図1は、本発明にかかる車両用駆動装置の制御方法が適用されるハイブリッド型車両1(以下、単に車両1という)の全体構成を示す概略平面図、図2は、車両用駆動装置の制御系を示すブロック図である。これらの図に示される車両用駆動装置は、ガソリンエンジンやディーゼルエンジン等の内燃機関からなるエンジン2と、このエンジン2の駆動力を所定の減速比で減速しつつドライブシャフト15に伝達する自動変速機5と、この自動変速機5の入力軸20(図3参照)と上記エンジン2のクランク軸(図示省略)とを連動連結するトルクコンバータ4(本発明にかかる流体伝動装置に相当)と、このトルクコンバータ4とエンジン2との間に設けられ、エンジン2の始動および発電を行うISG(Integrated Starter Generator)3と、上記エンジン2とは別体の動力源として設けられた電動モータ9と、上記ISG3等で発電された電力を蓄える蓄電装置としてのバッテリ14と、このバッテリ14からの供給電力を交流に変換して上記電動モータ9を駆動するインバータ13と、これら各部を統括的に制御するECU12とを備えている。
図1に示すように、上記ドライブシャフト15の後端部(反エンジン側の端部)には差動装置16が設けられており、エンジン2または電動モータ9により回転駆動される上記ドライブシャフト15の駆動力が、この差動装置16を介することにより左右一対の後輪Rに分配されて各後輪Rがそれぞれ回転駆動されるようになっている。すなわち、図例の車両1は、後輪Rのみが駆動されるいわゆるFR車であり、前輪Fは従動輪である。
上記ISG3は、エンジン2のクランク軸を強制回転させてエンジン2を始動するスタータとしての機能、およびエンジン2のクランク軸から駆動力を得て発電するオルタネータとしての機能の両方を兼ね備えたものである。また、ISG3は、エンジン2の始動および発電だけでなく、加速時等にエンジン2にトルクを付与するいわゆるトルクアシストを行うことも可能とされている。
上記電動モータ9は、例えば3相の交流同期モータ等からなり、上記ドライブシャフト15の途中部に減速ギヤ機構10を介して連動連結されている。減速ギヤ機構10にはモータクラッチ11が内蔵され、このモータクラッチ11を介して上記電動モータ9とドライブシャフト15とが断続可能に連結されている。そして、上記電動モータ9は、必要時にバッテリ14からインバータ13を介して電力の供給を受けることにより、上記減速ギヤ機構10を介してドライブシャフト15を駆動する一方、減速時や下り坂走行時等には、上記ドライブシャフト15から駆動力を得て発電を行い、その発電電力を上記バッテリ14に蓄電するように構成されている。
図2に示すように、上記ECU12は、周知のCPU、ROM、RAM、およびI/O(入出力インターフェース)等を有し、このうちROMには、車両1の運転に必要な各種制御プログラムや、図4に示される締結表および図5に示される変速マップに相当する制御データ等があらかじめ格納されている。なお、RAMには制御プログラムの実行に必要な種々のワークメモリが格納されている。
上記ECU12には、車両1の各部に設けられた種々のセンサ類が電気的に接続されている。具体的に、ECU12には、車両1の走行速度(車速)Vを検出する車速センサ30と、エンジン2の吸気系に設けられたスロットル弁を開閉操作する図外のアクセルペダルの開度AOを検出するアクセル開度センサ31と、エンジン2の吸入空気量を検出する吸入空気量センサ32と、エンジン2のクランク軸の回転速度を検出するエンジン回転速度センサ33と、自動変速機5を操作する操作レバーの位置(Dレンジ、Pレンジ、Rレンジ等)を検出するレバー位置センサ34と、ISG3の軸回転速度を検出するISG回転速度センサ35と、バッテリ14からISG3に入力される入力電流またはISG3で発電されてバッテリ14に出力される出力電流を検出するISG電流センサ36と、電動モータ9の軸回転速度を検出するモータ回転速度センサ37と、電動モータ9の入出力電流を検出するモータ電流センサ38と、バッテリ14の残容量を検出するバッテリセンサ39と、ドライブシャフト15の回転速度を検出するドライブシャフト回転速度センサ40とがそれぞれ接続されており、これら各センサ30〜40により検出された各種制御情報が上記ECU12に電気信号として入力されるようになっている。
上記ECU12は、上記各センサ30〜40からの入力情報に基づいて種々の演算を実行し、その結果に基づいて上記エンジン2、ISG3、トルクコンバータ4、自動変速機5、電動モータ9、インバータ13、およびバッテリ14の動作を統括的に制御する。そして、このようにECU12によって各部が制御されることにより、当実施形態の車両1では、例えば低速かつ低アクセル開度(低負荷)の運転状態のときに、電動モータ9を駆動してエンジン2を停止するモータ走行モードに切り替わり、低速かつ低アクセル開度以外の運転状態のときに、エンジン2を駆動して電動モータ9を停止するエンジン走行モードに切り替わるようになっている。
次に、上記トルクコンバータ4および自動変速機5の具体的構造について説明する。まず、トルクコンバータ4について説明すると、このトルクコンバータ4は、詳細な図示は省略するが、エンジン2のクランク軸と一体に回転するポンプインペラと、このポンプインペラに対向するように配置されたタービンランナと、これらポンプインペラおよびタービンランナの間に配置されたステータ(固定翼)とを有し、エンジン2により回転駆動された上記ポンプインペラの回転が、トルクコンバータ4内に充満された作動流体としてのオイル(以下、作動油という)を介して上記タービンランナに伝達されるようになっている。上記タービンランナは、トルクコンバータ4の出力軸となるタービン軸に連結されており、上記タービンランナがポンプインペラにより作動油を介して回転駆動されることにより、このタービンランナと一体にタービン軸が回転するようになっている。
上記トルクコンバータ4には、上記タービンランナとエンジン2のクランク軸とを直結するためのロックアップクラッチ7(図1)が内蔵されており、必要に応じてこのロックアップクラッチ7が締結されることにより、エンジン2と自動変速機5との間で動力がロスなく(流体による滑りなく)伝達されるようになっている。
図3は自動変速機5の骨子図であり、その入力軸20よりも上側の部分のみを図示したものである。本図に示すように、自動変速機5は、第1遊星ギヤ機構21および第2遊星ギヤ機構22を有するとともに、これら各ギヤ機構21,22を含む動力伝達経路を切り替える摩擦締結要素として、フォワードクラッチC1、ローリバースブレーキB1、2−4ブレーキB2、3−4クラッチC2、およびリバースクラッチC3を有しており、これら各摩擦締結要素の断続に応じて、前進4段および後退段からなる複数の変速段を達成可能なように構成されている。そして、上記トルクコンバータ4のタービン軸と一体に回転する上記入力軸20の回転が、上記各変速段に応じた減速比で減速された後に出力ギヤ19に伝達されるようになっている。
上記各摩擦締結要素C1,C2,C3,B1,B2は、図外の油圧回路からの油圧により駆動される油圧駆動式の摩擦締結要素であり、上記油圧回路に含まれるソレノイドバルブ等からなる切替弁の作動に応じて油路・油圧が切り替えまたは変更されることにより、上記各摩擦締結要素C1,C2,C3,B1,B2が適宜締結または解放されるようになっている。
上記第1遊星ギヤ機構21は、サンギヤ21sおよびリングギヤ21rと、これら両ギヤ21s,21rの間に装着された複数のプラネタリギヤ21pと、このプラネタリギヤ21pを保持するキャリア21c等を備えており、このうちのキャリア21cに出力ギヤ19が一体的に連結されている。第2遊星ギヤ機構22は、サンギヤ22sおよびリングギヤ22rと、これら両ギヤ22s,22rの間に装着された複数のプラネタリギヤ22pと、このプラネタリギヤ22pを保持するキャリア22c等を備えている。
上記フォワードクラッチC1は、入力軸20に固定された部材23と、サンギヤ21sに固定された部材24との間に設けられており、入力軸20とサンギヤ21sとを断続可能に連結している。キャリア21cは、部材25を介してリングギヤ22rと一体的に連結されており、キャリア22cは、部材26を介してリングギヤ21rと一体的に連結されている。ローリバースブレーキB1は、自動変速機5のケースと上記部材26との間に設けられ、リングギヤ21rおよびキャリア22cとケースとを断続可能に連結している。
サンギヤ22sは部材27に一体的に連結され、キャリア22cは部材28に一体的に連結されている。2−4ブレーキB2は、自動変速機5のケースと上記部材27の間に設けられ、サンギヤ22sとケースとを断続可能に連結している。3−4クラッチC2は、入力軸20に固定された部材29と上記部材28との間に設けられ、キャリア22cと入力軸20とを断続可能に連結している。リバースクラッチC3は、上記部材27と部材29の間に設けられ、サンギヤ22sと入力軸20とを断続可能に連結している。
図4は、上記自動変速機5における1速〜4速および後退速の5つの変速段と、クラッチやブレーキからなる5つの摩擦締結要素C1〜C3、B1、B2の締結状態との関係を示す締結表であり、○印と●印が締結を示し、空欄が解放を示している。本図によれば、1速〜4速または後退速のときに、上記5つの摩擦締結要素C1〜C3、B1、B2のうちの2つが選択的に締結され、他は解放状態とされる。なお、図4の締結表には、電動モータ9に連結された減速ギヤ機構10のモータクラッチ11の締結状態も記載されている。
次に、変速マップの一例について図5に基づいて説明する。この変速マップは、車速Vおよびアクセル開度AO(または吸入空気量)をパラメータとして、1速〜4速の変速段をどのように設定するかを示すものである。なお、実際には、通常の変速マップと同様に、ダウンシフトの変速ラインはアップシフトの変速ラインよりも幾分低速側にシフトして設定されているが、それらの変速ラインが共通のラインであるとして説明する。
図5において、低速かつ低アクセル開度(低負荷)の運転領域に設定された第1運転領域M(斜線で示す領域)では、電動モータ9を駆動してエンジン2を停止することにより、電動モータ9のみを動力源として用いるモータ走行モードで車両1が運転される領域である。一方、第1運転領域Mよりも高速・高負荷側に設定された第2運転領域Eは、電動モータ9を停止してエンジン2を駆動することにより、エンジン2のみを動力源として用いるエンジン走行モードで車両1が運転される領域である。
また、図5では、上記エンジン走行モードに対応する第2運転領域Eのうち、上記自動変速機5の変速段として1速(1st)が選択される運転領域をE1、2速(2nd)が選択される運転領域をE2、3速(3rd)が選択される運転領域をE3、4速(4th)が選択される運転領域をE4として表記している。一方、上記モータ走行モードに対応する第1運転領域Mのうち、上記1速〜4速の運転領域M1〜E4より低速・低負荷側の領域M1〜M4では、上記1速〜4速を形成するのに締結が必要な摩擦締結要素(C1〜C3、B1、B2)のうちの1部が解放された擬似1速〜擬似4速が選択されるようになっている。
先の図4に示した締結表では、エンジン走行モードおよびモータ走行モードの両方で締結される摩擦締結要素を○印で、エンジン走行モードのときにのみ締結される(つまりモータ走行モードになると解放される)摩擦締結要素を●印でそれぞれ示している。すなわち、エンジン走行モードでは、○印および●印の両方の摩擦締結要素がともに締結されることにより、1速〜4速または後退速のいずれかが形成される一方、モータ走行モードでは、○印の摩擦締結要素が締結され、かつ●印の摩擦締結要素が解放されることにより、疑似1速〜擬似4速または擬似後退速のいずれかが形成される。
具体的に、図4の締結表によれば、擬似1速〜擬似3速ではフォワードクラッチC1のみが締結され、擬似4速では2−4ブレーキB2のみが締結され、擬似後退速ではローリバースブレーキB1のみが締結されるようになっている。このような擬似変速段(擬似1速〜擬似4速、擬似後退速)が選択される上記モータ走行モードでは、自動変速機5が遊転状態(擬似ニュートラル)となるため、後輪Rの回転がエンジン2に伝達されることはなく、エンジン2の引き摺り現象が発生しないようになっている。
図5の矢印S1〜S3は、車両1の運転状態がモータ走行モードに対応する第1運転領域Mにある状態(つまり電動モータ9が動力源として用いられている状態)で、図外のアクセルペダルが運転者により踏み込み操作されてアクセル開度AOが開側に変位することにより、運転状態が高負荷側の第2運転領域Eに移行して、車両1の駆動形式が、上記モータ走行モードから、エンジン2を動力源としたエンジン走行モードに切り替わるところを示している。このうち、矢印S1は、上記第1運転領域Mのうち擬似2速が選択される運転領域M2から、上記第2運転領域Eのうち1速が選択される運転領域M1への移行を示している。また、同様に、矢印S2は、擬似3速の運転領域M3から2速の運転領域M2への移行を、矢印S3は、擬似4速の運転領域M4から3速のエンジン運転領域M3への移行をそれぞれ示している。
上記矢印S1のように運転領域がM2からE1に移行する際には、2速のときに締結が必要な2つの摩擦締結要素C1,B2のうち2−4ブレーキB2が解放された擬似2速の状態から、フォワードクラッチC1の締結が維持されたままローリバースブレーキB1が締結されることにより、自動変速機5の変速段が1速に変更され、その結果、上記領域移行時に始動されるエンジン2の駆動力が1速に対応する変速比でドライブシャフト15に伝達されることになる。
同様に、上記矢印S2のように運転領域がM3からE2に移行する際には、3速のときに締結が必要な2つの摩擦締結要素C1,C2のうち3−4クラッチC2が解放された擬似3速の状態から、フォワードクラッチC1の締結が維持されたまま2−4ブレーキB2が締結されることにより、自動変速機5の変速段が2速に変更される。また、上記矢印S3のように運転領域がM4からE3に移行する際には、4速のときに締結が必要な2つの摩擦締結要素C2,B2のうち3−4クラッチC2が解放された擬似4速の状態から、2−4ブレーキB2が解放されかつフォワードクラッチC1および3−4クラッチC2が締結されることにより、自動変速機5の変速段が3速に変更される。
このように、上記矢印S1〜S3に示した領域移行の際には、2速〜4速のときに締結が必要な摩擦締結要素のうち●の要素C2,B2を解放した擬似2速〜擬似4速の状態から、1速〜3速のときに締結される●要素C2,B1,B2を含む摩擦締結要素が締結されることにより、自動変速機5の変速段が1速〜3速に変更されるようになっている。なお、上記矢印S1〜S3と逆方向の領域移行が行われる際には、上記各摩擦締結要素C2,B1,B2が解放される。
また、上記以外の領域移行、例えば、運転領域M1(またはM2,M3,M4)と運転領域M1(またはE2,E3,E4)との間での移行時等も、図4の締結表において●が付されたC2,C3,B1,B2を含む摩擦締結要素が適宜締結または解放されることにより、自動変速機5の変速段が、エンジン2とドライブシャフト15との間の動力伝達を切断する変速段(擬似1速〜擬似4速または擬似後退速)と、エンジン2とドライブシャフト15とを所定の減速比で連動連結する変速段(1速〜4速または後退速)との間で変更されるようになっている。
以上のように、モータ走行モードに対応する運転領域M(M1〜M4)と、エンジン走行モードに対応する運転領域E(E1〜E4)との間で車両1の運転状態が移行する際には、図4の●の摩擦締結要素C2,C3,B1,B2のいずれかを少なくとも締結もしくは解放することにより、エンジン2とドライブシャフト15(およびこれに連結された後輪R)との間で動力の断続が行われる。以下では、このように走行モードの切り替え時に締結もしくは解放される摩擦締結要素C2,C3,B1,B2をまとめて、断続手段8(図1、図3参照)と言うことがある。
次に、以上のように構成された当実施形態の車両用駆動装置において、駆動形式がモータ走行モードからエンジン走行モードに切り替わる際に行われる制御動作について、図6および図7を用いて説明する。なお、図6は、モータ走行モードからエンジン走行モードに切り替わる際にECU12により実行される制御の内容を示すフローチャートであり、図7は、このときの各部の動作を時系列で示すタイムチャートである。
まず、モータ走行モードで車両1が運転されている状態で図6のフローチャートがスタートすると、ECU12は、トルクコンバータ4のロックアップクラッチ7を締結する制御を実行する(ステップS1)。すなわち、図7(g)の初期の部分に示すように、ロックアップクラッチ7を締結する旨の制御信号がECU12から出力されることにより、図7(h)に示すようにロックアップクラッチ7が締結状態に切り替わり、これによってエンジン2のクランク軸とトルクコンバータ4のタービンランナとが直結される。
次いで、ECU12は、車両1の運転状態が、モータ走行モードに対応する運転領域Mから、エンジン走行モードに対応する運転領域Eに移行したか否かを判定する(ステップS2)。すなわち、図7(a)(b)に示すように、車両1を加速させる(つまり車速Vを増大させる)ために運転者が時点t1でアクセルペダルを踏み込み、これに応じてアクセル開度AOが開側に所定量変化したときに、現時点での車速Vとアクセル開度AOの変化とが図5の変速マップに照らされて調べられることにより、車両1の運転状態が、モータ走行モードに対応する運転領域Mからエンジン走行モードに対応する運転領域Eに移行したか否かが判定される。
上記ステップS2でYESと判定されてエンジン走行モードに対応する運転領域Eに移行したことが確認された場合、ECU12は、停止状態にあったエンジン2を始動する制御を実行する(ステップS3)。すなわち、図7(d)に示すように、上記運転領域Eに移行した時点t1から所定時間が経過した時点t2で、ISG3のトルクを駆動側に増大させてエンジン2のクランク軸を強制回転させるとともに、これに合わせて所定量の燃料をエンジン2に供給することにより、エンジン2を始動する(図7(e)参照)。なお、上記ISG3のトルクは、エンジン2の始動が開始されてから所定時間の間は比較的高い値に維持され、エンジン2に対するトルクアシストが行われる。これにより、図7(e)に示すように、エンジン2の始動を開始した時点t2の直後、エンジン2の回転速度は急速に上昇する。
また、ECU12は、上記エンジン2の始動開始とほぼ同時に、自動変速機5を擬似変速段(擬似1速〜擬似4速等)から所定の変速段(1速〜4速等)に切り替えるための準備として、上記断続手段8(図3のC2,C3,B1,B2のいずれか)にプリチャージ圧を供給する制御を実行する(ステップS4)。すなわち、図7(i)の時点t2に示すように、上記断続手段8に油圧を供給する油圧回路のライン圧を、断続手段8が完全に締結するのに必要な圧力よりも所定量小さいプリチャージ圧まで上げることにより、断続手段8を締結直前の状態にする。例えば、モータ走行モードからエンジン走行モードへの領域移行が、図5の矢印S3に示すように、擬似4速の運転領域M4から3速の運転領域E3への移行である場合には、変速段を3速に切り替えるために、断続手段8としての3−4クラッチC2を解放状態から締結状態に切り替える必要があるため(図4参照)、この3−4クラッチC2にプリチャージ圧を供給する。
なお、上記のように変速段を擬似4速から3速に切り替えるには、図4に示すように、上記3−4クラッチC2の締結以外に、2−4ブレーキB2を解放しかつフォワードクラッチC1を締結する必要があるが、これら2−4ブレーキB2やフォワードクラッチC1に対しては、上記のような領域移行が確認されてから速やかに解放および締結の指令が出される。すなわち、上記領域移行が確認された時点t2の直後に、フォワードクラッチC1を完全に締結させるための高い油圧を油圧回路から供給し、かつ2−4ブレーキB2への供給油圧を解除する旨の指令がECU12から出力され、油圧系の応答遅れによる所定のタイムラグの後に、フォワードクラッチC1が完全に締結されかつ2−4ブレーキB2が解放される。このとき、上述したように、3−4クラッチC2にはプリチャージ圧しか供給されておらず、3−4クラッチC2は完全に締結されていないため、自動変速機5の変速段はこの時点で一時的に擬似4速から擬似3速に変化する。図7(c)の破線部分の段差P1は、このような擬似変速段の間での変速段の変化を表わしている。なお、図7(c)では、実質的にニュートラルとなる上記擬似変速段の状態を破線で示し、その状態から所定の変速段に変位して動力伝達が行われる状態を実線で示している。
上記のように断続手段8にプリチャージ圧を供給した後、ECU12は、上記ISG3のトルク値を低下させてエンジン2の回転速度を現時点での車速Vに見合った値に調節することにより、上記断続手段8の上流部と下流部の回転速度差をほぼゼロにして両者を同期させる制御を開始する(ステップS5)。すなわち、上記ISG3のトルク値を高い値(図7(d)の時点t2以後の値)に維持したままでは、エンジン2の回転速度が上昇を続けて現時点での車速Vに見合った値を超えてしまうので、図7(d)の時点t3においてISG3のトルク値を低下させることにより、エンジン回転速度の上昇を抑えて適正値に収束させるようにする。
ここで、「現時点での車速Vに見合ったエンジン回転速度」とは、現時点での車速Vに応じた回転速度で回転するドライブシャフト15に対し、自動変速機5の変速段に対応する速度比をもってクランク軸が回転するようにエンジン2を駆動制御したときのクランク軸の回転速度である。例えば、図5の矢印S3に示すように、運転領域がM4からE3に移行した場合、エンジン走行モードに切り替わる際に自動変速機5の変速段は3速になるので、断続手段8(この場合は3−4クラッチC2)の上流部と下流部とを同期させるには、現時点でのドライブシャフト15の回転速度に対し3速の減速比の分だけ速い速度でエンジン2のクランク軸が回転するように、ISG3のトルク値を調節してクランク軸の回転を制御すればよい。これにより、断続手段8としての3−4クラッチC2の上流部と下流部との回転速度差、すなわち、図3に示した入力軸20側の部材29と出力ギヤ19側の部材28との回転速度差をほぼゼロにして両者を同期させることができる。図7(f)は、上記断続手段8の上流部と下流部との回転速度差を示しており、この図7(f)によれば、上記ISG3のトルク値を低下させる制御(回転同期制御)を開始してからまもなくして、上記回転速度差がゼロになり同期が完了していることが分かる。
なお、エンジン走行モードに切り替わる際の変速段が3速以外の場合でも、同様に、各変速段に応じた回転速度でクランク軸が回転するようにエンジン2を制御すればよい。例えば、図5の矢印S2に示すように、車両1の運転状態が2速の運転領域E2に移行することにより、エンジン走行モードに切り替わる際に自動変速機5の変速段が2速に設定される場合には、現時点でのドライブシャフト15の回転速度に対し2速の減速比の分だけ速い速度でクランク軸が回転するようにエンジン2を制御すれば、断続手段8の上流部と下流部とを同期させることができる。2速の場合、図4に示したように2−4ブレーキB2が断続手段8に相当するが、この2−4ブレーキB2の上流部と下流部とは、それぞれ、図3に示される部材27、および自動変速機5のケースに相当し、エンジン2のクランク軸が上記のような回転速度で回転することにより、部材27の回転速度がケースと同じくゼロになって両者の同期が図られる。
このように断続手段8の上流部と下流部とを同期させる制御が開始されるのに引き続き、ECU12は、図7(g)のP2部に示すように、トルクコンバータ4のロックアップクラッチ7を解放すべく、このロックアップクラッチ7に対し解放を指示する旨の制御信号を出力する(ステップS6)。これにより、ロックアップクラッチ7を駆動する油圧系の応答遅れによる所定のタイムラグの後、図7(h)のP3部に示すように、ロックアップクラッチ7が解放状態に切り替わり、これによってエンジン2のクランク軸とトルクコンバータ4のタービンランナとの直結が解除される。そして、このようにロックアップクラッチ7による動力の直結が解除されることにより、エンジン2と自動変速機5との間では、流体(作動油)を介して動力が伝達されるようになる。
上記のようにロックアップクラッチ7を解放する指示を出した後、ECU12は、上記断続手段8の上流部と下流部との同期が完了したか否かを判定する制御を実行する(ステップS7)。具体的には、エンジン回転速度センサ33により検出されるクランク軸の回転速度と、ドライブシャフト回転速度センサ40により検出されるドライブシャフト15との回転速度とを比較して両者の速度比を求め、この速度比が、エンジン走行モード切替時に設定される自動変速機5の変速段に見合う速度比に一致するか否かに基づいて、上記断続手段8の上流部と下流部との同期が完了したか否かを判定する。
上記ステップS7でYESと判定されて同期が確認された場合、ECU12は、同期が確認された図7(f)の時点t4から所定時間が経過した後に、上記断続手段8を完全に締結させるのに必要な油圧を断続手段8に供給することにより、断続手段8の締結を完了させる制御を実行する(ステップS8)。すなわち、図7(i)に示すように、上記断続手段8の上流部と下流部との同期が確認された時点t4から所定時間が経過した時点t5で、上記断続手段8に油圧を供給する油圧回路のライン圧が、断続手段8が完全に締結するのに必要な圧力まで高められ、これに応じて断続手段8が完全な締結状態へと切り替わる。このとき、断続手段8には事前にプリチャージ圧が供給されていることから、断続手段8の締結完了は速やかになされる。そして、このように断続手段8の締結が完了することにより、自動変速機5において所定の変速段(1速〜4速等)が形成され、その変速段に対応する減速比でエンジン2とドライブシャフト15(およびこれに連結された後輪R)とが連動連結される。なお、上記断続手段8を完全に締結させる時点t5は、ロックアップクラッチ7の解放が完了する時点(図7(h)のP3部の時点)よりも遅い時点に設定される。
また、上記のように断続手段8の締結が完了するのに合わせて、ECU12は、上記インバータ13から電動モータ9への電力供給を徐々にストップすることにより、図7(j)に示すように、電動モータ9のトルク値を徐々にゼロにしてその駆動を停止する制御を実行する(ステップS9)。これにより、電動モータ9が完全に停止した時点t6で、車両1の動力源が電動モータ9からエンジン2へと完全に切り替わり、エンジン1のみを動力源としたエンジン走行モードで車両1が運転されることになる。
以上説明したように、当実施形態の車両用駆動装置は、エンジン2と、該エンジン2に連結されて後輪Rを駆動する自動変速機5と、上記自動変速機5とエンジン2との間で流体(作動油)を介した動力伝達を行うとともに、内蔵されたロックアップクラッチ7により両者を直結することが可能な流体伝動装置としてのトルクコンバータ4と、上記トルクコンバータ4と後輪Rとの間で動力を伝達または切断する断続手段8と、上記自動変速機5を介さずに後輪Rを駆動するとともに、上記断続手段8と上記後輪Rとの間に連結された電動モータ9とを備え、上記電動モータ9を駆動して上記エンジン2を停止するモータ走行モードと、上記エンジン2を駆動して上記電動モータ9を停止するエンジン走行モードとの間で駆動形式を切り替え可能に構成されている。そして、このような車両用駆動装置を制御するにあたり、当実施形態では、上記モータ走行モードで車両1が運転されているときに、上記断続手段8を解放するとともに、上記トルクコンバータ4のロックアップクラッチ7を締結するステップ(S1)と、上記モータ走行モードからエンジン走行モードへの移行時に(より具体的にはエンジン走行モードに対応する運転領域Eへの移行時点t1から所定時間の間に)、上記ロックアップクラッチ7を締結した状態で上記エンジン2を始動するとともに上記断続手段8の上流部と下流部とを同期させるステップ(S3,S5)と、上記断続手段8の上流部と下流部との同期が確認された後に上記断続手段8を締結するステップ(S8)とを行うようにした。このような方法によれば、モータ走行モードからエンジン走行モードへの移行を迅速かつスムーズに行えるという利点がある。
すなわち、上記実施形態では、モータ走行モードで車両1が運転されているときに、トルクコンバータ4のロックアップクラッチ7をあらかじめ締結してエンジン2と自動変速機5とを流体を介さず直接的に連結することにより、エンジン走行モードへの移行時に必要な同期処理、つまり、トルクコンバータ4と後輪Rとの間に介在する断続手段8の上流部と下流部とをエンジン側トルクを増減させることで同期させる処理を、エンジン2と自動変速機5との間に流体による滑りが発生しない状態(つまりクランク軸とタービンランナとの間で回転速度の不一致がなく、エンジン側トルクの増減をダイレクトに断続手段8の上流部に反映できる状態)で行うことができるため、上記断続手段8の上流部と下流部とを迅速かつ精度よく同期させることができる。そして、両者を同期させる処理が完了した後に上記断続手段8を締結することにより、例えば図7(i)に示すように断続手段8に対する供給油圧を急速に高めて断続手段8を素早く締結状態に切り替えたとしても、その上流部と下流部との回転速度差によるショックがほとんど発生することがない。このため、例えば断続手段8への供給油圧を段階的に高める等により断続手段8を徐々に締結するといった措置をとらなくても、断続手段8の締結時に後輪Rに伝達される駆動力が急変して乗員にショックが加わるといった事態を有効に回避でき、上記モータ走行モードからエンジン走行モードへの移行を迅速かつスムーズに行えるという利点がある。
また、上記実施形態のように、断続手段8を締結するステップ(S8)の前に上記ロックアップクラッチ7を解放するようにした場合には(S6)、上記断続手段8を締結するときに、その上流部と下流部との間に仮に誤差等による回転速度差が生じていたとしても、トルクコンバータ4内の流体により締結時のショックを吸収することができるため、多少の同期誤差(誤差による回転速度差)を許容しつつ、エンジン走行モードへの移行をスムーズに行えるという利点がある。
また、上記実施形態では、油圧回路から供給される油圧により駆動される油圧駆動式の断続手段(摩擦締結要素C2,C3,B1,B2)を上記断続手段8として設けるとともに、上記断続手段8の上流部と下流部との同期が確認される前に、上記断続手段8を完全に締結するのに必要な圧力よりも低いプリチャージ圧まで上記油圧を高め(図7(i)の時点t2)、上記断続手段8の上流部と下流部との同期が確認されると、上記油圧をさらに高めて上記断続手段8の締結を完了させるようにしたため(同図の時点t5)、締結時のショックを防止しつつエンジン走行モードへの移行をより迅速化できるという利点がある。
すなわち、断続手段8の上流部と下流部との同期が確認される前にプリチャージ圧によって断続手段8をあらかじめ締結直前の状態にしておき、同期が確認された時点で上記油圧をさらに高めて断続手段8の締結を完了させることにより、必要時に断続手段8を迅速に締結状態に切り替えることができるため、断続手段8の締結時にショックが発生するのを高精度な同期処理により防止しながら、モータ走行モードからエンジン走行モードへの移行に要する時間をより効果的に短縮できるという利点がある。
なお、上記実施形態では、自動変速機5が、所定の変速段を形成するために締結が必要な複数の摩擦締結要素(C1,C2,C3,B1,B2)を有する場合において、このうち変速段に応じた特定の摩擦締結要素(C2,C3,B1,B2のいずれか)を上記断続手段8として締結または解放することにより、上記トルクコンバータ4と後輪Rとの間で動力を伝達または切断するようにしたが、このような方法に代えて、例えば自動変速機5の出力軸とドライブシャフト15との間(図1のX部)等に、上記断続手段8として専用のクラッチを設け、このクラッチの断続により、トルクコンバータ4と後輪Rとの間で動力を伝達または切断するようにしてもよい。この方法による場合でも、モータ走行モードでクラッチを解放することによりエンジン2の引き摺り現象を防止できるとともに、エンジン走行モードではクラッチを締結することによりエンジン2の動力を後輪Rに伝達することができる。
ただし、このように専用のクラッチを設けた場合には、部品点数が増える分だけコストアップを招くといった問題がある。これに対し、上記実施形態のように、自動変速機5に本来的に備わる摩擦締結要素(C2,C3,B1,B2)を断続手段8として利用した場合には、上記のような部品点数の増大を招くことがなく、走行モードに応じた動力の断続を簡単な構成で効率よく行えるという利点がある。
以上、本発明の好ましい実施の形態について説明したが、本発明の制御方法はこのような例に限らず、その趣旨を逸脱しない範囲で種々変更可能である。
例えば、上記実施形態では、エンジン走行モードに移行する際に、エンジン2を始動するとともに、図7(j)に示したように電動モータ9を完全に停止することにより、車両1の動力源を電動モータ9からエンジン2に完全に切り替えるようにしたが、エンジン走行モードで電動モータ9を完全停止する必要は必ずしもなく、エンジン2および電動モータ9をともに駆動して両方の駆動力を車両1の動力源として利用するようにしてもよい。
また、上記実施形態では、エンジン2の始動および発電を行うISG3を、エンジン2とトルクコンバータ4との間に配置したが、例えばエンジン2の前面(反トルクバータ側の面)のうちクランク軸からオフセットした位置に上記ISG3を配置し、このISG3とクランク軸とを補機駆動ベルト等を介して連動連結するようにしてもよい。このことは、後述する図8〜図11の変形例においても同様である。
また、上記実施形態では、エンジン2および電動モータ9がともに後輪Rを駆動するFR式のハイブリッド型車両に本発明の制御方法を適用した場合を例に挙げて説明したが、本発明の制御方法は、以下に説明するような種々のハイブリッド型車両に適用可能である。なお、以下の説明では、上記実施形態と同一構成要素のものは同一符号を付してその説明を省略する。
(1)図8に示されるハイブリッド型車両100は、エンジン2と、これに連結されたISG3、トルクコンバータ4、および自動変速機5と、自動変速機5と前輪車軸50とを連動連結する差動装置16と、前輪車軸50に駆動力を入力可能な電動モータ9とを備える。すなわち、図例の車両100は、エンジン2および電動モータ9の駆動力がともに前輪車軸50に入力されて前輪Fが回転駆動されるFF式のハイブリッド型車両である。なお、ECU12、インバータ13、バッテリ14の各構成については、上記実施形態と同様である。
(2)図9に示されるハイブリッド型車両101は、図8の場合と同様の構成で前輪Fを駆動するエンジン2を備えるとともに、前輪Fを直接回転駆動することが可能ないわゆるインホイールモータからなる一対の電動モータ9を備えている。
(3)図10に示されるハイブリッド型車両102(参考例)は、図8の場合と同様の構成で前輪Fを駆動するエンジン2を備えるとともに、後輪Rの車軸(後輪車軸)52に減速ギヤ機構10および差動装置16を介して駆動力を入力可能な電動モータ9を備えている。すなわち、図例の車両102では、エンジン2により前輪Fが駆動され、電動モータ9により後輪Rが駆動される。なお、この図10の例において、電動モータ9を図9に示したようなインホイールモータとし、このインホイールモータにより直接後輪Rを駆動するようにしてもよい。
(4)図11に示されるハイブリッド型車両103は、図1の実施形態の場合と同様の構成で後輪Rを駆動するエンジン2を備えるとともに、後輪Rを直接回転駆動するインホイールモータからなる一対の電動モータ9を備えている。すなわち、図例の車両103は、エンジン2および電動モータ9がともに後輪Rを駆動するFR式のハイブリッド型車両であるが、図1の実施形態の場合と異なり、電動モータ9の駆動力がドライブシャフト15ではなく、後輪Rに直接入力されるようになっている。なお、さらに別の変形例として、電動モータ9の駆動力を後輪車軸52に入力することも当然に可能である。
(5)本発明の制御方法を適用可能なハイブリッド型車両は他にも種々考えられる。例えば、エンジン2および電動モータ9によってともに前輪Fおよび後輪Rの両方を駆動する4輪駆動式のハイブリッド型車両であってもよい。また、エンジン2の搭載位置は、車両の前部に限られず、車両の中央部もしくは後部であってもよい。