JP5421253B2 - 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ - Google Patents

蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ Download PDF

Info

Publication number
JP5421253B2
JP5421253B2 JP2010514740A JP2010514740A JP5421253B2 JP 5421253 B2 JP5421253 B2 JP 5421253B2 JP 2010514740 A JP2010514740 A JP 2010514740A JP 2010514740 A JP2010514740 A JP 2010514740A JP 5421253 B2 JP5421253 B2 JP 5421253B2
Authority
JP
Japan
Prior art keywords
storage device
electricity storage
carbonate
fluorine
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010514740A
Other languages
English (en)
Other versions
JPWO2010047092A1 (ja
Inventor
正樹 長谷川
崇 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010514740A priority Critical patent/JP5421253B2/ja
Publication of JPWO2010047092A1 publication Critical patent/JPWO2010047092A1/ja
Application granted granted Critical
Publication of JP5421253B2 publication Critical patent/JP5421253B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電気化学エネルギーを貯蔵あるいは蓄積する蓄電デバイスに用いられる非水溶媒および非水電解液と、これらを用いたリチウム二次電池や電気二重層キャパシタなどの蓄電デバイスに関する。
近年、蓄電素子単体の充電電圧および放電電圧が1.5Vを超える高電圧型の蓄電デバイスの開発が進められており、このような高電圧型の蓄電デバイスとして、リチウム一次電池、リチウムイオン二次電池、リチウムポリマー二次電池、電気二重層キャパシタ等が実用化されている。
高電圧型の蓄電デバイスには、有機化合物を溶媒とする非水電解液が用いられる。電解液の溶媒として水を用いると、高い充電電圧および放電電圧によって水の電気分解が生じてしまうからである。また、水と反応する活性なリチウムを含み、リチウムの吸蔵または放出を利用する電極を備えた蓄電デバイスにも非水電解液が用いられる。
非水電解液には、使用される蓄電デバイスの放電性能を高めるため、高い導電性と、粘度の低さが望まれる。また、二次電池や電気二重層キャパシタ等の溶媒として用いられる場合には、充放電を繰り返すことによって蓄電デバイスの性能が劣化しないように、化学的かつ電気化学的に安定であることが必要とされる。
これらの観点から、例えば、リチウムイオン二次電池の電解液の主溶媒として、エチレンカーボネートに代表される環状カーボネート(環状炭酸エステル)とエチルメチルカーボネートやジメチルカーボネートに代表される鎖状カーボネート(鎖状炭酸エステル)との混合系が用いられている。また、電気二重層キャパシタの電解液の主溶媒には、プロピレンカーボネートに代表される環状カーボネートが好適に用いられる。
上述したような蓄電デバイスは、移動体通信機器や携帯電子機器の主電源、バックアップ電源および電気回路用電源として広く利用されている。これらの機器は、近年より一層小型で高性能であることが求められており、蓄電デバイスの体積エネルギー密度を、より一層、向上させることが求められている。
体積エネルギー密度を向上させるためには、平均放電電圧の向上および体積容量密度の向上を図る必要があり、その実現手段の1つとして、充電電圧の高電圧化が検討されている。
リチウムイオン二次電池の場合、充電電圧を高くすることにより、正極材料のリチウムの利用効率を向上させることが可能になり、体積容量密度が高くなる。正極材料としては、一般的に、コバルト酸リチウムやニッケル酸リチウム等のリチウム含有遷移金属酸化物が用いられる。また、電気二重層キャパシタの場合、充電電圧を高くすることにより電気二重層容量の値を大きくすることが可能になり、体積容量密度を高めることができる。
しかしながら、一対の電極群のいずれか一方の電極をリチウムの溶解析出電位を基準として4.3V以上まで充電した場合、耐酸化性に優れ、高電圧型の蓄電デバイスに適した非水溶媒として知られる従来の鎖状カーボネート類や環状カーボネート類を用いても、これらの酸化分解が起き、ガスが発生する。この分解反応は特に高温状態において顕著に進行し、多量のガス発生を伴う。このため、例えば、電池の過充電に対して充電電流を遮断する内圧感知型電流遮断機構(CID:Current Interrupt Device)が、このような非水溶媒を含む高電圧型のリチウムイオン二次電池に搭載されている場合、CIDが誤作動して、電池としての機能が損失されてしまうことがある。また、CIDが搭載されていない場合には、ガスの発生量が多くなると電池が膨張するといった問題が生じる。
特許文献1は、鎖状カーボネート類や環状カーボネート類の超高電位下での酸化分解を抑制するために、環状スルホン酸エステルを含有する非水電解液を用いた非水電解質二次電池を開示している。このような非水電解質二次電池では、正極が4.5V以上の電位に充電されると、環状スルホン酸エステルが正極で酸化分解され、正極表面に被膜が形成される。この被膜が形成されることにより、正極表面での溶媒の分解が抑制される。
一方、特許文献2および3では、非水溶媒に、「フッ素原子を有していてもよい炭化水素化合物」を0.01重量%以上5重量%以下含有させることを提案している。これらの特許文献によれば、電極表面の活性点に、酸化及び還元に対して安定な炭化水素化合物が存在することにより、高温状態での電解液成分と電極活物質との副反応を抑制することができると記載されている。
特開2005−149750号公報 特開2004−111359号公報 特開2006−286650号公報
しかし、特許文献1に開示されている非水電解質二次電池では、鎖状カーボネート類や環状カーボネート類の分解反応を抑制することができるものの、その効果は十分ではない。さらに、正極表面に被膜が形成されるため、正極活物質界面における電荷移動抵抗が増大し、電池の内部抵抗が上昇するとともに高率放電性能が低下するという問題が発生する。
また、特許文献2および3に開示されている非水電解質二次電池では、「フッ素原子を有していてもよい炭化水素化合物」によって、高温状態での電解液成分と電極活物質との副反応を抑制することができると記載されているが、炭化水素化合物の含有率は、5重量%以下と少ない。また、炭化水素化合物は、正極表面に吸着または配位等する性質を有しているものでもないため、正極表面に選択的に高濃度で存在するということもない。したがって、特許文献2および3では、副反応抑制の効果が十分に得られるとはいえない。
本発明はこのような従来技術の課題に鑑み、耐酸化性に優れる蓄電デバイス用非水溶媒および非水電解液を提供することを目的とする。また、本発明は、分解してもガスの発生量が少ない蓄電デバイス用非水溶媒および非水電解液を提供することを目的とする。さらに、このような蓄電デバイス用非水溶媒および非水電解液を用いることにより、高電圧で充電しても、高い充放電特性を有し、かつ、高温状態においても長期にわたり高い信頼性を有する蓄電デバイスを提供することも目的とする。
本発明の蓄電デバイス用非水溶媒は、下記一般式(1)で表され、かつ、1または2個の置換基Rがシクロヘキサン環に導入された構造を有るフッ素含有環状飽和炭化水素と、25以上の比誘電率を有する化合物と、鎖状カーボネートとを含む(一般式(1)中、RはCn2n+1で表され、nは1以上の整数であり、2n+1個のXのうちの少なくとも1つはFであり、それ以外のXはHである。)。
Figure 0005421253
ある好ましい実施形態において、前記nは1または2である。
ある好ましい実施形態において、前記フッ素含有環状飽和炭化水素がトリフルオロメチルシクロヘキサンである。
ある好ましい実施形態において、前記フッ素含有環状飽和炭化水素が1,2−ビス(トリフルオロメチル)シクロヘキサンである。
ある好ましい実施形態において、前記フッ素含有環状飽和炭化水素が(2−フルオロエチル)シクロヘキサンである。
ある好ましい実施形態において、蓄電デバイス用非水溶媒は、前記鎖状カーボネートまたは環状スルホンを含む。
ある好ましい実施形態において、前記25以上の比誘電率を有する化合物は環状カーボネートである。
本発明の蓄電デバイス用非水電解液は、上記いずれかに規定される蓄電デバイス用非水溶媒と、支持電解質塩とを備える。
ある好ましい実施形態において、前記支持電解質塩はリチウム塩である。
ある好ましい実施形態において、前記支持電解質塩は四級アンモニウム塩である。
本発明の蓄電デバイスは、上記いずれかに規定される蓄電デバイス用非水溶媒を備える。
本発明のリチウムイオン二次電池は、上記いずれかに規定される蓄電デバイス用非水電解液を備える。
本発明の電気二重層キャパシタは、上記いずれかに規定される蓄電デバイス用非水電解液を備える。
本発明の蓄電デバイス用非水溶媒および非水電解液は、フッ素含有環状飽和炭化水素を含むことにより高い耐酸化性を備えており、非水溶媒の酸化分解によるガスの生成もほとんどない。また、鎖状カーボネートを含んでいるため、フッ素含有環状飽和炭化水素化合物および25以上の比誘電率を有する化合物のみを含む場合に比べて、高い濃度で支持電解質塩を溶解させることができる。さらに、鎖状カーボネートは、25以上の比誘電率を有する化合物とフッ素含有環状飽和炭化水素との分離を防ぎ、相溶性をより高める。
したがって、本発明の蓄電デバイス用非水溶媒および非水電解液は、高電圧下における耐酸化性に優れると共に、高いイオン伝導性を有する。また、本発明のリチウムイオン二次電池、電気二重層キャパシタなどの蓄電デバイスは、高電圧で充電しても高い充放電特性を有し、かつ、高温状態においても長期にわたり高い信頼性を有する。
(a)は本発明によるリチウムイオン二次電池の実施形態を示す斜視図であり、(b)は、図1(a)のI−I線に沿った断面図であり、(c)は、図1(a)、(b)に示す電極群13の断面を拡大して示す図である。 本発明による電気二重層キャパシタの実施形態を示す断面図である。 本発明の蓄電デバイス用非水溶媒を構成する各フッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道(HOMO)エネルギーを示す図である。 実施例で作製した正極1の寸法を示す図である。 実施例で作製した負極2の寸法を示す図である。 実施例の電気二重層キャパシタYの充放電特性を示すグラフである。 比較例の電気二重層キャパシタZの充放電特性を示すグラフである。
本出願人は、耐酸化性にすぐれ、分解してもガスの発生量が少ない蓄電デバイス用非水溶媒として、未公開の特願2008−131174号において、シクロヘキサン環を有するフッ素含有環状飽和炭化水素と、25以上の比誘電率を有する化合物とを含む非水溶媒を提案した。この非水溶媒を電解液として用いた蓄電デバイスは、4.3V以上の電圧で充放電を行っても、非水溶媒の分解が抑制され、また、ガスの発生も抑制される。
しかし、本願発明者が詳細に検討したところ、この非水溶媒を用いた場合、支持電解質塩の種類によっては、非水溶媒に対する支持電解質塩の溶解性が十分ではない場合や、支持電解質塩を溶解した場合において、フッ素含有環状飽和炭化水素と25以上の比誘電率を有する化合物との相溶性が低下する場合があることが分かった。たとえば、支持電解質塩として一般に広く用いられているLiPF6は0.5mol/l以下の低い濃度でのみ、この非水溶媒へ均一に溶解する。このため、支持電解質塩の種類によっては、電解液のイオン伝導性が低下し、十分な高率充放電特性が得られない場合がある。
本願発明者は、この点を考慮し、種々の非水溶媒を検討した結果、本発明に至った。以下、本発明の実施形態を詳細に説明する。
(第1の実施形態)
本発明による蓄電デバイス用非水溶媒の実施形態を説明する。本実施形態の非水溶媒は、リチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスの電解液に用いられる。
蓄電デバイス用の電解液に含まれる非水溶媒には、(1)支持電解質塩を解離させる機能、(2)塩の解離によって生成したイオンを拡散させる機能および(3)充放電時の電圧において、酸化・分解しない高い耐酸化性が求められる。
エチレンカーボネートに代表される環状カーボネートは、一般に高い比誘電率を有し、耐酸化性も高い。つまり、(1)および(3)の特徴を備えている。しかし、粘性が高いため、(2)の機能を十分には果たさないことがある。このため、従来、同じカーボネートであるが、粘性の低いエチルメチルカーボネートなどの鎖状カーボネートを環状カーボネートに添加することにより(1)、(2)および(3)の機能を備える非水溶媒を実現していた。
しかし、充電電圧を4.3V以上にすると、鎖状カーボネートや環状カーボネートが酸化され分解する。また、分解によって二酸化炭素が生成する。このため、従来の非水溶媒は上述の課題を有していたと考えられる。本願発明者は、このような点を考慮し、複数の化合物を含む非水溶媒を発明するに至った。
本実施形態の蓄電デバイス用非水溶媒は、下記一般式(1)で表されるフッ素含有環状飽和炭化水素と、25以上の比誘電率を有する化合物と、鎖状カーボネートとを含む。
Figure 0005421253
一般式(1)で表されるフッ素含有環状飽和炭化水素は、シクロヘキサンの1つまたは2つの水素が置換基Rで置換された構造を有する。置換基RはCn2n+1で表され、nは1以上の整数であり、2n+1個のXのうちの少なくとも1つはFであり、それ以外のXはHである。つまり置換基Rは、少なくともひとつの水素(H)がフッ素(F)で置換された鎖状の飽和炭化水素基である。
一般式(1)で表されるフッ素含有環状飽和炭化水素は、環状カーボネートや鎖状カーボネートよりも高い酸化還元電位、具体的には4.3V以上の酸化還元電位を有しており、蓄電デバイス用非水溶媒の耐酸化性を高める。また、分解してもCO2を発生しない。
一般に、飽和炭化水素は耐酸化性が高い。しかしながら、誘電率が低く極性溶媒との相溶性が低いという性質を有するため、従来から、蓄電デバイスの非水電解液の溶媒として用いることは困難であると考えられてきた。このため、特許文献2および3のように、5重量%以下の少量の飽和炭化水素を溶媒に含有させるといった限定的な使用方法が従来提案されているにすぎなかった。
しかし、本願発明者は、以下の実施例において詳細に説明するように、水素がフッ素で置換された炭化水素基を置換基として有するシクロヘキサンは、分子の対称性が低く、1.6debye以上の双極子モーメントを有するため極性溶媒との相溶性に優れ、また、環状飽和炭化水素骨格を有するため耐酸化性に優れることを見出した。
一般式(1)で表されるフッ素含有環状飽和炭化水素は、分子内に酸化安定性に劣る官能基を有していないため、酸化安定性に優れている。また、置換基Rに結合したフッ素原子が強い電子吸引性の効果を有するため、フッ素置換しない場合に比べて、環状飽和炭化水素の耐酸化性をより高めることができる。蓄電デバイスが使用される温度範囲において液体である点および入手や取り扱いが容易である点から、環状飽和炭化水素はシクロヘキサンであることが好ましい。
また、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタンのように、シクロヘキサン環に直接フッ素原子が結合している化合物よりも、置換基Rにフッ素が結合している一般式(1)の化合物の方が、分子の対称性が低くなるため、一般式(1)の化合物は比較的大きな極性および誘電率を有する。このため、一般式(1)で表されるフッ素含有環状飽和炭化水素は、極性溶媒との相溶性に優れる。
置換基Rにおけるフッ素原子の数が多いほど置換基Rがシクロヘキサン環から電子を吸引するため、シクロヘキサン環の耐酸化性は向上する。したがって、置換基Rがトリフルオロメチル基またはペンタフルオロエチル基であれば、より好ましい。
また、置換基Rの個数は、1個または2個が好ましい。置換基Rが2個の場合、置換基Rのシクロへキサンへの導入位置に特に制限はない。ただし、融点を低くするという観点からは、1つの置換基Rが結合した炭素原子と同じ炭素原子または隣り合う炭素原子に他方の置換基Rが結合した分子構造を有することが好ましく、同一の炭素原子に2つの置換基Rが結合した分子構造を有することがより好ましい。
置換基Rが2個の場合、2つの置換基Rは互いに同じ構造を有していてもよいし、異なる構造を有していてもよい。置換基Rの数が2個よりも多い場合には、分子量が大きくなるため、分子の拡散速度が低下する。また、置換基Rが大きくなりすぎると分子量が大きくなり、分子の拡散速度が低下するため、Rの炭素数(n)は、1または2であることが好ましい。
なお、以下で説明する「25以上の比誘電率を有する化合物」は一般に粘性が高くイオンを拡散させる機能が低い。これに対して、一般式(1)で表されるフッ素含有環状飽和炭化水素の粘性は低い。このため、一般式(1)で表されるフッ素含有環状飽和炭化水素はイオンを拡散させる機能も備えている。
このような一般式(1)で表されるフッ素含有環状飽和炭化水素の具体的な化合物としては、例えば、フルオロメチルシクロヘキサン、ジフルオロメチルシクロヘキサン、トリフルオロメチルシクロヘキサン、(2−フルオロエチル)シクロヘキサン、(2,2−ジフルオロエチル)シクロヘキサン、(2,2,2−トリフルオロエチル)シクロヘキサン、(1−フルオロエチル)シクロヘキサン、(1,2−ジフルオロエチル)シクロヘキサン、(1,2,2−トリフルオロエチル)シクロヘキサン、(1,2,2,2−テトラフルオロエチル)シクロヘキサン、(1,1−ジフルオロエチル)シクロヘキサン、(1,1,2−トリフルオロエチル)シクロヘキサン、(1,1,2,2−テトラフルオロエチル)シクロヘキサン、(ペンタフルオロエチル)シクロヘキサン、1,1−ビス(トリフルオロメチル)シクロヘキサン、1,2−ビス(トリフルオロメチル)シクロヘキサン、1,3−ビス(トリフルオロメチル)シクロヘキサン、1,4−ビス(トリフルオロメチル)シクロヘキサン、1,1−ビス(ペンタフルオロエチル)シクロヘキサン、1,2−ビス(ペンタフルオロエチル)シクロヘキサン、1,3−ビス(ペンタフルオロエチル)シクロヘキサン、1,4−ビス(ペンタフルオロエチル)シクロヘキサン、1−(ペンタフルオロエチル)−1−(トリフルオロメチル)シクロヘキサン等を挙げることができる。
これらの中でも、耐酸化性に優れているという観点から、フッ素含有環状飽和炭化水素として、トリフルオロメチルシクロヘキサン、(ペンタフルオロエチル)シクロヘキサン、1,1−ビス(トリフルオロメチル)シクロヘキサン、1,1−ビス(ペンタフルオロエチル)シクロヘキサン、1,2−ビス(トリフルオロメチル)シクロヘキサン、1,3−ビス(トリフルオロメチル)シクロヘキサン、1−(ペンタフルオロエチル)−1−(トリフルオロメチル)シクロヘキサンを用いることが特に好ましい。これらの化合物は、F2やNF3、DAST((diethylamino)sulfur trifluoride)を用いたフッ素化方法により、対応するアルキルシクロヘキサンやフッ素原子を導入したい部位に脱離基(I、Cl、OHなど)を備えたアルキルシクロヘキサンをフッ素化することによって合成することができる。
「25以上の比誘電率を有する化合物」とは、25℃から40℃における比誘電率が25以上の値を示す化合物のことをいう。一般に25以上の比誘電率を有する溶媒は、支持電解質塩を解離させるのに十分な極性を有し、蓄電デバイスの非水電解液に適している。本実施形態の蓄電デバイス用非水溶媒においても、25以上の比誘電率を有する化合物は、蓄電デバイス用非水溶媒に支持電解質塩を解離させる機能を与える。
このような化合物としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等をはじめとする環状カーボネートや、スルホラン、メチルスルホラン等の環状スルホン、ガンマブチロラクトン、などを挙げることができる。表1にこれらの化合物の25℃から40℃における比誘電率を示す。特に、環状カーボネートまたは環状スルホンを用いることがより好ましい。比誘電率が大きいからである。
また、フルオロエチレンカーボネート、フルオロプロピレンカーボネートなど、これらの化合物のフッ素化物を用いてよい。さらに、これらの化合物から選ばれる一種のみを用いても良いし、二種類以上を混合して用いてもよい。
Figure 0005421253
鎖状カーボネートは主として支持電解質塩を解離させるだけでなく、「25以上の比誘電率を有する化合物」に比べて粘性が低いため、生成したイオンを拡散させる機能を蓄電デバイス用非水溶媒に与える。
鎖状カーボネートとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、ジブチルカーボネートなどを用いることが好ましい。これらの鎖状カーボネートのフッ素化物を用いてもよいし、これらの鎖状カーボネートの一種のみを用いてもよく、二種類以上を混合して用いてもよい。
表2に、これらの鎖状カーボネートの比誘電率を示している。表2から分かるようにこれらの鎖状カーボネートの比誘電率はあまり大きくない。しかし、鎖状カーボネートのカーボネート基によって支持電解質塩を分離し、塩を溶媒和することによって、支持電解質塩を安定して非水溶媒中に溶解することができる。特に、総炭素数9以下の鎖状カーボネートを用いることが好ましい。総炭素数が10以上の鎖状カーボネートは、分子量が大きくなることで分子の拡散速度が低下し、上述した生成したイオンを拡散させる機能も低下するからである。
Figure 0005421253
25以上の比誘電率を有する化合物と一般式(1)で表されるフッ素含有環状飽和炭化水素は相溶性が高い。このため、高い濃度でフッ素含有環状飽和炭化水素を混合させることができ、耐酸化性の高いフッ素含有環状飽和炭化水素を多く含むことによって、非水溶媒全体の耐酸化性を高めることができる。これにより、この非水溶媒を電解液として用いた蓄電デバイスは、4.3V以上の電圧で充放電をおこなっても、非水溶媒の分解が抑制され、また、ガスの発生も抑制される。
さらに、鎖状カーボネートを非水溶媒に添加することによって、25以上の比誘電率を有する化合物と一般式(1)で表されるフッ素含有環状飽和炭化水素との分離を防ぎ、相溶性をより高めることができる。また、支持電解質塩の溶解性も向上させることができる。したがって、本実施形態の蓄電デバイス用非水溶媒は耐酸化性およびイオン伝導性に優れる。
これら2つの特徴が効果的に発揮されるために、非水溶媒を構成するフッ素含有環状飽和炭化水素化合物、25以上の比誘電率を有する化合物ならびに鎖状カーボネートは所定の割合で非水溶媒中に含まれていることが好ましい。具体的には、優れた耐酸化性を発揮するために一般式(1)で表されるフッ素含有環状飽和炭化水素化合物は、非水溶媒中に5重量%以上含まれていることが好ましい。一方、フッ素含有環状飽和炭化水素化合物の非水溶媒中の含有率が50重量%以下であり、かつ、鎖状カーボネートを含有しておれば、25以上の比誘電率を有する化合物とフッ素含有環状飽和炭化水素化合物とが分離することなく互いに溶解する。
したがって、フッ素含有環状飽和炭化水素化合物は、非水溶媒中に、5重量%以上50重量%以下で含有されていることが好ましい。より好ましくは、フッ素含有環状飽和炭化水素化合物の含有率は10重量%以上30重量%以下である。
また、上述したようにリチウム塩や四級アンモニウム塩などの支持電解質塩を高い濃度で溶解、解離させるために、鎖状カーボネートは、非水溶媒中に、15重量%以上70重量%以下で含まれていることが好ましい。これにより、非水溶媒に高い濃度で支持電解塩を溶解させることができ、高いイオン伝導性が得られる。また、非水溶媒の粘性を低下させることにより、イオン伝導性がさらに向上するといった効果も得られる。
このように、本実施形態の蓄電デバイス用非水溶媒は、フッ素含有環状飽和炭化水素を含むことにより、高い耐酸化性を備えている。このため、4.3Vを超える高い充電電圧を有するデバイス(超高耐電圧型非水蓄電デバイス)、特に、リチウムイオン二次電池や電気二重層キャパシタといった蓄電デバイスに適している。また、これらの蓄電デバイスが高電圧動作する場合や、高温で保持される場合、長期にわたって充放電サイクルを繰り返す場合などにおいても、本実施形態の蓄電デバイス用非水溶媒はほとんど酸化により劣化を示さず、高率充放電特性が損なわれることがない。
また、フッ素含有環状飽和炭化水素はカーボネート基を有しないため、仮に酸化による分解が生じても、二酸化炭素を生成しない。このため、本実施形態の蓄電デバイス用非水溶媒を用いた蓄電デバイスでは、溶媒の酸化分解によって安全機構(CID)が作動するといった問題や電池が膨張するという問題が生じるのを回避することができる。
また、本実施形態の蓄電デバイス用非水溶媒は鎖状カーボネートを含んでいるため、フッ素含有環状飽和炭化水素化合物および25以上の比誘電率を有する化合物のみを含む場合に比べて、高い濃度で支持電解質塩を溶解させることができる。具体的には、蓄電デバイス用非水溶媒がフッ素含有環状飽和炭化水素化合物および25以上の比誘電率を有する化合物のみを含む場合、支持電解質塩をこの非水溶媒に0.5mol/l以下の濃度でしか溶解させることができない。これに対し、本実施形態の蓄電デバイス用非水溶媒は、蓄電デバイスの電解液に用いられる一般的な溶媒と同様、1mol/l程度の濃度で支持電解質塩を溶解することが可能である。したがって、本実施形態の蓄電デバイス用非水溶媒は蓄電デバイスの電解液として十分なイオン電導度を備えており、本実施形態の蓄電デバイス用非水溶媒を用いることによって、高率充放電特性を備えた蓄電デバイスが実現する。
(第2の実施形態)
以下、本発明による蓄電デバイス用非水電解液の実施形態を説明する。本実施形態の電解液は、リチウムイオン二次電池や電気二重層キャパシタなどの蓄電デバイスに用いられる。
本実施形態の蓄電デバイス用非水電解液は、非水溶媒と支持電解質塩とを備える。
非水溶媒は、第1の実施形態で説明した蓄電用非水溶媒であり、フッ素含有環状飽和炭化水素と、25以上の比誘電率を有する化合物と、鎖状カーボネートとを含む。すでに非水溶媒については詳細に説明しているため、ここでの説明を省略する。
支持電解質塩には、蓄電デバイスの種類に応じて、一般的に用いられる支持電解質塩を特に制限なく、用いることができる。支持電解質塩の量も用途に応じて調整可能であり、1mol/l程度の濃度まで、支持電解質塩を非水溶媒に溶解させることがでる。
本実施形態の電解液がリチウムイオン二次電池に用いられる場合には、支持電解質塩として、LiPF6、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiSbF6、LiSCN、LiCl、LiC65SO3、LiN(CF3SO22、LiC(CF3SO23、C49SO3Li等のリチウム塩およびこれらの混合物を用いることができる。
また、本実施形態の電解液が電気二重層キャパシタの電解液として用いられる場合には、前述のリチウム塩に加えて、(C254NBF4、(C494NBF4、(C253CH3NBF4、(C254NPF6、(C253CH3N−N(SO2CF32、(C254N−N(SO2CF32、などの四級アンモニウム塩およびこれらの混合物を用いることができる。
本実施形態の電解液には、25以上の比誘電率を有する化合物と、鎖状カーボネートとが含まれているため、フッ素含有環状飽和炭化水素を含有していても支持電解質塩を十分な濃度で溶解、解離させることができる。したがって、本実施形態の電解液は高い耐酸化性および高いイオン電導性を備える。また、本実施形態の電解液を用いることによって、優れた高率充放電特性を有しつつ、4.3Vを超える高い電圧で充電が可能な蓄電デバイスを実現することができる。
(第3の実施形態)
以下、本発明による蓄電デバイスの実施形態を説明する。本実施形態の蓄電デバイスは、リチウムイオン二次電池である。図1(a)は本実施形態のリチウムイオン二次電池の斜視図であり、図1(b)は図1(a)におけるI−I断面を示している。
図1(a)、(b)に示すように、本実施形態のリチウムイオン二次電池は、電極群13と、電極群13を収納する電池ケース14と、電池ケース14内に充填された非水電解液15とを備える。電極群13における正極は正極リード11に接続され、電極群における負極は負極リード12に接続されている。正極リード11および負極リード12は電池ケース14の外部に引き出されている。
非水電解液15は、第2の実施形態の非水電解液のうちリチウムイオン二次電池に用いられるものを用いる。例えば、エチレンカーボネート(EC)(市販バッテリーグレード)とエチルメチルカーボネート(EMC)(市販バッテリーグレード)とトリフルオロメチルシクロヘキサン(TFMCH)が41:45:14の比率で混合された非水溶媒を非水電解液15に用いることができる。エチレンカーボネートは、25以上の比誘電率を有する化合物であり、エチルメチルカーボネートは鎖状カーボネートであり、トリフルオロメチルシクロヘキサンはフッ素含有環状飽和炭化水素である。この非水溶媒に、支持電解質塩として、1mol/lの濃度でLiPF6(市販バッテリーグレード)が溶解されている。本実施形態では電解液15の一例としてこの組み合わせの非水溶媒および支持電解質塩を用いたが、第2の実施形態の電解液のうち、リチウムイオン二次電池に用いられる他の組み合わせのものを用いてもよい。
図1(c)は電極群13の断面を拡大して示している。図1(c)に示すように、電極群13は、正極1と、負極2と、正極2と負極2との間に設けられたセパレータ3とを備えている。正極1は、アルミニウム箔からなる正極集電体1aと、正極集電体1aの表面に塗布されたLiCoO2からなる正極活物質層1bとを有している。一方、負極2は、ステンレス(SUS304)製メッシュからなる負極集電体2aと、負極集電体2aの表面に圧着された金属リチウム2bとを有している。セパレータ3は、例えばポリエチレン製の微多孔質シートからなる。
正極活物質層1bの材料としては、LiCoO2以外のリチウム含有遷移金属酸化物を用いてもよい。例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4(MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうちの少なくとも一種であり、x=0〜1.2、y=0〜0.9、z=1.7〜2.3)が挙げられる。これらの材料以外でも、充電時の正極1の電位がリチウム基準で4Vを超えるような材料であればよい。また、正極活物質として、複数の異なった材料を混合して用いてもよい。正極活物質が粉末である場合には、平均粒径は特に限定はされないが、特に0.1〜30μmであることが好ましい。正極活物質層1bは、通常50μmから200μm程度の厚さを有するが、特に厚さに制約はなく、正極活物質層1bは、0.1μmから50μmの厚さを有していてもよい。
正極活物質層1bは、活物質以外の導電剤および結着剤の両方を含んでいてもよいし、いずれか一方のみを含んでいてもよい。または、正極活物質層1bは導電剤および導電剤のいずれも含んでおらず、活物質のみから構成されていてもよい。
正極活物質層1b用の導電剤は、正極1の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、黒鉛類やカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、金属粉末類、導電性ウィスカー類、導電性金属酸化物あるいは有機導電性材料などを単独で用いてもよいし、混合物として用いてもよい。導電剤の添加量は、特に限定されないが、正極材料に対して1から50重量%が好ましく、特に1から30重量%が好ましい。
正極活物質層1bに用いられる結着剤は、熱可塑性樹脂および熱硬化性樹脂のいずれであってもよい。好ましい結着剤としては、例えば、ポリエチレン、ポリプロピレンをはじめとするポリオレフィン樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)をはじめとするフッ素系樹脂やそれらの共重合体樹脂、ポリアクリル酸やその共重合体樹脂などである。
導電剤や結着剤の他にも、フィラー、分散剤、イオン伝導体、圧力増強剤およびその他の各種添加剤を用いることができる。フィラーは、リチウムイオン二次電池内で化学変化を起こさない繊維状材料であれば何でもよい。
正極集電体1aの材料は、正極1の充放電電位において化学変化を起こさない電子伝導体であれば何であってもよい。例えば、ステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂などを用いることができる。また、正極集電体1aの表面には、表面処理により凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体などのいずれであってもよい。厚みは、特に限定されないが、一般には1μmから500μmである。
負極活物質層2bの材料としては、各種天然黒鉛または各種人造黒鉛、易黒鉛化炭素、難黒鉛化炭素などの炭素材料やこれらの混合物を用いてもよいし、リチウム金属、リチウムを可逆的に吸蔵放出可能なシリコンやスズなどの材料を含む複合材料や各種合金材料を用いてもよい。例えば、ケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種を用いるのが望ましい。さらには、チタン酸リチウムをはじめとするリチウムを可逆的に吸蔵放出可能な酸化物材料やリチウム含有複合窒化物を用いることもできる。
負極集電体2aとしては、例えば、銅箔やニッケル箔、ステンレス箔などを用いてもよい。
本実施形態の非水電解液15は、第2の実施形態で説明したように、高い耐酸化性および高いイオン電導性を備える。したがって、本実施形態のリチウムイオン二次電池は、優れた高率充放電特性を有し、かつ、4.3Vを超える高い電圧で充電が可能である。また、本実施形態のリチウムイオン二次電池では、非水溶媒の酸化分解によって安全機構(CID)が作動したり電池が膨張したりするのが抑制されている。
本実施形態はシート型のリチウムイオン二次電池を一例として説明したが、本実施形態のリチウムイオン二次電池は他の形状を有していてもよい。たとえば、本実施形態のリチウムイオン二次電池は、円筒形や角形形状を有していてもよい。また、電気自動車等に用いる大型の形状を有していてもよい。
本実施形態のリチウムイオン二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等に好適に用いることができる。また、これら以外の機器にも用いることができる。
(第4の実施形態)
以下、本発明による蓄電デバイスの実施形態を説明する。本実施形態の蓄電デバイスは、電気二重層キャパシタである。
本実施形態の電気二重層キャパシタは、図2に示すように、互いに対向する円盤型の電極23a、23bと、2枚の電極23a、23bの間に配置するセパレータ17とを備える。電極23aは、集電体16aと、集電体16aの表面に設けられた電極合剤22aとを有する。同様に、電極23bは、集電体16bと、集電体16bの表面に設けられた電極合剤22bとを有する。集電体16a、16bは例えばアルミニウム箔からなり、電極合剤22a、22bは例えば活性炭を含む。
電極23a、23bおよびセパレータ17からなる電極群は、円形の底面を有するケース21内に収容されている。ケース21の底面の上にはスペーサ18が配置され、スペーサ18の上に電極群が載置されている。ケース21の上部は開口しており、この開口は封止板19によって封止されている。ケース21と封止板19との間の隙間はガスケット20によって埋められている。
ケース21および封止板19の内部には、所定量の非水電解液24が含浸されている。非水電解液24は、プロピレンカーボネート(PC)(市販バッテリーグレード)とエチルメチルカーボネート(EMC)(市販バッテリーグレード)とトリフルオロメチルシクロヘキサン(TFMCH)とが62:25:13の重量比で混合された非水溶媒と、1mol/lの濃度で非水溶媒に溶解された(C254NBF4とを含む。プロピレンカーボネートは、25以上の比誘電率を有する化合物であり、エチルメチルカーボネートは鎖状カーボネートであり、トリフルオロメチルシクロヘキサンはフッ素含有環状飽和炭化水素である。
本実施形態の非水電解液24は、第2の実施形態で説明したように、高い耐酸化性および高いイオン電導性を備える。したがって、本実施形態の電気二重層キャパシタは、優れた高率充放電特性を有し、かつ、4.3Vを超える高い電圧で充電が可能である。また、本実施形態の電気二重層キャパシタでは、非水溶媒の酸化分解によって安全機構(CID)が作動したり電池が膨張したりするのが抑制されている。
本実施形態の電気二重層キャパシタはコイン型であるが、本実施形態の電気二重層キャパシタは他の形状を有していてもよく、例えば円筒形や角形であってもよい。
1.一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道(HOMO)エネルギーの評価
一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道エネルギーを計算した。また、比較のため、フッ素を有さないメチルシクロヘキサン(MCH)の双極子モーメントおよび最高被占軌道エネルギーも計算した。
双極子モーメントは、分子内分極の大きさを示す指標であり、本発明により発現する極性溶媒との相溶性と関係がある。また、最高被占軌道エネルギーは、分子から電子を1個引き抜く際に必要なエネルギーを示す指標であり、溶媒の耐酸化性能と関係がある。
双極子モーメントおよび最高被占軌道エネルギーは、量子化学的計算手法を用いて計算した。具体的には、市販の第一原理分子軌道計算ソフトウェアで行い、計算手法としては、密度汎関数法(B3LYP)を、基底関数には6−31G(d)を用いた。なお、エネルギー値の最適化は自己無頓着場計算により行った。
計算結果を表3に示す。また、図3に各フッ素含有環状飽和炭化水素の双極子モーメントおよび最高被占軌道エネルギーをプロットした結果を示す。
Figure 0005421253
一般式(1)で表されるフッ素含有環状飽和炭化水素の双極子モーメントは、いずれも約1.6debyeよりも大きな値となった。最も双極子モーメントが小さいフッ素含有環状飽和炭化水素は、(1−フルオロエチル)シクロへキサン(1FECH)であり、双極子モーメントは1.66である。これに対し、メチルシクロヘキサンの双極子モーメントは0.08debyeであった。
また、一般式(1)で表されるフッ素含有環状飽和炭化水素の最高被占軌道エネルギーは、いずれもメチルシクロヘキサンより小さい値となった。酸化反応は、分子から電子を引き抜く反応であるので、最高被占軌道エネルギーが小さい(負に大きい)ほど、電子を引く抜くために大きなエネルギーを必要とし、耐酸化性が高いといえる。よって、シクロへキサン環構造にフッ素原子を有するアルキル基を置換基として導入した本発明のフッ素含有環状飽和炭化水素は、いずれも高い耐酸化性を有することが分かる。
2.非水溶媒に対する支持電解質塩の溶解性
<非水電解液の調製>
(実施例1)
表4に示すように、25以上の比誘電率を有する化合物としてエチレンカーボネート(EC)、鎖状カーボネートとしてエチルメチルカーボネート(EMC)およびフッ素含有環状飽和炭化水素としてトリフルオロメチルシクロヘキサン(TFMCH)を異なる重量比率で混合し、複数種類の非水溶媒を調製した。0.6、1、1.5、2mol/lの各濃度で得られた非水溶媒にLiPF6を添加後、よく混合し、電解液A、B、C、D、E、F、G、H、I、J、K、Lを得た。
Figure 0005421253
(実施例2)
25以上の比誘電率を有する化合物として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、スルホラン(SLF)、3−メチルスルホラン(3MeSLF)を用意した。また、鎖状カーボネートとして、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MiPC)、ジプロピルカーボネート(DPC)、ジブチルカーボネート(DBC)を用意した。フッ素含有飽和環状炭化水素としてトリフルオロメチルシクロヘキサン(TFMCH)、1,2−ビス(トリフルオロメチル)シクロヘキサン(12BTFMCH)、(2−フルオロエチル)シクロヘキサン(2FECH)を用意した。これらを表5から表8に示すようにそれぞれ異なる重量比率で混合し、複数種類の非水溶媒を調製した。1mol/lの濃度でこれらの非水溶媒にLiPF6を添加後、よく混合し、電解液M、N、O、P、Q、R、S、T、U、V、Wを得た。
(比較例1)
表9に示すように、プロピレンカーボネート(PC)およびトリフルオロメチルシクロヘキサン(TFMCH)を75:25の重量比率で混合し、非水溶媒を調製した。1mol/lの濃度でこの非水溶媒にLiPF6を添加後、よく混合し、電解液Xを得た。また、0.2mol/lの濃度でこの非水溶媒にLiPF6を添加後、よく混合し、電解液Yを得た。
Figure 0005421253
Figure 0005421253
Figure 0005421253
Figure 0005421253
Figure 0005421253
なお、用いた溶媒は次のようにして調製した。
[メチルプロピルカーボネート]
[メチルイソプロピルカーボネート]
[ジプロピルカーボネート]
[ジブチルカーボネート]
メチルプロピルカーボネート(MPC)[CAS RN:56525−42−9]、メチルイソプロピルカーボネート(MiPC)[CAS RN:51729−83−0]、ジプロピルカーボネート(DPC)[CAS RN:623−96−1]、ジブチルカーボネート(DBC)[CAS RN:542−52−9]には市販品を用い、回転バンド式精密分留装置(大科工業製)により精製を行った。得られた精製物の純度をガスクロマトグラフィー(島津製作所製)により測定したところ、いずれも純度は99.5%以上であった。さらに、電解液調製の直前に、真空中200℃で12時間処理したモレキュラーシーブ[4A]を用いて脱水処理を行った。処理後の水分量は、いずれも20ppm以下であった。
[トリフルオロメチルシクロへキサン]
トリフルオロシクロへキサン(TFMCH)[CAS RN:401−75−2]には市販品を用い、回転バンド式精密分留装置(大科工業製)により精製を行った。得られた精製物の純度をガスクロマトグラフィー(島津製作所製)により測定したところ、純度は99.5%であった。
[1,2−ビス(トリフルオロメチル)シクロへキサン]
1,2−ビス(トリフルオロメチル)シクロへキサン(12BTFMCH)は、以下に示す合成法により得た。
テフロン(登録商標)内管の耐酸性オートクレープに酸化白金(Aldrich製)5g、トリフルオロ酢酸(和光純薬製)250mLを加え内部を水素置換した。これを0.2MPaの水素雰囲気下、室温で1時間攪拌した。オートクレープを外し1,2−ジトリフルオロメチルベンゼン(東京化成工業製)25gを加え再び0.8MPaの水素雰囲気下、室温で18時間攪拌した。攪拌終了後、ガスクロマトグラフィー(GC)分析にて原材料である1,2−ジトリフルオロメチルベンゼンのピークが消失していることを確認した。この黒色懸濁液からトリフルオロ酢酸溶液のみデカンデーションで除いた後、残渣をトリフルオロ酢酸にて洗浄した。トリフルオロ酢酸と残渣の混合物に300mLの蒸留水を加え、分液ロートにて2層に分離した。目的物を含む下層を取り出し、100mLのジクロロメタンを添加した後、重曹水を用いて洗浄を行った。ジクロロメタン溶液層を分液ロートで取り出し、無水硫酸ナトリウムを用いて乾燥した。さらに、ろ過して無水硫酸ナトリウムを除いた後、バス温60℃でリービッヒ冷却器を用いて蒸留しジクロロメタンを除去した。残渣を内管3段のリービッヒ冷却器を備えた精留塔を用いて、バス温:100〜176℃、蒸気温:90〜145℃、内圧:280〜420mmHgの条件で減圧蒸留精製を4回繰り返して行い無色の液体11.8gを得た。
1H−NMRスペクトル(CDCl3)の測定より、1.437、1.459、1.470、1.481、1.494、1.515、1.541ppmにピークを持つ水素2原子に相当するマルチプレット、1.630、1.641、1.652、1.685、1.726、1.742、1.754、1.778ppmにピークを持つ水素4原子に相当するマルチプレット、1.977、1.996、2.013、2.024、2.044ppmにピークを持つ水素2原子に相当するマルチプレット、2.493、2.518、2.528、2.539、2.543、2.553、2.564、2.589ppmにピークを持つ水素2原子に相当するマルチプレットが観測され、この化合物の水素原子数は、10個であることが分かった。また、19F−NMRスペクトル(CDCl3)の測定より、66.191ppmにピークを持つフッ素6原子に相当するシングレットが観測された。以上の結果より、上記の無色の液体は、1,2−ビス(トリフルオロメチル)シクロへキサンであることが分かった。純度をガスクロマトグラフィー(島津製作所製)により測定したところ、99.0%であった。
[(2−フルオロエチル)シクロへキサン]
(2−フルオロエチル)シクロへキサン(2FECH)は、以下に示す合成法により得た。
2−シクロヘキシルエタノール(東京化成製)100gとトリエチルアミン(東京化成製)162mL、脱水ジクロロメタン(関東化学製)1Lを2Lの反応器に収納し5℃に氷冷した。この混合溶液にメタンスルホニルクロリド(東京化成製)72.4mLをゆっくりと加え、5℃で1時間攪拌した。その後、薄層クロマトグラフィー(TLC)を用い、原料のスポットが消失し、新たなスポットが生成していることを確認した。この溶液に50mLの蒸留水を加えた後、静置して2層に分離させ、有機層および水層を分液ロートにて取り出した。取り出した水層にジクロロメタン(関東化学製)30mLを加え、静置して2層に分離し、分液ロートにてジロロメタン層を取り出した。取り出したジロロメタン層を前記の2層に分離し取り出した有機層と混合し、300mLの蒸留水を加えて洗浄した後、有機層を分液ロートにて取り出した。さらに300mLの飽和食塩水を加えて洗浄した後、有機層を分液ロートにて取り出した。得られた有機溶液に無水硫酸マグネシウムを加えて乾燥した後、ろ過により無水硫酸マグネシウムを除き、濃縮して淡橙色の液体165gを得た。この液体を高真空下で乾燥し淡橙色の液体である2−シクロヘキシルエタノールのメシル化体である2−シクロヘキシルエチルメタンスルホネート157gを得た。
得られた2−シクロヘキシルエチルメタンスルホネートの内、120gを1Lの反応器に収納し、367gのテトラブチルアンモニウムフルオリド(和光純薬製)と180gのアセトニトリル(和光純薬製)を加え50℃の環境下で24時間攪拌した。この溶液の一部を取り出し、ガスクロマトグラフィー(島津製作所製)で分析を行い、原材料である2−シクロヘキシルエチル メタンスルホネートのピークが完全に消失していることを確認した。前記溶液に1Lの蒸留水を加え、300mLのペンタン(関東化学製)で3回、有機層の抽出を行った。得られた有機層に800mLの蒸留水を加えて洗浄した後、有機層を分液ロートにて取り出した。前記の蒸留水での洗浄を再び行った後、800mLの飽和食塩水を加えて洗浄し、有機層を分液ロートにて取り出した。得られた有機溶液に無水硫酸マグネシウムを加えて乾燥した後、ろ過により無水硫酸マグネシウムを除いた。無水硫酸マグネシウムを除いた有機溶液を30℃の環境下で減圧蒸留し、溶媒のペンタンを除去した。残渣を内管3段のリービッヒ冷却器を備えた精留塔を用いて、バス温:72℃、蒸気温:62℃、内圧:32mmHgの条件で減圧蒸留精製を行い無色の液体39.5gを得た。
1H−NMRスペクトル(CDCl3)の測定より、0.886、0.897、0.921、0.948、0.979、0.987ppmにピークを持つ水素2原子に相当するマルチプレット、1.130、1.138、1.145、1.162、1.168、1.176、1.191、1.197、1.204、1.211、1.234、1.242、1.259、1.265、1.297ppmにピークを持つ水素3原子に相当するマルチプレット、1.414、1.424、1.433、1.441、1.451、1.459、1.467ppmにピークを持つ水素1原子に相当するマルチプレット、1.531、1.547、1.551、1.562、1.579、1.595、1.611、1.627、1.639、1.643、1.655、1.661、1.680、1.686、1.695、1.701、1.716、1.720、1.745、1.749、1.753ppmにピークを持つ水素7原子に相当するマルチプレット、4.415、4.430、4.446ppmのトリプレットピークと4.534、4.549、4.565ppmのトリプレットピークで構成される水素2原子に相当する2つのピークが観測され、この化合物の水素原子数は、15個であることが分かった。また、4.415、4.430、4.446ppmのトリプレットピークと4.534、4.549、4.565ppmのトリプレットピークから、フッ素原子の結合する炭素上の水素の数は2個であることが、また、フッ素原子の結合する炭素に結合する炭素上の水素の数は2個であることが分かった。さらに、19F−NMRスペクトル(CDCl3)の測定より、−218.470ppmにピークを持つフッ素1原子に相当するシングレットが観測された。以上の結果より、上記の無色の液体は、(2−フルオロエチル)シクロへキサンであることが分かった。
純度をガスクロマトグラフィー(島津製作所製)により測定したところ、99.2%であった。
エチレンカーボネート、プロピレンカーボネート、スルホラン、3−メチルスルホラン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートには市販のリチウムバッテリーグレートを用いた。
<評価方法および結果>
実施例1、2および比較例1の電解液AからYの状態を目視によって観察した。非水溶媒の組成、LiPF6の添加量および評価結果をそれぞれ表4から表9に示す。
表4に示すように、25以上の比誘電率を有する化合物としてエチレンカーボネート(EC)、鎖状カーボネートとしてエチルメチルカーボネート(EMC)、フッ素含有飽和環状炭化水素としてトリフルオロメチルシクロヘキサン(TFMCH)を用いた電解液A、B、C、D、E、F、G、H、I、J、K、Lは0.6mol/l以上の濃度で支持電解質塩であるLiPF6を溶解することが可能であり、均一な非水電解液が得られた。
また、表5から表8に示すように、25以上の比誘電率を有する化合物として、プロピレンカーボネート(PC)、スルホラン(SLF)、3−メチルスルホラン(3MeSLF)を用い、鎖状カーボネートとしてジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC))、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MiPC)、ジプロピルカーボネート(DPC)、ジブチルカーボネート(DBC)、フッ素含有飽和環状炭化水素としてトリフルオロメチルシクロヘキサン(TFMCH)、1,2−ビス(トリフルオロメチル)シクロヘキサン(12BTFMCH)、(2−フルオロエチル)シクロヘキサン(2FECH)を用いた場合も同様に高い濃度で支持電解質塩であるLiPF6を溶解することが可能である。
しかしながら、表9に示したように、非水溶媒が鎖状カーボネートを含まず、高誘電率溶媒およびフッ素含有環状飽和炭化水素のみを含む場合、支持電解質塩の濃度が0.2mol/lであれば均一な非水電解液(Y)が得られるが、支持電解質塩の濃度が1mol/lでは均一な非水電解液(X)が得られなかった。
3.非水電解液の電導度
以下、実験例1、2および比較例1として作製した電解液の電導度を測定した結果を説明する。
<電導度の測定>
実施例1、2および比較例1の電解液のうち、均一に混合した電解液D、M、N、O、P、Q、R、S、T、U、V、Wおよび比較のための電解液Yのそれぞれについて電導度計(東亜ディーケーケー製)を用いて電導度を測定した。
表10に、各電解液の電導度の測定値を示す。
Figure 0005421253
表10に示したように、電解液D、M、N、O、P、Q、R、S、T、U、V、Wは、3.0mS/cm以上の電導度を有しているが、電解液Yは、2.70mS/cmの電導度しか有していない。これは、電解液Yでは支持電解質塩が高濃度で溶解していないからである。
4.リチウムイオン二次電池の作製および特性の評価
以下、リチウムイオン二次電池を作製し、その特性を評価した結果について説明する。
<電解液の調製>
(実施例3)
実施例3として、実施例1、2の電解液D、M、N、O、P、Q、R、S、T、U、V、Wを用いてリチウムイオン二次電池を作製した。
(比較例2)
比較例2として、比較例1の電解液Yを用いてリチウムイオン二次電池を作製した。
リチウムイオン二次電池の作製方法は以下の通りである。
<正極の作製>
まず、正極活物質としてLiCoO2(平均粒径10μm、BET法による比表面積0.38m2/g)を準備した。100重量部の活物質に、導電剤であるアセチレンブラックを3重量部、結着剤であるポリフッ化ビニリデンを4重量部、および適量のN−メチル−2−ピロリドンを加え、攪拌・混合して、スラリー状の正極合剤を得た。なお、ポリフッ化ビニリデンは、あらかじめN−メチル−2−ピロリドンに溶解した状態で用いた。
次に、図4に示すように、厚さ20μmのアルミニウム箔からなる集電体1aの片面に、前記スラリー状正極合剤1bを塗布し、塗膜を乾燥し、ローラーで圧延した。
正極活物質として用いたLiCoO2の調製法は以下の通りである。
硫酸コバルト飽和水溶液を低速で撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液を滴下して、Co(OH)2の沈殿を得た。この沈殿物をろ過、水洗した後、空気中で80℃に加熱することにより乾燥した。得られた水酸化物の平均粒径は、約10μmであった。
次に、得られた水酸化物に対して、空気中で380℃の熱処理を10時間行うことにより、酸化物Co34を得た。粉末X線回折により、得られた酸化物が単一相を有することを確認した。
さらに、得られた酸化物に、Coのモル数とLiのモル数との比が1.00:1.00になるように炭酸リチウムの粉末を混合し、乾燥空気中で1000℃の熱処理を10時間行うことにより、目的とするLiCoO2を得た。粉末X線回折(リガク製)により、得られたLiCoO2が単一相の六方晶層状構造を有することを確認した。粉砕および分級の処理を行った後、走査型電子顕微鏡(日立ハイテクノロジーズ製)による観察から、粒径が10〜15μm程度であることを確認した。なお、平均粒径は、散乱式粒度分布測定装置(HORIBA製)を用いて求めた。
得られた極板を、図4に示す寸法に打ち抜いて、リード取り付け部であるタブの部分の正極合剤1bを剥離し正極1を得た。正極合剤1bが塗布された正極集電体1aは30mm×40mmの長方形状を有する。
<負極の作製>
まず、ステンレス(SUS304)製メッシュを図5に示す寸法に打ち抜いて、負極集電体2aを形成した。負極集電体2aは、31mm×41mmの長方形状を有する電極部と、7mm×7mmの正方形状を有するリード取り付け部とを有する。負極集電体2aのうちの電極部の上に、厚さ150μmの金属リチウム2bを圧着して、負極2を得た。
<組み立て>
得られた正極1および負極2を、セパレータ3を介して積層し、図1(c)に示すような電極群13を作製した。セパレータとしては、厚さ20μmのポリエチレン製微多孔質シートを用いた。
次に、図1(a)に示すように、電極群13の正極1にアルミニウム製正極リード11を、負極2にニッケル製負極リード12を溶接した。その後、電極群13を、3方向が開口している厚さ0.12mmのアルミラミネートフィルム製電池ケース14の内部に収容し、PP製のテープで電池ケース14の内面に固定した。正極リード11および負極リード12が出ている開口部を含む開口部を熱溶着し、1つの開口部のみを熱溶着せずに残して、電池ケース14を袋状とした。熱溶着していない開口部から、電解液15として電解液D、M、N、O、Qのそれぞれを注入し、減圧および脱気後、減圧状態で開口部を熱溶着することにより、電池内部を密封した。電解液D、M、N、O、P、Q、R、S、T、U、V、W、Yから、電池d、m、n、o、p、q、r、s、t、u、v、w、yを得た。厚さ0.5mm、幅50mm、高さ100mmのサイズを有し、この電池が4.3Vで充電された時の設計容量は40mAhであった。
<高率放電特性の評価>
作製した各電池d、m、n、o、p、q、r、s、t、u、v、w、yを用いて高率放電特性の評価を行った。
25℃の環境下において、電流値16mAで4.3Vまで定電流充電を行い、その後、電流値が4mAに減衰するまで、4.3Vで定電圧充電を行った。その後、電流値4mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を初期放電容量とした。次に、電流値16mAで4.3Vまで定電流充電を行い、その後、電流値が4mAに減衰するまで、4.3Vで定電圧充電を行った。その後さらに、電流値16mAで3.0Vまで定電流放電を行い、このとき得られた放電容量を高率放電容量とした。各電池の初期放電容量に対する高率放電容量の割合を高率放電特性(高率放電特性=高率放電容量/初期放電容量)とし、その百分率を表11に示す。
Figure 0005421253
<高温保存>
作成した各電池d、m、o、p、q、r、s、t、u、v、w、yを用いて、充電状態での高温保存試験を行った。
25℃の環境下において、2mAで4.3Vまで定電流充電を行い、その後、電流値が0.4mAに減衰するまで、4.3Vで定電圧充電を行った。次に、充電状態の各電池を恒温槽中85℃の環境下で3日間保持した。このとき、電解液に含まれる溶媒が酸化分解するとCO2が発生すると考えられる。その後、恒温槽中から各電池を取り出し、発生したガス量の定量とガスクロマトグラフィーによる成分分析を行った。その結果から算出されたCO2の発生量を表11に示す。
表11に示すように、比較例2の電池yでは初期放電容量が90.2mAh/gと小さく、高率放電特性においても21.8%と大幅な容量低下が見られる。これに対して、実施例3の電池d、m、n、o、p、q、r、s、t、u、v、wでは130mAh/g以上の初期容量が得られており、高率放電特性も60%以上となっている。このように、本発明の電解液を用いることにより、従来の電解液での大きな課題の一つであった高率放電特性の低下を改善することができる。
また、電池d、m、o、p、q、r、s、t、u、v、wでは高温保存時のCO2ガスの発生量が比較例の電池yと同様に0.5ml以下であり、フッ素含有飽和環状炭化水素を含むことにより電解液の酸化が抑制されている。炭酸エステルとして環状カーボネートのみを用いた場合と同様に、環状カーボネートと鎖状カーボネートの両者を用いた場合においても、フッ素含有飽和環状炭化水素の効果が得られる。
なお、フッ素含有飽和環状炭化水素を用いず、環状カーボネートであるプロピレンカーボネート(PC)と鎖状カーボネートであるジメチルカーボネート(DMC)を75:25の体積比率で混合した溶媒に、0.2mol/lの濃度でLiPF6を溶解して作成した電解液を用い、同様の方法で評価を行った結果、得られたCO2ガス発生量は2.18mlであった。
5.電気二重層キャパシタの作製および評価
以下、電気二重層キャパシタを作製し、その特性を評価した結果を説明する。電気二重層キャパシタの作製方法は以下の通りである。
<電解液の調製>
(実施例4)
実施例4として、プロピレンカーボネート(PC)とエチルメチルカーボネート(EMC)とトリフルオロメチルシクロヘキサン(TFMCH)とを重量比率62:25:13で混合して、混合溶媒を調製した。この混合溶媒に、1mol/lの濃度で(C254NBF4を溶解させて電解液AAを得た。
(比較例3)
比較例として、プロピレンカーボネート(PC)のみを溶媒として含む電解液を調製して、(C254NBF4を1mol/lの濃度で溶解することにより、電解液ABを得た。
<電極の作製>
電極は活性炭粉末(比表面積1700m2/g、平均粒子径2μm)を用いて作製した。活性炭粉末100mgとアセチレンブラック20mgとを均一に混合し、ポリビニルピロリドン20mg、メタノール800mgを加えてスラリーを得た。このスラリー状の電極合剤をアルミニウム箔からなる集電体上に塗布し、真空乾燥を行った。電極合剤の塗布重量は、集電体の単位面積あたり2.2mg/cm2であった。得られた極板を、直径12.5mmの円盤状に打ち抜いて電極とした。
<組み立て>
円盤状に打ち抜いた電極を用いて、図2に示すようなコイン型電気二重層キャパシタを組み立てた。まず、直径15mmの円形に打ち抜いたポリプロピレン製不織布シートからなるセパレータ17を介して電極22a、22bを互いに対向させて配置させ、電極群とした。電極群をケース21の内部に収容し、所定量の各種電解液AAY、ABを含浸させた後、ガスケット20を装着した封口板19により、キャパシタ内部を密封した。これにより、電解液AAを用いた電気二重層キャパシタaa、電解液ABを用いた電気二重層キャパシタabを作製した。
<充放電試験の評価>
作製した電気二重層キャパシタaa、abに対して、25℃の環境下において、0.1mAの定電流で0Vから2.0Vの電圧範囲での充放電試験を行った。図6に電気二重層キャパシタaa、図7に電気二重層キャパシタabの充放電試験結果を示す。
図6および図7に示すように、実施例4の電気二重層キャパシタaaおよび比較例3の電気二重層キャパシタabのいずれを用いた場合においても、ほぼ同等の特性が得られている。
したがって、本発明の蓄電デバイス用非水電解溶媒および電解液は、電気二重層キャパシタにも好適に用いることができることが分かる。
本実施例では本発明の蓄電デバイス用非水電解溶媒および電解液を用いることによって従来と同等以上の電気二重層キャパシタが作製できることを確認することが主たる目的であったため、作製した電気二重層キャパシタの高温保存試験は行っていない。しかし、実施例3における電解液と同様に、本実施例4における電解液では高電位状態での酸化反応が抑制されるため、本実施例4の電気二重層キャパシタでは高い信頼性を得ることができる。
本発明によれば、高電圧下における耐酸化性に優れると共に、高いイオン伝導性を有する蓄電デバイス用非水溶媒および電解液が実現する。また、高電圧で充電しても、高い充放電特性、長期および高温信頼性を示す蓄電デバイスが実現できる。
本発明は、特に高い電圧で充電される種々の蓄電デバイスに好適に用いられる。
1 正極
1a 正極集電体
1b 正極合剤
2 負極
2a 負極集電体
2b 金属リチウム
3、17 セパレータ
11 正極リード
12 負極リード
13 電極群
14 電池ケース
15 電解液
16a、16b アルミニウム集電体
18 スペーサ
19 封口板
20 ガスケット
21 ケース
22a、22b 電極合剤
23a、23b 電極

Claims (12)

  1. 下記一般式(1)で表され、かつ、1または2個の置換基Rがシクロヘキサン環に導入された構造を有し、5重量%以上50重量%以下の含有量のフッ素含有環状飽和炭化水素と、
    25以上の比誘電率を有する化合物と、
    鎖状カーボネートと
    を含み、
    一般式(1)中、RはCn2n+1で表され、nは1以上の整数であり、XはHまたはFであり、かつ、2n+1個のXのうちの少なくとも1つはFである蓄電デバイス用非水溶媒。
    Figure 0005421253
  2. 前記nは1または2である請求項1に記載の蓄電デバイス用非水溶媒。
  3. 前記フッ素含有環状飽和炭化水素がトリフルオロメチルシクロヘキサンである、請求項2に記載の蓄電デバイス用非水溶媒。
  4. 前記フッ素含有環状飽和炭化水素が1,2−ビス(トリフルオロメチル)シクロヘキサンである、請求項2に記載の蓄電デバイス用非水溶媒。
  5. 前記フッ素含有環状飽和炭化水素が(2−フルオロエチル)シクロヘキサンである、請求項2に記載の蓄電デバイス用非水溶媒。
  6. 前記25以上の比誘電率を有する化合物は環状カーボネートまたは環状スルホンである請求項1から5のいずれかに記載の蓄電デバイス用非水溶媒。
  7. 請求項1から6のいずれかに規定される蓄電デバイス用非水溶媒と、
    支持電解質塩と
    を備える蓄電デバイス用非水電解液。
  8. 前記支持電解質塩はリチウム塩である請求項7に記載の蓄電デバイス用非水電解液。
  9. 前記支持電解質塩は四級アンモニウム塩である請求項7に記載の蓄電デバイス用非水電解液。
  10. 請求項1から6のいずれかに規定される蓄電デバイス用非水溶媒を備えた蓄電デバイス。
  11. 請求項7から9のいずれかに規定される蓄電デバイス用非水電解液を備えたリチウムイオン二次電池。
  12. 請求項7から9のいずれかに規定される蓄電デバイス用非水電解液を備えた電気二重層キャパシタ。
JP2010514740A 2008-10-21 2009-10-20 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ Active JP5421253B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514740A JP5421253B2 (ja) 2008-10-21 2009-10-20 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008270636 2008-10-21
JP2008270636 2008-10-21
JP2010514740A JP5421253B2 (ja) 2008-10-21 2009-10-20 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
PCT/JP2009/005493 WO2010047092A1 (ja) 2008-10-21 2009-10-20 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Publications (2)

Publication Number Publication Date
JPWO2010047092A1 JPWO2010047092A1 (ja) 2012-03-22
JP5421253B2 true JP5421253B2 (ja) 2014-02-19

Family

ID=42119147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010514740A Active JP5421253B2 (ja) 2008-10-21 2009-10-20 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ

Country Status (5)

Country Link
US (1) US8247118B2 (ja)
EP (1) EP2352157B1 (ja)
JP (1) JP5421253B2 (ja)
CN (1) CN102138246B (ja)
WO (1) WO2010047092A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308314B2 (ja) * 2009-06-18 2013-10-09 パナソニック株式会社 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
KR20110139462A (ko) * 2010-06-23 2011-12-29 삼성전기주식회사 절연수지 조성물 및 이를 이용하여 제조된 인쇄회로기판
CN102385996A (zh) * 2010-09-06 2012-03-21 三星电机株式会社 电解质溶液组合物和具有其的能量储存装置
US9348492B1 (en) * 2011-04-22 2016-05-24 Angel A. Penilla Methods and systems for providing access to specific vehicle controls, functions, environment and applications to guests/passengers via personal mobile devices
WO2012172723A1 (ja) * 2011-06-15 2012-12-20 パナソニック株式会社 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
US9142837B2 (en) 2011-09-09 2015-09-22 SCREEN Holdings Co., Ltd. Lithium ion secondary battery and preparation process of same
IN2013CH00469A (ja) 2013-01-21 2015-07-31 Keypoint Technologies India Pvt Ltd
WO2014133466A1 (en) * 2013-02-28 2014-09-04 Nanyang Technological University Ionic liquid electrolyte and fluorinated carbon electrode
US20170207486A1 (en) * 2014-07-23 2017-07-20 Basf Corporation Electrolytes for lithium transition metal phosphate batteries
CN112600050B (zh) * 2020-10-20 2022-04-22 陕西斯瑞新材料股份有限公司 一种高抗撕裂性能铜箔软连接金属辅助加工工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514750A (ja) * 2001-12-28 2005-05-19 クオリオン リミテッド ライアビリティー カンパニー 電解質系及びそれを用いたエネルギー貯蔵装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856583B2 (ja) * 1999-02-01 2006-12-13 三井化学株式会社 二次電池用非水電解液および非水電解液二次電池
JP3721857B2 (ja) 1999-06-04 2005-11-30 株式会社日立製作所 不燃性電解液及びこれを用いたリチウム2次電池
JP2001085058A (ja) 1999-09-20 2001-03-30 Hitachi Ltd 非水電解液及びこれを用いたリチウム1次電池及びリチウム2次電池及び電気化学キャパシタ及び高分子電解質及びこれを用いたポリマ2次電池
JP2001143749A (ja) 1999-11-19 2001-05-25 Nippon Zeon Co Ltd 非水電解液含有電気化学素子
JP4212301B2 (ja) * 2002-05-16 2009-01-21 三菱化学株式会社 非水系電解液二次電池
JP4380664B2 (ja) 2002-07-24 2009-12-09 三菱化学株式会社 非水系電解液二次電池および非水系電解液
JP4433701B2 (ja) 2002-07-24 2010-03-17 三菱化学株式会社 非水系電解液二次電池および非水系電解液
JP4697382B2 (ja) 2003-11-11 2011-06-08 日本電気株式会社 非水電解質二次電池
EP1557899B1 (en) 2004-01-15 2009-11-25 Panasonic Corporation Nonaqueous electrolyte for electrochemical devices
JP4728647B2 (ja) 2004-01-15 2011-07-20 パナソニック株式会社 非水電解液を含む電気二重層コンデンサもしくは二次電池
US7030283B2 (en) 2004-01-23 2006-04-18 Air Products And Chemicals, Inc. Process for producing 1,1-difluorovinyl cycloaliphatic compounds
JP2005327785A (ja) 2004-05-12 2005-11-24 Honda Motor Co Ltd 電気二重層キャパシタ用電解液および電気二重層キャパシタ
US7233481B2 (en) 2004-01-28 2007-06-19 Honda Motor Co., Ltd. Electric double layer capacitor and electrolyte solution therefor
JP5088918B2 (ja) 2006-01-24 2012-12-05 国立大学法人鳥取大学 イオン液体およびその製造方法、ならびに該イオン液体を含む電解コンデンサ
JP2008131174A (ja) 2006-11-17 2008-06-05 Fuji Xerox Co Ltd 画像処理システム及び画像処理プログラム
EP2278653B1 (en) 2008-05-19 2014-03-05 Panasonic Corporation Non-aqueous solvent and non-aqueous electrolyte for an electricity storage device, non-aqueous electricity storage device employing the same, such as lithium secondary battery or electric double-layer capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514750A (ja) * 2001-12-28 2005-05-19 クオリオン リミテッド ライアビリティー カンパニー 電解質系及びそれを用いたエネルギー貯蔵装置

Also Published As

Publication number Publication date
US20110171540A1 (en) 2011-07-14
WO2010047092A1 (ja) 2010-04-29
EP2352157B1 (en) 2014-04-16
CN102138246A (zh) 2011-07-27
US8247118B2 (en) 2012-08-21
EP2352157A4 (en) 2013-04-17
CN102138246B (zh) 2013-12-11
JPWO2010047092A1 (ja) 2012-03-22
EP2352157A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5421253B2 (ja) 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP5308314B2 (ja) 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液、ならびに、これらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP4435866B2 (ja) 蓄電デバイス用非水溶媒および蓄電デバイス用非水電解液と、それらを用いた非水系蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
JP5948646B2 (ja) 蓄電デバイス用非水溶媒および非水電解液ならびにそれらを用いた蓄電デバイス、リチウム二次電池および電気二重層キャパシタ
US8637192B2 (en) Nonaqueous electrolytic solution containing magnesium ions, and electrochemical device using the same
KR101328317B1 (ko) 전해액 및 그 이용
JP2004342607A (ja) リチウム電池用非水電解液およびその製造方法ならびにリチウムイオン二次電池
CN115136377A (zh) 锂离子二次电池
JP5165862B2 (ja) 非水電解液およびそれを用いた電気化学エネルギー蓄積デバイス
JP2005267857A (ja) 有機電解液およびそれを用いた有機電解液電池
JP2011187163A (ja) 非水電解液及びリチウムイオン二次電池
JP5335218B2 (ja) 非水電解液二次電池
JP2013191390A (ja) リチウムイオン二次電池
CN112470320A (zh) 电池用非水电解液及锂二次电池
WO2020121850A1 (ja) 電池用非水電解液及びリチウム二次電池
JP7216805B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2018170238A (ja) 電池用非水電解液及びリチウム二次電池
JP2018170217A (ja) 電池用非水電解液及びリチウム二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2002100403A (ja) 非水電解液およびそれを含む非水電気化学装置
JP6894751B2 (ja) 電池用非水電解液、電池用添加剤、及びリチウム二次電池
WO2014097618A1 (ja) 蓄電デバイス用非水溶媒、非水電解液、ならびにこれを用いた蓄電デバイスおよびリチウム二次電池
JP7206556B2 (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5421253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150