JP5400782B2 - シリコン結晶を得るためのシリコン粉末の処理方法 - Google Patents

シリコン結晶を得るためのシリコン粉末の処理方法 Download PDF

Info

Publication number
JP5400782B2
JP5400782B2 JP2010527304A JP2010527304A JP5400782B2 JP 5400782 B2 JP5400782 B2 JP 5400782B2 JP 2010527304 A JP2010527304 A JP 2010527304A JP 2010527304 A JP2010527304 A JP 2010527304A JP 5400782 B2 JP5400782 B2 JP 5400782B2
Authority
JP
Japan
Prior art keywords
silicon
molten liquid
powder
gas
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010527304A
Other languages
English (en)
Other versions
JP2010540392A (ja
Inventor
スコット ニコル,
Original Assignee
シリコア マテリアルズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シリコア マテリアルズ インコーポレイテッド filed Critical シリコア マテリアルズ インコーポレイテッド
Publication of JP2010540392A publication Critical patent/JP2010540392A/ja
Application granted granted Critical
Publication of JP5400782B2 publication Critical patent/JP5400782B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

(相互参照)
本願は、米国仮特許出願第60/977,249号(2007年10月3日出願)の優先権の利益を主張し、この出願は、その全体が本明細書に参考として援用される。
(背景)
シリコン粉末は、多結晶または単結晶インゴットの寸法を整えるために線鋸または帯鋸が使用される際に、結晶性太陽電池の製造中に生成され得る。さらに、シリコン粉末は、半導体ウエハ製造プロセス等の間、線鋸によるウエハへのシリコンブロックまたはブールの切断中においても生成され得る。粉砕または破砕プロセスも、シリコン粉末を生成し得る。シリコン粉末は、鉄、水、ポリエチレングリコール、および炭化ケイ素等の種々の不純物と混合され得る場合があるため、概して、屑と見なされる。
粉末状のシリコンは、非常に高い表面積を有するので、次にシリコンジオキシドを形成する、酸素との接触を防止することは難しい。真空または不活性ガス環境は、伝統的に、このような酸化防止を補助するために利用されてきたが、問題点は残る。真空ポンプは粉末を乱し、シリコン粉末が融解された場合、高レベルの汚染を除去するために、高価で入念な処理ステップを必要とする。
生成および究極的に廃棄されたシリコン粉末の量は、処理された元のシリコン量の45%以上であり得る。粉末をリサイクルする最近の試みは、一般的には、高価で、太陽シリコン用に要求される純度に届かず、時間の浪費、および/または経済的に、実現不可能である。
本発明の実施形態は、シリコン粉末からシリコン結晶を得るためのプロセスに関する。方法は、シリコンを含有する混合物を提供するために、シリコン粉末を溶媒金属と接触させるステップと、第1の融解液体を提供するために、浸漬下でシリコンを融解するステップと、ドロスおよび第2の融解液体を提供するために、第1の融解液体を第1のガスと接触させるステップと、ドロスと第2の融解液体とを分離するステップと、第1のシリコン結晶および第1の母液を形成するために、第2の融解液体を冷却するステップと、第1のシリコン結晶と第1の母液とを分離するステップとを含む。
(項目1)
シリコン粉末からシリコン結晶を得るためのプロセスであって、
シリコンを含有する混合物を提供するために、シリコン粉末を溶媒金属と接触させることと、
第1の融解液体を提供するために、浸漬下で該シリコンを融解することと、
ドロスおよび第2の融解液体を提供するために、該第1の融解液体を第1ガスと接触させることと、
該ドロスと該第2の融解液体とを分離することと、
第1のシリコン結晶および第1の母液を形成するために、該第2の融解液体を冷却することと、
該第1のシリコン結晶と該第1の母液とを分離することと
を含む、プロセス。
(項目2)
前記シリコン粉末を溶媒金属と接触させることの前に、スラリーからシリコン粉末を分離する、項目1に記載の方法。
(項目3)
シリコン粉末を溶媒金属と接触させる前に、酸処理、真空融解、磁気分離、乾燥、またはそれらの組み合わせを用いて、該粉末を前処理する、項目1〜2のいずれか一項に記載の方法。
(項目4)
前記第1の融解液体の温度は、液相線温度より低く、かつ固相線温度より高い、項目1〜3のいずれか一項に記載の方法。
(項目5)
前記溶媒金属は、ある量のシリコンまたは融解シリコンを含む、項目1〜4のいずれか一項に記載の方法。
(項目6)
前記シリコン粉末を分離することの後に、該シリコン粉末を乾燥させる、項目2に記載の方法。
(項目7)
前記シリコン粉末を溶媒金属と接触させることは、シリコン粉末を融解槽に供給することを含む、項目1〜6のいずれか一項に記載の方法。
(項目8)
シリコン粉末を融解槽に供給することをさらに含み、該シリコン粉末は、回転脱気装置、回転炉、融解金属ポンプ、または誘導電流を使用して渦の中に供給される、項目1〜7のいずれか一項に記載の方法。
(項目9)
前記融解中、前記温度は前記固相線温度より高く維持される、項目1〜8のいずれか一項に記載の方法。
(項目10)
前記溶媒金属は、シリコン、銅、スズ、亜鉛、アンチモン、銀、ビスマス、アルミニウム、カドミウム、ガリウム、インジウム、マグネシウム、鉛、それらの合金、およびそれらの組み合わせの群から選択される、項目1〜9のいずれか一項に記載の方法。
(項目11)
前記第1のガスは、塩素または塩素と不活性ガスとの混合物を含む、項目1〜10のいずれか一項に記載の方法。
(項目12)
第1の融解槽を提供するために、前記シリコン結晶を融解することをさらに含む、項目1〜11のいずれか一項に記載の方法。
(項目13)
前記第1の融解槽を第2のガスと接触させることをさらに含む、項目12に記載の方法。
(項目14)
第2のシリコン結晶を提供するために、前記第1の融解槽を指向的に凝固させることをさらに含む、項目13に記載の方法。
(項目15)
第2の融解槽を提供するために、前記第2のシリコン結晶を加熱することをさらに含む、項目14に記載の方法。
(項目16)
精製されたシリコンを提供するために、前記第2の融解槽を指向的に凝固させることをさらに含む、項目15に記載の方法。
(項目17)
前記第2のガスは、酸素、水、水素、および不活性ガス混合物、またはそれらの組み合わせを含む、項目13に記載の方法。
(項目18)
不純物を除去するのに十分な、前記シリコン結晶を洗浄する酸をさらに含む、項目1に記載の方法。
(項目19)
前記シリコン結晶を融解することをさらに含む、項目18に記載の方法。
(項目20)
前記第1のガスは、塩素(Cl )、酸素(O )、窒素(N )、ヘリウム(He)、アルゴン(Ar)、水素(H )、六フッ化硫黄(SF )、ホスゲン(COCl )、四塩化炭素(CCl )、水蒸気(H O)、酸素(O )、二酸化炭素(CO )、一酸化炭素(CO)、テトラクロロシラン(SiCl )、およびテトラフルオロシラン(SiF )のうちの少なくとも1つを含む、項目1〜19のいずれか一項に記載の方法。
(項目21)
前記第2の融解液体は、前記液相線温度より低い温度に冷却される、項目1〜20のいずれか一項に記載の方法。
(項目22)
前記第2の融解液体は、前記固相線温度より高く、かつ、約125℃以内の温度に冷却される、項目1〜21のいずれか一項に記載の方法。
(項目23)
前記第2の融解液体は、前記固相線温度より高く、かつ、前記液相線温度より低い温度に冷却される、項目1〜22のいずれか一項に記載の方法。
(項目24)
前記第2の融解液体は、約75℃/時より小さい速度で冷却される、項目1〜23のいずれか一項に記載の方法。
(項目25)
前記第2の融解液体は、少なくとも約2時間の期間にわたって冷却される、項目1〜24のいずれか一項に記載の方法。
(項目26)
シリコン粉末からシリコン結晶を得るためのプロセスであって、
シリコンを含有する混合物を提供するために、シリコン粉末を溶媒金属と接触させることと、
第1の融解液体を提供するために、浸漬下で該シリコンを溶解することと、
ドロスおよび第2の融解液体を提供するために、該第1の融解液体を第1のガスと接触させることと、
該ドロスと該第2の融解液体とを分離することと、
第1のシリコン結晶および第1の母液を形成するために、該第2の融解液体を冷却することと、
該第1のシリコン結晶と該第1の母液とを分離することと、
該第1のシリコン結晶を酸で洗浄することと
を含む、プロセス。
(項目27)
シリコン粉末からシリコン結晶を得るためのプロセスであって、
シリコンを含有する混合物を提供するために、シリコン粉末を溶媒金属と接触させることと、
第1の融解液体を提供するために、浸漬下で該シリコンを融解することと、
該第1の融解液体を初期のガスと接触させることと、
ドロスおよび第2の融解液体を提供するために、該第1の融解液体を第1のガスと接触させることと、
該ドロスと該第2の融解液体とを分離することと、
第1のシリコン結晶および第1の母液を形成するために、該第2の融解液体を冷却することと、
該シリコン結晶と該第1の母液とを分離することと
を含む、プロセス。
(項目28)
前記第1の融解液体を塩フラックスと接触させることは、該塩フラックスを前記槽の表面に添加することを含む、項目27に記載の方法。
(項目29)
前記第1のシリコン結晶を酸で洗浄することをさらに含む、項目27〜28のいずれか一項に記載の方法。
必ずしも縮尺通りに描かれていない図面において、類似する番号は、実質的に、複数の図面に通じて、類似する構成要素を記述する。異なる添字を有する類似する番号は、実質的に類似する構成要素の異なる例を表す。図面は、概して、例であり、制限するものではなく、本明細書に説明される種々の実施形態を図示する。
図1は、いくつかの実施形態に従う、シリコン粉末からシリコン結晶を得るための方法の構成図を図示する。 図2は、いくつかの実施形態に従う、シリコン粉末から精製されたシリコン結晶を得るための方法の構成図を図示する。
以下の発明を実施するための形態は、発明を実施するための形態の一部を形成する添付図面への参照を含む。図面は、例示であって、本発明が実践し得た、特定の実施形態を示す。本明細書で「実施例」としても称されるこれらの実施形態は、当該分野の当業者が、本発明の実践を可能にするのに十分な詳細を記述している。実施形態は併用されてもよく、他の実施形態が利用されてもよく、または構造的および論理的な変更が、本発明の範囲から逸脱することなくなされてもよい。以下の発明を実施するための形態は、したがって、限定的意味に捉えられるものではなく、本発明の範囲は、付属の特許請求の範囲およびその等価物によって定義される。
本明細書において、「a」または「an」という用語は、1つもしくは1つ以上を含むために使用され、「or」という用語は、特に記載がない限り、非排他的な「or」を意味するために使用される。加えて、本明細書に使用される表現または専門用語は、定義されない限り、説明の目的のみであり、制限するものではない。さらに、本明細書で参照される全ての刊行物、特許、および特許文書は、参照により個々に援用されるが、参照によりその全体が本明細書に援用される。本文書と参照により援用されるこれらの文書との間の一貫性のない使用において、援用される参考文書での使用が、本文書の使用への補足と考えられるべきであり、一致しない非一貫性において、本文書の使用が優先する。
本明細書に記述される製造方法において、ステップは、一時的または操作上の順序が明確に記載される場合を除き、本発明の原理から逸脱することなく、任意の順番で実行されてもよい。第1のステップが実施され、次に、いくつかの他のステップが続いて実施される効果への特許請求での記載は、任意の他のステップの前に第1のステップが実施されるが、他のステップは、順序が他のステップ内でさらに記載されていなければ、任意の適切な順序で実施されてもよいという意味と捉えるべきである。例えば、「ステップA、ステップB、ステップC、ステップD、およびステップE」と記載される特許請求の要素は、ステップAが最初に実施され、ステップEが最後に実施され、ステップB、C、およびDは、ステップAとステップEとの間の任意の順序で実施されてもよいという意味に解釈され、順序は、依然として、特許請求プロセスの文字通りの範囲内に入る。所定のステップおよびステップのサブセットも、反復され得る。
さらに、特定のステップは、明確な特許言語が、これらが個別に実行されることを記載していなければ、同時に実行されてもよい。例えば、特許請求ステップの実行Xおよび特許請求ステップの実行Yは、単一操作内で同時に実行されてもよく、プロセスの結果は、特許請求プロセスの文言範囲内に入る。
本発明の実施形態は、シリコン粉末からシリコン結晶を得るためのプロセスに関する。プロセスは、シリコン製造プロセスにより生成された、使用済みスラリーまたはシリコン屑からシリコンの経済的な回復を可能にする。加えて、プロセスは、種々の用途における開始生成物としての使用に望まれる要求レベルを満たす純度で、シリコンを生産するために、さもなければ廃棄されるか、または現在のもしくは伝統的な手法によって回復するには非常に高価になる。シリコンは、溶媒金属を用いた浸漬下で融解されるため、プロセスは、酸素との反応を最小化または除去する。これは、真空または不活性ガス環境を使用する等のシリコンを精製する、高価で複雑なステップを除去する。本発明のプロセスは、電子機器級のポリシリコンのレベルに達する、またはUMG(アップグレードされた冶金級)シリコン源の純度レベルを上回る純度レベルを有する精製されたシリコンを提供し得る。加えて、本明細書に記述される精製された、またはリサイクルされたシリコンを得るためのプロセスは、唯一のシリコン源としての冶金級シリコンから精製されたシリコンを提供するこれらの製造プロセスより、少ないエネルギー資源(例えば、最大、約90%低い電力)を使用する。さらに、本明細書に記述される精製された、またはリサイクルされたシリコンを得るためのプロセスは、廃棄材料から、非常に望ましい生成物の回復およびリサイクルを提供し得る。
(定義)
本明細書で使用されるように、「シリコン粉末」とは、シリコンと1つ以上の実質的な不純物との混合物を意味する。切断または粉砕プロセスからの一般的な不純物のいくつかは、シリコン源を切断するために使用される鋸歯またはワイヤから取り込まれ得る鉄、アルミニウム、カルシウム、および銅である。不純物は、それらがシリコン使用における商業上または製造上の基準に合致することを妨げるという点において現実的である。シリコン粉末は、例えば、結晶性太陽電池の作製中に生成され得、そのとき、線鋸または帯鋸が多結晶または単結晶インゴットを整えるために使用される。シリコンウエハの製造またはICバックグラインドプロセス等の他の製造プロセスは、シリコン粉末または屑シリコンを生じさせ得る。UMG(アップグレードされた冶金級)シリコンは、太陽級シリコンを提供するために、冶金プロセスを使用して精製される冶金級シリコンを意味する。このようなプロセスは、一般的には、電子機器級のシリコンに要求されるのと同等の純度を提供しない。
本明細書で使用されるように、「浸漬」または「浸漬する」とは、溶液または混合物の表面において、溶液または混合物の構成要素の環境との接触を部分的に、または完全に制限することを意味する。例えば、粉末は、溶液に進入した後においては、粉末が溶液または混合物の表面から実質的に分離されるように、溶液に浸漬されてもよい。
本明細書で使用されるように、「混合物」とは、互いに物理的に接触する、2つ以上の物質の組み合わせを意味する。例えば、混合物の構成要素は、化学的反応とは対照的に、物理的に組み合わされてもよい。
本明細書で使用されるように、「融解」とは、十分な熱に曝されると、固体から液体へ物質変化することを意味する。
本明細書で使用されるように、「精製」とは、外来性または不純物質からの化学物質の物理的分離を意味する。
本明細書で使用されるように、「接触」とは、触れる、接触させる、または物質を即近接に持ってくる行為を意味する。
本明細書で使用されるように、「結晶化」とは、溶液から物質の結晶(結晶材料)を形成するプロセスを含む。プロセスは、結晶を形成するように、供給物流体を冷却することにより、または所望の生成物の溶解度を下げる沈殿剤を添加することにより、液状供給物流体から、しばしば、きわめて純粋形態に生成物を分離する。純個体結晶は、次に、デカンテーション、濾過、遠心分離、または他の手法により、残りの流体から分離される。
本明細書で使用されるように、「結晶」とは、固体における原子の規則的、幾何学的配置を含む。
本明細書で使用されるように、「デカントする」または「デカンテーション」とは、液体を除去し、沈降物または沈殿物を残すことにより、液体を沈降物または沈殿物から分離することを含む。
本明細書で使用されるように、「濾過する」または「濾過」は、固体を保持し、液体が通過することを可能にするセラミックまたは金属膜等の多孔性シートを通して供給物流体を通過させることにより、液体から固体を分離する機械的方法を意味する。これは、重力、圧力、または真空(吸引)により達成され得る。濾過は、液体から沈降物または沈殿物を効果的に分離する。
本明細書で使用されるように、「分離する」とは、他から物質を除去する(例えば、混合物から固体または液体を除去する)プロセスを意味する。プロセスは、例えば、混合物の移動、混合物からの1つ以上の液体の除滓、混合物の遠心分離、混合物からの固体の濾過、またはそれらの組み合わせ等、当該分野の当業者に知られている任意の技術を使用してもよい。
本明細書で使用されるように、「濾過する」とは、フィルタを通して液体を通過させることにより混合物から固体を除去するため、フィルタに個体を保留するプロセスを意味する。
本明細書で使用されるように、「除滓する」とは、1つ以上の液体が混合物の上に浮遊している混合物から1つ以上の液体、それと混合する個体を除去するプロセスを意味する。
本明細書で使用されるように、「攪拌する」とは、乱力による動きに混合物を置くプロセスを意味する。攪拌の適切な方法は、例えば、かき回す、混合する、および振盪することを含む。
本明細書で使用されるように、「母液」とは、固体(例えば、結晶)が液体中の固体の溶液の混合物から除去された後に得られる個体または液体を意味する。このように、母液は、測定可能な量のこれらの固体を含まない。
本明細書で使用されるように、「シリコン」とは、記号Siおよび原子番号14を有する化学要素を意味する。本明細書で使用されるように、「冶金級シリコン」とは、比較的純性なシリコン(例えば、少なくとも96.0重量%)を意味する。
本明細書で使用されるように、「融解物」とは、融解される物質を意味し、融解は、固体物質が液体に変化する点(融点と呼ばれる)に個体物質を加熱するプロセスである。
本明細書で使用されるように、「溶媒金属」は、加熱すると、シリコンを効果的に溶解することが可能で、融解液体となる1つ以上の金属またはその合金を意味する。適切な例示的な溶媒金属は、例えば、銅、スズ、亜鉛、アンチモン、銀、ビスマス、アルミニウム、カドミウム、ガリウム、インジウム、マグネシウム、鉛、それらの合金、およびそれらの組み合わせを含む。
本明細書で使用されるように「合金」とは、少なくとも1つが金属であり、結果的に生じる材料が金属性質を有する、2つ以上の要素の均一な混合物を意味する。結果として生じる金属性物質は、通常、その構成要素と異なる性質(ときどき、顕著に異なる)を有する。
本明細書で使用されるように、「液相線」とは、所定の物質が液体相で安定する位相図上の線を指す。最も一般的には、この線は、転移温度を表す。液相線は、物質により、直線であってもよく、または曲線であってもよい。液相線は、しばしば、金属合金を含む固溶体等の二成分系に適用される。液相線は、固相線と対比され得る。液相線と固相線とは、一致または重複する必要はなく、液相線と固相線との間にギャップが存在する場合、ギャップ内では、物質は液体または固体のいずれかとして安定的ではない。
本明細書で使用されるように、「固相線」とは、所定の物質が個体相で安定する位相図上の線を指す。最も一般的には、この線は、転移温度を表す。固相線は、物質により、直線であってもよく、または曲線であってもよい。固相線は、しばしば、金属合金を含む固溶体等の二成分系に適用される。固相線は、液相線と対比され得る。固相線と液相線とは、一致または重複する必要はない。固相線と液相線との間にギャップが存在する場合、ギャップ内で、物質は固体または液体のいずれかとして安定的ではなく、その場合は、例えば、オリビン(苦土カンラン石‐鉄カンラン石)系である。
本明細書で使用されるように、「発生させる」または「ガスを発生させる」とは、液体または固体が特定の条件下(一般的には、高温)で、化学反応または分解を起こしてガスを放出するプロセスを意味する。
本明細書で使用されるように、「ドロス」は、融解金属槽に浮遊する多量の個体の不純物を意味する。通常、スズ、鉛、亜鉛またはアルミニウム等の低い融点合金の融解において、もしくは金属の酸化により現れる。例えば、表面から除滓することにより除去され得る。スズおよび鉛において、ドロスは、酸化物を溶解し、スラグを形成する、水酸化ナトリウムペレットの添加により除去され得る。他の金属において、ドロスを分離するために、塩フラックスが添加され得る。ドロスは、固体になることにより、合金上に浮遊する(粘性の)液体であるスラグと区別される。
本明細書で使用されるように、「スラグ」とは、金属を精製するために鉱石を溶解した時の副産物を意味する。これらは、金属酸化物の混合物と考えられてもよいが、これらは、金属硫化物および元素形態の金属原子を含むことが可能である。スラグは、概して、金属溶解において、廃棄除去機構として使用される。本来、鉄、銅、鉛、アルミニウム、および他の金属等の鉱石は、不純物状態で発見され、しばしば、酸化され、他の金属のケイ素と混合される。溶解中、鉱石が高温に曝されると、これらの不純物は、融解金属から分離され、除去され得る。除去された化合物の集合体がスラグである。スラグは、金属の純度を向上するため等の目的により生成される、種々の酸化物および他の材料の混合物であり得る。
本明細書で使用されるように、「不活性ガス」とは、普通の状態において反応しない、任意のガス、またはガスの組み合わせを意味する。希ガスと違って、不活性ガスは、必ずしも元素ではなく、しばしば、分子ガスである。希ガスと同様に、非反応の傾向は、最外側の電子殻である原子価が全ての不活性ガスにおいて完全なためである。例示的な不活性ガスは、例えば、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、および窒素(N)を含む。
本明細書で使用されるように、「回転脱気装置」とは、脱気装置シャフト、インペラブロック、およびカップリングを含む融解金属から不純物を除去するための装置を意味する。該シャフトは、好ましくは、ガスがそこを通って通過できるように中空である。インペラブロックは、脱気装置シャフトに連結され、一般的には、耐熱材料から形成され、このブロックが回転すると融解金属を移動させる、少なくとも1つの金属移行凹部を有する。このブロックは、好ましくは、脱気装置シャフトの中空の一部と連通する、少なくとも1つのガスインレットと、各金属移行凹部に形成されるガス放出開口部とを含む。各ガス放出開口部は、ガスインレットの1つと連通する。カップリングは、脱気装置シャフトをドライブシャフトに連結し、2つ以上のカップリング部材から形成される。
本明細書で使用されるように、「渦」とは、閉流線を有する、回転する、しばしば、乱流の流れ(または任意のらせん状動作)を意味する。中央の周りを急速に渦巻くメディアまたはマスの形状が渦を形成する。円運動で流れる。
本明細書で使用されるように、「指向的に凝固する」とは、供給物金属が凝固を起こす部分に継続的に利用可能なような、融解金属の凝固を意味する。
本明細書で使用されるように、「多結晶シリコン」、または「ポリSi」、もしくは「複数結晶シリコン」とは、複数の小シリコン結晶から成る材料を意味する。
本明細書で使用されるように、「単結晶シリコン」とは、ほぼ欠損または不純物がない、単一で継続的な結晶格子構造を有するシリコンを意味する。
本明細書で使用されるように、「インゴット」とは、多量の材料を取り扱い、および運搬が比較的容易である形状に鋳造することを意味する。例えば、金属は融点を超えて加熱され、棒またはブロックに成形した金属が、インゴットとして好まれる。
本明細書で使用されるように「ブール」とは、合成的に生成される単結晶インゴットを意味する。例えば、チョクラルスキーまたは「CZ」プロセスにおいて、種結晶がより大きい結晶、またはインゴットを生成するために使用される。この種結晶は、純融解シリコンに浸漬され、ゆっくり抽出される。融解シリコンは、結晶様式で、種結晶上に成長する。種が抽出されると、シリコンは固化し、徐々に、大きな円形ブールが生成される。
図1を参照すると、いくつかの実施形態に従う、シリコン粉末からシリコン結晶を得るための方法のブロックフロー図100が示される。シリコン粉末102は、混合物106を提供するために、溶媒金属と接触104させられてもよい。混合物106中のシリコンは、第1の融解液体110を提供するために、浸漬下で、融解108されてもよい。第1の融解液体110は、ドロスおよび第2の融解液体114を提供するために、第1のガスと接触112させられてもよく、これは、次に、ドロス118と第2の融解液体120とに分離116されてもよい。液体120は、シリコン結晶および第1の母液124を形成するように冷却122され、これは、次に、第1の母液130とシリコン結晶128とに分離126されてもよい。
プロセス用のシリコン粉末102は、数多くの資源から生成され得る。シリコン粉末102は、例えば、太陽電池パネルの製造、半導体ウエハ、またはインゴットの形成からの屑または廃棄されたシリコンであってもよい。しばしば、シリコン粉末102は、スラリーの一部である。スラリーは、水、ポリエチレングリコール(PEG)、炭化ケイ素、鉄、アルミニウム、カルシウム、銅、および他の混入物を含んでもよい。シリコン粉末102は、スラリーから除去され(例えば、分離され)、過剰な水を除去するために乾燥されてもよい。粉末は、遠心分離、沈降、または他のプロセスにより、スラリーから分離されてもよい。水のスラリーへの添加は、沈降または遠心分離の向上を補助するために、特定の重力を下げることが可能である。シリコン粉末102は、例えば、酸処理を受けることによる等、混合物を除去するためのさらなるプロセスを受け得る。例えば、塩酸は、シリコン粉末の表面から、鉄等の金属を溶解するために使用され得る。フッ化水素酸、塩酸、硝酸、またはそれらの組み合わせが、粉末の表面からシリコンジオキシドを溶解するために、または粉末の表面を溶解するために使用され得る。代替的に、水酸化カリウム、水酸化ナトリウム、またはそれらの組み合わせが、粉末の表面を溶解するために使用され得る。粉末は、鉄および他の磁気要素を除去するために、磁気分離プロセスで処理されてもよい。
シリコン粉末102は、混合物106を形成するために、溶媒金属または融解シリコンと接触104させられてもよい。混合物105において、粉末中のシリコンは、浸漬下で融解108されてもよく、したがって、酸化環境との接触からシリコン粉末102を制限するか、または防止する。酸素とのこのような接触を制限することにより、シリコン粉末102中のシリコンは、望ましくない生成物であるシリコンジオキシドを形成するための反応の機会が少なくなる。融解中にシリコン粉末102を浸漬することにより、例えば、真空または不活性ガス環境を使用しなければならない、高価で複雑なステップは不必要である。加えて、シリコン粉末を溶媒金属と接触させる前に、粉末は、酸処理、磁気分離、真空融解、乾燥、またはそれらの組み合わせで、前処理されてもよい。1つ以上のこれらのステップは、鉄等の混合物の除去を容易にしてもよい。
シリコン粉末102は、回転脱気装置、融解金属ポンプ、回転炉を使用して、または誘導電流などによって、渦の中に供給されることにより、溶媒金属または融解シリコンと接触104させられてもよい。シリコン粉末102は、実質的に乾燥され、一貫して渦の中に供給されてもよく、こうして酸素との接触を制限する。粉末102は、混合器設定を高い剪断に設定することにより、個々の粒子に剪断され得る。融解108は、融解槽の浸漬下で生じてもよい。槽は、粉末により多くの剪断を与えることがより容易で、槽の増大した粘度によって粉末を槽に浸漬させたままにすることがより容易であるように、液相線温度より低く、かつ固相線温度より高い温度であってもよい。炉耐火物は、材料にリンまたはボロンを少量から全く含まない等、混入物が少なくてもよい。融解シリカは、許容される耐火物の一例である。同様に、回転脱気装置または融解金属ポンプが利用される場合、これらは、汚染を最小化するために、ほとんどリンまたはボロンを用いずに製造されてもよい。
混合物106は、融解乱流を利用することによって浸漬状態に維持されてもよい。融解108は、温度が固相線温度より高く維持される混合状態下において生じてもよい。融解108は、第1の融解液体110を提供してもよい。接触104および融解108のステップは、例えば、同時、またはほぼ同時であってもよい。塩フラックスまたはスラグは、酸素が融解と接触することを防ぐために、融解の表面上に使用されてもよい。
溶媒金属は、任意の適切な金属、金属の組み合わせ、またはそれらの合金を含むことが可能であり、加熱すると効果的にシリコンを溶解し、融解液体を生じる。好適な例示的な溶媒金属は、例えば、シリコン、銅、スズ、亜鉛、アンチモン、銀、ビスマス、アルミニウム、カドミウム、ガリウム、インジウム、マグネシウム、鉛、それらの合金、およびそれらの組み合わせを含む。特有の溶媒金属の1つは、アルミニウム、またはその合金である。
シリコン粉末102および溶媒金属は、第1の融解液体110が(融解108後に)効果的に形成されるならば、それぞれ、任意の適切な量または割合で存在し得る。例えば、シリコン粉末102は、約20重量%〜約50重量%で使用され得、アルミニウムまたはその合金は、約50重量%〜約80重量%で、溶媒金属(103)として使用され得る。シリコン廃棄流体の使用において、シリコン粉末102は、約20%〜約90%以上で存在してもよい。アルミニウム、またはその合金は、例えば、約10%〜約80%未満の割合で、溶媒金属として使用されてもよい。シリコン粉末102は、シリコンの唯一の資源として使用されてもよいか、またはプロセスに添加されるシリコンの一部分として使用されてもよい。プロセスに使用されるシリコンの量および種類を変更することにより、結果として生じる精製されたシリコンの化学的性質は、変更または調節されてもよい。
第1の融解液体110は、第2の融解液体/ドロス混合物114を提供するために、第1のガスと接触112されてもよく、それは、ドロス118と第2融解液体120とに分離116される。第1のガスは、不活性ガスであってもよい。第1のガスは、例えば、塩素/アルゴンまたは塩素/窒素混合物等の、塩素または塩素/不活性ガス混合物であってもよい。アルミニウム等の融解溶媒金属を使用することにより、第1のガスは、純融解シリコンにおいて可能または実行可能である温度より低い温度で注入されてもよく、炭化ケイ素等の混入物の除去を増大させる。代替的に、塩フラックスは、第1の融解液体110から炭化ケイ素およびリンを除去するために使用され得る。塩フラックスは、炭化ケイ素を除去するために、表面に添加されるか、またはドロス用具または回転炉を用いて、融解槽に混合され得る。塩フラックスは、例えば、リンおよびボロンが少なくてもよい。
使用される第1のガスは、第1の融解液体110を含有するビシクルに直接導入され得る。第1のガスは、例えば、酸素、水、水素と不活性ガスの混合物、またはそれらの組み合わせを含んでもよい。このような場合、塩素(Cl)、酸素(O)、窒素(N)、ヘリウム(He)、アルゴン(Ar)、水素(H)、六フッ化硫黄(SF)、ホスゲン(COCl)、四塩化炭素(CCl)、水蒸気(HO)、酸素(O)、二酸化炭素(CO)、一酸化炭素(CO)、テトラクロロシラン(SiClおよびテトラフルオロシラン(SiF)のうちの少なくとも1つが、第1の融解液体110を含有するビシクルに、直接導入される可能性がある。代替的に、使用される第1のガスは、第1のガスを効果的に発生できる前駆体として、第1の融解液体110を含有するビシクルの中に導入され得る。前駆体自体は、固体、または液体、または塩フラックスであり得る。一般的には、液体または固体の前駆体が、第1の融解液体の比較的高温下で、化学反応または分解を経て、第1のガスを放出する。
特定の実施形態の1つにおいて、第1のガスは、100重量%の塩素(Cl)を含む。別の特定の実施形態において、第1のガスは、塩素(Cl)および窒素(N)を含む。別の特定の実施形態において、第1のガスは、最大、約1:20の割合で、塩素(Cl)および窒素(N)を含む。
第1のガスとの接触と同時に、またはその前に、液体110は、液体からのボロンまたは他の不純物の除去を容易にするために、空気または酸素を含有するガス等の初期のガスと接触させられてもよい。接触112は、注入を含んでもよい。
一実施形態において、第1の融解液体110は、第1のガスとの接触112前に冷却されてもよい。具体的に、第1の融解液体110は、第1のガスとの接触112前に、液相線温度付近まで(例えば、液相線温度より高いかまたは低く、かつ約25℃、約200℃、または約500℃以内)冷却され得る。より具体的に、第1の融解液体110は、第1のガスとの接触112前に、約1000℃より低い温度に冷却され得る。より具体的には、第1の融解液体110は、第1のガスとの接触112前に、例えば、約750℃〜約1300℃、または約950℃〜約1000℃の温度に冷却され得る。温度は、混合物106中のシリコン量に依存する。
分離116は、融解液体の表面からのドロス118の除去を含み得る。ドロス118は、続いて、例えば、スキマーを使用して第2の融解液体120から除去され得る。一般的には、ドロス118は、第2の融解液体120の表面に位置する灰色/白色の粉末、母液と混合された酸化物を有する半固形ドロス、または黒色粉末であり得る。一実施形態において、回転脱気装置は、第2の融解液体120の中にドロス118を効果的に混合できる、第2の融解液体120の渦を生成できる。このような実施形態において、渦は、さらなるドロス118を提供するために、酸素と接触可能である。
一実施形態において、第2の融解液体およびドロス114は、第1の融解液体110が第1のガスと接触112させられた後、かつドロス118と第2の融解液体120とが分離される前に加熱され得る。具体的には、第2の融解液体114は、第1の融解液体110が第1のガスと接触112した後、かつドロス118と第2の融解液体120とが分離される前に、液相線温度より高い温度に加熱され得る。より具体的には、第2の融解液体114は、第1の融解液体110が第1のガスと接触112した後、かつドロス118と第2の融解液体120とが分離される前に、液相線温度より高く約20℃以内の温度に加熱され得る。
第2の融解液体120は、第1の母液124中で、シリコン結晶(または第1のシリコン結晶)を形成するために冷却され得、これは、次に、シリコン結晶128(または第1のシリコン結晶128)と第1の母液130とに分離126されてもよい。シリコン結晶128は、再加熱132され、1回以上、プロセスに再導入されてもよい(図2)。
シリコン結晶128は、第1の融解槽136を提供するために加熱134されてもよい(図2の表示200を参照)。第1の融解槽136は、第2のシリコン結晶148および第2の母液146、または「最終凍結」シリコン(多くの不純物を含有する)を提供するために、第2のガスと接触し、指向的に凝固138されてもよい。第2のシリコン結晶148は、第2の融解槽142を提供するために、加熱140されてもよく、これは、精製されたシリコン結晶144を提供するために、第2のガスと任意に接触138され、指向的に凝固されてもよい。
上述のように、第2の融解液体120は、第1のシリコン結晶および第1の母液124を提供するために、冷却122されてもよい。一実施形態において、第2の融解液体120は、第2の融解液体120を攪拌しながら冷却122されてもよい。なんらかの特定の理論に拘束されることなく、冷却122中、攪拌は、比較的高純度の比較的小さいシリコン結晶、これは濾すことが困難であるが、を提供できると考えられる。少量の混合は、約1mm(厚さ)×約5mm(幅)×約5mm(長さ)のシリコン結晶を提供できる。
加えて、第2の融解液体120は、第1のシリコン結晶が第1の母液124で得られたならば、任意の適切で適度な温度(液相線と固相線温度との間等)に冷却122され得る。
具体的には、第2の融解液体120は、約585〜1400℃の温度に冷却122され得る。より具体的には、第2の融解液体120は、固相線温度付近に、しかし固相線温度より高温(例えば、固相線温度より高く約200℃以内、固相線温度より高く約125℃以内、または固相線温度より高く約50℃以内)に冷却122され得る。より具体的には、第2の融解液体120は、約700℃〜約750℃の温度に冷却122され得る。より具体的には、第2の融解液体120は、固相線温度より高温かつ液相線温度より低温に冷却122されてもよい。第2の融解液体120は、例えば、液相線温度より低い温度に冷却されてもよい。
第2の融解液体120は、第1のシリコン結晶が第1の母液124で得られたならば、任意の適切で適度な速度で冷却122され得る。例えば、第2の融解液体120は、約100℃/時未満の速度で、約50℃/時未満の速度で、または約20℃/時未満の速度で冷却122され得る。
第2の融解液体120は、シリコン結晶が第1の母液124で得られたならば、任意の適切で適度な時間期間にわたって冷却122され得る。例えば、第2の融解液体120は、少なくとも約2時間、少なくとも約4時間、または少なくとも約8時間の期間にわたって冷却122され得る。
一実施形態において、シリコン結晶および第1の母液124は、分離126され得る。分離は、任意の適切で適度な様式で実行され得る。例えば、分離は、濾すことによってシリコン結晶128から第1の母液130を流出させることにより実行され得る。代替的に、分離は、遠心分離を使用して実行され得る。
特定の実施形態の1つにおいて、得られた第1のシリコン結晶128は、後の精製においてシリコンとして使用、または再使用されてもよい(図2の要素132を参照)。この再使用は、必要な純度レベルを有する第1のシリコン結晶128を提供するために、複数回(例えば、2、3、4、または5)実行され得る。
上述のように、第1のシリコン結晶128は、第1の融解槽を提供するために加熱される。第1のシリコン結晶128は、効果的に第1の融解槽を形成するために、任意の適切で適度な温度に加熱され得る。具体的には、第1のシリコン結晶128は、約1100℃〜約1500℃の温度に加熱され得る。加えて、一実施形態において、第1のシリコン結晶128は、不活性ガス、真空、またはそれらの組み合わせの存在下で加熱され得る。適切な不活性ガスは、例えば、窒素(N)、アルゴン(Ar)、またはそれらの組み合わせを含む。任意の特定の理論に束縛されることなく、不活性ガスの存在下での、第1のシリコン結晶128の加熱は、上昇温度(例えば、約1100℃〜約1500℃)で、シリコンジオキシド(SiO)を含むドロスおよび/またはスラグの形成を防ぐことが可能であると考えられている。このようなシリコンからシリコンジオキシドへの酸化は、別様に精製されたシリコンの全体的な収率を低減する。
上述のように、第1の融解槽136は、第2のシリコン結晶148および第2の母液146を形成するために、指向的に凝固138されてもよい。指向的な凝固は、結晶をベシクル(例えば、るつぼ)の底部に形成させて、上部(すなわち、融解物)を除去することを可能にする。
一実施形態において、指向的な凝固138は、第1の融解槽136の上部の加熱、第1の融解槽136の底部の冷却、またはそれらの組み合わせを含む。代替的に、第1の融解槽136は、第2のシリコン結晶148および第2の母液146を形成するために冷却されてもよい。代替的に、指向的な凝固138は、第1の融解槽136の融点以下への冷却による第2のシリコン結晶の形成、ならびに上部および底部の分離を含むことが可能であって、この上部は、第2の母液146を含み、この底部は第2のシリコン結晶を含む。
上述のように、第2のシリコン結晶148は、第2の融解槽142を提供するために加熱140される。第2のシリコン結晶148は、第2の融解槽142を効果的に提供するために、任意の適切で適度の温度で加熱140され得る。具体的には、第2のシリコン結晶148は、第2の融解槽142を提供するために、液相線温度より高い温度に加熱140される。より具体的には、第2のシリコン結晶148は、第2の融解槽142を提供するために、少なくとも約1300℃の温度まで加熱140され得る。
第2の融解槽142は、第3の融解槽の表面上に形成されるスラグおよび/またはドロスを提供するために、第2のガス138と任意に接触させられてもよい。使用される第2のガスは、第2の融解槽を含有するベシクルに直接導入され得る。このような場合、塩素(Cl)、酸素(O)、窒素(N)、ヘリウム(He)、アルゴン(Ar)、水素(H)、六フッ化硫黄(SF)、ホスゲン(COCl)、四塩化炭素(CCl)、水蒸気(HO)、酸素(O)、二酸化炭素(CO)、一酸化炭素(CO)テトラクロロシラン(SiCl)およびテトラフルオロシラン(SiF)のうちの少なくとも1つが、第2の融解槽を含有するベシクルに直接導入され得る。代替的に、使用される第2のガスは、第2のガスを効果的に発生できる前駆体として、第2の融解槽を含有するベシクルに導入され得る。前駆体自体は、固体または液体であってもよい。一般的には、液体または固体前駆体が、比較的高温の第2の融解槽下で、化学反応または分解を経て、第2のガスを放出する。
一実施形態において、第2の融解槽142は、回転脱気装置を使用して、第2のガスと接触できる。回転脱気装置は、第2の融解槽142に第2のガスを効果的に導入すること可能である。加えて、回転脱気装置は、第2のガスが第2の融解槽に導入される間、第2の融解槽を効果的に攪拌する(例えば、かき回す)ことが可能である。
上述のように、第2の融解槽142は、融点以下に指向的に凝固138されることにより、精製されたシリコン144を形成してもよい。一実施形態において、指向的な凝固は、第2の融解槽142の上部の加熱、第2の融解槽142の底部の冷却、またはそれらの組み合わせを含む。代替的に、第2の融解槽142は、シリコンインゴットを提供するために冷却され得る。
(実施例1)
シリコン粉末は、太陽パネル電池を作製するためのインゴットの切断等の、製造プロセスから使用済みスラリーとして収集される。ほとんどの炭化ケイ素およびポリエチレングリコールがスラリーから除去され、水を除去するためにシリコン粉末を乾燥させる。粉末は、乾燥前に不純物をさらに除去するために、任意に、酸処理される。シリコン粉末をアルミニウムの融解槽に供給し、浸漬する。回転脱気装置を使用して、シリコンを供給し、迅速に浸漬する。粉末を個々の粒子に剪断する。融解乱流により、粉末を浸漬維持する。固相線温度より高く温度を保持する。
形成された炭化ケイ素、シリコンジオキシド、リン、および任意の他の含有物、または沈殿物を除去するために、塩素ガスを混合物に注入する。ドロスを表面から除去する。槽に結晶を成長させるために、融解槽を、次に、分画結晶化プロセスに通す。温度を液相線温度以上に上げ、次に、槽に一次シリコン結晶を成長させるために、固相線温度近くにゆっくり下げる。該プロセスは、凝固一次シリコン結晶中より融解中を好む、炭化ケイ素、鉄、および他の要素を除去する。プロセスは、少なくとも4時間、継続するべきである。槽の温度は、結晶が優先的に槽の一部に成長するのを防ぐため、均一に維持される。上のヒータは、槽の表面上での結晶成長を防ぐため、さらなる熱を提供する。
液体が槽から除去されるため、炉にシリコン結晶が残る。融解液体は、槽から注ぎ出される、ポンプで送り出される、またもしくは槽から吸引される、または炉の底の穴から放出され得る。シリコン結晶は、液体アルミニウム共晶が、注ぎ出されると、炉に残留する一次シリコンフレークのネットワークを形成する。金属の濾過、または遠心分離を含む、アルミニウムを除去する他の方法が使用されてもよい。槽の固体結晶を維持するために、濾し器が使用され得る。炉は、注ぎ出す間、加熱され、液体が注ぎ出された後、さらに加熱され、炉は、より多くにアルミニウム共晶を除去するために傾けられる。上のステップは、アルミニウム中の第1のシリコン結晶を再融解し、次に、再度結晶を成長させることにより、繰り返され得る。
シリコン結晶は、任意の残留アルミニウムを除去するために酸洗浄される。酸は、塩酸および水であってもよい。酸洗浄後、結晶を水で洗浄する。シリコンフレークは、下で融解される。ガスを融解シリコンに注入する。ガス注入は、微量の酸素および/または水素含有ガスおよび/もしくは不活性ガスを含有する。
残りのアルミニウムは、次に、指向的な凝固、またはガス注入を使用して除去される。指向的な凝固は、温度勾配を使用して行われる。インゴットの上、底、または両側の一部が、不純物のさらなる除去のために整えられてもよい。指向的な凝固は、所望する場合、繰り返されてもよい。
(実施例2)
帯鋸からのシリコン粉末を収集し、大半の水を除去するために沈降させる。粉末は、次に、大半の遊離鉄を除去するために、磁気分離プロセスを用いて処理される。粉末は、次に、任意の表面金属を除去するために、酸で処理される。次に、粉末をすすぎ、残りの水を除去するために、不活性環境下で乾燥させる。乾燥粉末は、次に、融解シリコン槽の表面上に供給される。乾燥粉末は、不活性環境において供給されてもよい。誘導電流は、粉末が融解し浸漬される融解物の中へ粉末を引き下げる。誘導電流を停止し、ガスを融解槽へ注入し、スラグ、ドロス、炭化ケイ素等の包含物は、除去される槽の上に浮遊する。融解シリコンは、次に、不純物をさらに除去するために、指向的に凝固される。融解シリコンは、必要ならば、指向的な凝固の前に濾過されてもよい。凍結するための永続シリコンは、次に、シリコンインゴットから分離される。用途により、さらなる指向的な凝固が必要とされ得る。

Claims (15)

  1. シリコン粉末からシリコン結晶を得るための方法であって、
    シリコンを含有する混合物を提供するために、シリコン粉末を溶媒金属と接触させることと、
    第1の融解液体を提供するために、浸漬下で該シリコン粉末を融解することと、
    ドロスおよび第2の融解液体を提供するために、該第1の融解液体を第1ガスと接触させることと、
    該ドロスと該第2の融解液体とを分離することと、
    第1のシリコン結晶および第1の母液を形成するために、該第2の融解液体をほぼ均一に冷却して分画結晶化を提供することと、
    該第1のシリコン結晶と該第1の母液とを分離することと
    を含む、方法。
  2. 前記シリコン粉末を溶媒金属と接触させることの前に、スラリーからシリコン粉末を分離する、請求項1に記載の方法。
  3. シリコン粉末を溶媒金属と接触させる前に、酸処理、真空融解、磁気分離、乾燥、またはそれらの組み合わせを用いて、該粉末を前処理する、請求項1〜2のいずれか一項に記載の方法。
  4. 前記第1の融解液体の温度は、液相線温度より低く、かつ固相線温度より高い、請求項1〜3のいずれか一項に記載の方法。
  5. 前記シリコン粉末を溶媒金属と接触させることは、シリコン粉末を融解槽に供給することを含む、請求項1〜4のいずれか一項に記載の方法。
  6. シリコン粉末を融解槽に供給することをさらに含み、該シリコン粉末は、回転脱気装置、回転炉、融解金属ポンプ、または誘導電流を使用して渦の中に供給される、請求項1〜5のいずれか一項に記載の方法。
  7. 前記溶媒金属は、シリコン、融解シリコン、銅、スズ、亜鉛、アンチモン、銀、ビスマス、アルミニウム、カドミウム、ガリウム、インジウム、マグネシウム、鉛、それらの合金、およびそれらの組み合わせの群から選択される、請求項1〜6のいずれか一項に記載の方法。
  8. 第1の融解槽を提供するために、前記シリコン結晶を融解するステップと、
    該第1の融解槽を第2のガスと接触させるステップと、
    第2のシリコン結晶を提供するために、前記第1の融解槽を指向的に凝固させるステップと、
    第2の融解槽を提供するために、前記第2のシリコン結晶を加熱するステップと、
    精製されたシリコンを提供するために、前記第2の融解槽を指向的に凝固させるステップと
    のうちの少なくとも1つをさらに含み、
    該第2のガスは、酸素、水、または水素、および不活性ガス混合物を含む、請求項1〜7のいずれか一項に記載の方法。
  9. 不純物を除去するのに十分な、前記シリコン結晶を洗浄することをさらに含み、該シリコン結晶を融解することを選択的にさらに含む、請求項1〜8のいずれか一項に記載の方法。
  10. 前記第1のガスは、塩素(Cl)、塩素および不活性ガス、酸素(O)、窒素(N)、ヘリウム(He)、アルゴン(Ar)、水素(H)、六フッ化硫黄(SF)、ホスゲン(COCl)、四塩化炭素(CCl)、水蒸気(HO)、酸素(O)、二酸化炭素(CO)、一酸化炭素(CO)、テトラクロロシラン(SiCl)、およびテトラフルオロシラン(SiF)のうちの少なくとも1つを含む、請求項1〜9のいずれか一項に記載の方法。
  11. 前記第2の融解液体は、前記液相線温度より低い温度に冷却されるか、または、該第2の融解液体は、前記固相線温度より高く、かつ、前記液相線温度より低い温度に冷却されるか、のうちの少なくとも1つをさらに含む、請求項1〜10のいずれか一項に記載の方法。
  12. 前記第2の融解液体は、前記固相線温度より高く、かつ、約125℃以内の温度に冷却されるか、または、該第2の融解液体は、約75℃/時より小さい速度で冷却されるか、または、該第2の融解液体は、少なくとも約2時間の期間にわたって冷却される、のうちの少なくとも1つをさらに含む、請求項1〜11のいずれか一項に記載の方法。
  13. 前記第1の融解液体を提供した後に、かつ、該第1の融解液体を第1のガスと接触させる前に、該第1の融解液体を初期のガスと接触させることをさらに含む、請求項1〜12のいずれか一項に記載の方法。
  14. 前記第1の融解液体を塩フラックスと接触させることは、該塩フラックスを前記槽の表面に添加することを含む、請求項1〜13のいずれか一項に記載の方法。
  15. 前記第1のシリコン結晶を酸で洗浄することをさらに含む、請求項1〜14のいずれか一項に記載の方法。
JP2010527304A 2007-10-03 2008-10-03 シリコン結晶を得るためのシリコン粉末の処理方法 Expired - Fee Related JP5400782B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US97724907P 2007-10-03 2007-10-03
US60/977,249 2007-10-03
PCT/CA2008/001750 WO2009043167A1 (en) 2007-10-03 2008-10-03 Method for processing silicon powder to obtain silicon crystals

Publications (2)

Publication Number Publication Date
JP2010540392A JP2010540392A (ja) 2010-12-24
JP5400782B2 true JP5400782B2 (ja) 2014-01-29

Family

ID=40523408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010527304A Expired - Fee Related JP5400782B2 (ja) 2007-10-03 2008-10-03 シリコン結晶を得るためのシリコン粉末の処理方法

Country Status (8)

Country Link
US (3) US7959730B2 (ja)
EP (1) EP2198077B1 (ja)
JP (1) JP5400782B2 (ja)
KR (1) KR101247666B1 (ja)
CN (2) CN101855391B (ja)
CA (1) CA2700997A1 (ja)
TW (1) TWI443237B (ja)
WO (1) WO2009043167A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112592A1 (en) * 2006-04-04 2007-10-11 6N Silicon Inc. Method for purifying silicon
CA2700997A1 (en) 2007-10-03 2009-04-09 6N Silicon Inc. Method for processing silicon powder to obtain silicon crystals
US20110182795A1 (en) * 2008-02-20 2011-07-28 Cbd Energy Limited Reduction of silica
NO329987B1 (no) 2009-02-26 2011-01-31 Harsharn Tathgar Halvkontinuerlig fremgangsmate for dannelse, separasjon og smelting av store, rene silisiumkrystaller
US8562932B2 (en) * 2009-08-21 2013-10-22 Silicor Materials Inc. Method of purifying silicon utilizing cascading process
TW201144222A (en) * 2010-06-04 2011-12-16 Hong Jing Environment Company A method for the silicon recycling
CN102071405B (zh) * 2010-12-03 2012-04-18 湖南大学 一种多晶硅薄膜制备方法
CN102107874B (zh) * 2010-12-23 2015-04-01 中国科学院过程工程研究所 一种低温去除硅中硼磷的方法
TWI539039B (zh) * 2012-01-26 2016-06-21 希利柯爾材料股份有限公司 矽的純化方法
TWI627131B (zh) 2012-02-01 2018-06-21 美商希利柯爾材料股份有限公司 矽純化之模具及方法
US9945048B2 (en) * 2012-06-15 2018-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method
KR101663435B1 (ko) 2012-06-25 2016-10-14 실리코르 머티리얼즈 인코포레이티드 알루미늄의 정제 방법 및 실리콘을 정제하기 위한 정제된 알루미늄의 용도
JP2015521583A (ja) * 2012-06-25 2015-07-30 シリコー マテリアルズ インコーポレイテッド シリコンを精製するための方法
TWI498282B (zh) * 2012-06-25 2015-09-01 Silicor Materials Inc 適用在用於純化矽之定向凝固之助熔劑組合物及其方法
US10246487B2 (en) 2014-08-01 2019-04-02 Vida Therapeutics Inc. Azaindoline compounds as granzyme B inhibitors
CN104587846B (zh) * 2014-12-24 2016-05-18 长安大学 一种低温烧结制备多孔陶瓷滤膜的方法
JP6704229B2 (ja) * 2015-09-14 2020-06-03 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. 柔軟性シート、熱伝導部材、導電性部材、帯電防止部材、発熱体、電磁波遮蔽体、及び柔軟性シートの製造方法
US10239300B2 (en) * 2016-07-12 2019-03-26 Rohr, Inc. Sandwich panel disbond repair
EP3386916B1 (en) * 2016-07-27 2021-04-14 Epro Development Limited Improvements in the production of silicon nano-particles and uses thereof
US10486379B2 (en) * 2016-12-08 2019-11-26 Goodrich Corporation Reducing CNT resistivity by aligning CNT particles in films
TWI640473B (zh) 2017-12-07 2018-11-11 財團法人工業技術研究院 除硼方法與除硼裝置
CN108748746B (zh) * 2018-06-14 2020-02-18 邢台晶龙电子材料有限公司 一种多晶沫回收利用方法
CN109112638A (zh) * 2018-10-10 2019-01-01 镇江环太硅科技有限公司 一种细碎片料回收再利用的方法
BR112021021869A2 (pt) * 2019-04-30 2021-12-21 Wacker Chemie Ag Método para refinar silício fundido bruto usando um mediador particulado
ES2941508T3 (es) * 2019-04-30 2023-05-23 Wacker Chemie Ag Procedimiento para el refinado de masas fundidas de silicio en bruto por medio de un mediador particulado
CN111408606A (zh) * 2020-03-27 2020-07-14 青海大学 一种分散活化微硅粉的方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818330A (en) 1953-10-07 1957-12-31 Ethyl Corp Preparation of refractory metals
NL219242A (ja) 1956-09-28 1900-01-01
FR1194484A (fr) 1958-01-24 1959-11-10 Electro Chimie Soc D Procédé d'obtention de silicium pur par cristallisation fractionnée
US3086886A (en) 1958-06-04 1963-04-23 Schwarzkopf Dev Co Process of providing oxidizable refractory-metal bodies with a corrosion-resistant surface coating
DE2623413C2 (de) 1976-05-25 1985-01-10 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von für Halbleiterbauelemente verwendbarem Silicium
US4094731A (en) 1976-06-21 1978-06-13 Interlake, Inc. Method of purifying silicon
US4124410A (en) 1977-11-21 1978-11-07 Union Carbide Corporation Silicon solar cells with low-cost substrates
US4195067A (en) 1977-11-21 1980-03-25 Union Carbide Corporation Process for the production of refined metallurgical silicon
US4193974A (en) 1977-11-21 1980-03-18 Union Carbide Corporation Process for producing refined metallurgical silicon ribbon
US4193975A (en) 1977-11-21 1980-03-18 Union Carbide Corporation Process for the production of improved refined metallurgical silicon
US4200621A (en) 1978-07-18 1980-04-29 Motorola, Inc. Sequential purification and crystal growth
GB2052461B (en) * 1979-05-24 1983-04-07 Aluminum Co Of America Silicon purification method
US4312847A (en) 1979-05-24 1982-01-26 Aluminum Company Of America Silicon purification system
US4256717A (en) * 1979-05-24 1981-03-17 Aluminum Company Of America Silicon purification method
US4246249A (en) 1979-05-24 1981-01-20 Aluminum Company Of America Silicon purification process
US4312846A (en) 1979-05-24 1982-01-26 Aluminum Company Of America Method of silicon purification
US4312848A (en) 1979-05-24 1982-01-26 Aluminum Company Of America Boron removal in silicon purification
DE2933164A1 (de) 1979-08-16 1981-02-26 Consortium Elektrochem Ind Verfahren zum reinigen von rohsilicium
DE2945070A1 (de) 1979-11-08 1981-06-04 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Semikontinuierliches verfahren zur herstellung von reinem silicium
US4312849A (en) 1980-09-09 1982-01-26 Aluminum Company Of America Phosphorous removal in silicon purification
US4354987A (en) * 1981-03-31 1982-10-19 Union Carbide Corporation Consolidation of high purity silicon powder
US4822585A (en) 1982-05-05 1989-04-18 Aluminum Company Of America Silicon purification method using copper or copper-aluminum solvent metal
DE3317286A1 (de) * 1983-05-11 1984-11-22 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Verfahren zur reinigung von silicium durch saeureeinwirkung
JPS60103015A (ja) 1983-11-10 1985-06-07 Nippon Steel Corp 珪素の製造方法
JPS60122713A (ja) * 1983-12-06 1985-07-01 ザ・ハンナ・マイニング・コンパニイ ケイ素精製方法
JPS6168313A (ja) * 1984-09-07 1986-04-08 Osaka Titanium Seizo Kk シリコン切粉から高純度けい素の回収方法
US4612179A (en) 1985-03-13 1986-09-16 Sri International Process for purification of solid silicon
US4676968A (en) * 1985-07-24 1987-06-30 Enichem, S.P.A. Melt consolidation of silicon powder
DE3629231A1 (de) 1986-08-28 1988-03-03 Heliotronic Gmbh Verfahren zum aufschmelzen von in einen schmelztiegel chargiertem siliciumpulver und schmelztiegel zur durchfuehrung des verfahrens
DE3727646A1 (de) 1987-08-19 1989-03-02 Bayer Ag Verfahren zur kontinuierlichen raffination von silicium
JP3205352B2 (ja) 1990-05-30 2001-09-04 川崎製鉄株式会社 シリコン精製方法及び装置
JPH07247108A (ja) * 1994-01-21 1995-09-26 Sumitomo Chem Co Ltd ケイ素の精製方法
JP3493844B2 (ja) 1994-11-15 2004-02-03 住友電気工業株式会社 半導体基板材料とその製造方法及び該基板を用いた半導体装置
US5678807A (en) 1995-06-13 1997-10-21 Cooper; Paul V. Rotary degasser
WO1998016466A1 (fr) 1996-10-14 1998-04-23 Kawasaki Steel Corporation Procede et appareil de preparation de silicium polycristallin et procede de preparation d'un substrat en silicium pour cellule solaire
US6013872A (en) * 1997-04-25 2000-01-11 Bayer Ag Directionally solidified, multicrystalline silicon, a process for the production thereof and its use, and solar cells containing this silicon and a process for the production thereof
WO2002016265A1 (en) 2000-08-21 2002-02-28 Astropower, Inc. Method and apparatus for purifying silicon
US6585797B2 (en) 2001-01-25 2003-07-01 Alcoa Inc. Recirculating molten metal supply system and method
JP2002293528A (ja) * 2001-03-30 2002-10-09 Sharp Corp 太陽電池用シリコンの製造方法
FR2827592B1 (fr) 2001-07-23 2003-08-22 Invensil Silicium metallurgique de haute purete et procede d'elaboration
WO2003066523A1 (fr) 2002-02-04 2003-08-14 Sharp Kabushiki Kaisha Procede de purification du silicium, scories pour purifier le silicium et silicium purifie
JP2003238139A (ja) 2002-02-20 2003-08-27 Sharp Corp シリコンの精製方法およびその精製装置
JP2003238138A (ja) * 2002-02-20 2003-08-27 Sharp Corp シリコンの精製方法およびシリコンの精製装置
NO333319B1 (no) 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller
JP4024232B2 (ja) 2004-07-13 2007-12-19 シャープ株式会社 シリコンの精製方法
US20060051670A1 (en) * 2004-09-03 2006-03-09 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary cell negative electrode material and metallic silicon power therefor
JP4689373B2 (ja) 2005-07-04 2011-05-25 シャープ株式会社 シリコンの再利用方法
CN101426723B (zh) 2006-02-24 2011-12-14 Ihi压缩和机器株式会社 硅粒的处理方法和装置
WO2007112592A1 (en) 2006-04-04 2007-10-11 6N Silicon Inc. Method for purifying silicon
WO2007120871A2 (en) 2006-04-13 2007-10-25 Cabot Corporation Production of silicon through a closed-loop process
US7682585B2 (en) 2006-04-25 2010-03-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Silicon refining process
JP5001589B2 (ja) * 2006-06-16 2012-08-15 木村化工機株式会社 廃スラッジからのシリコンの製造方法
MX2009002808A (es) * 2006-09-14 2009-03-31 Silicium Becancour Inc Proceso y aparato para purificar silicio de grado bajo de purificacion.
JP4835867B2 (ja) * 2007-04-20 2011-12-14 信越化学工業株式会社 シリコンの精製方法
EP2171133B1 (en) 2007-07-23 2015-09-02 Silicor Materials Inc. Use of acid washing to provide purified silicon crystals
CA2700997A1 (en) 2007-10-03 2009-04-09 6N Silicon Inc. Method for processing silicon powder to obtain silicon crystals
US8562932B2 (en) 2009-08-21 2013-10-22 Silicor Materials Inc. Method of purifying silicon utilizing cascading process

Also Published As

Publication number Publication date
US20110236290A1 (en) 2011-09-29
CA2700997A1 (en) 2009-04-09
TWI443237B (zh) 2014-07-01
WO2009043167A1 (en) 2009-04-09
KR20100061567A (ko) 2010-06-07
CN104313679A (zh) 2015-01-28
CN101855391A (zh) 2010-10-06
US20090092535A1 (en) 2009-04-09
CN101855391B (zh) 2014-10-29
EP2198077A1 (en) 2010-06-23
JP2010540392A (ja) 2010-12-24
EP2198077B1 (en) 2017-05-17
US8273176B2 (en) 2012-09-25
US20130017140A1 (en) 2013-01-17
US7959730B2 (en) 2011-06-14
TW200928019A (en) 2009-07-01
KR101247666B1 (ko) 2013-04-01
US8801855B2 (en) 2014-08-12
EP2198077A4 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5400782B2 (ja) シリコン結晶を得るためのシリコン粉末の処理方法
JP5374673B2 (ja) 珪素精製方法
TWI472485B (zh) 利用酸洗以提供純化之矽晶體
TWI541195B (zh) 利用酸洗以提供純化之矽晶體

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees