JP3705290B2 - 複数の原動機を備えた車両の制御装置 - Google Patents

複数の原動機を備えた車両の制御装置 Download PDF

Info

Publication number
JP3705290B2
JP3705290B2 JP2004228746A JP2004228746A JP3705290B2 JP 3705290 B2 JP3705290 B2 JP 3705290B2 JP 2004228746 A JP2004228746 A JP 2004228746A JP 2004228746 A JP2004228746 A JP 2004228746A JP 3705290 B2 JP3705290 B2 JP 3705290B2
Authority
JP
Japan
Prior art keywords
engine
vehicle
power transmission
transmission mechanism
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004228746A
Other languages
English (en)
Other versions
JP2005029162A (ja
Inventor
新 村上
正訓 大竹
弘淳 遠藤
雄二 岩瀬
光広 梅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004228746A priority Critical patent/JP3705290B2/ja
Publication of JP2005029162A publication Critical patent/JP2005029162A/ja
Application granted granted Critical
Publication of JP3705290B2 publication Critical patent/JP3705290B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Arrangement Of Transmissions (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、複数の原動機を備えた車両の制御装置に関するものである。
前輪を内燃機関を用いて駆動し、後輪を電動機を用いて駆動する形式の4輪駆動車両が知られている(例えば特許文献1等を参照)。このような形式の4輪駆動車両では、4輪駆動により走破性が高められると同時に、常時は内燃機関を主体とした前輪駆動とすることにより、内燃機関の出力を前後輪へ機械的に伝達する場合に比較して燃費が良好となる利点がある。また、内燃機関の故障時には、電動機を用いて後輪を駆動することにより、バッテリが消耗するまでの間は応急的な走行を行うことができる。
特開平10−67243号公報
ところで、上記従来の4輪駆動車両が記載された特許文献1には、内燃機関から車輪までの間に設けられた動力伝達機構の故障時などに関する課題や解決手段は何ら開示されていない。そのため、内燃機関から車輪までの間に設けられた動力伝達機構の故障時には、車両を応急的に走行させることが困難となるおそれがあった。
本発明は以上の事情を背景として為されたものであり、その目的とするところは、動力伝達機構の故障に拘らず走行が可能な車両の制御装置を提供することにある。
斯かる目的を達成するための本発明の要旨とするところは、前輪および後輪の一方を動力伝達機構を介して駆動する第1原動機と、それら一方の車輪と第1原動機との間の動力伝達経路を実質的に断続するためのクラッチと、他方の車輪を駆動する第2原動機とを備えた複数の原動機を備えた車両の制御装置であって、(a)前記動力伝達機構の異常を判定する動力伝達機構異常判定手段と、(b)その動力伝達機構異常判定手段により前記動力伝達機構の異常が判定された場合には、前記クラッチを解放して前記第2原動機で前記他方の車輪を駆動して前記車両を暫定的に走行させる暫定走行手段とを、含むことにある。
このようにすれば、動力伝達機構異常判定手段により前記動力伝達機構の異常が判定された場合には、前記一方の車輪と前記第1原動機との間の動力伝達経路を断続するためのクラッチが解放されると共に、暫定走行手段により前記第2原動機で前記他方の車輪を駆動して前記車両が暫定的に走行させられるので、動力伝達機構の異常が発生した状態でも車両が走行可能となる。
ここで、好適には、前記動力伝達機構の異常は、前記第1原動機の動力がその動力伝達機構を介して前記一方の車輪に伝達されない状態である。このようにすれば、動力伝達機構が第1原動機から一方の車輪へ動力を伝達できない状態でも車両が走行可能となる。
また、好適には、前記暫定走行手段は、前記動力伝達機構の異常時において、前記第1原動機から発生するエネルギに基づいて前記第2原動機を作動させるものである。このようにすれば、第1原動機から出力するエネルギを用いて第2原動機が作動させられるので、たとえば前輪を駆動する内燃機関により駆動されるジェネレータから出力される電気エネルギを用いて後輪を駆動する電動機が駆動されるので、動力伝達機構の異常時において、バッテリの容量に拘らず、長距離の暫定走行が可能となる。
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明が適用された4輪駆動車両すなわち前後輪駆動車両の動力伝達装置の構成を説明する骨子図である。この前後輪駆動車両は、前輪系を第1原動機を備えた第1駆動装置すなわち主駆動装置10にて駆動し、後輪系を第2原動機を備えた第2駆動装置すなわち副駆動装置12にて駆動する形式の複数の駆動装置を有するものである。
上記主駆動装置10は、空気および燃料の混合気が燃焼させられることにより作動させられる内燃機関であるエンジン14と、電気モータおよび発電機として選択的に機能するモータジェネレータ(以下、MGという)16と、ダブルピニオン型の遊星歯車装置18と、変速比が連続的に変化させられる無段変速機20とを同心に備えている。上記エンジン14は第1原動機すなわち主原動機として機能している。上記エンジン14は、その吸気配管の吸入空気量を制御するスロットル弁の開度θTHを変化させるためにそのスロットル弁を駆動するスロットルアクチュエータ21を備えている。また、本実施例においては、上記のMG16が他の原動機に相当する。
上記遊星歯車装置18は、機械的に力を合成し或いは分配する合成分配機構であって、共通の軸心まわりに独立して回転可能に設けられた3つの回転要素、すなわち上記エンジン14にダンパ装置22を介して連結されたサンギヤ24と、第1クラッチC1を介して無段変速機20の入力軸26に連結され且つ上記MG16の出力軸が連結されたキャリヤ28と、第2クラッチC2を介して無段変速機20の入力軸26に連結され且つブレーキB1を介して非回転部材たとえばハウジング30に連結されるリングギヤ32とを備えている。上記キャリヤ28は、サンギヤ24およびリングギヤ32とかみ合い且つ相互にかみ合う1対のピニオン(遊星歯車)34および36を、それらの自転可能に支持している。上記第1クラッチC1、第2クラッチC2、ブレーキB1は、いずれも互いに重ねられた複数枚の摩擦板が油圧アクチュエータによって押圧されることにより係合させられたり、その押圧解除により解放されたりする油圧式摩擦係合装置である。
上記遊星歯車装置18とそのキャリヤ28に連結されたMG16は、エンジン14の作動状態すなわちサンギヤ24の回転状態においてMG16の発電量を制御することすなわちMG16の回転駆動トルクである反力が逐次大きくなるようにキャリヤ28に発生させられることにより、リングギヤ32の回転数を滑らかに増加させて車両の滑らかな発進加速を可能とする電気トルコン(ETC)装置を構成している。このとき、遊星歯車装置18のギヤ比ρ(サンギヤ24の歯数/リングギヤ32の歯数)がたとえば一般的な値である0.5とすると、リングギヤ32のトルク:キャリヤ28のトルク:サンギヤ24のトルク=1/ρ:(1−ρ)/ρ:1の関係から、エンジン14のトルクが1/ρ倍たとえば2倍に増幅されて無段変速機20へ伝達されるので、トルク増幅モードと称される。
また、上記無段変速機20は、入力軸26および出力軸38にそれぞれ設けられた有効径が可変の1対の可変プーリ40および42と、それ1対の可変プーリ40および42に巻き掛けられた無端環状の伝動ベルト44とを備えている。それら1対の可変プーリ40および42は、入力軸26および出力軸38にそれぞれ固定された固定回転体46および48と、その固定回転体46および48との間にV溝を形成するように入力軸26および出力軸38に対して軸心方向に移動可能且つ軸心まわりに相対回転不能に取付られた可動回転体50および52と、それら可動回転体50および52に推力を付与して可変プーリ40および42の掛かり径すなわち有効径を変化させることにより変速比γ(=入力軸回転速度/出力軸回転速度)を変更する1対の油圧シリンダ54および56とを備えている。
上記無段変速機20の出力軸38から出力されたトルクは、減速装置58、差動歯車装置60、および1対の車軸62、64を介して1対の前輪66、68へ伝達されるようになっている。なお、本実施例では、前輪66、68の舵角を変更する操舵装置が省略されている。
前記副駆動装置12は、第2原動機すなわち副原動機として機能するリヤモータジェネレータ(以下、RMGという)70を備え、そのRMG70から出力されたトルクは、減速装置72、差動歯車装置74、および1対の車軸76、78を介して1対の後輪80、82へ伝達されるようになっている。
そして、前記エンジン14のクランク軸に一方向クラッチ84を介して連結されたVプーリ85とスタータモータ86の出力軸に固定されたVプーリ87との間には、伝動ベルト88が巻き掛けられており、そのスタータモータ86によってもエンジン14が始動させられるようになっている。上記一方向クラッチ84はスタータモータ86からエンジン14に向かう方向へ動力を伝達する場合は係合させられるが、エンジン14からスタータモータ86へ向かう方向の動力が伝達されようとすると解放されるものである。また、上記Vプーリ85および87はスチール(鋼板)製或いは合成樹脂製であり、それらに巻き掛けられた伝動ベルト88はよく知られたスチールワイヤにより補強された合成ゴム或いは合成樹脂から構成されたものである。
図2は、前記主駆動装置10の遊星歯車装置18を種々の作動モードに切り換えるための油圧制御回路の構成を簡単に示す図である。運転者によりP、R、N、D、Bの各レンジ位置へ操作されるシフトレバー90に機械的に連結されたマニアル弁92は、シャトル弁93を利用しつつ、シフトレバー90の操作に応答して、Dレンジ、Bレンジ、Rレンジにおいて第1クラッチC1の係合圧を調圧する第1調圧弁94へ図示しないオイルポンプから出力された元圧を供給し、Dレンジ、BレンジにおいてクラッチC2の係合圧を調圧する第2調圧弁95へ元圧を供給し、Nレンジ、Pレンジ、RレンジにおいてブレーキB1の係合圧を調圧する第3調圧弁96へ元圧を供給する。上記第2調圧弁95、第3調圧弁96は、ハイブリッド制御装置104によって駆動されるリニヤソレイド弁97からの出力信号に従って第2クラッチC2およびブレーキB1の係合圧を制御し、第1調圧弁94は、ハイブリッド制御装置104によってデューティー駆動される三方弁である電磁開閉弁98からの出力信号に従って第1クラッチC1の係合圧を制御する。
図3は、本実施例の前後輪駆動車両に設けられた制御装置の構成を説明する図である。エンジン制御装置100、変速制御装置102、ハイブリッド制御装置104、蓄電制御装置106、ブレーキ制御装置108は、CPU、RAM、ROM、入出力インターフェースを備えた所謂マイクロコンピュータであって、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って入力信号を処理し、種々の制御を実行する。また、上記の制御装置は、相互に通信可能に接続されており、所定の制御装置から必要な信号が要求されると、他の制御装置からその所定の制御装置へ適宜送信されるようになっている。
エンジン制御装置100は、エンジン14のエンジン制御を実行する。例えば、燃料噴射量制御のために図示しない燃料噴射弁を制御し、点火時期制御のために図示しないイグナイタを制御し、トラクション制御ではスリップ中の前輪66、68が路面をグリップするようにエンジン14の出力を一時的に低下させるためにスロットルアクチュエータ21を制御する。
上記変速制御装置102は、たとえば、無段変速機20の伝動ベルト44の張力が必要かつ十分な値となるように予め設定された関係から、実際の変速比γおよび伝達トルクすなわちエンジン14およびMG16の出力トルクに基づいて、ベルト張力圧を調圧する調圧弁を制御し、伝動ベルト44の張力を最適な値とするとともに、エンジン14が最小燃費率曲線或いは最適曲線に沿って作動するように予め記憶された関係から、実際の車速Vおよびエンジン負荷たとえばスロットル弁開度θTH或いはアクセルペダル操作量ACCに基づいて目標変速比γを決定し、実際の変速比γがその目標変速比γと一致するように無段変速機20の変速比γを制御する。
また、上記エンジン制御装置100および変速制御装置102は、たとえば図4に示す最良燃費運転線に沿ってエンジン14の作動点すなわち運転点が移動するように、たとえば上記スロットルアクチュエータ21や燃料噴射量を制御するとともに無段変速機20の変速比γを変更する。また、ハイブリッド制御装置104からの指令に応じて、上記エンジン14の出力トルクTまたは回転数Nを変更するために上記スロットルアクチュエータ21や変速比γを変更し、エンジン14の運転点を移動させる。
上記ハイブリッド制御装置104は、電池などから成る蓄電装置112からMG16に供給される駆動電流或いはそのMG16から蓄電装置112へ出力される発電電流を制御するインバータ114を制御するための第1MG制御装置116と、蓄電装置112からRMG70に供給される駆動電流或いはそのRMG70から蓄電装置112へ出力される発電電流を制御するインバータ118を制御するための第2MG制御装置120とを含み、シフトレバー90の操作位置PSH、アクセルペダル122の操作量ACC、車速V、蓄電装置112の蓄電量SOCに基づいて、たとえば図5に示す複数の運転モードのうちからいずれか1つを選択を行うとともに、アクセルペダル122の操作量ACC、ブレーキペダル124の操作量Bに基づいて、MG16或いはRMG70の発電に必要なトルクにより制動力を発生させるトルク回生制動モード、或いはエンジン14の回転抵抗トルクにより制動力を発生させるエンジンブレーキモードを選択する。
シフトレバー90がBレンジ或いはDレンジへ操作された場合、たとえば比較的低負荷の発進或いは定速走行ではモータ走行モードが選択され、第1クラッチC1が係合させられ且つ第2クラッチC2およびブレーキB1が共に解放されることにより、専らMG16により車両が駆動される。なお、このモータ走行モードにおいて、蓄電装置112の蓄電量SOCが予め設定された下限値を下回った不足状態となった場合や、駆動力をさらに必要とするためにエンジン14を始動させる場合には、後述するETCモード或いは直結モードへ切り換えられて、それまでの走行を維持しながらMG16或いはRMG70が駆動され、そのMG16或いはRMG70により蓄電装置112が充電される。
また、比較的中負荷走行または高負荷走行では直結モードが選択され、第1クラッチC1および第2クラッチC2が共に係合させられ且つブレーキB1が解放されることにより遊星歯車装置18が一体的に回転させられ、専らエンジン14によりまたはそのエンジン14およびMG16により車両が駆動されたり、或いは専らエンジン14により車両が駆動されると同時にMG16により蓄電装置112の充電が行われる。この直結モードでは、サンギヤ24の回転数即ちエンジン回転数N(rpm)とキャリヤ28の回転数すなわちMG16の回転数NMG(rpm)とリングギヤ32の回転数即ち無段変速機20の入力軸26の回転速度NIN(rpm)とは同じ値であるから、二次元平面内において3本の回転数軸(縦軸)すなわちサンギヤ回転数軸S、リングギヤ回転数R、およびキャリヤ回転数軸Cと変速比軸(横軸)とから描かれる図6の共線図では、たとえば1点鎖線に示されるものとなる。なお、図6において、上記サンギヤ回転数軸Sとキャリヤ回転数軸Cとの間隔は1に対応し、リングギヤ回転数Rとキャリヤ回転数軸Cとの間隔はダブルピニオン型遊星歯車装置18のギヤ比ρに対応している。
また、たとえば発進加速走行では、ETCモードすなわちトルク増幅モードが選択され、第2クラッチC2が係合させられ且つ第1クラッチC1およびブレーキB1が共に解放された状態でMG16の発電量(回生量)すなわちそのMG16の反力(MG16を回転させる駆動トルク)が徐々に増加させられることにより、エンジン14が所定の回転数に維持された状態で車両が滑らかに零発進させられる。このようにエンジン14によって車両およびMG16が駆動される場合には、エンジン14のトルクが1/ρ倍たとえばρ=0.5とすると2倍に増幅されて無段変速機20へ伝達される。すなわち、MG16の回転数NMGが図6のA点(負の回転速度すなわち発電状態)である場合には、無段変速機20の入力軸回転数NINは零であるため車両は停止しているが、図6の破線に示すように、そのMG16の発電量が増加させられてその回転数NMGがその正側のB点へ変化させられることに伴って無段変速機20の入力軸回転数NINが増加させられて、車両が発進させられるのである。
シフトレバー90がNレンジ或いはPレンジへ操作された場合、基本的にはニュートラルモード1または2が選択され、第1クラッチC1、第2クラッチC2、およびブレーキB1が共に解放され、遊星歯車装置18において動力伝達経路が解放される。この状態において、蓄電装置112の蓄電量SOCが予め設定された下限値を下回った不足状態となった場合などにおいては、充電・エンジン始動モードとされ、ブレーキB1が係合させられた状態で、MG16によりエンジン14が始動させられる。シフトレバー90がRレンジへ操作された場合、たとえば軽負荷後進走行ではモータ走行モードが選択され、第1クラッチC1が係合させられるとともに第2クラッチC2およびブレーキB1が共に解放されることにより、専らMG16により車両が後進走行させられる。しかし、たとえば中負荷或いは高負荷後進走行ではフリクション走行モードが選択され、第1クラッチC1が係合させられ且つ第2クラッチC2が解放されるとともに、ブレーキB1がスリップ係合させられる。これにより、車両を後進させる駆動力としてMG16の出力トルクにエンジン14の出力トルクが加えられる。
また、前記ハイブリッド制御装置104は、前輪66、68の駆動力に従った車両の発進時或いは急加速時において、車両の駆動力を一時的に高めるために、所定の駆動力配分比に従ってRMG70を作動させ、後輪80、82からも駆動力を発生させる高μ路アシスト制御や、凍結路、圧雪路のような低摩擦係数路(低μ路)における発進走行時において、車両の発進能力を高めるために、RMG70により後輪80、82を駆動させると同時に、たとえば無段変速機20の変速比γを低くさせて前輪66、68の駆動力を低下させる低μ路アシスト制御を実行する。
蓄電制御装置106は、電池、コンデンサなどの蓄電装置112の蓄電量SOCが予め設定された下限値SOCを下回った場合には、MG16或いはRMG70により発電された電気エネルギで蓄電装置112を充電あるいは蓄電するが、蓄電量SOCが予め設定された上限値SOCを上まわった場合には、そのMG16或いはRMG70からの電気エネルギで充電することを禁止する。また、上記蓄電に際して、実際の電力見込み値(=消費電力+充電電力)Pが、蓄電装置112の温度Tの関数である電力或いは電気エネルギの受入制限値WINと持出制限値WOUTとの範囲を越えた場合には、その受入れ或いは持ち出しを禁止する。
ブレーキ制御装置108は、たとえばTRC制御、ABS制御、VSC制御などを実行し、低μ路などにおける発進走行時、制動時、旋回時の車両の安定性を高めたり或いは牽引力を高めるために、油圧ブレーキ制御回路を介して各車輪66、68、80、82に設けられたホイールブレーキ66WB、68WB、80WB、82WBを制御する。たとえば、各車輪に設けられた回転センサからの信号に基づいて、車輪車速(車輪回転速度に基づいて換算される車体速度)たとえば右前輪車輪車速VFR、左前輪車輪車速VFL、右後輪車輪車速VRR、左後輪車輪車速VRL、前輪車速〔=(VFR+VFL)/2〕、後輪車速〔=(VRR+VRL)/2〕、および車体車速(VFR、VFL、VRR、VRLのうちの最も遅い速度)Vを算出する一方で、たとえば主駆動輪である前輪車速と非駆動輪である後輪車速との差であるスリップ速度ΔVが予め設定された制御開始判断基準値ΔVを越えると、前輪にスリップ判定をし、且つスリップ率R〔=(ΔV/V)×100%〕が予め設定された目標スリップ率RS1内に入るようにスロットルアクチュエータ21、ホイールブレーキ66WB、68WBなどを用いて前輪66、68の駆動力を低下させる。また、制動操作時において、各車輪のスリップ率が所定の目標スリップ範囲内になるように、ホイールブレーキ66WB、68WB、80WB、82WBを用いて前輪66、68、後輪80、82の制動力を維持し、車両の方向安定性を高める。また、車両の旋回走行時において、図示しない舵角センサからの舵角、ヨーレートセンサからのヨーレート、2軸Gセンサからの前後左右加速度等に基づいて車両のオーバステア傾向或いはアンダステア傾向を判定し、そのオーバステア或いはアンダステアを抑制するように、ホイールブレーキ66WB、68WB、80WB、82WBの何れか、およびスロットルアクチュエータ21を制御する。
図7は、上記ハイブリッド制御装置104等の制御機能の要部を説明する機能ブロック線図である。図7において、電動機走行手段126は、クラッチC2を解放させると共にインバータ114を介してMG16を駆動することにより、モータ走行モードで車両を走行させる。なお、前述したように、このモータ走行モードではクラッチC1が係合状態、ブレーキB1が解放状態にあり、且つエンジン14は停止させられている。本実施例においては、上記の電動機走行手段126が原動機走行手段に対応する。
また、始動要求判定手段128は、上記モータ走行モードの実施中に、停止させられているエンジン14の始動要求が為されたか否かを判定する。この始動要求の有無は、例えばDレンジにあるときに、アクセル開度の急激な増大や蓄電制御装置106からの充電要求の有無等に基づいて判断される。車速領域判定手段130は、上記の始動要求があった場合に、前述した車体車速Vが予め定められた押しがけ可能車速Vp以上の車速領域にあるか否かを判定する。V<Vpであって車速Vがその車速領域に無いと判定される場合には、スタータモータ異常判定手段132によってスタータ起動が可能であるか否かが判断される。スタータ起動が可能であれば、第1始動手段134がスタータモータ86を起動させることによりエンジン14が始動させられる。すなわち、第1始動手段134は、クラッチC2を解放させたままとすることにより、無段変速機20の入力軸26を経由したエンジン14と前輪66、68との間の動力伝達経路を実質的に遮断(すなわち解放)した状態でスタータモータ86を起動する。しかしながら、スタータ起動できない場合には、スタータモータ異常判定手段132は前記の車速領域判定手段130に制御を返す。
一方、車速領域判定手段130によって押しがけ可能車速Vp以上の車速領域にあると判定された場合には、第2始動手段136によってクラッチC2が係合させられる。これにより、モータ走行モードから直結モードにモード切換が為され、車両の運動エネルギを利用したエンジン14の始動、すなわち所謂押しがけによるエンジン14の始動が為される。すなわち、第2始動手段136は、クラッチC2を係合させることにより、エンジン14と前輪66、68との間の動力伝達経路を実質的に接続してそのエンジン14を回転させ且つ始動させる。このとき、必要に応じてRMG70が駆動されることにより、エンジン14の回転抵抗に抗して車両の走行速度が維持される。このように、始動要求判定手段128によってエンジン始動要求のあったことが判定されると、第1始動手段134或いは第2始動手段136が択一的に機能させられることにより、何れかによってエンジン14が始動させられる。本実施例においては、クラッチC2の係合によるエンジン始動が可能な領域にあるか否かは、車速Vが押しがけ可能車速Vp以上の車速領域に有るか否かで判断される。また、始動手段134、136によってエンジン14が始動させられるときには、電動機走行手段126により走行させられ、或いは走行可能な車両停止状態にある。
図8は、前記ハイブリッド制御装置104の制御作動の要部を説明するフローチャートであって、エンジンを始動或いは再始動させるエンジン始動ルーチンを示している。図8において、ルーチンの開始時には、車両はDレンジにおいて前述した電動機走行手段126により制御されたモータ走行モードにあり、エンジン14は停止中である。すなわち、車両は、MG16が駆動されることによって走行させられ或いは停止させられた状態にある。前記の始動要求判定手段128に対応するステップSA1においては、エンジン始動要求が発生したか否かが判断される。始動要求がない場合には、この判断が否定されるため、エンジン始動ルーチンが直ちに終了させられる。しかしながら、アクセルペダル122の急激な踏み込みすなわち加速要求があった場合や、蓄電装置112の蓄電量SOCが不足となった場合等には、始動要求判定が肯定されてステップSA2に進む。このとき、車両は、走行中であれば、MG16により、或いはMG16およびRMG70により走行させられ或いは加速されている状態にある。
前記の車速領域判定手段130に対応するステップSA2においては、車両車速Vが押しがけ可能車速Vpに達したか否か、すなわち、後述するエンジンクランキングを行った場合にその車速Vから推定されるエンジン回転速度Nが、速やかに予め定められた400rpm程度のエンジン始動可能な速度に到達し得るか否かが判断される。車速Vが押しがけ可能車速Vp以上になっている場合には、上記ステップSA2の判断が肯定されるため、ステップSA3およびSA4の押しがけルーチンに入る。
前記の第2始動手段136に対応するそのステップSA3においては、クラッチC2が係合させられる。これにより、クラッチC1,C2が係合させられる一方、ブレーキB1が解放させられた直結モードに移行し、遊星歯車装置18が一体的に回転させられるため、そのサンギヤ24に連結されたエンジン14の出力軸が車輪66、68の回転に伴って回転させられる。すなわち、エンジン14のクランキングが行われる。前記の「車速Vから推定されるエンジン回転速度N」とは、このようにクラッチC2を係合した場合に見込まれる回転速度をいう。エンジンクランキングが開始されると、ステップSA4において、そのエンジン回転速度Nが予め定められた例えば700〜800rpm程度の点火可能回転速度Nsに到達したか否かが判断される。未だ回転速度Nが低くN<Nsであれば、この判断が否定されるのでステップSA3に戻ってエンジン14のクランキングが継続される。しかしながら、エンジン回転速度Nが上記点火可能回転速度Nsを超えると、そのステップSA4の判断が肯定されるため、ステップSA5に進んで前記のエンジン制御装置100に点火指令が発せられ、エンジン14が始動させられる。
一方、前記のステップSA2において車両車速Vが押しがけ可能車速Vpに達していないと判断されると、ステップSA6乃至SA8のスタータ起動ルーチンに入る。スタータモータ異常判定手段132に対応するそのステップSA6では、スタータ起動が可能であるか否かが判断される。スタータ起動が可能であれば、この判断が肯定されて前記の第1始動手段134に対応するステップSA7に進み、スタータモータ86が起動されることにより、エンジン14のクランキングが為される。続くステップSA8においては、上述したステップSA4と同様に、エンジン回転速度Nが点火可能回転速度Nsに到達したか否かが判断される。この判断が否定される場合にはステップSA7に戻り、スタータモータ86によるクランキングが継続される。そして、エンジン回転速度Nが点火可能回転速度Nsを超えると、ステップSA8の判断が肯定されてステップSA5に進み、押しがけルーチンの場合と同様に、エンジン制御装置100に点火指令が発せられてエンジン14が始動させられる。
しかしながら、スタータモータ86の故障等で上記のステップSA6の判断が否定されると、ステップSA2に戻ってMG16或いはMG16とRMG70とによる車両の加速が継続される。そのステップSA2の判断が否定される間はステップSA6に進むのでそれらステップSA2、SA6が繰り返し実行されるが、車速Vが十分に高まると前述したようにステップSA3に進んで、エンジン14の押しがけが為される。したがって、スタータ起動が不能な場合にも、車速Vが押しがけ可能車速Vpに到達することを待つことにより、押しがけによってエンジン14を始動できる。
図9は、前記ハイブリッド制御装置104の制御作動の要部を説明するタイミングチャートであって、上記のフローチャートにおける制御作動の流れを、例えば車両の走行開始時について説明する図である。時刻Taにおいては、ドライバによって例えばイグニッションがオン操作されると共に、シフトレバー90がNレンジからDレンジに操作される。これにより、MG16が起動されると共にクラッチC1が係合させられ、MG16の発生させるクリープトルクで車両はゆっくり発進する。また、RMG70も同時に起動され、車速Vは徐々に上昇させられる。
時刻Tbにおいて、アクセルペダル122が踏み込まれる(アクセル開度が高められる)と、始動要求判定手段128(ステップSA1)によってエンジン始動要求が肯定され、クラッチC2への係合油圧の供給が開始される。このとき、アクセルペダル122の踏み込みに応じてMG16或いはMG16およびRMG70のトルクが上昇させられ、車速Vがそれ以前よりも大きな勾配で上昇させられる。なお、この時点ではクラッチC2の係合は開始しておらず、クラッチC2が解放されることによりエンジン14と車輪66、68との間の動力伝達経路は遮断されたままである。
時刻Tcにおいて、車速Vが押しがけ可能車速Vpに到達すると、前記車速領域判定手段130(ステップSA2)による判断が肯定されるため、第2始動手段136(ステップSA3)によってクラッチC2の係合油圧が高められて係合開始し、エンジン14のクランキングが開始する。これにより、エンジン14の回転速度Nは次第に上昇し、時刻Tdにおいて点火可能回転速度Nsに達する。そのため、ハイブリッド制御装置104からエンジン制御装置100に点火指令が出されてエンジン14に点火される。これにより、エンジン14が始動させられてエンジン走行が開始される共にクラッチC2が完全係合させられる。その後、更に時刻Teにおいてエンジン回転速度Nが所定の回転速度に到達すると、MG16が停止させられてエンジン14だけによる走行状態に移行する。したがって、押しがけが可能なときにはスタータモータ86を起動すること無くエンジン14を始動することができる。
なお、前記の図8においては、車速Vが低い場合にはスタータ起動ルーチンに入るようになっているが、押しがけエンジン始動を優先させたい場合には、例えば、そのステップSA2における判断を一定時間だけ遅らせる(保留する)。すなわち、始動要求が検出されてからそのステップSA2において車速Vを判断するまでの時間を、通常の加速性能が得られる車両状態において押しがけ可能車速Vpに到達する程度の一定時間だけディレイタイマ等によって遅らせればよい。このようにすれば、加速性能が低下する上り坂走行やMG16の出力低下等に起因して加速に時間を必要とする場合にはスタータ起動が為されるが、通常の加速性能が得られる場合には専ら押しがけ始動をさせることができる。
上述のように、本実施例によれば、クラッチC2の係合によるエンジン14の始動が不能な領域では、第1始動手段134(ステップSA7)によりそのクラッチC2が解放させられたままにされるとともにスタータモータ86によりエンジン14が始動させられるが、クラッチC2の係合によるエンジン14の始動が可能な領域では、第2始動手段136(ステップSA3)によりそのクラッチC2が係合させられることによりエンジン14が始動させられることから、2つの始動手段134、136の役割分担によりエンジン14の始動が容易に行われる。また、スタータモータ86による始動の範囲が低減されてスタータモータ86が小型且つ軽量化される。すなわち、押しがけが可能な場合にはそれが優先されることから、スタータモータ86によるエンジン始動回数が大幅に少なくなってスタータモータ86に必要な耐久性が低くなるため、その小型化や軽量化が容易になる。
また、本実施例においては、クラッチC2を解放させると共にMG16により前輪66、68を駆動して車両を走行させる電動機走行手段126が備えられると共に、エンジン14の始動時には車両がその電動機走行手段126により走行させられているため、エンジン14の停止状態においてもMG16によって車両を走行させ得ると共に、その車両の走行中においてもエンジン14を始動させることができる。
また、本実施例においては、前輪66、68とエンジン14との間の動力伝達経路を実質的に解放するためのクラッチC2が設けられており、そのクラッチC2が解放されている間にMG16により車両が駆動された後、そのクラッチC2が係合されることによりエンジン14が始動させられるため、時刻Tcまでのクラッチ解放期間における車両の走行によりある程度の車速が得られた後に、エンジン14の始動が行われるので、MG16の駆動初期における負荷が低減されるとともに、エンジン14始動時のスタータモータ86の負荷が低減される。
また、本実施例においては、図8のステップSA2の判断が否定されてスタータ起動ルーチンに入った場合においても、スタータモータ異常判定手段132に対応するステップSA6においてスタータモータ86の異常が判定されると、ステップSA2に戻って押しがけ可能車速Vpに到達するまで待機させられ、その到達を待って押しがけルーチンに入る。そのため、スタータモータ異常判定手段132により前記スタータモータ86の異常が判定された場合には、MG16で前輪66、68を駆動し、或いは、それと共にRMG70で後輪80、82を駆動して車速Vを上昇させた後にエンジン14が始動させられるので、スタータモータ86の異常が発生した状態でもエンジン14が容易に始動させられる。
次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
図10は、本発明の他の実施例における前記ハイブリッド制御装置104等の制御機能の要部を説明する機能ブロック線図である。図10において、動力伝達機構異常判定手段140は、エンジン14およびMG16と前輪66、68との間の動力伝達経路の異常、例えば、遊星歯車装置18のクラッチC1、C2や無段変速機20の伝動ベルト44等に起因する動力伝達機構の異常の有無を判定する。この異常の有無は、例えば、エンジン14の出力軸やMG16の出力軸の近傍に設けられたセンサによって検出されるそれらの回転速度N、回転速度NMGが過大になること等に基づいて判断される。すなわち、この場合、動力伝達機構の異常とは、エンジン14およびMG16の動力が前輪66、68に伝達されない状態をいう。
動力伝達経路の異常が検出されると、暫定走行手段142は、クラッチC1、C2を解放させると共にブレーキB1を係合させることにより、エンジン14によってMG16の出力軸を回転させて発電させる一方、インバータ114、118を介してMG16で発生させられた電流をRMG70に供給し、更に、そのRMG70をインバータ118を介して制御する。これにより、MG16の発電電流を利用してRMG70で後輪80、82を駆動する暫定走行モードが実施される。したがって、本実施例においては、エンジン14或いはMG16が第1原動機に、RMG70が第2原動機にそれぞれ相当する。エンジン14を第1原動機と考えれば、それの発生する回転エネルギがMG16を介して間接的にRMG70を作動させ、MG16を第1原動機と考えれば、それの発生する電気エネルギに基づいて直接的にRMG70が作動させられるといえる。
図11は、上記図10に対応する前記ハイブリッド制御装置104の制御作動の要部を説明するフローチャートであって、暫定走行ルーチンを表している。図11において、ルーチンの開始時には、車両はDレンジにおいてエンジン14およびMG16の少なくとも一方の出力軸が回転させられると共に、クラッチC1,C2の一方或いは両方が係合させられ且つブレーキB1が解放状態にある。ステップSB1においては、エンジン14の回転速度NおよびMG16の回転速度NMGの異常の有無が判断される。何れの回転速度にも異常がなければ、この判断が否定されるので、ステップSB8に進んで正常走行が継続されると共に、本ルーチンが終了させられる。しかしながら、何れかの回転速度が異常に高くなっている場合には、動力伝達機構の異常が考えられるため、この判断が肯定されるのでステップSB2に進む。
ステップSB2においては、車両の車速Vが低下しつつあるか否かが判断される。すなわち、ステップSB3において検出された回転速度異常が動力伝達機構の異常であるか否かが、例えば前記の車輪車速から逐次求められる車速Vからその変化を算出することにより判断される。車速Vが低下していない場合には、動力伝達機構の異常ではなく、他の原因によって回転速度異常が発生したと考えられるため、この判断が否定されステップSB9において他の異常原因が検索されると共に、本ルーチンが終了させられて正常走行が継続される。しかしながら、車速低下が生じていれば、前記の回転速度異常は動力伝達機構の異常に基づくものであると考えられるので、この判断が肯定されてステップSB3に進む。
上記の動力伝達機構異常判定手段140に対応するステップSB1、SB2によって動力伝達機構の異常が検出された場合には、ステップSB3において、動力伝達機構のフェール警告およびNレンジによるリンプフォーム走行(暫定走行或いは応急走行)可能の表示が計器盤等に表示される。ステップSB4においては、ドライバのシフトレバー90の操作によりDレンジからNレンジに切り換えられたか否かが判断される。切り換えが為されていなければステップSB3に戻って待機させられるが、切り換えが為されると、この判断が肯定されるのでステップSB5に進む。
ステップSB5においては、Nレンジへの切り換えに伴ってブレーキB1が係合させられると共に、クラッチC1,C2が解放させられる。また、エンジン停止中であればスタータ起動或いはMG16の反転(逆転)によりエンジン14を始動する。これにより、MG16がエンジン14によって回転させられて発電させられる。
ステップSB6においては、アクセルペダル122が踏み込まれたか否かが判断される。アクセルペダル122が踏み込まれていなければ、ステップSB5に戻って待機させられるが、踏み込み操作がされるとステップSB7に進み、RMG70(Rrモータ)を駆動することにより、後輪駆動で車両が走行させられる。本実施例においては、これらステップSB5〜SB7が前記の暫定走行手段142に対応する。なお、上記のステップSB6は、ドライバの意思表示を待って車両を走行させるためのものである。このとき、MG16の発電電流がRMG70に供給されるため、単に蓄電装置112に蓄えられた電気を消費して走行する場合に比較して長距離を走行することが可能となるため、確実に修理可能な場所まで移動させることができる。なお、上記のステップSB5およびSB6は、後述する図12のタイミングチャートに示されるように、反対の順序で実施してもよい。
図12は、上記のようなフローチャートに従ったリンプフォーム走行制御の流れを説明するタイミングチャートである。図12において、車両は、例えば回転数異常および車速低下が共に検出されることにより、前輪駆動による走行不能状態を検知して前記フェール警告およびリンプフォーム走行可能の表示が為され、Dレンジにシフトされて停止状態にある。時刻TaにおいてドライバがDレンジからNレンジにシフトチェンジすると、前記の暫定走行手段142(ステップSB5〜SB7)が機能させられ、RMG70(Rrモータ)が駆動される。これにより、車両にRMG70によるクリープトルクが発生する。この時点では未だアクセルペダル122が踏み込まれていないが、ブレーキペダル124が踏み込まれていなければ車両はゆっくり発進する。
時刻Tbにおいてドライバがアクセルペダル122を踏み込むと、RMG70がトルクアップして車速Vが次第に上昇すると共に、ブレーキB1への係合油圧の供給が開始される。ここまでの段階では、車両はRMG70が蓄電装置112に蓄えられている電気を利用して駆動されることで走行させられる。そして、時刻TcにおいてブレーキB1の係合が完了すると、MG16が反転動作させられることによりエンジン14が始動させられる。始動させられたエンジン14の回転速度Nは直ちにリンプフォーム走行に必要な一定の回転速度Nrまで上昇し、時刻Tdからは反対にMG16を駆動して発電を開始させる。したがって、時刻Td以降は、MG16の発電電流を利用してRMG70が駆動される。そして、時刻Teにおいて車速Vがリンプフォーム走行速度Vrに達すると、アクセル開度が小さくされて一定の速度で車両が走行させられることとなる。
上述したように、本実施例によれば、動力伝達機構異常判定手段140(ステップSB1、SB2)によりエンジン14やMG16の出力軸の回転速度に基づいて前記動力伝達機構の異常が判定された場合には、暫定走行手段142(ステップSB5〜SB7)により前記RMG70で後輪80、82を駆動して車両が暫定的に走行させられるので、動力伝達機構、例えばクラッチC1,C2や伝動ベルト44等の異常が発生した状態でも車両が走行可能となる。
しかも、本実施例においては、暫定走行手段142によって、MG16を介してエンジン14から、或いはそのMG16から出力するエネルギ、すなわち、前輪66、68を駆動するエンジン14により駆動されるMG16から出力される電気エネルギを用いて、後輪80、82を駆動するRMG70が作動させられるので、動力伝達機構の異常時において、蓄電装置112の容量に拘らず、長距離の暫定走行が可能となる。
以上、本発明の一実施例を図面に基づいて説明したが、本発明は他の態様においても適用される。
たとえば、前述の実施例の車両では、前輪66、68をエンジン14およびMG16を備えた主駆動装置10が駆動し、後輪80、82をRMG70を備えた副駆動装置12が駆動する形式であったが、後輪80、82を主駆動装置10が駆動し、前輪66、68を副駆動装置12が駆動する形式であってもよい。
また、前述の実施例の車両では、前輪系を駆動する主駆動装置10にエンジン14およびMG16が備えられると共に、後輪系を駆動する副駆動装置12にRMG70が備えられる形式の4輪駆動車両の制御装置に本発明が適用された場合について説明したが、エンジン14に加えて設けられる他の原動機、すなわち原動機走行手段により車両を走行させるために用いられる他の原動機は、内燃機関、ガスタービンや油圧モータ等で構成してもよい。また、第1発明は、エンジン14の他に原動機が備えられているものであれば、その他の原動機の種類や配設位置は問われない。すなわち、他の原動機は、エンジン14と同じ車輪を駆動するものであっても、他の車輪を駆動するものであってもよく、MG16およびRMG70の一方は設けられていなくとも差し支えない。また、第2発明乃至第4発明では、他の原動機はエンジン14とは異なる車輪系を駆動するものであればよく、例えば、MG16は設けられていなくともよい。
また、前述の実施例の車両は、エンジン14の出力エネルギがMG16により電気エネルギに変換され、後輪80、82を駆動するRMG70がその電気エネルギにより作動させられていたが、エンジン14の出力エネルギが油圧ポンプにより油圧エネルギに変換され、後輪80、82を駆動する油圧モータがその油圧エネルギにより作動させられる形式の車両であっても差し支えない。
また、実施例においては、ダブルピニオン型遊星歯車装置18が係合させられるクラッチC2によって、前輪66、68とエンジン14との間の動力伝達経路が実質的に断続させられる場合について説明したが、クラッチ(係合装置)は、その動力伝達経路を断続可能なものであれば、その構成を適宜変更できる。
また、前述の図8にエンジン始動ルーチンが示される実施例では、モータ走行モードはMG16が駆動されることによって車両が走行させられるものであったが、これにRMG70が併用され、或いは、RMG70だけが駆動されることにより車両が走行させられるものであっても差し支えない。
また、図7乃至図9に示される実施例においては、電動機走行手段126によってMG16が駆動されることで車両が走行させられている状態で第2始動手段136によってクラッチC2を係合させることにより、エンジン14を押しがけ始動していたが、このような押しがけ始動は、RMG70によって車両を駆動している場合にも同様に実施できる。すなわち、電動機走行手段126に代えて、或いはこれに加えてインバータ118を介してRMG70を駆動する後輪側電動機走行手段を設け、その後輪側電動機走行手段と上記の第2始動手段とから成る始動手段によってエンジン14を押しがけ始動してもよい。この場合には、クラッチC2が解放させられてエンジン14と前輪66、68との動力伝達経路が実質的に遮断された状態で、他の電動機として機能させられるRMG70で他の車輪すなわち後輪80、82を駆動することにより車両が走行させられ、その走行状態で、クラッチC2を係合させて前輪66、68の回転を伝達することでエンジン14が始動させられる。
また、上記のようにエンジン14の押しがけ始動をRMG70の駆動によって実施する態様では、前述したスタータモータ異常判定手段132でスタータ異常が判定された場合にも、そのRMG70で後輪80、82を駆動してエンジン14を始動することができる。
また、図12に示される実施例では、車両の停止中からリンプフォーム走行を開始する場合について説明したが、通常走行からリンプフォーム走行への切り換えは、車両の走行中にすることもできる。
また、動力伝達機構異常判定手段140による動力伝達経路の異常検出の対象となる動力伝達機構は、変速機、トルクコンバータ、トルクコンバータのロックアップクラッチ等であってもよい。なお、変速機は、自動変速機であっても手動変速機であってもよく、有段式変速機であっても実施例に記載したような無段変速機20であってもよい。
また、前述の実施例の車両では、動力伝達装置に無段変速機20が用いられている場合について説明したが、有段変速機が用いられている車両の制御装置にも本発明は同様に適用される。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
本発明の一実施例の制御装置を備えた4輪駆動車両の動力伝達装置の構成を説明する骨子図である。 図1の遊星歯車装置を制御する油圧制御回路の要部を説明する図である。 図1の4輪駆動車両に設けられた制御装置を説明する図である。 エンジン制御装置および変速制御装置の制御作動を説明する最良燃費運転線である。 図3のハイブリッド制御装置により選択される制御モードを示す図表である。 遊星歯車装置の各要素の回転数を説明する共線図である。 図3のハイブリッド制御装置等の制御機能の要部を説明する機能ブロック線図である。 図3のハイブリッド制御装置等によるエンジン始動ルーチンの一例である。 図8のエンジン始動ルーチンに対応するタイミングチャートである。 図3のハイブリッド制御装置等の制御機能の他の要部を説明する機能ブロック線図である。 図3のハイブリッド制御装置等による暫定走行制御ルーチンの一例である。 図11の制御ルーチンに対応するタイミングチャートである。
符号の説明
14:エンジン(第1原動機)、{16:モータジェネレータ、70:リヤモータジェネレータ}(第2原動機)、140:動力伝達機構以上判定手段、142:暫定走行手段、C1,C2:クラッチ

Claims (3)

  1. 前輪および後輪の一方を動力伝達機構を介して駆動する第1原動機と、該一方の車輪と該第1原動機との間の動力伝達経路を実質的に断続するためのクラッチと、他方の車輪を駆動する第2原動機とを備えた複数の原動機を備えた車両の制御装置であって、
    前記動力伝達機構の異常を判定する動力伝達機構異常判定手段と、
    該動力伝達機構異常判定手段により前記動力伝達機構の異常が判定された場合には、前記クラッチを解放して前記第2原動機で前記他方の車輪を駆動して前記車両を暫定的に走行させる暫定走行手段と
    を、含むことを特徴とする複数の原動機を備えた車両の制御装置。
  2. 前記動力伝達機構の異常は、前記第1原動機の動力が該動力伝達機構を介して前記一方の車輪に伝達されない状態である請求項1の複数の原動機を備えた車両の制御装置。
  3. 前記暫定走行手段は、前記動力伝達機構の異常時において、前記第1原動機から出力されるエネルギに基づいて前記第2原動機を作動させるものである請求項1の複数の原動機を備えた車両の制御装置。
JP2004228746A 2004-08-04 2004-08-04 複数の原動機を備えた車両の制御装置 Expired - Lifetime JP3705290B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228746A JP3705290B2 (ja) 2004-08-04 2004-08-04 複数の原動機を備えた車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228746A JP3705290B2 (ja) 2004-08-04 2004-08-04 複数の原動機を備えた車両の制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28793599A Division JP3649058B2 (ja) 1999-10-08 1999-10-08 複数の原動機を備えた車両の制御装置

Publications (2)

Publication Number Publication Date
JP2005029162A JP2005029162A (ja) 2005-02-03
JP3705290B2 true JP3705290B2 (ja) 2005-10-12

Family

ID=34214352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228746A Expired - Lifetime JP3705290B2 (ja) 2004-08-04 2004-08-04 複数の原動機を備えた車両の制御装置

Country Status (1)

Country Link
JP (1) JP3705290B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263318A (ja) * 2006-03-29 2007-10-11 Fujitsu Ten Ltd 車両のフェールセーフ制御装置
JP5510165B2 (ja) * 2010-08-03 2014-06-04 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2013084946A1 (ja) * 2011-12-09 2013-06-13 ボッシュ株式会社 ハイブリッド車両の制御装置及び制御方法
JP2019001179A (ja) * 2017-06-09 2019-01-10 本田技研工業株式会社 車両の制御装置
JP2021000927A (ja) * 2019-06-21 2021-01-07 ジヤトコ株式会社 車両
JP7234894B2 (ja) 2019-10-15 2023-03-08 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JP7276208B2 (ja) * 2020-03-11 2023-05-18 トヨタ自動車株式会社 四輪駆動車両
JP7343428B2 (ja) * 2020-03-16 2023-09-12 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP7400685B2 (ja) * 2020-10-09 2023-12-19 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
JP2005029162A (ja) 2005-02-03

Similar Documents

Publication Publication Date Title
JP3649058B2 (ja) 複数の原動機を備えた車両の制御装置
EP2636566B1 (en) Hybrid drive device for vehicle
US10569640B2 (en) Vehicle control apparatus
US8738209B2 (en) Control device of vehicle drive apparatus
US11052903B2 (en) Hybrid vehicle drive system
US10737700B2 (en) Hybrid/electric vehicle motor control during step-ratio transmission engagement
EP1839987A2 (en) Driving mode control
JP5305115B2 (ja) 制御装置
US9199633B2 (en) Control device for hybrid vehicle
JP6458794B2 (ja) ハイブリッド車両およびその制御方法
US9028363B2 (en) Control device for hybrid vehicle
JP2006188223A (ja) 車両、車両のエンジン始動方法及び、車両のエンジン始動制御用コンピューター・プログラム
US9682697B2 (en) Control system for hybrid vehicle
JP2015044495A (ja) ハイブリッド車両用制御装置
US10793139B2 (en) Vehicle control apparatus
US10870424B2 (en) Hybrid vehicle drive system
JP6052398B2 (ja) ハイブリッド車両の制御装置
US10202113B2 (en) Engine starting control system for hybrid vehicle
WO2014170749A1 (en) Control device for vehicle
JP2001112117A (ja) 車両の回生制動装置
JP3705290B2 (ja) 複数の原動機を備えた車両の制御装置
JP2005127332A (ja) 複数の原動機を備えた車両の制御装置
US20140148987A1 (en) Control device for hybrid vehicle
JP2006074997A (ja) 車両の回生制動装置
US10710446B2 (en) Engine starting system for vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3705290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term