JP5320101B2 - プリント基板の設計方法及びプリント基板の設計支援装置 - Google Patents

プリント基板の設計方法及びプリント基板の設計支援装置 Download PDF

Info

Publication number
JP5320101B2
JP5320101B2 JP2009037340A JP2009037340A JP5320101B2 JP 5320101 B2 JP5320101 B2 JP 5320101B2 JP 2009037340 A JP2009037340 A JP 2009037340A JP 2009037340 A JP2009037340 A JP 2009037340A JP 5320101 B2 JP5320101 B2 JP 5320101B2
Authority
JP
Japan
Prior art keywords
power supply
printed circuit
information
circuit board
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037340A
Other languages
English (en)
Other versions
JP2009223885A (ja
JP2009223885A5 (ja
Inventor
敬 飯田
英樹 大坂
裕 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009037340A priority Critical patent/JP5320101B2/ja
Publication of JP2009223885A publication Critical patent/JP2009223885A/ja
Publication of JP2009223885A5 publication Critical patent/JP2009223885A5/ja
Application granted granted Critical
Publication of JP5320101B2 publication Critical patent/JP5320101B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/093Layout of power planes, ground planes or power supply conductors, e.g. having special clearance holes therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、パソコン・サーバ・ルータ・ストレージなどの情報処理機器を構成する半導体素子とデカップリングコンデンサを搭載するプリント基板のCADプログラムにおける、基板電源ノイズ計算方法にかかり、コンデンサの搭載個数、種類、位置の違いを高精度に高速に求める計算モデルと上記計算を高速に行うプリント基板の設計方法及びプリント基板の設計支援装置を提供する。
プリント基板の設計において重要な指針として、搭載素子が提供する機能の実現の他に、電源ノイズの低減、機器からの電磁放射ノイズの低減があげられる。特に電源ノイズの低減はプリント基板に搭載される半導体素子やアナログ素子、RF素子などの部品の安定動作を保証する観点で重要であり、また、電源ノイズが電磁放射ノイズの励振源となりうることからそのノイズ量の制御が大切である。
このため、基板レイアウトの最適化をはかることにより電磁放射ノイズを抑制するプリント基板の設計方法として図2のようなフローが一般的である。すなわち、開始後、基板情報の入力110を行い、部品配置入力120を行い、この2つの情報を用いて電磁界解析130を行うことで基板のモデル化を行い、このモデルと半導体モデルを接続して電源ノイズの解析を回路解析150で行う。これにより、基板のレイアウト、部品配置に大きく依存する電源ノイズを設計段階で推定することができ、この推定された電源ノイズが目標値に対して大きいか小さいかの判定200を行う。そして、ノイズが目標値を超える場合は再度の部品配置210を行い、この再部品配置200後の情報に対して、電磁界解析130以降のシーケンスを判定200が成立するまで繰り返す。
たとえば、部品配置の最適化技術として特許文献1、2の技術があった。これはプリント回路基板のレイアウト後、電源、グランド系のモデルを電磁界解析により作成し、基板内の電圧・電流を2次元分布を表示させることでノイズが過大な部位を特定し、その部位付近にコンデンサを配置させることでノイズ低減を図っている。
また、電磁界解析と回路解析の高速化として特許文献3のように、電磁界解析(FDTD)と回路解析(SPICE)をステップ毎に交互に解析を行うことでIC回路素子を含む解析精度の向上をはかっている。
また、設計方法に関し特許文献4の様に、タグチメソッドを用いてアナログ回路に熟練していないものでも回路のバラツキを考慮した最適な回路常数設計を行うことができる回路設計方法がある。
また、直交表を用いた設計手法について特許文献5の技術がある。
特開2001−147952号公報 特開2004−362074号公報 特開2000−293560号公報 特開2004−145410号公報 特開平10−207926号公報
上記の技術では、以下の課題があった。
すなわち、特許文献1、2、3で開示されたような技術において、設計フローはおおよそ図2のようであり、すなわち低ノイズプリント基板の設計のため、部品を再配置するたび(工程220)に電磁界解析130と回路解析150を行う必要があり、設計全体のTAT(ターンアラウンドタイム)が長く、設計コストの増大を招いていた。そして、これは部品点数が多くなるほど指数的に工数が伸びるという課題があった。なぜならば、部品点数が増えるほど部品の配置の組合せが増大し、そのため、設計のための電気界計算と回路計算が設計工数を増大させるためである。このため、設計が最適化される前に終了させなければならず、ノイズ対策部品を余計に搭載しなければならない課題もある。
また、特許文献4で開示されたような技術において、アナログ回路に精通していない設計者でも回路バラツキ要因を考慮した最適な回路定数設計を行うことができるが、低ノイズを目的としたプリント基板設計の方法へ応用の記載はなく、プリント基板設計の応用のために設計パラメータに何を選べばよいか、ワースト条件に何を選べばよいのか、電磁界解析によるモデリングなど不明であり、そのままではプリント基板設計への応用はできなかった。また、特許文献5も同じ課題を持つ。
本発明の目的は、熟練設計者でなくとも短TATの設計工数で、電源ノイズの低いプリント基板の設計方法及びプリント基板の設計支援装置を提供することにある。
上記の課題を解決するため本発明では次の手段で実現する。すなわち、設計工程において時間のかかる電磁界解析を1回のみ行い、また、同様に時間のかかる回路解析を部品再配置毎に行うのではなく、部品の種類、部品位置、部品個数をパラメータ化し、これらのあり得る組み合わせ(パラメータセット)のうち、直交表作成することでパラメータセットを絞り込み、このしぼみ込まれたパラメータセットのみ回路解析を行う。この絞り込みのおかげで部品点数が増えた場合であっても、工数は指数的には増大しない。そして、回路解析により得られた電源インピーダンスの共振・反共振周波数での絶対値を評価指標として電源ノイズを計算し、これのパラメータセットに対する定式化を行う。この定式化することで全パラメータセットの電源インピーダンス並びに電源ノイズが式ベースで解析することができるので解析時間を短くすることができる。
即ち、本発明では、プリント基板上の半導体素子及びそれに接続するデカップリングコンデンサの配置を決定するためのプリント基板の設計支援装置を、プリント基板の層構成情報と外形情報を入力するプリント基板情報入力手段と、半導体素子の電源グランド情報、デカップリングコンデンサの候補であるコンデデンサ部品のタイプ毎の電気特性情報および個数を入力する部品情報入力手段と、プリント基板上における半導体素子とデカップリングコンデンサの配置を入力する部品配置入力手段と、プリント基板の層構造情報および外形情報を元に電磁界解析を行う電磁界計算手段と、電磁界計算手段により得られたインダクタンス網情報(Lk)とデカップリングコンデンサの配置情報とを用いてインダクタンスパラメータ(L)を計算するインダクタンスパラメータ計算手段と、インダクタンスパラメータ計算手段で計算されたインダクタンスパラメータ(L)とコンデンサのタイプ情報(t)および搭載個数情報(n)から直交表(p)を作成するパラメータセット計算手段と、電磁界計算手段の解析結果とパラメータセット計算手段で作成された直交表(p)のパラメータセットを用いて回路解析を行うことで電気特性指標を計算する評価指標計算手段と、評価指標計算手段により計算された電気特性指標を直交表(p)のパラメータ(L、t、n)の組合せで表す多項式の評価式を計算する評価式計算手段と、評価式計算手段で計算された多項式の評価式を用いて、パラメータの未知の組合せについて電気特性を評価する電気特性評価手段とを備えて構成した。
また本発明では、CADを用いてプリント基板に実装する半導体素子およびデカップリングコンデンサの配置を決定するための設計方法において、プリント基板の層構成情報と外形情報を入力し、プリント基板に実装する半導体素子の電源グランド情報、及びプリント基板に実装するコンデンサの型式情報と該コンデンサの電気特性情報を入力し、プリント基板上における半導体素子とコンデンサの配置を入力し、配置を入力したプリント基板の情報を元にプリント基板をメッシュ状に分割して電磁界解析によりプリント基板上の全メッシュ位置におけるインダクタンス行列(Lk)を計算し、インダクタンス行列(Lk)を用いて半導体素子の配置位置からデカップリングコンデンサの配置可能位置までのインダクタンス(L)を計算し、インダクタンス(L)とデカップリングコンデンサとして採用するコンデンサ部品のタイプ(t)及び個数(n)をパラメータにした直交表を作成し、 電磁界解析による計算結果と作成した直交表(p)の情報とを用いて回路解析を行ってプリント基板の電気特性を計算し、計算して求めた電気特性を直交表(p)のパラメータ(L、t、n)の組合せで表す多項式の評価式を計算し、計算して求めた多項式の評価式を用いてパラメータの未知の組合せについて電気特性を評価するようにした。
本発明によれば、設計者は短TAT化された解析を熟練設計者でなくとも多数回試せるので、低ノイズなプリント基板の設計が可能になる。
また、これにより、本発明をパソコン・サーバ・ルータ・ストレージなどの情報処理機器や情報家電の多層基板設計に適用することでこれらの機器の設計コストにかかる値段を下げることができる効果もある。そして、多くの試行を繰り返すことができるのでより低電源ノイズな最適配置を導き出すことができるので製品の安定動作と、低放射ノイズ特性を獲得することができる。
図1は、第1の実施例を説明する低電源ノイズプリント基板を実現する設計フローを示すフロー図である。 図2は、従来技術である低電源ノイズプリント基板設計フローを示すフロー図である。 図3は、第1の実施例を説明する多層基板の断面図である。 図4は、第1の実施例を説明する多層基板の上面図と電磁界解析のためのメッシュである。 図5は、第1の実施例を説明する多層基板の計算された等価回路の回路図である。 図6(a)は第1の実施例を説明する電源系等価回路を示す回路図、図6(b)は電源インピーダンス特性を示すグラフである。 は、第1の実施例を説明するパラメータセットの計算フローを示すフロー図である。 は、第1の実施例を説明するインダクタンス(L)の範囲を計算するフローを示すフロー図である。 図9(a)は第1の実施例を説明するコンデンサをプリント基板(図示せず)上の電極パッドに接続された状態を示す斜視図、図9(b)はコンデンサをプリント基板に実装した状態における実装コンデンサの等価回路を示す回路図である。 図10は、第1の実施例を説明する第2の電源系等価回路を示す回路図である。 図11は、第1の実施例を説明する半導体素子の等価回路とコンデンサの等価回路の接続図である。 図12は、第1の実施例を説明する第2の低電源ノイズプリント基板を実現する設計のフローを示すフロー図である。 図13は、第2の実施例を説明する低電源ノイズプリント基板を実現する設計のフローを示すフロー図である。 図14は、第2の実施例を説明するGUIによる部品を再配置するフローを示すフロー図である。 図15は、第2の実施例を説明するGUI画面である。 図16は、第3の実施例を説明する低電源ノイズプリント基板を実現する設計のフローを示すフロー図である。 図17は、第3の実施例を説明するポート設定した状態を示すプリント基板の平面図である。 図18は、第4の実施例を説明する低ノイズのチップ・プリント基板を実現する設計のフローを示すフロー図である。 図19は、第4の実施例を説明する電源系等価回路を示す回路図である。 図20(a)は第5の実施例におけるインピーダンスの目標値判定を示すグラフ、図20(b)は第5の実施例における電源ノイズの目標値判定を示すグラフである。 図21は、第6の実施例を説明する電源系等価回路を示す回路図である。 図22は、第6の実施例を説明する低ノイズのチップ・プリント基板を実現する設計のフローを示すフロー図である。 図23は、第6の実施例を説明するチップの容量セル配置を設定するGUI画面の図である。 図24は、第6の実施例を説明する半導体チップモデルの等価回路の概要を示す回路図である。 図25は、第6の実施例を説明する半導体チップモデル作成のフローを示すフロー図である。 図26は、第7の実施例を説明する低ノイズのチップ・プリント基板を実現する設計のフローを示すフロー図である。
以下に、本発明を実施するための形態を、説明する。
第1の実施例を図1〜図7を用いて説明する。 図1は本発明のプリント基板設計方法を示すフローチャートであり、フローについてまず述べる。そして、各フローについて詳述する。
基板情報入力工程110において、プリント基板の外形情報、層数、ビアホールの形状情報などをプリント基板設計に必要なプリント基板の設計情報を入力する。また、この段階にて、ここには記載されていない回路結線情報(ネットリスト)、部品リスト情報、配線禁止最小間隔などを規定した配線デザインルールなどはあらかじめ用意されている。このネットリスト、部品リストを用いて部品配置120を行う。ここで部品リストには機能を提供する半導体の他、電源安定化と電源ノイズ低減のためのデカプリングコンデンサの情報を含む。この部品配置120では半導体など、サイズの大きな部品、消費電力の多くな部品、電源ノイズがシビアな部品が仮配置され、その周りにデカップリングコンデンサが仮配置される。この工程ではプリント基板の外形や、異種電源の電源配線の分割など基板レイアウトがなされる場合もある。
次に、プリント基板内に配置された電源層とグランド層あるいはプレーン上の形状、(以降簡単に電源プレーンと呼ぶ)の電磁界解析130を行う。これにより、電源プレーンはメッシュ化され、メッシュ毎のインダクタンス行列(Lk)が求まる。
次に、パラメータセットの計算工程140により、デカップリングコンデンサの種類(t)、個数(n)、配置に対応したインダクタンス(L)をパラメータとした直交表(p)を作成する。この直交表により作成されたパラメータセットの個数をNとする。この個数Nはパラメータのすべての組み合わせよりかなり少なくなっている特徴を持つ。
回路解析工程150において、パラメータセットに応じた等価回路モデルを作成し、電源プレーンの電気回路解析を行うことでそれぞれの半導体の電源端子から見たプリント基板全体の電源インピーダンス(Z11)を計算する。電源インピーダンス(Z11)には共振・反共振を含み特に反共振周波数でのインピーダンスZ11は高くなる性質がある。そのため反共振周波数(f0)での電源インピーダンスの絶対値|Z11|を計算し、これを対応するパラメータセットの電気特性評価指標とする。この計算工程150,160をパラメータセットの個数(N)回繰り返し、パラメータセットに対する評価指標|Z11|を得る。
次に電気特性評価指標の定式化工程180では、この評価指標|Z11|を用いてパラメータの組み合わせ全体に適用可能な電源インピーダンスの計算式を定式化する。一般的にはこの計算式は、パラメータを変数に、水準数―1を次数とする多項式で表されるので高速計算が可能となる。
次に、ノイズ電圧推定工程190にて、部品配置に対する電源ノイズ電圧が計算される。この計算には、パラメータセットに対する先に計算された電源インピーダンスの絶対値|Z11|と、反共振周波数(f)での半導体が生成する電源ノイズ電流成分(I(f))の積により求めることができる。すなわち、
ノイズ電圧:Vn(f)=|Z11| * I(f) ・・・(数1)
である。
このノイズ電圧(Vn)がユーザ設定された目標値以下であるかを判定工程200により判定し、満たしていなければ、部品は部品再配置工程210により再配置され、新しい部品配置情報に基づきノイズ電圧推定が工程190によりなされる。そして、これが目標以下となるまで工程190〜210が繰り返され、満足すれば終了される。
次に各工程を詳述する。 ここで理解のため、設計対象のプリント基板の断面の例を図3に示す。プリント基板のベアボード51上に半導体素子11,12が搭載され、半導体素子11,12はそれぞれ基板51ないにある電源層52とグランド層53にビアホールを介して接続されている。また、信号配線層54で信号配線されている。半導体素子11,12の周辺には電源電圧安定化すなわち電源ノイズ低減のため、デカップリングコンデンサ21,22,23が搭載されている。このデカップリングコンデンサは基板51の上面にも配置されうるし、下面にも配置されうる。
また、図4に対象のプリント基板の上面図を示す。プリント基板のベアボード51に斜線で示された半導体素子11,12が搭載され、デカップリングコンデンサ21,22が半導体素子11の近傍に搭載されている。ここで、点線と小さな丸は電磁界解析工程130で生成されたメッシュ300を併記している。
基板情報入力工程110では、先の述べたとおり一般的なプリント基板の設計の工程に同じであり説明の繰り返しを省略する。
部品配置工程120では図3,4のプリント基板のベアボード51上に半導体素子11,12、デカップリングコンデンサ21,22などの部品を仮配置する。ここで、すべての部品が配置される必要はないが、電源ノイズに関連する部品は仮配置する必要がある。
電磁界解析工程130では、図4の様にプリント基板のベアボード51をメッシュ300により分割し、それぞれのメッシュ毎に電源層52,グランド層53の電源パターンの形状、層厚情報から図5のような抵抗(R)、インダクタンス(L0)、コンダクタンス(G),容量(C)が計算される。ここで、メッシュ300内の各メッシュの端子には番号が付記されており、図5では例えば(i,j)、(i+1,j)などと記されている。この電磁界解析工程130では、各メッシュの定数R,L,G,Cの値を電磁界計算することで求められる。そして、計算されたメッシュの等価回路のそれぞれが各端子で接続されてプリント基板51の電源プレーン52,グランドプレーン53間の等価回路130−a(図5)を生成する。
次にパラメータセットの計算工程140では、 電磁界解析工程130で求めたインダクタンス行列(Lk)を用いて半導体の配置位置からコンデンサの配置可能位置までのインダクタンス(L)を計算する。
電源ノイズを低減させたい半導体として図4の半導体素子11を選ぶ場合について説明する。半導体素子11に対するデカップリングコンデンサ21をプリント基板51に搭載する場合、デカップリングコンデンサ21の搭載可能エリアは、他の部品との干渉や部品間の最小配置距離などを規定するプリント基板のデザインルールで規定される。半導体素子11に対して、デカップリングコンデンサの特性はコンデンサまでのインダクタンス(L)で決まる。なぜならば、半導体素子11の電源ノイズは数1のように半導体素子11からみた電源インピーダンスに比例し、電源インピーダンスの最大値は反共振周波数で生じるためである。
図6(a)に図3,図4の基板に対する等価回路と、図6(b)にその半導体11から見た電源インピーダンスの絶対値|Z11|の周波数依存性を示す。図6(a)において、階層(LSI)1で示した部位の回路が半導体チップの等価回路であり、スイッチング素子が切り替わることによる電源変動を電流源(CS)で表現し、オンチップ容量をC1,C2で表した。この容量C1,C2は寄生インダクタンスと寄生抵抗成分を有し、これらが一般的にはカスケード接続されると表現される。
また、階層(PKG)2は半導体パッケージの等価回路であり、インダクタンスと抵抗、容量C3がカタカナの“エ”字型に(あるいはアルファベットの“H”字型に)接続されている。そして、階層(PCB)3はプリント基板51に相当し、同様に容量C4が“エ”字型に他の寄生成分と接続されている。同様に階層(PS)4はプリント基板51に給電する電源回路であり、コネクタで電源回路がプリント基板上の電源配線に接続される。点線で示した130−1が半導体素子11の等価回路であり、コンデンサ21,22の等価回路が130−2であり、そこに至るプリント基板51上の経路の等価回路が130―3である。
図6(b)は、半導体から見た電源インピーダンスの例であり、その特徴は電源インピーダンスは周波数毎に凸と凹を繰り返し、凹の底が共振周波数、凸の頂が反共振周波数である。図6(b)の例では低周波側からf0が第1の共振周波数、f1が第1の反共振周波数、f2が第2の共振周波数などとなる。ここで、電気回路理論からよく知られているように共振、反共振は並列接続されたインダクタンスと容量により生じる。
インダクタンス(L)のインピーダンス(ZL)と、容量(C)のインピーダンス(ZC)は
ZL=jωL ・・・(数2)
ZC=1/(jωC) ・・・(数3)
であり、このLCの共振周波数(ω0)は
ω0=1/√(LC) ・・・(数4)
で表される。ここで、jは純虚数であり、ωは角周波数であり、周波数fに対して、ω=2πfの関係がある。
このため、インダクタンス(L)と容量(C)のインピーダンスの周波数(f)に対する傾きは逆となり、図6(b)では波線ZL4,ZL3がインダクタンスのインピーダンスを、一点鎖線ZC2,ZC3、ZC4が容量のインピーダンスを示している。実際のプリント基板の持つ容量やインダクタンスの値は各階層毎に桁で異なっている。例えば、階層(PCB)3の容量は数100〜数1000μFあるが、階層(PKG)2の容量はオンパッケージコンデンサを搭載したとしても数〜数10μF程度であり、階層(LSI)1での容量は大きくとも数1μF程度である。ここで、ZC2,ZC3,ZC4は主に図6(a)の閉回路のループ2,3,4の持つ大きい方の容量に対応する。
同様にインダクタンスも階層毎に桁で異なる。インダクタンスの場合、電流経路の面積がそのまま、差交する磁束に比例するので電流経路面積の大きさにインダクタンスが比例すると考えればよい。例えば、階層(LSI)1では1cm程度、階層(PKG)2では数cm、階層(PCB)3では数10cmなどである。以上のように、階層毎に桁で異なる容量とインダクタンスをプリント基板は有するので電源インピーダンスも桁毎に凸凹を示す。また、各共振、反共振周波数でのインピーダンスは各ループ回路のQ値(良さの因子)に依存し、これはループの寄生抵抗値、コンダクタンス値に依存する。
以上のように電源インピーダンスの絶対値|Z11|は半導体からデカップリングコンデンサまでの距離(差交磁束面積)でインダクタンスが変化するので、どこにデカップリングコンデンサを配置するかで電源インピーダンスそして電源ノイズが変化することになる。すなわち図6(a)の等価回路ではデカップリングコンデンサはC4に対応し、デカップリングコンデンサの位置は、おおよそループ3のインダクタンスに対応することになる。
図7を用いて図1のパラメータセットの計算工程140を説明する。
工程141において、デカップリングコンデンサの配置に対応するインダクタンスパラメータ(L)の範囲を計算する。この計算工程141は、図8のようになされる。すなわち、工程1411では図4の様にメッシュ化されたプリント基板のうち、デザインルールデータベース2000から参照された制約条件と部品配置データベース2001から、半導体素子11の最近接に搭載できるデカップリングコンデンサの配置可能な最短配置座標を計算する。
工程1412では、基板上の座標から等価回路上のメッシュ座標へと変換する。すなわち、このプリント基板上の部品座標情報を元に、半導体素子11の電源ピンの位置を座標1とし、デカップリングコンデンサ位置を座標2とすると、等価回路130−a上のメッシュの中で、それら座標1、2に対応するメッシュ座標(i1,j1)、(i2,j2)を計算し変換する。
そして、工程1413にて最小インダクタンス(Lmin)の計算を行う。この計算には最短距離に対応する2つのメッシュ座標(i1,j1),(i2,j2)間のインダクタンス(L)を、図5の等価回路130−aからインダクタンス行列(Lk)を用いて計算する。この計算によりデカップリングコンデンサの最近接配置位置を最小のインダクタンスパラメータ(Lmin)とできる。また、工程1414にて最大インダクタンス(Lmax)を計算する。このパラメータは基板上の半導体素子から最遠部を選んで求めてもよいし、10程度の定数(k=10)とおいてもよい。
以上により、インダクタンスパラメータ(L)の範囲を指定することができた。
同様に図7の工程142では寄生インダクタンスの範囲を計算する。すなわち、プリント基板設計で使用されるコンデンサのうち、その全種類の中からそのコンデンサの有する寄生インダクタンス(ESL)の情報を部品特性が格納されているデータベース2002から参照し、そのESLの最大値と最小値の範囲を計算する。
また、図9のように実装状態を想定したESLを計算してもよい。図9(a)はコンデンサをプリント基板に実装した状態を示す図(斜視図)であり、コンデンサ21が図示していないプリント基板上に形成された電極パッド31,32に実装され搭載されている。そして、パッド31,32は、円柱のビアホール51,52の電極である円形パッド41,42に引き出され接続されている。ビアホール51,52の先端はプリント基板51の電源層あるいはグランド層に接続されるので、接続端子を丸数字1、丸数字2とすると、この実装されたコンデンサの等価回路130−2は図9(b)の様に表現できる。すなわち、丸数字1,丸数字2間の寄生成分として、ビアホールとパッドのインダクタンス+抵抗成分、コンデンサ21が持つ寄生抵抗(ESR)と寄生インダクタンス(ESL)および、容量(Ccap)の直接接続である。このコンデンサの基板実装形態は基板レイアウト設計に先立ちわかっている場合が多いので、その実装形態に対応する一度電磁界解析してモデル化することで寄生インダクタンスも予め知りうるわけである。もちろんこれをデータベース2002に登録し工程142のESLの範囲計算に用いる。
次に、図7の工程143で、デカップリングコンデンサ個数(n)の範囲を設定する。この設定はユーザに入力を求めてもよいし、あらかじめ最小値をnmin=1、最大値をnmax=100の様に決めておいてもよい。
工程144では以上工程141〜143で決まった3パラメータ(L,t,n)から直交表を作成する。例えば最大値、最小値、中央値を持ち、第3水準で直交表を作成する場合、9つのパラメータセット(p)が求まる。これは全組み合わせである、3^3=27通りに対して1/3に減っているのて、次の回路解析の時間を大幅に減じることができる。なお、直交表については特許文献4に詳しい。
図1の工程150では、このパラメータセットp(L,t,n)に対する回路解析を行う。例えば、SPICEと呼ばれるシミュレータを用いることで回路解析がなされる。用いる等価回路は図6(a)を用いる。ここで、デカップリングコンデンサの位置に対するインダクタンスパラメータ(L)は等価回路130−3で表現されており、デカップリングコンデンサの種類(t)に対応して図9(b)のような経路を含むコンデンサの等価回路130−2で表す。個数(n)に対しては、同じ等価回路130−4をn個並列接続する。すなわち、図10の様に、n個のコンデンサに応じた等価回路130−4〜130−4nを階層2と階層3の間に挿入して計算する。
また、図11の様にプリント基板51の等価回路130−aを用いて計算してもよい。プリント基板51等価回路130−aに、各部品配置に対応するメッシュ座標に等価回路が接続される。例えば、130−3は半導体素子11の等価回路であり、130−2はデカップリングコンデンサの等価回路である。等価回路130−2は最近傍位置に対応するメッシュに接続される。この場合、コンデンサ位置に対するインダクタンス(L)パラメータは距離(パターンの長さ)と線形な関係があるので、インダクタンス(L)の値は、これに等しい半導体素子11,12の電源ピンからの距離を半径とする円上に配置されるのと等価になる。すなわち、インダクタンス(L)の値の範囲は、搭載位置の距離に再変換できる。
このように図6(a)、図10あるいは図11のように等価回路を用いることで図1の工程150の計算が可能となる。そして、回路解析150の結果、指標として電源インピーダンスの絶対値|Z11|を取った指標計算160が可能となる。この計算には、図6(b)の反共振周波数(f1、f3)の電源インピーダンスの絶対値|Z11|で大きい方をとる。こうすることですべてのパラメータセット(p)に対して、一つの指標を計算できる。
工程180においては、パラメータセット(p)の各パラメータ(L,t,n)を対する電源インピーダンスの絶対値|Z11|指標をした推定式が計算される。この計算方法は特許文献5に詳しい。推定式Z11は数5のようにパラメータを変数とし、
Z11=|Z11(p)|=|Z11(L,t,n)|
=a0+Σ(ai・L^i+bi・t^i+ci・n^i)(i=1..2)
・・・(数5)
Lmin < L < Lmax,
ESLmin < t < ESLmax,
nmin < n < nmax.
で有効な精度を有する。ここで、a0は定数で、ai,bi,ciは各パラメータ(L,t,n)の係数であり、iは1から2まで加算(Σ)される。また、必要であれば、Lとnの積など、交互作用を定義し、2次の項を推定式に加えることで高精度化をはかることも可能である。この工程180により各パラメータの範囲内であればパラメータのどのような組合せで対しても電気特性評価指標である電源インピーダンスの絶対値|Z11|を電磁界解析なしで算術計算できることになる。
図1の工程190においては、数5の推定式を用いてノイズ電圧を推定する。 推定にはパラメータセット(p)に対するZ11を数1に代入して計算される。本計算は算術計算であるのできわめて高速に計算できる。
図1の工程200で目標値以下であるか判定し、未達であれば、工程210において部品を再配置する。そして工程190でノイズ電圧が再推定され再び工程190でノイズ電圧推定され工程200で判断される、という一連のシーケンスをとる。
更に、図面12の様に検証工程220を追加してもよい。これは、判定工程200にて推定式ベースの部品再配置後のノイズ電圧が目標値を下回り合格した後に、その最終的な部品配置でのノイズ電圧が目標値を下回ったのかの検証を行うことである。
すなわち、この最終部品配置に対する電磁界解析と回路解析を行うことで、この最終部品配置の電源ノイズが目標値を本当に下回るのかを高精度に検証することができる。これにより、工程180で求めた推定式が誤差を多分に含む場合であっても、工程220で電磁界解析、回路解析を行うので設計精度を担保できるという効果がある。
また、工程220で詳細検証を行って目標のノイズ値よりも大きいとの判断が工程230でが出た場合は、工程140に戻り、パラメータの範囲を狭めて再計算することで、パラメータの絞り込みが短TATで可能となる。
本実施例では、電気特性評価指標に電源インピーダンスの絶対値|Z11|をとり、これを用いて数1を用いて電源ノイズの推定を行った。この方法ばかりでなく回路解析150にて電源ノイズそのものを計算し、その変動ノイズの最大値(Vn)を工程160で求める電気特性評価指標に取る事もできる。このVnを用いて工程180での定式化は数5と同様な考え方で、
Vn=Vn(p)=Vn(L,t,n)
=a0+Σ(ai・L^i+bi・t^i+ci・n^i)(i=1..2)
・・・(数6)
Lmin < L < Lmax,
ESLmin < t < ESLmax,
nmin < n < nmax.
である。この場合、工程190では数6の算術計算を行う。同様にパラメータセット(p)も、(L,t,n)ばかりでなく、パッケージの大きさ、ボール数や信号―グランド比などを選んでもよい。これにより設計の自由度が向上し、かつ、回路解析を繰り返さないという短TAT設計の本質は保持している。
第2の実施例を図13,14、15を用いて説明する。 図13で、図1との差は、部品配置を行う工程230をGUI(グラフィカルユーザインタフェース)で行うことである。その工程230を図14に示す。
工程230のシーケンスは、まず、工程231で配置に伴うノイズ電圧の推定を実施例1に同じく数1に従って推定式を用いて行う。そして、工程232において、計算結果を図15の様に表示する。
図15では、パソコンのウインドウ80内に基板レイアウト情報エリア81と電源インピーダンスを示すインダクタンス情報エリア82と、電圧波形を表示する波形情報エリア83画面を持つ。
基板情報エリア81ではプリント基板51内に電源層パターン52,半導体素子11、12や、コンデンサ21,22が表示されている。そして、デザインルールで規定された、デカップリングコンデンサ21,22の搭載可能エリア61が白抜きで表示されている。今、ユーザはマウスカーソル71でコンデンサ22を選択し、左下方向に移動させると、インピーダンス情報エリア82、と波形情報エリア83の波形が移動に伴って変化する。エリア82内の波形が、実線から波線へ変化する。これは、電源インピーダンスが多項式の推定式で表現されているので、マウス移動の時間程度でもパソコンはこの電源インピーダンスを計算することができ、リアルタイムに表示させることが可能となる。ここでの周波数(f)に対するインピーダンスZ11(f)の計算は次式のように行う。
Z11(f)=ZC2//ZC3//ZC4//ZL3//ZL4 ・・・(数7)
ここで、記号“//”は並列接続した場合の合成インピーダンスを意味する。そして、ZC2,ZC3,ZL3,ZL4のそれぞれの値が数5の様にパラメータセット(p)で多項式により定式化されている。例えば、ZC2ならば、
ZC2=a0+Σ(ai・L^i+bi・t^i+ci・n^i)(i=1..2) ・・・(数8)
の多項式で表現されている。このため、複数の周波数(f)に対する電源インピーダンスの絶対値Z11(f)は、多項式で表現されたZC2,ZC3、ZL3などのパラメータで算術計算可能であり、高速計算が可能である。
また、電源ノイズ波形(Vgnd(t))は、
Vgnd(t)=Σ(Z11(fi)*I(fi)) (i=1..k)
・・・(数9)
のように計算すればよい。すなわち、電源インピーダンスZ11の反共振点周波数(fi)の個数をk個選び、その周波数での電源インピーダンスZ11とノイズ電流源モデルの電流値との積を求めることで電源ノイズ波形を計算することができる。そして、これも多項式を用いた算術演算なのでリアルタイム表示を可能とするソフトウエアの実装ができる。
また、エリア82に目標インピーダンス(Ztarget)が表示されていれば、更にユーザはコンデンサ22の配置を、目標に近づけるように短い時間で設計することができる。同様にノイズ電圧の目標値(Vtarget)を表示すれば同様な効果が得られる。
ここで、図14の工程と図15の画面上の動作の対応は、マウスによる部品配置の移動は図14では部品選択の操作が工程234のパラメータの選択に、マウスによる部品の移動が工程235のパラメータ値の変更(この場合、配置位置)と、計算イベントの発生工程236での動作になる。また、工程235のパラメータ値の変更で、コンデンサのサイズや種類(t)を変更するのは、図示していないが、部品リストからマウスにより選択することでなされる。また、コンデンサの個数(n)も、GUIでコンデンサを追加できる。これは設計者がコンデンサを1つおいてはまた1つ追加しという操作で(n)が加算される。
本実施例によれば、熟練設計者でなくともデカップリングコンデンサの種類、搭載場所、個数を画面上に操作だけで目標電源インピーダンスと電圧波形をリアルタイムにモニタしながら選択できるので、短時間で設計を完了させることができる。これは回路解析を部品再配置毎に繰り返す代わりに多項式で表された推定式(数5,数6)を用いるので達成できる。
第3の実施例を図16〜図17を用いて説明する。実施例1との差は工程130の電磁界解析でインダクタンスLkではなくYパラメータを計算することと、工程160の回路解析の変わりに行列演算を行うこと(工程155)である。ここでYパラメータとはアドミタンスパラメータのことで、Yパラメータは解析対象の周波数範囲における個々の周波数のアドミタンスの行列である。回路計算の代わりにYパラメータを使うことで実施例1における工程150〜170の繰り返しによる電気特性評価指標の定式化を短時間に行える利点がある。
以下にこのようなYパラメータを使うことで回路計算に比べて計算が高速化する理由を述べる。
まず、Yパラメータを用いてコンデンサ部品を置き換えたときの給電系のインピーダンスの変化をどのように計算するかを説明する。この手法では、まず第一に図17に示すように対象のプリント配線基板に搭載部品情報を何も付加しない状態で、LSI搭載箇所及びコンデンサ部品搭載箇所に解析用のポートを立てる。図17では2つのLSI搭載用のポート13とポート14を立てている。これらLSI用のポートはLSI実装エリアの中央の電源パッド及びグランドパッドに対して、ポートの+と−をそれぞれ割り当てるように設定する。また、図17では24〜26をはじめとして多数のコンデンサ搭載箇所にもポートを立てており、先ほどと同様に電源パッド及びグランドパッドに対して、ポートの+と−をそれぞれ割り当てるように設定する。このようにLSI用のポート数をnp
、コンデンサを置くためのポート数をntとすると、全ポート数n=np+ntとすると、ベアボードのアドミタンスマトリクス[Y]nxnは以下のようにグループ化できる。


|[Y11]npxnp [Y12]npxnt |
[Y]nxn=| | ・・・(数10)
|[Y21]ntxnp [Y22]ntxnt |nxn
また、図9で示したコンデンサの等価回路から、コンデンサのYパラメータは容易に計算できる。ここで、例えばYaというアドミタンスを持つ回路とYbというアドミタンスを持つ回路が並列接続されれているとき、両者を接続した後の全体回路のアドミタンスY‘はY’=Ya+Ybと表現できるから、(数10)表すプリント基板の電気特性Yと、各コンデンサ用ポートに接続するコンデンサのアドミタンスの組み合わせを表現した行列Ycの2つのアドミタンス行列から、以下の通り簡単な行列の足し算でコンデンサ搭載後のアドミタンスY‘を計算することができる。
|[Y11]npxnp [Y12]npxnt | |[ 0 ]npxnp [ 0 ]npxnt |
[Y’]nxn= | | + | |
|[Y21]ntxnp [Y22]ntxnt |nxn |[ 0 ]ntxnp [ Yc]ntxnt |nxn
・・・(数11)
ここで、[0]は零行列、[Yc]はデカップリングコンデンサの体格行列を示す。
このようにして、工程140で得られたパラメータセットを元にして、コンデンサ搭載条件に応じた複数のコンデンサ用アドミタンス行列Ycを用意して計算すれば、各種コンデンサ搭載条件に応じた全体のアドミタンス行列が得られ、結果として各LSIのポートから見た各種コンデンサ搭載条件でのYパラメータを得て、それを元にインピーダンスZ11を計算することができる。
なお、ここではYパラメータを用いたが、SパラメータやZパラメータ(インピーダンスパラメータ)などの他の周波数パラメータを用いても同様の行列演算が可能であり、場合によってこれら他のパラメータを使ってももちろん良い。
第4の実施例を図18〜図19を用いて説明する。実施例1との差は、図18の設計方法を示すフローチャートにおいて半導体チップの給電系特性を最適化する工程を追加している点である。半導体チップの給電系特性を最適化するフローを追加することで、半導体チップの設計段階で半導体チップに搭載するオンチップ容量を見積もることができるという効果がある。
図18のフローについて説明する。
プログラムを開始し、工程400で半導体チップ設計情報・基板設計情報を入力する。ついで工程420で半導体チップの等価回路とプリント基板の等価回路を結合した給電系全体等価回路を作成する。工程120で基板上に部品を初期配置し、工程130で電磁界解析を実施する。工程140で基板設計のパラメータから直交表を作成し、工程150と工程160で半導体チップと基板を含む全体の給電系特性|Z11|を解析する。この解析は工程170でパラメータの数だけ繰り返して実施し、工程180で各パラメータについて電気特性評価指標を数式化する。得られた数式を用いて工程190でノイズ電圧を推定し、工程200でノイズ電圧が目標値を満足するか判定する。目標値を満たせばフローは終了だが、満たさない場合は工程210で部品を再配置してノイズ電圧の推定を繰り返す。但し、工程430において数式に入力するパラメータを制限しており、この制限下でノイズ電圧が目標値を満たさず収束しない場合、工程440で半導体チップの等価回路の容量成分を増大させて工程140以下のフローを繰り返す。こうして最終的に目標値を満たした時点で、必要最小限のコンデンサまたはオンチップ容量で動作するように給電系が最適化される。
以下に図18に追加した工程400〜の詳細を説明する。
工程400では半導体チップ・パッケージ・基板の設計情報の入力を行う。パッケージ・基板の情報は部品情報(t)として実施例1同様に入力する。半導体チップに関しては、サイズ情報やプロセス情報および目標値を入力する。
工程420では半導体チップを含むプリント基板の給電系等価回路を工程400で入力した設計情報から作成する。本実施例では図19の130-1Aに示すように、電源端子92Vとグランド端子92G間を抵抗、インダクタンス、容量の直列回路と電流源CSを並列に接続して半導体チップの給電系等価回路を表現している。電流源CSはスイッチング素子が切り替わることによる電源変動を表現しており、半導体プロセス・消費電力・クロック周波数・チップサイズを基に計算される。もちろん、半導体チップの等価回路は本等価回路以外の構成でも良く、半導体チップのレイアウトを2次元的・3次元的に分割した等価回路やより複雑な等価回路を用いても良い。
工程430では直交表のパラメータテーブル内で工程200が収束するか判定する。工程190で半導体チップ給電系等価回路内の電源端子92Vのノイズ電圧を計算し、工程200で電源端子92Vのノイズ電圧が目標値以下となるか判定する。工程430で実現可能な範囲で入力パラメータのテーブルを作成し、このパラメータテーブルの制限内で工程210の部品再配置を繰り返す。パラメータテーブル内でノイズ電圧が目標値以下にならない場合、工程430で収束不可能と判定して工程440へ移る。
工程440では半導体チップ部の等価回路の容量成分を増加する処理を行う。工程430で収束不可能と判定された場合、半導体チップの容量成分が小さいことに起因すると判断し、工程440で等価回路の容量成分を増加させる。具体的には1回の処理につき容量成分を5%増加させる。なお容量増加の割合は5%でなくとも良く、給電系に応じて変更できる。
第5の実施例を図20を用いて説明する。実施例1〜4との差は、図1、図12、図16、図18のフローチャート内のノイズ電圧推定値と目標値を判定する工程200で、目標値に半導体チップの動作許容電圧を用いる点である。目標値として周波数特性を持つ半導体チップの動作許容電圧を用いることで、半導体チップ・パッケージ・基板の給電系特性について、動作に影響を及ぼす帯域のみ対策することが可能となり、より無駄の少ない給電系を設計できるという効果がある。
図20(a)に工程190で計算した給電系インピーダンス解析結果とインピーダンスの目標値を示す。工程190で半導体チップ・パッケージ・基板の給電特性を考慮した全体のインピーダンスプロファイル|Z11|が算出され、このインピーダンス|Z11|と電流値I(f)の積がチップの動作を保障するためのノイズ電圧Vnとなる。このとき、図20(b)に示すVtarget_newのように、ノイズ電源への感度が高い特定の帯域を避けるように目標設定することでより無駄の少ない給電系最適化が可能となる。
たとえばノイズ電圧の目標値がVtargetのように一定値の場合、目標とするインピーダンスプロファイルはZtargetのように周波数依存性を持たず、最適化するインピーダンスプロファイルを全帯域でZtarget以下にする必要がある。一方、ノイズ電圧が周波数特性をもつVtarget_newの場合、最適化するインピーダンスプロファイルもZtarget_newのように周波数依存性を持つため全帯域で低インピーダンスにする必要が無く、必要十分な給電系設計が可能となる。
第6の実施例を図21〜図25を用いて説明する。実施例4との差は半導体チップの等価回路の電源端子を多ピン化した点である。半導体チップの電源端子を多ピン化することで電源端子毎に設計を最適化できるため、半導体チップやパッケージ等が構造的に端子毎の特性が大きく異なる場合に、それぞれの端子の特性に対応した給電系設計が可能になるという効果がある。
本実施例では、実施例4では単一だった半導体チップの電源端子を複数の電源端子に細分化している。本実施例では電源端子数は8個であり、各電源端子の半導体パッケージ・プリント基板との接続を表現するため、図6(a)で示した電源系等価回路を図21に示すような等価回路に置き換える。
図21において、半導体チップの各電源端子からみた半導体パッケージの等価回路C131-1、C132-1・・・C138-1はパッケージの等価回路C131-2、C132-2・・・C138-2に接続される。各パッケージモデル間は電源端子間をLV1-1、LV2-1・・・LV7-1で接続され、グランド端子間をLG1-1、LG2-1・・・LG7-1で接続される。各パッケージモデルはPCBモデルC131-3、C132-3・・・C138-3に接続される。各PCBモデル間は電源端子間をLV1-2、LV2-2・・・LV7-2で接続され、グランド端子間をLG1-2、LG2-2・・・LG7-2で接続され半導体チップの各電源端子とプリント基板を接続する場所によって半導体チップから見た給電系特性には差が現れる。このため、図21に示した給電系等価回路では、半導体チップの電源端子・グランド端子は図5の電源プレーンとグランドプレーンのメッシュ状の等価回路網において構造的にもっとも近い端子に接続するべきである。
半導体チップの電源系の等価回路を多ピン化したことにより、半導体チップとプリント基板の最適化設計は図22に示されるフローで実施される。
プログラムを開始し、工程400で半導体チップ設計情報・基板設計情報を入力する。ついで工程410で半導体チップモデルの等価回路を作成し、工程420で給電系全体の等価回路を作成する。工程120で基板上に部品を初期配置し、工程130で電磁界解析を実施する。
工程140で基板設計のパラメータから直交表を作成し、工程150と工程160で半導体チップと基板を含む全体の給電系特性|Z11|を解析する。この解析は工程170でパラメータの数だけ繰り返して実施し、工程180で各パラメータについて電気特性評価指標を数式化する。得られた数式を用いて工程190で各電源端子のノイズ電圧を推定し、工程200でノイズ電圧が目標値を満足するか判定する。全電源端子で目標値を満たせばフローは終了だが、満たさない場合は工程210で部品を再配置してノイズ電圧の推定を繰り返す。但し、工程430において数式に入力するパラメータを制限しており、この条件下で目標値を満たさず収束しない場合、工程440で半導体チップの等価容量を増大させて工程140以下のフローを繰り返す。こうして最終的に目標値を満たした時の半導体チップと基板の給電系が最適な給電系と言える。
以下に図22に追加した工程400〜の詳細を説明する。
工程400では半導体チップ・パッケージ・基板の設計情報の入力を行う。パッケージ・基板の情報は部品情報(t)として実施例1同様に入力し、半導体チップの設計情報はレイアウト入力GUI(図23)で入力する。図23では半導体チップのプロセス情報、ならびに電源パッド92VP〜99VP、グランドパッド92Gp〜99Gpの配置を入力し、続けて容量セル91のサイズ・配置を入力する。
工程410では半導体チップモデルを作成する。工程400で入力した半導体チップ設計情報、コアセルのサイズと配置、各電源端子の配置から半導体チップの給電系等価回路を作成する。図24に示すように、半導体チップの給電系等価回路は電源端子92Vpと93Vp間やグランド端子92Gpと93Gp間は抵抗素子で接続しており、電源端子92Vpとグランド端子92Gp間には容量素子C1-1と抵抗素子R1-1の直列回路と電流源を並列に挿入している。なお、電源端子間・グランド端子間を接続する素子としてインダクタンス素子を追加しても良いし、抵抗素子とインダクタンス素子を置換しても良い。
モデル作成の工程を図25に示す。
抵抗素子について説明する。工程411にて半導体プロセスや消費電力で決まる給電系配線の配線幅や配線厚みから半導体チップ内給電系の単位長さ当りの抵抗値R0を算出する。工程412でこの単位長さ当り抵抗値と各電源端子・グランド端子間の距離Lnから端子間抵抗RV1〜10、RG1〜10を計算する。また、左右のチップ端のパッド列で給電系が分断される場合、RV7〜10、RG7〜10を高抵抗(例えば1MΩ以上)とすればよい。なお、チップ給電系内部を複数の格子に分割し、等価回路をメッシュ状に構築しても良い。
容量素子C1-1〜C8-1はコアセルの設計情報から決定する。工程413でプロセス情報・セル面積・層数等の設計情報からコアセルの容量が計算でき、初期値として各電源端子に等分に割り振られる。
電流源CS1〜8はスイッチング素子が切り替わることによる電源変動を表現しており、半導体プロセス・消費電力・クロック周波数・チップサイズを基に計算される。
工程414では、CnとRnを組み合わせた等価回路を構築し、容量素子の接続位置は各セルに最も近い電源端子とグランド端子間とする。たとえば図20の91容量セルに最も近い給電系端子は電源端子92とグランド端子93となり、このとき図21の等価回路では容量素子C1-1は電源端子95とグランド端子96の間に接続される。他の素子も同様にして接続する。
工程420では給電系全体の等価回路を作成する。工程410で作成した半導体チップの等価回路とプリント基板の等価回路を組み合わせて全体の給電系等価回路を作成する。等価回路は図21に示すように複数の電源端子・グランド端子を持ち、プリント基板の構造的に最近接となるノードに接続される。
工程430では直交表のパラメータテーブル内で工程200が収束するか判定する。工程190で各電源端子のノイズ電圧を計算し、工程200で全電源端子のノイズ電圧が目標値以下となるか判定する。工程430で実現可能な範囲で入力パラメータのテーブルを作成し、このパラメータテーブルの制限内で工程210の部品再配置を繰り返す。パラメータテーブル内でノイズ電圧が目標値以下にならない場合、工程430で収束不可能と判定して工程440へ移る。
工程440では半導体チップ部の等価回路の容量成分を増加する処理を行う。工程430で収束不可能と判定された場合、半導体チップの容量成分が小さいことに起因すると判断し、工程440で等価回路の容量成分を増加させる。具体的には、工程430が作成したパラメータテーブルにおいて、工程200で目標値以下となった回数が最も多い電源端子に近い容量素子を5%増加させる。
なお容量増加の割合は5%でなくとも良いし、一度の処理で容量を増加する素子は複数でももちろん良い。
第7の実施例を図26を用いて説明する。実施例4〜6との差は給電系の最適化判定を行う工程200で目標値にインピーダンスを用いた点である。ノイズ電圧で判定する場合、電気特性指標|Z11|から一度電圧を推定する処理が必要となり計算時間が増大する。このため、ノイズ電圧ではなくインピーダンスで判定することでより高速な処理が可能になるという効果がある。
以下に図26に追加した工程400〜の詳細を説明する。
開始から工程180までのフローは実施例4と同様である。
工程190で電気特性評価指標の式からインピーダンスを推定する。この式は直接インピーダンスを計算するため、給電系全体のインピーダンスは高速に計算できる。
工程200でインピーダンスの目標値と推定したインピーダンスを比較し判定する。実施例6のように半導体チップの等価回路に電源端子が複数ある場合、各電源端子毎に目標値との比較を行う。
目標値を満たさない場合、工程430で現実的なパラメータテーブル内で工程200の判定が収束するか否かを判定する。収束の可能性があれば工程210で部品の再配置後に工程190を繰り返すループを行い、収束の可能性が無ければ工程440で半導体チップの等価回路の容量成分を増加させて工程140から繰り返すループを行う。
目標値を満たす場合、工程220で目標値を満たしたパラメータを用いて電磁界解析と回路解析を実施してノイズ電圧を解析する。工程230で解析したノイズ電圧をノイズ電圧の目標値と比較し、給電系が最適化されているかを検証する。
ノイズ電圧が目標値以下であれば終了だが、目標値を満たさなければ工程440で半導体チップの等価回路の容量成分を増加し、工程140から繰り返すループを行う。
1・・・電源インピーダンス等価回路の半導体チップの階層 2・・・電源インピーダンス等価回路の半導体パッケージの階層 3・・・電源インピーダンス等価回路のプリント基板の階層 4・・・電源インピーダンス等価回路の電源回路の階層 11、 12・・・半導体素子 13、14・・・半導体素子用ポート 21〜23・・・デカップリングコンデンサ 24〜26・・・デカップリングコンデンサ用ポート 31,32・・・コンデンサパッド 41、42・・・ビアのパッド 52,53・・・ ビアホール(部分) 51・・・プリント基板 52・・・プリント基板内の電源層
53・・・プリント基板内のグランド層 54・・・プリント基板内の信号層
61・・・コンデンサ搭載可能エリア 71・・・マウスカーソル 80・・・PCの作業ウインドウ 81・・・プリント基板表示エリア 82・・・電源インピーダンス表示エリア 83・・・電源ノイズ表示エリア 90・・・チップ全体表示エリア 91・・・容量セルのシンボル 92V・・・半導体チップの電源パッド
92G・・・半導体チップのグランドパッド 92VP〜99VP・・・半導体チップの電源パッド 92GP〜99GP・・・半導体チップのグランドパッド
130−a・・・プリント基板51の等価回路 130−1・・・半導体素子の等価回路 130−2・・・実装パターンを含むコンデンサの等価回路
130−3・・・半導体素子からコンデンサまでの基板の電源―グランドの等価回路
131−1・・・電源端子1に対応する半導体素子の等価回路 131−2・・・電源端子1に接続するパッケージの電源―グランドの等価回路 131−3・・・電源端子1周辺のPCB基板の電源―グランドの等価回路 131−4・・・電源端子1周辺の実装パターンを含むコンデンサの等価回路 132−1・・・電源端子2に対応する半導体素子の等価回路 132−2・・・電源端子2に接続するパッケージの電源―グランドの等価回路 132−3・・・電源端子2周辺のPCB基板の電源―グランドの等価回路 132−4・・・電源端子2周辺の実装パターンを含むコンデンサの等価回路
138−1・・・電源端子8に対応する半導体素子の等価回路 138−2・・・電源端子8に接続するパッケージの電源―グランドの等価回路 138−3・・・電源端子8周辺のPCB基板の電源―グランドの等価回路 138−4・・・電源端子8周辺の実装パターンを含むコンデンサの等価回路 CS・・・半導体素子の等価回路で電流源回路部 CS1〜CS8・・・半導体素子の各電源端子から見た等価回路の電流源回路部

Claims (4)

  1. プリント基板上の半導体素子及びそれに接続するデカップリングコンデンサの配置を決
    定するためのプリント基板の設計支援装置であって、
    プリント基板の層構造情報と外形情報を入力するプリント基板情報入力手段と、
    コンデンサ部品の個数を入力する部品情報入力手段と、
    前記層構造情報、前記外形情報、半導体素子の情報を含む部品リスト、前記デカップリ
    ングコンデンサの候補であるコンデンサ部品のタイプ毎の電気特性情報を含むデータベー
    ス、コンデンサ部品個数、回線結線情報リスト及び配線デザインルールに基いて決定され
    た前記プリント基板上における前記半導体素子と前記デカップリングコンデンサとの配置
    情報を入力する部品配置入力手段と、
    少なくとも前記層構造情報、前記外形情報を元に電磁界解析を行いインダクタンス網情
    報(Lk)を得る電磁界計算手段と、
    前記インダクタンス網情報(Lk)と前記配置情報とを用いて、半導体素子の配置位置
    からデカップリングコンデンサの配置可能位置までのインダクタンスパラメータ(L)を
    計算するインダクタンスパラメータ計算手段と、
    前記インダクタンスパラメータ計算手段で計算されたインダクタンスパラメータ(L)
    と前記デカップリングコンデンサのタイプ情報(t)および搭載個数情報(n)から直交
    表(p)を作成するパラメータセット計算手段と、
    前記インダクタンス網情報(Lk)と前記パラメータセット計算手段で作成された直交
    表(p)のパラメータセットを用いて回路解析を行うことで電気特性指標を計算する評価
    指標計算手段と、
    前記電気特性指標を前記直交表(p)のパラメータ(L、t、n)の組合せで表す多項
    式の評価式を計算する評価式計算手段と、
    前記評価式を用いて、前記半導体素子とデカップリングコンデンサとの配置情報に対す
    る電源ノイズ電圧を計算する電源ノイズ電圧推定手段と、
    前記計算された電源ノイズ電圧と、予め定めた電源ノイズ電圧の目標値とを比較し、該
    計算された電源ノイズ電圧が該目標値よりも大きい場合には、前記部品配置入力手段にお
    いて再配置を行い配置情報を再作成し、該再作成した配置情報に対して、前記インダクタ
    ンスパラメータ計算手段、前記パラメータセット計算手段、前記評価指標計算手段、前記
    評価式計算手段及び前記電源ノイズ電圧推定手段による処理を行い、前記電源ノイズ電圧
    推定手段により計算された電源ノイズ電圧が該電源ノイズ電圧の目標値より小さくなるま
    で当該処理を繰り返す判定手段と、
    を備えたことを特徴とするプリント基板の設計支援装置。
  2. 請求項1に記載のプリント基板の設計支援装置であって、
    前記デカップリングコンデンサの部品特性情報データベースを有し、前記パラメータセ
    ット計算手段は該部品特性情報データベースに登録されたデカップリングコンデンサの寄
    生インダクタンスの最大値、最小値、平均値を該デカップリングコンデンサのパラメータ
    (t)の範囲とする事で直交表(p)を計算することを特徴とするプリント基板の設計支
    援装置。
  3. 請求項1に記載のプリント基板の設計支援装置であって、
    前記プリント基板のデザインルールに関するデザインルールデータベース、部品の配置
    に関する部品配置データベース、
    前記デザインルールデータベースから前記デカップリングコンデンサの搭載可能エリア
    を導出して前記半導体素子からの配置可能な最短配置座標を計算する座標計算手段、及び
    該部品配置データベースから該半導体素子の電源ピン座標と計算された最短配置座標と該
    基板インダクタンス行列とから前記半導体素子と前記デカップリングコンデンサ間の最小
    基板インダクタンス(Lmin)を縮約計算する縮約計算手段とを更に有し、前記半導体
    素子と前記デカップリングコンデンサ間の最大インダクタンス(Lmax)を前記最小イ
    ンダクタンス(Lmin)のk倍とし、1<k<10の範囲とすることで直交表(p)を
    計算することを特徴とするプリント基板の設計支援装置。
  4. 請求項1に記載のプリント基板の設計支援装置であって、
    前記評価式計算手段は、前記パラメータセット毎の電源ノイズを指標とした電源ノイズ
    評価式を計算し、前記電気特性評価手段は、前記デカップリングコンデンサの配置位置、
    タイプ及び個数の少なくとも1つの変更を指定し、前記評価式計算手段で計算された電源
    ノイズ評価式を用いて、変更によるデカップリングコンデンサの再配置に対応する電源ノ
    イズを算出することを特徴とするプリント基板の設計支援装置。
JP2009037340A 2008-02-21 2009-02-20 プリント基板の設計方法及びプリント基板の設計支援装置 Expired - Fee Related JP5320101B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037340A JP5320101B2 (ja) 2008-02-21 2009-02-20 プリント基板の設計方法及びプリント基板の設計支援装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008039504 2008-02-21
JP2008039504 2008-02-21
JP2009037340A JP5320101B2 (ja) 2008-02-21 2009-02-20 プリント基板の設計方法及びプリント基板の設計支援装置

Publications (3)

Publication Number Publication Date
JP2009223885A JP2009223885A (ja) 2009-10-01
JP2009223885A5 JP2009223885A5 (ja) 2011-10-27
JP5320101B2 true JP5320101B2 (ja) 2013-10-23

Family

ID=40998090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037340A Expired - Fee Related JP5320101B2 (ja) 2008-02-21 2009-02-20 プリント基板の設計方法及びプリント基板の設計支援装置

Country Status (2)

Country Link
US (2) US7957150B2 (ja)
JP (1) JP5320101B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132137B1 (en) * 2007-11-10 2012-03-06 Altera Corporation Prediction of dynamic current waveform and spectrum in a semiconductor device
JP5347839B2 (ja) * 2009-03-25 2013-11-20 富士ゼロックス株式会社 電源ノイズ解析装置
JP4799651B2 (ja) * 2009-08-31 2011-10-26 株式会社東芝 設計支援装置および設計支援方法
CN102236728B (zh) 2010-04-30 2013-08-07 国际商业机器公司 一种集成电路设计方法和设计仿真系统
JP2011253434A (ja) * 2010-06-03 2011-12-15 Hitachi Ltd ゲート駆動回路の設計支援装置および設計支援方法
JP2012129443A (ja) * 2010-12-17 2012-07-05 Canon Inc プリント回路板
TW201245993A (en) * 2011-05-12 2012-11-16 Hon Hai Prec Ind Co Ltd System and method for detecting equivalent series inductance
CN102779197A (zh) * 2011-05-13 2012-11-14 鸿富锦精密工业(深圳)有限公司 寄生电感检查系统及方法
JP5645855B2 (ja) * 2012-01-27 2014-12-24 Ritaエレクトロニクス株式会社 プリント基板の作製手法
US9342649B2 (en) * 2012-03-23 2016-05-17 Nec Corporation Rule check system, method, and non-transitory computer readable medium storing presentation program
US9547734B2 (en) * 2012-08-28 2017-01-17 Taiwan Semiconductor Manufacturing Company Limited Array modeling for one or more analog devices
US9536033B2 (en) * 2012-09-27 2017-01-03 Nec Corporation Board design method and board design device
KR102004852B1 (ko) * 2012-11-15 2019-07-29 삼성전자 주식회사 컴퓨팅 시스템을 이용한 반도체 패키지 디자인 시스템 및 방법, 상기 시스템을 포함하는 반도체 패키지 제조 장치, 상기 방법으로 디자인된 반도체 패키지
WO2014112469A1 (ja) 2013-01-17 2014-07-24 日本電気株式会社 設計支援装置、設計支援方法及びプログラム
KR102028921B1 (ko) * 2013-02-07 2019-10-08 삼성전자주식회사 Ic 전류 추출 방법 및 그 장치
JP6321512B2 (ja) * 2014-09-29 2018-05-09 株式会社Screenホールディングス 配線データの生成装置、生成方法、および描画システム
JP6443117B2 (ja) * 2015-02-20 2018-12-26 富士通株式会社 部品配置プログラム、部位品配置方法、および情報処理装置
KR20160102671A (ko) * 2015-02-23 2016-08-31 엘에스산전 주식회사 인쇄회로기판 설계 장치
US10785867B2 (en) * 2018-09-25 2020-09-22 International Business Machines Corporation Automatic determination of power plane shape in printed circuit board
EP3770800A1 (en) * 2019-07-25 2021-01-27 ABB S.p.A. A computer-implemented method for reading a digital graphical diagram representing an electric circuit
CN112214950B (zh) * 2020-09-08 2023-03-28 青岛四方阿尔斯通铁路运输设备有限公司 电容器容量异常检测方法
JP7506115B2 (ja) 2022-07-05 2024-06-25 プライムプラネットエナジー&ソリューションズ株式会社 回路基板の解析装置および解析方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313040B2 (ja) 1997-01-23 2002-08-12 日本発条株式会社 構造物等の設計支援システム
JP2000293560A (ja) 1999-04-06 2000-10-20 Mitsubishi Electric Corp リンク解析装置、リンク解析方法及びリンク解析プログラムが記録された記録媒体
JP3348709B2 (ja) 1999-11-24 2002-11-20 日本電気株式会社 プリント回路基板設計支援装置及び制御プログラム記録媒体
JP4649047B2 (ja) * 2000-01-27 2011-03-09 パナソニック株式会社 ノイズ低減に適したプリント配線基板の設計を支援する設計支援装置
TW530229B (en) * 2000-01-27 2003-05-01 Matsushita Electric Ind Co Ltd A computer aided design apparatus for aiding design of a printed wiring board to effectively reduce noise
JP3838328B2 (ja) * 2000-02-28 2006-10-25 日本電気株式会社 設計支援装置および設計支援装置に含まれるコンピュータに実行させるためのプログラムを記録したコンピュータ読みとり可能な記録媒体
EP1251530A3 (en) * 2001-04-16 2004-12-29 Shipley Company LLC Dielectric laminate for a capacitor
US7114132B2 (en) * 2001-04-20 2006-09-26 Nec Corporation Device, system, server, client, and method for supporting component layout design on circuit board, and program for implementing the device
JP2004145410A (ja) 2002-10-22 2004-05-20 Renesas Technology Corp 回路の設計方法および回路設計支援システム
US7240319B2 (en) * 2003-02-19 2007-07-03 Diversified Systems, Inc. Apparatus, system, method, and program for facilitating the design of bare circuit boards
JP4199598B2 (ja) 2003-06-02 2008-12-17 富士通株式会社 電子機器のemiノイズ解析方法
CN100468417C (zh) * 2003-06-16 2009-03-11 日本电气株式会社 印制电路布线基板设计支援装置与印制电路布线基板设计方法
EP1630707B8 (en) * 2004-02-20 2009-01-14 Panasonic Corporation Element arrangement check device and printed circuit board design device
JP4454542B2 (ja) * 2005-06-09 2010-04-21 富士通株式会社 コンピュータ支援設計プログラム及びそのシステム
DE102006043032A1 (de) * 2005-09-19 2007-04-12 Industrial Technology Research Institute, Chutung Eingebettete Kondensatorvorrichtung mit einer gemeinsamen Verbindungsfläche
US7428717B1 (en) * 2006-01-30 2008-09-23 Xilinx, Inc. Integrated system noise management—system level

Also Published As

Publication number Publication date
US20090213558A1 (en) 2009-08-27
US20110239176A1 (en) 2011-09-29
JP2009223885A (ja) 2009-10-01
US8355258B2 (en) 2013-01-15
US7957150B2 (en) 2011-06-07

Similar Documents

Publication Publication Date Title
JP5320101B2 (ja) プリント基板の設計方法及びプリント基板の設計支援装置
US8166447B1 (en) Power delivery network calculator tool for printed circuit board capacitors
US7350175B2 (en) Circuit board design system, design data analysis method and recording medium with analysis program recorded thereon
US7689944B2 (en) Method for designing semiconductor apparatus, system for aiding to design semiconductor apparatus, computer program product therefor and semiconductor package
Choi et al. Decoupling capacitor placement in power delivery networks using MFEM
US20160342729A1 (en) Method of extracting capacitances of arbitrarily oriented 3d interconnects
Mondal et al. Expression of Concern: Reducing pessimism in RLC delay estimation using an accurate analytical frequency dependent model for inductance
US20030169121A1 (en) Method and apparatus to attenuate power plane noise on a printed circuit board using high ESR capacitors
JP2006209590A (ja) 電磁界解析装置および解析方法、ならびに解析プログラム
JP5035039B2 (ja) 電子回路基板の電源雑音解析方法とシステム並びにプログラム
US10162931B2 (en) Method of forming serpentine resistor
Koo et al. Fast algorithm for minimizing the number of decap in power distribution networks
US9507906B2 (en) Metal interconnect modeling
US8910101B1 (en) Systems and methods for determining effective capacitance to facilitate a timing analysis
JP2005502226A (ja) 改善されたコンデンサ・モデルを用いて電力分配システムに対する必要な減結合コンデンサを決定するためのシステムおよび方法
US8850374B2 (en) Method of reducing parasitic mismatch
JP2006253187A (ja) 電源解析方法および電源解析を実行するプログラム
JP4780342B2 (ja) 半導体集積回路の電源モデル作成方法、装置、およびプログラム
KR20100118934A (ko) T-커넥션, t-커넥션의 설계 방법 및 t-커넥션의 콤팩트 모델링
CN114757143B (zh) 一种去耦电容选择方法、装置、服务器及可读存储介质
JP5304460B2 (ja) プリント配線基板電源回路設計装置、プリント配線基板電源回路設計方法及びプログラム
JP4678027B2 (ja) 集積回路装置の評価装置、評価方法及び評価プログラム
JP5872273B2 (ja) 閾値テーブルの作成方法、クロストーク解析の悲観性削減方法、クロストーク解析方法、及びクロストーク解析プログラム
US20240203655A1 (en) Equivalent circuit model creation method for multi-terminal capacitors, non-transitory computer-readable medium including equivalent circuit model creation program, simulation method, and simulation device
US20240202414A1 (en) Equivalent circuit model creation method for multi-terminal capacitors, non-transitory computer-readable medium including equivalent circuit model creation program, simulation method, and simulation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R151 Written notification of patent or utility model registration

Ref document number: 5320101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees