエチレン製微多孔膜(膜厚20μm、53mm×33mm)を用意し、上述のようにして作製した正極(ε)と負極(ζ)とをセパレータを介して交互に複数重ね合わせた積層体を、ラミネートセル外装内に配置した。次いで、そのセル外装内に75℃に加熱した電解液(m)を注入し、積層体を電解液に浸漬した。なお、電解液(m)の注入は、大気圧と100mmHgの減圧とを気泡発生がなくなるまで繰り返しながら行った。100mmHgに減圧した環境下でラミネートセル外装の残りの一辺をシールしてリチウムイオン二次電池を得た。得られた電池を75℃で2.5時間保持した後、25℃まで降温して電池(m2)を得た。
(比較例8)
電解液(m)に代えて、母電解液(A)を用いた以外は実施例32と同様にして、電池(A3;単層ラミネート型電池)を得た。
実施例32及び比較例8の電池(m2)及び(A3)について、上記「(x)リチウムイオン二次電池のリチウム析出試験」に記載の試験を行った。結果を表9に示す。電池(m2)では析出が抑制され、安全性が向上した電池となった。
Figure 0005457429
実施例32及び比較例8の電池(m2)及び(A3)について、上記「(vi)ラミネート型リチウムイオン二次電池の放電容量測定」に記載の測定を行った。結果を表9に示す。
本発明のリチウムイオン二次電池は、例えば携帯電話、携帯オーディオ、パソコンなどの携帯機器に加え、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車などの自動車用充電池としての利用も期待される。
100…リチウムイオン二次電池、110…セパレータ、120…正極、130…負極、140…正極集電体、150…負極集電体、160…電池外装。

Claims (9)

  1. 非水溶媒と、リチウム塩と、下記一般式(1)で表される化合物と、を含有するリチウムイオン二次電池用電解液。
    Figure 0005457429
    (式中、Arは置換又は無置換の核原子数5〜30の2価の芳香族基を示し、Rは飽和又は不飽和の炭素数1〜20の1価の炭化水素基を示し、mは2〜16の自然数を示し、pは0〜6の整数を示す。)
  2. 前記Arは、置換又は無置換の核原子数8〜20の2価の芳香族基である、請求項1に記載のリチウムイオン二次電池用電解液。
  3. 前記Arは、ビフェニレン基、ナフチレン基、ターフェニレン基及びアントラニレン基からなる群より選ばれる基である、請求項1又は2に記載のリチウムイオン二次電池用電解液。
  4. 前記非水溶媒は、2種類以上の溶媒の混合溶媒である、請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用電解液。
  5. 前記電解液はゲル化したものである、請求項1〜4のいずれか一項に記載のリチウムイオン二次電池用電解液。
  6. 請求項1〜5のいずれか一項に記載のリチウムイオン二次電池用電解液と、
    正極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料からなる群より選ばれる1種以上の材料を含有する正極と、
    負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有する負極と、
    を備えるリチウムイオン二次電池。
  7. 前記正極は、前記正極活物質として、リチウム含有化合物を含む、請求項6に記載のリチウムイオン二次電池。
  8. 前記リチウム含有化合物は、リチウムを有する金属酸化物及びリチウムを有する金属カルコゲン化物からなる群より選ばれる1種以上の化合物を含む、請求項7に記載のリチウムイオン二次電池。
  9. 前記負極は、前記負極活物質として、金属リチウム、炭素材料、及び、リチウムと合金形成が可能な元素を含む材料、からなる群より選ばれる1種以上の材料を含有する、請求項6〜8のいずれか一項に記載のリチウムイオン二次電池。
JP2011500586A 2009-02-18 2010-02-12 リチウムイオン二次電池用電解液及びリチウムイオン二次電池 Active JP5457429B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500586A JP5457429B2 (ja) 2009-02-18 2010-02-12 リチウムイオン二次電池用電解液及びリチウムイオン二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009035302 2009-02-18
JP2009035302 2009-02-18
PCT/JP2010/052090 WO2010095572A1 (ja) 2009-02-18 2010-02-12 リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2011500586A JP5457429B2 (ja) 2009-02-18 2010-02-12 リチウムイオン二次電池用電解液及びリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JPWO2010095572A1 JPWO2010095572A1 (ja) 2012-08-23
JP5457429B2 true JP5457429B2 (ja) 2014-04-02

Family

ID=42633855

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011500586A Active JP5457429B2 (ja) 2009-02-18 2010-02-12 リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2010029382A Expired - Fee Related JP5553633B2 (ja) 2009-02-18 2010-02-12 リチウムイオン二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010029382A Expired - Fee Related JP5553633B2 (ja) 2009-02-18 2010-02-12 リチウムイオン二次電池

Country Status (7)

Country Link
US (1) US8399136B2 (ja)
EP (1) EP2400588B1 (ja)
JP (2) JP5457429B2 (ja)
KR (1) KR101274298B1 (ja)
CN (1) CN102326286B (ja)
TW (1) TWI416777B (ja)
WO (1) WO2010095572A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2400588B1 (en) 2009-02-18 2016-01-27 Asahi Kasei E-materials Corporation Electrolyte solution for lithium-ion secondary battery, and lithium-ion secondary battery comprising the same
JP5645154B2 (ja) * 2009-06-02 2014-12-24 旭化成イーマテリアルズ株式会社 リチウムイオン二次電池
US9118088B2 (en) 2009-06-10 2015-08-25 Asahi Kasei E-Materials Corporation Electrolyte solution and lithium ion secondary battery using the same
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
WO2011099572A1 (ja) * 2010-02-12 2011-08-18 旭化成イーマテリアルズ株式会社 フルオロアルカン誘導体、ゲル化剤及びゲル状組成物
JP2013069682A (ja) * 2011-09-05 2013-04-18 Asahi Kasei Corp 電気化学デバイスの製造方法
JP2013171679A (ja) * 2012-02-20 2013-09-02 Asahi Kasei Corp 非水電池用セパレータ及びそれを用いた非水電池
JP2013171681A (ja) * 2012-02-20 2013-09-02 Asahi Kasei Corp 非水電池用電解液及びそれを用いた電池
JP2014024778A (ja) * 2012-07-25 2014-02-06 Asahi Kasei Corp 芳香族ホウ素化合物の製造方法
JP6218413B2 (ja) * 2013-03-29 2017-10-25 株式会社Subaru プレドープ剤、これを用いた蓄電デバイス及びその製造方法
US10411299B2 (en) 2013-08-02 2019-09-10 Zenlabs Energy, Inc. Electrolytes for stable cycling of high capacity lithium based batteries
KR102395989B1 (ko) * 2014-09-17 2022-05-10 삼성전자주식회사 복합전극, 이를 포함하는 전기화학전지 및 전극제조방법
JP6430190B2 (ja) * 2014-09-22 2018-11-28 国立大学法人山口大学 電解液及びリチウムイオン二次電池
WO2016063838A1 (ja) * 2014-10-21 2016-04-28 日本電気株式会社 二次電池およびその製造方法
JP6583809B2 (ja) * 2015-03-20 2019-10-02 国立大学法人山口大学 非水電解液及びリチウムイオン二次電池
WO2018155207A1 (ja) * 2017-02-27 2018-08-30 日本電気株式会社 二次電池およびその製造方法
KR102248864B1 (ko) * 2017-04-06 2021-05-06 주식회사 엘지화학 이차 전지용 음극 및 이의 제조 방법
CN111261931A (zh) * 2018-12-01 2020-06-09 深圳格林德能源集团有限公司 一种快速确定高压实镍钴锰酸锂电池电解液量的方法
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance
CN110867611B (zh) * 2019-10-15 2023-03-24 湖南法恩莱特新能源科技有限公司 一种高镍三元正极材料体系的动力锂离子电池电解液
CN114361587B (zh) * 2021-09-18 2024-02-09 华中科技大学 一种用于锂金属二次电池的局部高浓电解液添加剂及应用
CN115332633B (zh) * 2022-10-13 2023-03-24 宁德新能源科技有限公司 电化学装置及电子装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120876A (en) 1989-11-29 1992-06-09 E. I. Du Pont De Nemours And Company Fluorinated sulfones/ketones for nonlinear optics
WO1995027692A1 (en) 1994-04-08 1995-10-19 Smithkline Beecham Corporation Subtituted biphenyl tnf inhibitors
US5480568A (en) * 1994-07-22 1996-01-02 The Dow Chemical Company Alkyl aryl sulfones and their use as lubricants in high temperature and magnetic recording media applications
JPH0837024A (ja) 1994-07-26 1996-02-06 Asahi Chem Ind Co Ltd 非水電解液二次電池
JPH08231942A (ja) * 1995-02-24 1996-09-10 Nisshin Oil Mills Ltd:The 有機液体のゲル化または固化剤
JPH08321313A (ja) 1995-05-24 1996-12-03 Sanyo Electric Co Ltd 非水電解液電池
TW360987B (en) 1995-07-25 1999-06-11 Sumitomo Chemical Co Non-aqueous electrolyte and lithium secondary battery
JP3218982B2 (ja) 1995-07-25 2001-10-15 住友化学工業株式会社 非水電解液とリチウム二次電池
JP3807459B2 (ja) 1997-06-30 2006-08-09 ダイキン工業株式会社 非水電解液電池用電解液およびこれを用いた非水電解液電池
WO1999019932A1 (en) * 1997-10-15 1999-04-22 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
US6002048A (en) * 1997-10-16 1999-12-14 Kao Corporation Fluorine-containing ether compound and gelling agent containing the same
JP2000294281A (ja) 1999-04-08 2000-10-20 Hitachi Maxell Ltd 非水電解液二次電池
JP2001052737A (ja) 1999-08-10 2001-02-23 Hitachi Maxell Ltd 非水電解液およびそれを用いた非水電解液二次電池
JP2002324578A (ja) 2001-04-25 2002-11-08 Mitsubishi Chemicals Corp 非水系電解液二次電池及びそれに用いる非水系電解液
JP2003323814A (ja) * 2002-04-26 2003-11-14 Sumitomo Bakelite Co Ltd リチウムイオン伝導性ゲル状電解質
WO2005019378A1 (en) 2003-08-25 2005-03-03 Merck Patent Gmbh Mesogenic compounds, medium for electro-optical displays and electro-optical display
JP2005190869A (ja) * 2003-12-26 2005-07-14 Bridgestone Corp ポリマー電池用電解質及びそれを備えたポリマー電池
JP5178998B2 (ja) * 2004-08-03 2013-04-10 三星エスディアイ株式会社 リチウム二次電池およびリチウム二次電池パック
KR101101001B1 (ko) * 2005-01-19 2011-12-29 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 술폰계 전해질을 갖는 전류 생성 장치
WO2007007636A1 (ja) 2005-07-07 2007-01-18 Matsushita Electric Industrial Co., Ltd. 非水電解液二次電池
WO2007083843A1 (ja) * 2006-01-20 2007-07-26 National University Corporation Yamaguchi University パーフルオロアルキル基を有する芳香族化合物ゲル化剤
JP4820994B2 (ja) * 2006-01-20 2011-11-24 国立大学法人山口大学 ペルフルオロアルキル基誘導体ゲル化剤
JP4876243B2 (ja) * 2006-01-23 2012-02-15 国立大学法人山口大学 ペルフルオロアルキル基を有する芳香族化合物ゲル化剤
JP4820993B2 (ja) * 2006-01-20 2011-11-24 国立大学法人山口大学 ペルフルオロアルキル基を有する芳香族化合物からなる有機液体のゲル化剤
JP5426809B2 (ja) 2006-05-30 2014-02-26 本田技研工業株式会社 二次電池、二次電池を用いた電子機器及び輸送用機器
JP2008218387A (ja) 2006-12-22 2008-09-18 Daikin Ind Ltd 非水系電解液
JP2008159496A (ja) 2006-12-26 2008-07-10 Sony Corp ゲル電解質、リチウムイオン二次電池及びゲル電解質の製造方法
JP5074817B2 (ja) 2007-05-01 2012-11-14 国立大学法人静岡大学 Bf3錯体、およびbf3錯体の製造方法
JP2008305770A (ja) * 2007-05-08 2008-12-18 Sony Corp 非水溶液電池
JP2008305574A (ja) 2007-06-05 2008-12-18 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP2009087648A (ja) 2007-09-28 2009-04-23 Toshiba Corp 携帯電子機器
WO2009078268A1 (ja) * 2007-12-17 2009-06-25 National University Corporation Yamaguchi University フルオロアルキル基誘導体を含むゲル化剤
EP2400588B1 (en) 2009-02-18 2016-01-27 Asahi Kasei E-materials Corporation Electrolyte solution for lithium-ion secondary battery, and lithium-ion secondary battery comprising the same
JP5645154B2 (ja) 2009-06-02 2014-12-24 旭化成イーマテリアルズ株式会社 リチウムイオン二次電池
JP5419210B2 (ja) 2009-06-04 2014-02-19 国立大学法人山口大学 ゲル化剤
US9118088B2 (en) 2009-06-10 2015-08-25 Asahi Kasei E-Materials Corporation Electrolyte solution and lithium ion secondary battery using the same
WO2011099572A1 (ja) 2010-02-12 2011-08-18 旭化成イーマテリアルズ株式会社 フルオロアルカン誘導体、ゲル化剤及びゲル状組成物

Also Published As

Publication number Publication date
KR101274298B1 (ko) 2013-06-13
US8399136B2 (en) 2013-03-19
CN102326286A (zh) 2012-01-18
CN102326286B (zh) 2014-04-02
EP2400588A1 (en) 2011-12-28
US20120009480A1 (en) 2012-01-12
TWI416777B (zh) 2013-11-21
JP2010219032A (ja) 2010-09-30
KR20110128818A (ko) 2011-11-30
EP2400588A4 (en) 2014-04-02
WO2010095572A1 (ja) 2010-08-26
EP2400588B1 (en) 2016-01-27
TW201041207A (en) 2010-11-16
JP5553633B2 (ja) 2014-07-16
JPWO2010095572A1 (ja) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5457429B2 (ja) リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP5681627B2 (ja) 電解液及びそれを用いたリチウムイオン二次電池
JP5487297B2 (ja) 非水電解質電池
KR20180089861A (ko) 비수 전해액 및 비수 전해액 이차 전지의 제조 방법
JP2013098057A (ja) 電解液用添加剤及びそれを含む電解液、リチウムイオン二次電池
JP5749116B2 (ja) リチウムイオン二次電池
JP2013191390A (ja) リチウムイオン二次電池
JP5645154B2 (ja) リチウムイオン二次電池
JP5865951B2 (ja) 非水電解質電池及び電池パック
JP5544555B2 (ja) 電解液及びリチウムイオン二次電池
JP5598850B2 (ja) 電解液及びリチウムイオン二次電池
JP6583809B2 (ja) 非水電解液及びリチウムイオン二次電池
JP6506078B2 (ja) イオン伝導性ポリマー電解質
JP5574417B2 (ja) 電解液及びリチウムイオン二次電池
JP2015092471A (ja) 電解液及びリチウムイオン二次電池
JP5369017B2 (ja) リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP5711026B2 (ja) リチウムイオン二次電池用及びリチウムイオン二次電池の製造方法
JP6562690B2 (ja) イオン伝導性ゲル電解質
JP6320087B2 (ja) 電解液及びリチウムイオン二次電池
JP6430190B2 (ja) 電解液及びリチウムイオン二次電池
JP5558498B2 (ja) 非水電解質電池及び電池パック
JP2017142989A (ja) リチウムイオン二次電池用電解質及びリチウムイオン二次電池
JP2013171681A (ja) 非水電池用電解液及びそれを用いた電池
JP2017069145A (ja) 化合物、添加剤、電解液及びリチウムイオン二次電池
JP2016162557A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5457429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250